I

Í.

ſ

La sumar manage and so and a series

.

# EVALUATION OF ERDA-SPONSORED COAL FEED SYSTEM DEVEL JPMENT

R. L. Phen

W. K. Luckow

L. Mattson

D. Otth

P. Tsou

Jet Propulsion Laboratory Pasadena, California

N78-13252

### ABSTRACT

1.

ないというとうかられたいため

77-55

In March of 1977 the Jet Propulsion Laboratory began to provide staff support to the ERDA coal feeder development program. An initial task in that support effort was the evaluation of the coal feeders under development by ERDA. The objective of the evaluation was to recommend to ERDA those coal feed systems which should continue to receive development support as the program progressed into the pilot-scale phase, and to recommend the development actions to be undertaken for the selected feeders. The evaluation was based upon criteria such as technical feasibility, performance (i.e. ability to meet process requirements), projected life cycle costs and projected development cost. An evaluation methodology was developed which incorporated the evaluation criteria. Using this methodology, an initial set of feeders were selected based on the feeders' cost savings potential compared with baseline lockhopper systems. Additional feeders were considered for selection based on: 1) increasing the probability of successful feeder development, 2) application to specific processes and 3) technical merit. This paper presents the results of the evaluation, lists the feeders recommended for continued development and outlines a coal feeder development program.

#### INTRODUCTION

In response to the need for improved coal feeders, ERDA has sponsored a program of coal feed system development. Included in the program are feeder developments by three contractors: Foster-Miller Associates (FMA), Ingersoll-Rand Research, Inc. (IRR), and Lockheed Missiles and Space Company (LMSC). These contractors identified approximately a dozen feed system concepts which promised improved performance and reduced cost when compared with existing lockhopper and Blurry pump coal feeders. Critical components and subsystems of these concepts are now being evaluated and tested by the contractors in preparation for a pilot-scale system demonstration effort which will begin about October 1977.

The objective of the JPL coal feed system evaluation is to recommend to ERDA those feed systems which should receive continued development support as the program proceeds into the pilot-scale phase and to identify those development actions which should be undertaken for each of the selected feeders.

The coal feed systems considered in the evaluation are listed in Table 1 which includes the development contractor; a brief description of the feeders, their characteristics and development status.

#### EVALUATION APPROACH

The criteria for the evaluation included:

- Technical feasibility
- Performance, i.e., ability to meet process requirements
- Projected life cycle costs
- Projected development risk and costs

77-55



. ..... ;

. . . . . . . .

er man and a star

۶ ;

\* \* \* \* \* \*

•' a

e

ŝ

÷. 

÷

· · · · · · · ·

5 + + + " med

4 - 1 - 2

å

| System                                              | Developer     | Schematic Drawing | Description                                                                                           | Pressure<br>Limitations                                   |
|-----------------------------------------------------|---------------|-------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| • Positive<br>Displacement                          | Foster-Miller |                   | Cycled cavity piston<br>Juidized coal<br>feeder                                                       | 1500 psi                                                  |
| • Centrifugal<br>Feeder                             | Foster-Miller |                   | Rotating centrifugal<br>fluidized coal pump                                                           | 1500 psi                                                  |
| • Linear Pocket<br>Fæder                            | Foster-Miller |                   | Tubular conveyor with<br>coal conveyed to high<br>pressure by a chain<br>ot interconnected<br>pistons | 1500 psi                                                  |
| • Screw Feeder                                      | Ingersol-Rand |                   | Type of auger which<br>conveys coal axially<br>down its length as<br>the screw is rotated             | 1500 psi                                                  |
| • Single Acting<br>Piston Feeder                    | Ingersol-Rand |                   | Two coaxial delivery<br>pistons operate in a<br>common cylinder<br>housing                            | 1500 psi                                                  |
| • Rotary Valve<br>Piston Feeder                     | Ingersol-Rand |                   | Coal is transferreu<br>to high pressure by<br>a poston sleeve<br>rotation                             | 1500 psi                                                  |
| <ul> <li>Kinetic<br/>Extruder<br/>Feeder</li> </ul> | Lockheed      |                   | Rotating centrifugal<br>fluidized coal pump                                                           | 1000 psi<br>(single<br>stage)<br>1500 psi<br>(two stages) |
| • Standpipe-<br>Ball<br>Conveyor<br>Feeder          | Lockheed      |                   | Standpipe filled with<br>metal balls which<br>conveys coal in the<br>spaces between the<br>balls      | 300 psi                                                   |

Table 1. Coal Feed Systems

327

. من من l

# ORIGINAL PAGE S OF POOR QUALITY

\*

A ... M

ì

ŝ

.

I

ł

# Table 1. Coal Feed Systems (Continuation 1)

77-55

ĩ

è.

ъ. Г.

÷

•. ¶

1. 13 · · · · ·

5 61000

\*\* 0 \*\*

10.00

10

f

.

£

| System                                              | .Coal Type,<br>Size and Preparation<br>Requirements                                                                                        | Development Starus               | Development Uncertainties                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Positive<br/>Displacement</li> </ul>       | ● Any type<br>● Size ~ fine/medium                                                                                                         | Prototype in test                | <ul> <li>Purging gas requirements may become large<br/>in large factors</li> <li>Valve sequencing and sizing</li> <li>Materials selection for seals and valve<br/>seats</li> </ul>                                                                                                         |
| • Centrifugal<br>Feeder                             | • Any type<br>• Size - fine                                                                                                                | Prototype in test                | <ul> <li>Pressure sealing dependent on coal properties</li> <li>Sprue design uncertain</li> <li>Feed throttling for control or throughput</li> <li>Rotating seals</li> </ul>                                                                                                               |
| • Linear<br>Pocket<br>Feeder                        | <pre>     Any type     Size - medium/     coarse </pre>                                                                                    | Prototype being<br>assembled     | <ul> <li>Incomplete filling generates back leakage<br/>and may limit pressure capability</li> <li>Gas/liquid interface in water section</li> <li>Wear and survival of rings and chain</li> </ul>                                                                                           |
| • Screw Feeder                                      | <ul> <li>Bituminous-<br/>agglomerating<br/>(for heated<br/>screw)</li> <li>Size - up to 1"</li> <li>Drying to 3-4%<br/>moisture</li> </ul> | Prototype/pilot<br>slave in test | <ul> <li>Possibly large power requirements</li> <li>High pressure crusher to reduce extrudate to required size</li> <li>Scale up of feeder with respect to heat input to coal</li> <li>Screw/barrel wear</li> <li>Operating parameters to provide throughput with minimum power</li> </ul> |
| <ul> <li>Single Acting<br/>Piston Feeder</li> </ul> | • Any type<br>• Size - fine to<br>coarse                                                                                                   | Concept only                     | <ul> <li>Sealing and material wear</li> <li>Purging coal from cavity</li> <li>Coal jamming or piston/sleeve interface<br/>during loading and unloading</li> </ul>                                                                                                                          |
| <ul> <li>Rotary Valve<br/>Piston Feeder</li> </ul>  | • Any type<br>• Size - fine to<br>coarse                                                                                                   | Concept only                     | • Same as single acting piston feeder                                                                                                                                                                                                                                                      |
| • Kinetic<br>Extruder<br>Feeder                     | • Any type<br>• Size - fine                                                                                                                | Prototype in test                | • Same as centrifugal foeder                                                                                                                                                                                                                                                               |
| • Standpipe-<br>Ball<br>Conveyor<br>Fesder          | • Any type<br>• Size - fine to<br>coarse                                                                                                   | Bench tests                      | <ul> <li>Control of ball spacing and feeding mechanism</li> <li>Purging gas out of E<sub>2</sub>, feed line</li> </ul>                                                                                                                                                                     |

328

I

| 77 | -55 |
|----|-----|
|    |     |

**登**生 (

; \* ` \*

`،

×.

1

ŕ

.

# Tablu 1. Coal Feed Systems (Continuation 2)

| System                              | Developer | Schematic Drawing | Description                   | Pressure<br>Limitations              |
|-------------------------------------|-----------|-------------------|-------------------------------|--------------------------------------|
| • Fluid Dynamic<br>•                | Lockheed  |                   | Rotating bladeless<br>turbine | 2:1 pres-<br>sure ratio<br>per stage |
| • Gas-Solids<br>Injector,<br>Feeder | Lockheed  |                   | Gas-solids injector<br>pump   | 2:1 pres-<br>sure ratio<br>per stage |

ORIGINAL PAGE IS OF POOR QUALITY

### Table 1. Coal Feed Systems (Continuation 3)

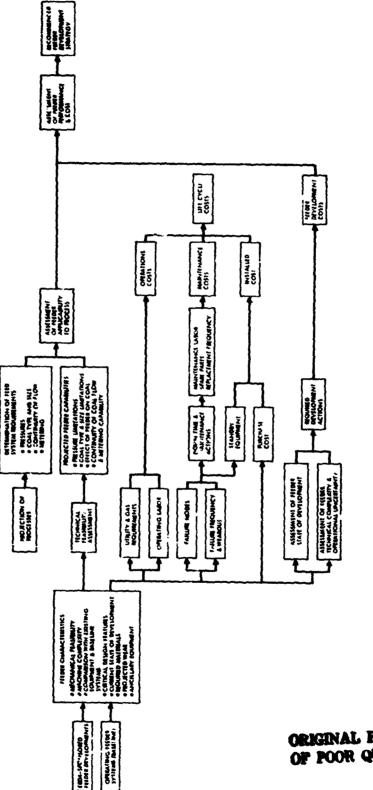
| System                              | Coal Type,<br>Size and Preparation<br>Requirements | Development Status | Development Uncertainties                                                                                                                                                               |
|-------------------------------------|----------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Fluid Dynamic<br>Lock Feeder      | • Any type<br>• Size - find                        | Prototype tests    | <ul> <li>Parasitic skin drag on lisk requires high power</li> <li>Rotating face and bearing seals</li> <li>Goal flow through machine</li> <li>Wear on besrings, seals, diaks</li> </ul> |
| • Gas-Solids<br>Injector,<br>Feeder | <pre>• Any type • Size - fine/ medium</pre>        | Prototype tests    | <ul> <li>Wear in nozzle throat</li> <li>Compressor seals and bearings</li> </ul>                                                                                                        |

329

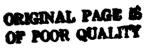
Ţ

Т

T


Factors contributing to each feeders' relative capabilities in the above categories is shown in the methodology flow diagram given in Figure 1. The approach illustrated included the following steps:

- (1) Analy\_e the technical feasibility of each feed system.
- (2) Compare feeder performance capability vs feed system requirements.
- (3) Determine feed system applicability to expected coal conversion processes.
- (4) Evaluate expected feed system costs relative to baseline lockhopper system.
- (5) Select feed systems for future development which, from the cost analysis, show the best chance of achieving low cost and wide application to future processes, for specified R&D cost limitations.
- (6) Consider recommending an expanded set of feeders as a means of increasing the probability of feed system commercialization.
- (7) Examine specific applications as a reason for continuing development of a concept which was not otherwise selected.
- (8) Review the feed systems selected on the basis of the cost analysis and modify this set based on the technical assessment.


#### DATA ACQUISITION

Data to accomplish the evaluation was obtained from the three feeder contractors and additional subcontractors as listed in Table 2. All data were analyzed by JPL for use in the evaluation.









# FEED SYSTEM REQUIREMENTS

As a foundation for the coal feed systems development program, performance goals were established for the feed systems based upon the requirements of future coal conversion processes. The feed system requirements are the following:

- pressure 150 to 1500 psi
- coal size fines to coarse (2 inches)
  - the feeder should not affect coal size consist or properties, but should deliver coal as required to the process
- continuous flow should be provided
- coal metering capabilities are required
- lifetime 20 years

The above requirements were developed by analysis of the conversion processes which were anticipated to achieve future commercialization. Further review of these processes enables classification of them into generic types based on their operating pressure and feed size consist.

The coal size and delivery pressure capabilities of the feed systems were matched against the generic requirements of the processes to establish the compatibility of the candidate feeders and the various conversion processes. Generic process conditions were determined by analysis of processes characteristics and are shown in Table 3. Application of the candidate feeders to the generic process conditions is shown in Table 4.

#### DEVELOPMENT UNCERTAINTY RANKING AND RELIABILITY

The development status and development problem areas have been used to estimate the commercialization potential for each feeder. The following

332

#### 77-55

/

1

ļ

ż

ц,

į

J

. . . . . .

> 1 1 1

· · · · · · · · ·

. . .

. . .

· · · · · ·

•

| DATA                                                                                                                       | SOURCE (1)                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| TECHNICAL ASSESSMENT<br>• TECHNICAL DESCRIPTIONS<br>• STATE OF DEVELOPMENT<br>• DEVELOPMENT PROBLEM AREAS<br>• RELIABILITY | CONTRACTORS<br>CONTRACTORS<br>CONTRACTORS<br>KAMAN SCIENCES                                      |
| PROJECTED PERFORMANCE<br>• PRESSURE<br>• COAL TYPE & SIZE LIMITATIONS<br>• EFFECT OF FEEDER ON COAL                        | CONTRACTORS<br>CONTRACTORS<br>CONTRACTORS                                                        |
| PROCESS APPLICABILITY                                                                                                      | JPL                                                                                              |
| PROCESS IMPACT                                                                                                             | INTERNATIONAL SCIENCE AND<br>TECHNOLOGY                                                          |
| PROJECTED COSTS<br>• INSTALLED<br>• OPERATING<br>• MAINTENANCE<br>• DEVELOPMENT                                            | CONTRACTORS, ICARUS <sup>(2)</sup><br>CONTRACTORS, JPL<br>CONTRACTORS, JPL <sup>(2)</sup><br>JPL |
| PROBABILITY OF SUCCESSFUL DEVELOPMENT                                                                                      | JPL                                                                                              |
| (1) IN ALL CASES DATA WAS AS<br>(2) RELIABILITY DATA FROM KA<br>DETERMINE STANDBY EQUIP                                    |                                                                                                  |

Table 2. Data Sources

مر منع

-----

ł

# Table 3. Process Classification

|                          | S    | ize             |               | P   | re88u | re   |      |                               |
|--------------------------|------|-----------------|---------------|-----|-------|------|------|-------------------------------|
| Process                  | Lump | Pulver-<br>ized | at <b>n</b> . | 150 | 500   | 1000 | 1500 | Remarks                       |
| HYGAS                    |      | x               |               |     |       |      | x    |                               |
| Lurgi                    | x    |                 |               |     | x     |      |      |                               |
| Woodall-Duckham          | x    |                 | x             |     |       |      |      |                               |
| COGAS                    |      | x               | x             |     |       |      |      |                               |
| Техасо                   |      | x               |               |     | x     |      |      |                               |
| U-GAS                    |      | x               |               |     | x     |      |      |                               |
| АГВС                     |      | x               | x             |     |       |      |      |                               |
| SRC                      |      | x               |               |     |       | x    |      | Slurry feed                   |
| H-Coal                   |      | x               |               |     |       |      |      | 2250-2700 psi,<br>slurry feed |
| Exxon Donner<br>Solvent  |      | x               |               |     |       |      |      | 2000 psi,<br>slurry feed      |
| BIGAS                    |      | x               |               |     |       |      | x    | Slurry feed                   |
| Synthane                 |      | x               |               |     |       | x    |      |                               |
| Mcdowell-<br>Wellman     | x    |                 |               |     | x     |      |      |                               |
| Agglomeration<br>Burner  |      | x               |               | x   |       |      |      |                               |
| CO <sub>2</sub> Acceptor |      | x               |               | x   |       |      |      |                               |
| Synthoil                 |      | x               |               |     |       |      |      | 2-4000 psi,<br>Slurry feed    |
| AI Molten Salt           |      | x               |               | x   |       |      |      |                               |

334

· ·.

1.1.1.1.1

÷ ;

1.1.7.

٩,

. .

\$

) 7.

£

. . -

Т

T

|                                   |     |      |     | Pro | )cess |       |      |      |
|-----------------------------------|-----|------|-----|-----|-------|-------|------|------|
| Feed System                       |     | Lump |     |     | Pı    | lveri | zed  |      |
|                                   | atm | 150  | 500 | atm | 150   | 500   | 1000 | 1500 |
| Positive Displacement<br>Feeder   | S   | S    | S   | +   | +     | +     | +    | +    |
| Centrifugal Feeder                | S   | S    | S   | +   | +     | +     | +    | +    |
| Linesr Pocket Feeder              | +   | +    | +   | +   | +     | +     | P    | P    |
| Screw Feeder                      |     |      |     |     |       |       |      |      |
| Heated                            | +   | +    | +   | s   | S     | S     | S    | S    |
| Unheated                          | +   | +    | +   | +   | +     | +     | +    | +    |
| Single Acting Piston<br>Feeder    | +   | +    | +   | +   | +     | +     | +    | +    |
| Rotary Valve Piston<br>Feeder     | +   | +    | +   | +   | +     | +     | +    | +    |
| Kinetic Extruder<br>Feeder        | S   | S    | S   | +   | +     | +     | +    | +    |
| Standpipe Ball Conveyor<br>Feeder | S   | S    | S   | +   | +     | P     | P    | P    |
| Fluid Dynamic Lock<br>Feeder      | S   | S    | S   | +   | +     | +     | +    | +    |
| Gas-Solids Injector<br>Feeder     | S   | S    | S   | +   | +     | +     | +    | +    |
| Lockhopper                        | +   | +    | +   | +   | +     | +     | +    | +    |
| Slurry Pump                       | S   | S    | S   | +   | +     | +     | +    | +    |

### Table 4. Feeder/Process Combinations

1.4.1

. .

ā,

4

ĉ

\$ • •

.

:

٠

ŝ

\*\*\*\*

3.44 U

77-55

+ - Compatible feeder/process combinations

- S Incompatible feeder/process combinations due to feeder's inability to provide required coal size consist
- P Incompatible feeder/process combinations due to feeder's inability to feed to required pressure.

are the estimates of probability of successful commercialization assuming continued development.

| Positive Displacement   | 0.80 |
|-------------------------|------|
| Centrifugal             | 0.65 |
| Linear Pocket           | 0.80 |
| Screw                   | 0.90 |
| Single Acting Piston    | 0.75 |
| Rotary Valve Piston     | 0.75 |
| Kinetic Extruder        | 0.65 |
| Standpipe-Ball Conveyor | 0.60 |
| Fluid Dynamic Lock      | 0.65 |
| Gas-Solids Injector     | 0.85 |

> Reliability analysis of the feeders were conducted by Kaman Sciences, Corp. The results of this analysis are summarized in Table 5. The table shows pertinent failure rate and availability data, and the number of redundant systems required per gasifier to achieve 95% availability. Note that the IRR screw feeder has the best reliability and that the FMA positive displacement pump has severe projected reliability problems due to its complexity and the large number of feeders required for a plant. It is important to note that the most significant contributors to most of the feed systems' unreliability were ancillary equipment. Therefore, feed system considerations should receive greater attention in the future development program.

77-55

Summary of Feed-System Reliability Considerations<sup>(1)</sup> Table 5.

. . . . . .

• - .:

÷ 1111

;

A AND A AND A

1

5

۰. بر

•

A... ....

こうちょう ちょうちょう ちょうちょう ないしょう

، مې مې 5

i

Required Backup Feeders or Trains per Gasifier Availability for 95% 3 (2) Adding three additional feeder banks/pasificr would only increase the availability to 52%. Additional feeders required to achieve 95% availability were not determined. per Gasifier Feeders or Trains Availability per Gasifier 0.85 0.85 0.93 0.85 0.83 0.66 0.63 0.13 0.79 0.90 0.64 16.0 0.61 Availability per Fceder or Train 0.85 0 80 0.95 0.96 0.90 0.89 0.51 0.89 0.96 0.93 0.92 16.0 0.91 106 Hours Failures in Data provided by Karran Sciences, Corp. 1,290 1,490 3,060 3,710 3,890 4,230 4,800 4,850 7,530 10,180 39,540 5,120 2,430 Positive Displacement Feeder Single Acting Piston Feeder Fluid Dynamic Lock Feeder Kinetic Extruder Feeder Rotary Piston Feeder Linear Pocket Feeder Ball Conveyor Feeder Feed System Gas-Solids Injector Centrifugal Feeder Screw Feeder Unheated Slurry Pump Lockhopper Heated Ξ (2)

337

A STATES 1.1.5 6% and hor 1244 49

.' ,

ORIGINAL PAGE OF POOR QUALITY

77-55

| Ranking    |  |
|------------|--|
| Assessment |  |
| Technical  |  |
| able 6.    |  |

1,.

| Single Acting and<br>Rotary Fiston<br>Screw<br>Screw<br>Screw<br>Screw<br>Positive Displacement<br>Piston<br>Piston<br>Piston<br>Piston<br>Piston<br>Piston<br>Piston<br>Piston<br>Piston<br>Piston<br>Piston<br>Piston<br>Piston<br>Piston<br>Piston<br>Piston<br>Piston<br>Centrifugal<br>Kinetic Extruder<br>Finear Pocket<br>Piston<br>Centrifugal<br>Kinetic Extruder<br>Piston<br>Centrifugal<br>Kinetic Extruder<br>Piston<br>Centrifugal<br>Kinetic Extruder<br>Piston<br>Centrifugal<br>Kinetic Extruder<br>Piston<br>Centrifugal<br>Kinetic Extruder<br>Piston<br>Centrifugal<br>Kinetic Extruder<br>Piston<br>Ball Conveyor<br>Centrifugal<br>Kinetic Extruder<br>Piston<br>Centrifugal<br>Kinetic Extruder<br>Centrifugal<br>Kinetic Extruder<br>Piston<br>Centrifugal<br>Kinetic Extruder<br>Piston<br>Ball Conveyor<br>Centrifugal<br>Kinetic Extruder<br>Centrifugal<br>Kinetic Extruder<br>Piston<br>Centrifugal<br>Kinetic Extruder<br>Centrifugal<br>Kinetic Extruder<br>Centrifugal<br>Conter<br>Centrifugal<br>Convevor<br>Centrifugal<br>Convevor<br>Centrifugal<br>Convevor<br>Centrifugal | Abj <sup>1</sup> ity to Meet<br>Requirements |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| <ol> <li>Cas-Solids Ejector</li> <li>Ball Conveyor</li> <li>Ball Conveyor</li> <li>Centifugal</li> <li>Kinetic Extruder</li> <li>Kingle Acting</li> <li>figle Acting</li> <li>fiston</li> <li>Rotary Valve</li> <li>Piston</li> <li>Linear Pocket</li> <li>Fluid Dynamic</li> <li>Positive</li> <li>Positive</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Single Acting and<br>Rotary Piston           |
| nt<br>3.<br>Centifugal<br>Kinetic Extruder<br>2.<br>Kinetic Extruder<br>4.<br>Piston<br>5. Linear Pocket<br>6. Fluid Dynamic<br>7. Positive<br>5. Diston<br>7. Positive<br>5. Diston<br>7. Positive<br>5.<br>1.<br>5.<br>1.<br>5.<br>1.<br>5.<br>1.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |
| <pre>nt 3. { Centifugal    Kinetic Extruder    Kinetic Extruder    Kingle Acting    fiston    4. { Rotary Valve    Piston    5. Linear Pocket    6. Fluid Dynamic    7. Positive    5.    Disulacement    5.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Screw                                        |
| Kinetic Extruder4.State Acting<br>Piston4.State Acting<br>Piston5.Linear Valve<br>Piston5.Linear Pocket<br>Lock7.Positive<br>Positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Positiv<br>Piston                            |
| <ul> <li>4. State Acting Piston</li> <li>4. Rotary Valve Piston</li> <li>5. Linear Pocket</li> <li>6. Fluid Dynamic</li> <li>7. Positive</li> <li>5. Disulacement</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Centrii                                      |
| <ul> <li>4. Piston</li> <li>ector</li> <li>4. Rotary Valve</li> <li>7. Linear Pocket</li> <li>6. Fluid Dynamic</li> <li>7. Positive</li> <li>5. Displacement</li> <li>5. Displacement</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Extrude                                      |
| ector 4. Rotary Valve 3.<br>Piston Lock 5. Linear Pocket 6. Fluid Dynamic 4.<br>7. Positive 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Linear Pocket                                |
| Lock 5. Linear Pocket 6. Fluid Dynamic 4.<br>7. Positive 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gas-Sol:                                     |
| <ol> <li>Fluid Dynamic</li> <li>Fluid Dynamic</li> <li>Lock</li> <li>Positive</li> <li>Pisulacement</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fluid D                                      |
| Fluid Dynamic<br>Lock 4.<br>Positive 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Ball Conveyor</b>                         |
| ment 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |

ward to a dec

1.4

338

77-55

77-55

#### EVALUATION RESULTS

The feed systems were ranked preliminarily based upon the technical factors:

- development uncertainty
- ability to meet requirements
- reliability

The ranking is shown in Table 6. The technical date, which was used to rank the feeders was also incorporated in the cost analysis. The technical ranking was used to check the results of the cost analysis to assure that feeders selected on a cost basis included those with high cechnical ranking.

Cost analyses formed the foundation for the initial selection of feed systems. Costs were provided by the three contractors and independently by Icarus Corporation. The installed costs provided by the contractors and Icarus were in good agreement, typically within 35% of each other for each feeder. The evaluation reported here was based on the costs provided by the contractors. Sensitivity analyses have established that the same feeder selection is obtained if the costs provided by Icarus are used.

Capital, operations and maintenance costs were used to calculate life cycle costs for each feeder. These costs are shown in Tables 7-10 for various reacted pressures.

Development costs were determined by assessment of the feeder development status. The assessment is summarized in Table 11 and the costs are summarized in Table 12.

Using the capital, installation, operating and maintenance costs given in Tables 7-10, life cycle costs were calculated for each feed system. Cost savings,  $\Delta C$ , for individual feeders and for feeder sets compared with the

Table 7. Cost (\$1,000 1977 Dollars) Summary for Commercial Plant 625 TPH Throughput 150 psi Pressure

1

|                               |     |           | ++++ +++++++++++++++++++++++++++++++++ | +04 074 1 |             |       |          |      |        |         |
|-------------------------------|-----|-----------|----------------------------------------|-----------|-------------|-------|----------|------|--------|---------|
|                               |     |           | Oper                                   | Operating | Maintenance | nance | Number   | ТРН/ | Stage/ | NO      |
| Feeder                        | R&D | Installed | Labor                                  | Utility   | Labor       | Mat'l | of Banks | Bank | Bank   | Feeders |
| Foster Miller                 |     |           |                                        |           |             |       |          |      |        |         |
| Positive<br>Displacement      |     | 5,740     | 240                                    | 75        | 14.4        | 250   | 6        | 70   | 14*    | 126*    |
| Linear Pocket                 |     | 2,151     | 250                                    | 240       | 15          | 150   | 6        | 70   | 1      | 6       |
| Centrifugal                   |     | 1,971     | 160                                    | 138       | 15          | 36    | E        | 210  | . 1    | e       |
| Ingersol Rand                 |     |           |                                        |           |             |       |          |      |        |         |
| lleated Screw                 |     | 5,533     | 350                                    | 1,180     | 605         | 573   | 12       | 52   | 1      | 12      |
| Cold Screw                    |     | 4,646     | 350                                    | 1,180     | 605         | 481   | 12       | 52   | 1      | 12      |
| Single Acting<br>Piston       |     | 4,210     | 350                                    | 89        | 605         | 435   | 12       | 52   | н      | 12      |
| Rotary Valve<br>Piston        |     | 2,835     | 350                                    | 89        | 605         | 293   | 12       | 52   | н      | 12      |
| Lockheed                      |     |           |                                        |           |             |       |          |      |        |         |
| Kinetic<br>Extruder           |     | 4,864     | 240                                    | 182       | 30          | 447   | 9        | 104  | 1      | Q       |
| Standpipe Ball                |     | 11,520    | 350                                    | 383       | 230         | 922   | 9        | 104  | 1      | 9       |
| Fluid Dynamic<br>Lock         |     | 13,360    | 240                                    | 2,479     | 120         | 1,216 | Q        | 104  | 4      | 24      |
| Injector                      |     | 7,931     | 240                                    | 2,043     | 32          | 761   | e,       | 210  | 2      | 6       |
| Lockhopper                    |     | 4,080     | 350                                    | 271       | 147         | 98    | 9        | 104  | 1      | 9       |
| Slurry Pump                   |     | 4,675     | 350                                    | 7,642     | 168         | 112   | 6        | 104  | 1      | 9       |
| *Number of cylinders per bank | per | and       | feeder.                                |           |             |       |          |      |        |         |

77-55

17

. . . . . .

•

:

, : ,

¥. .

-

i

340

l

1

}

Cost (\$1,000 1977 Dollars) Summary for Commercial Plant 625 TPH Throughout 500 psi Pressure

Table 8.

\*\* \* \* \* \*

•

,

:, .

1

. . . . . .

: . .

|                          |     | 625 TPH Th   | Throughput | t 500 psi | Pressure    | re    |          |      |        |         |
|--------------------------|-----|--------------|------------|-----------|-------------|-------|----------|------|--------|---------|
|                          |     |              | Operating  | ting      | Maintenance | nance | Number   | TPH/ | Stage/ | No      |
| Feeder                   | R&D | Installed    | Labor      | Utility   | Labor       | Mat'l | of Banks | Bank | Bank   | Feeders |
| Foster Miller            |     |              |            |           |             |       |          |      |        |         |
| Positive<br>Displacement |     | 6,820        | 240        | 240       | 17          | 340   | 6        | 70   | 14*    | 126*    |
| Linear Pocket            |     | 2,150        | 250        | 833       | 15          | 150   | 6        | 70   | 1      | 6       |
| Centrifugal              |     | 2,358        | 160        | 405       | 15          | 40    | 3        | 210  | Г      | e       |
| Ingersol Rand            |     |              |            |           |             |       |          |      |        |         |
| Heated Screw             |     | 6,577        | 350        | 1,593     | 605         | 680   | 12       | 52   | п      | 12      |
| Cold Screw               |     | 5,690        | 350        | 1,593     | 605         | 589   | 12       | 52   | F      | 12      |
| Single Acting<br>Piston  |     | 5,613        | 350        | 295       | 605         | 589   | 12       | 52   |        | 12      |
| Rotary Valve<br>Piston   |     | 4,033        | 350        | 295       | 605         | 391   | 12       | 52   | ы      | 12      |
| Lockheed                 |     |              |            |           |             |       |          |      |        |         |
| Kinetic<br>Extender      |     | 6,043        | 240        | 456       | 49          | 556   | 9        | 104  | н      | 9       |
| Sandpipe Ball            |     |              |            |           |             |       |          |      |        |         |
| Fluid Dynamic<br>Lock    |     | 17,344       | 350        | 4,185     | 156         | 1,578 | ę        | 104  | Q      | 36      |
| Injector                 |     | 9,632        | 240        | 2,859     | 39          | 925   | r        | 210  | 4      | 12      |
| Lockheed                 |     | 5,316        | 350        | 1,355     | 191         | 128   | Y        | 104  | 1      | ų       |
| Slurry                   |     | 4,791        | 350        | 7,976     | 172         | 114   | ç        | 104  |        | 9       |
| *Numher of cylinders per |     | bank and fee | feeter.    |           |             |       |          |      |        |         |

77-55

1

1.4

2 33

. -

. .

. . .

\*

.

All manual and

, , , Table 9. Cost (\$1,000 1977 Dollars) Summary for Commercial Plant 625 TPH Throughput 1000 psi Pressure

ł

1

ł

?

1

ĸ

.

. .

ş

;

:

ě

٢.

ţ

~ ~ ~ ~ ~

| Feeder                        | R&D  | Installed   | Oper  | Operating | Maintenace | lace  | Number   | TPH/ | Stage/ | No.     |
|-------------------------------|------|-------------|-------|-----------|------------|-------|----------|------|--------|---------|
|                               |      |             | Labor | Utility   | Labor      | Mat'l | of Banks | Bank | Bank   | Feeders |
| Foster Miller                 |      |             |       | •         |            |       |          |      |        |         |
| Positive Displacement         |      | 8,140       | 240   | 851       | 17         | 343   | 6        | 70   | 14*    | 126*    |
| Linear Pocket                 |      |             |       |           |            |       |          |      |        |         |
| Centrifugal                   |      | 3,355       | 150   | 788       | 15         | 178   | e        | 210  | H      | e       |
| Ingersol Pand                 |      |             |       |           |            |       |          |      |        |         |
| lleated Screw                 |      | 8,561       | 350   | 2,154     | 605        | 886   | 12       | 52   | 1      | 12      |
| Cold Screw                    |      | 8,053       | 350   | 2,154     | 605        | 833   | 12       | 52   | -      | 12      |
| Single Acting Piston          |      | 8,419       | 350   | 291       | 605        | 871   | 12       | 52   | П      | 12      |
| kotary Valve Piston           |      | 5,670       | 350   | 591       | 605        | 587   | 12       | 52   | -1     | 12      |
| Lockheed                      |      |             |       |           |            |       |          | ·    |        |         |
| Kinetic Extruder              |      | 7,727       | 240   | 848       | 61,895     | 711   | 9        | 104  | T      | 9       |
| Standpipe Ball                |      |             |       |           |            |       |          |      |        |         |
| Fluid Dynamic Lock            |      | 23,039      | 350   | 6,622     | 207        | 2,097 | ę        | 104  | 7      | 42      |
| Injector                      |      | 12,062      | 240   | 4,025     | 48         | 1,158 | e.       | 210  | Q      | 18      |
| Lockhopper                    |      | 7,074       | 350   | 3,388     | 255        | 170   | Q        | 104  | -1     | 6       |
| Slurry                        |      | 4,912       | 350   | 8,603     | 177        | 11^   | ę        | 104  | F      | 6       |
| *Number of cylinders per bank | bank | and feeder. | r.    |           |            |       |          |      |        |         |
|                               |      |             |       |           |            |       |          |      |        |         |

77-55

•

342

ł

I

Table 10. Cost (\$1,000 1977 Dollars) Summary for Commercial Plant 625 TPH Throughput 1500 psi Pressure

1

ž

12.45 June 홍색 1465 2: 11

ţ

۹

| -                                 |      |             | 0per       | Operating | Maintenance | nance | Number   | TPH/ | Stage/ | No.                                      |
|-----------------------------------|------|-------------|------------|-----------|-------------|-------|----------|------|--------|------------------------------------------|
| reeder                            | K&D  | Installed   | Labor      | Utility   | l.abor      | Mat'l | of Banks | Bank | Bank   | Feeders                                  |
| Foster Miller                     |      |             |            |           |             |       |          |      |        |                                          |
| Positive Displacement             |      | 8,140       | 240        | 851       | 17          | 343   | 6        | 70   | 14*    | 126*                                     |
| Linear Pocket                     |      |             | «. <b></b> |           |             |       |          |      |        |                                          |
| Centrifugal                       |      | 3,355       | 160        | 788       | 15          | 178   | e.       | 210  | 1      | en e |
| Ingerso) Rand                     |      |             |            |           |             |       |          |      |        |                                          |
| lleated Screw                     |      | 11,077      | 350        | 2,950     | 605         | 1,146 | 12       | 52   | 1      | 12                                       |
| Cold Screw                        |      | 11,074      | 350        | 2,950     | 605         | 1,146 | 12       | 52   | 1      | 12                                       |
| Single Acting Piston              |      | 13,217      | 350        | 886       | <u>ç</u> 09 | 1,452 | 12       | 52   | 1      | 12                                       |
| Rotary Valve Piston               |      | 9,450       | 350        | 886       | 605         | 816   | 12       | 52   | 1      | 12                                       |
| Lockheed                          |      |             |            |           |             |       |          |      |        |                                          |
| Kinetic Extruder                  |      | 6,409       | 350        | 1,239     | 75          | 866   | 6        | 104  | 2      | 12                                       |
| Standpipe Ball                    |      |             |            |           |             |       |          |      |        |                                          |
| Fluid Dynamic Lock                |      | 28,728      | 350        | 9,060     | 259         | 2,614 | 9        | 104  | 7      | 42                                       |
| lnjector                          |      | 14,250      | 350        | 5,19т     | 57          | 1,368 | e        | 210  | 7      | 21                                       |
| Lockhopper                        |      | 8,771       | 350        | 6,030     | 316         | 211   | 9        | 104  | Ч      | 9                                        |
| Slurry                            |      | 5,797       | 350        | 8,923     | 209         | 139   | 6        | 104  | 1      | ę                                        |
| *Number of cylinders per bank and | bank | and feeder. |            |           |             |       |          |      |        |                                          |
|                                   |      |             |            |           |             |       |          |      |        |                                          |

77-55

1.7

• • • •

343

t r

į

| Feeder                                    | Development<br>Status        | Scale-<br>ability | Machine<br>Complexity* | Development<br>Risk |
|-------------------------------------------|------------------------------|-------------------|------------------------|---------------------|
| Ball Conveyor                             | Bench Tests                  | Poor              | С                      | High                |
| Kinetic Extruder                          | Froto in Test                | Poor              | S                      | High                |
| Fluid Dynamic<br>Lock                     | Proto in Test                | Poor              | S                      | High                |
| Ejector                                   | Proto in lest                | Good              | S                      | Low                 |
| Centrifugal                               | Proto in Test                | Poor              | S                      | High                |
| Positive<br>Displacement<br>Piston        | Proto in Test                | Good              | Α                      | Low                 |
| Linear Pocket<br>Feeder                   | Proto being<br>assembled     | Good              | С                      | Low                 |
| Screw                                     | Proto/Pilot<br>Sizes in Test | Poor              | S                      | Low                 |
| Single Acting<br>Piston                   | Paper Concept                | Good              | А                      | Low                 |
| Rotary Piston                             | Paper Concept                | Good              | А                      | Low                 |
| *S - Simple<br>A - Average<br>C - Complex |                              |                   |                        |                     |

Table 11. Coal Feeder Development Assessment

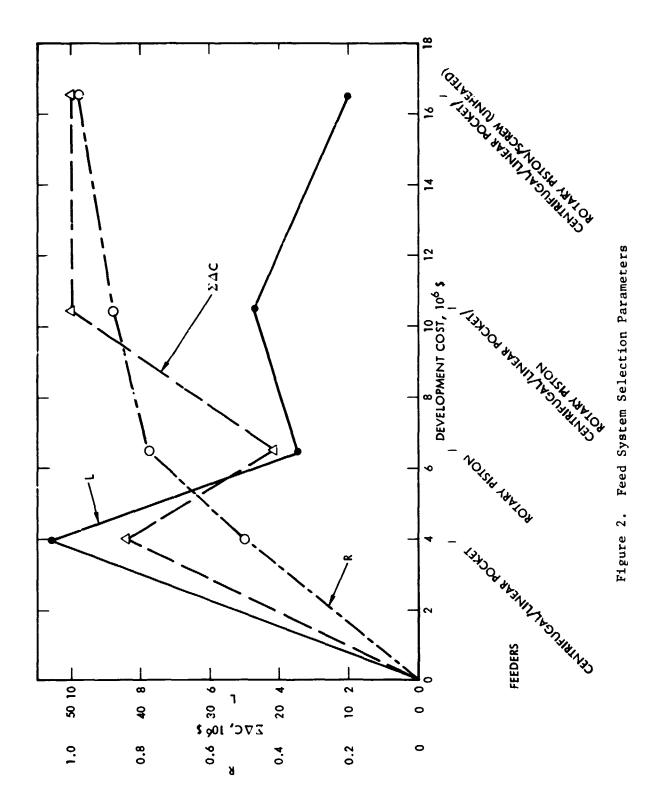
baseline lockhopper systems were determined. The following three parameters were then used to select the most promising feeders.

ΣΔC - The life cycle cost difference between the candidate feeder and the baseline (lockhopper) feeder summed over the process applications. A maximum value of this parameter represents the objective of the plant developer who seeks to minimize costs.

# 77-55

| Food Suchan                              | Relative D | evelopment Costs (N            |                      |
|------------------------------------------|------------|--------------------------------|----------------------|
| Feed System                              | Phase III  | Phase IV                       | Total <sup>(1)</sup> |
| Positive Displacement Feeder             | 1.3        | 3.3                            | 8.0                  |
| Centrifugal Feeder                       | 0.6        | 2.2                            | 2.3                  |
| Linear Pocket Feeder                     | 0.5        | 1.4                            | 1.6                  |
| Screw Feeder                             | 1.5        | 6.1 (heated)<br>5.8 (unheated) | 6.4<br>6.1           |
| Single Acting Piston Feeder              | 2.2        | 8.7                            | 9.1                  |
| Rotary Valve Piston Feeder               | 1.6        | 6.2                            | 6.5                  |
| Kinetic Extruder                         | 1.4        | 5.5                            | 5.8                  |
| Standpipe Ball Conveyor                  | 4.0        | 15.7                           | 16.5                 |
| Fluid Dynamic Lock Feeder <sup>(2)</sup> | 4.2        | 16.8                           | 17.6                 |
| Gas-Solids Injector <sup>(2)</sup>       | 1.4        | 5.6                            | 5.8                  |

# Table 12. Estimate Feed System Development Costs


77 55

- L Cost leverage = ΣΔC/development costs. A maximum value of this parameter represents the goals of ERDA which seeks the maximum return for its development funding.\*
- R Realizability. The probability of successful commercialization.

Figure 2 shows how these three parameters change with 'ncreased development funding, and with different select. of feeder sets. All combinations

\*Note that the values of L show relative differences between systems. The actual value of L may be 10-50 times the number shown depending on how many plants derive economic benefit from use of the new feeder/gasifier systems.

· \*\*\* \* \*\*\*\*



à.

-

346

ļ

77-55

ſ

1

Ę

ŧ

ł

1

I

of feeder sets which could meet all process conditions were examined. Figure 2 shows the most promising combinations. The sets shown provide the best choice, i.e., they optimize one or all of the three decision parameters for the range in development costs. The figure illustrates the following:

- (1) The feeder set which maximizes L is the centrifugal (or kinetic extruder) and linear pocket feeder. This set also provides a high value for  $\Sigma \Delta C$ . However, there would be a high risk that these feeders would not realize commercialization (low R).
- (2) The rotary value piston feeder is predicted to have a higher probability of commercialization than the combination of the centrifugal and linear pocket feeder, but its predicted high life cycle and development costs result in lower ΣΔC and L values. Actually, considering cost inaccuracies, the rotary piston and the set of centrifugal/linear pocket feeders probably have comparable values for ΣΔC and L.
- (3) Because of the low values for R which would result if only one feeder or feeder set was developed, it is recommended that parallel developments be undertaken to increase the probability of feed system commercialization. Parallel development of feed systems will reduce the parameter L as shown in the figure, because development costs are increasing faster than corresponding increases in cost savings,  $\Sigma\Delta C$ . By combining the centrifugal/linear pocket and rotary piston feeders, increased realizability is achieved; but it is not until a third parallel development, the unheated screw, is added that an acceptably high value for R is achieved.

77-55

「「日本のなかっていた」を見たいであるとう

and the ends are a

- (4) The positive displacement feeder, if added to the above set, would only slightly increase the commercialization realizability, but would increase the development cost by about 30%. The additional cost for little gain, coupled with the feeder's projected low reliability, leads to the recommendation that development of the positive displacement feeder be discontinued, or limited to testing of the present system and concentration on improving the system's reliability.
- (5) None of the other feeder systems offer any additional cost or realizability advantages over the four selected in (3) above. Additionally, none of the other feeders was determined to have advantages for specific applications or redeeming technical features which would recommend its selection.

#### RECOMMENDED SYSTEMS

As a result of the above analysis the following feed systems are recommended for further development:

FMA centrifugal feeder or LMSC kinetic extruder

FMA linear pocket feeder

IRR rotary valve piston feeder

IRR unheated screw feeder

The recommended actions for each feeder and the bases for these recommendations are summarized in Table 13 and detailed in the Coal Feed System Development Plan, JPL Report No. 5030-94. For all selected feeders the development uncertainty is ingh. Continued evaluation of the selected concepts is required and is reflected in the Development Plan.

Table 12. Recommended Coal Feed System Development Actions

4

ſ

, ;

;

2

• è

s ,

:

\* \* }

~.

| <b>i</b>                 |                                                                                                                                                   | L<br>T                                                                                                     |                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                           | 17-55                                                                                                    |                                                                                                                                                                               | ]                                                                                                           | I<br>1                                                                                     |                                                                                             | ORIGINAL PAGE DO<br>OF POOR QUALITY                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Busis for Recommendution | No cost advantage relative to selected svatema<br>Serious reliability problem                                                                     | Potential low cost avatem for high pressure processes<br>using time coal.<br>Svatem simplicity             | Potential low cost avatem for low pressure systems<br>(to 500 psi) using fine to course coul                                                                      | Provides parallel development alternative to other<br>recommended developments to fineraise probability of<br>communical teed swatem development.<br>One of only two receirs applie of meeting all process<br>requirements (piston feeders are only in conceptual stage<br>of development). | Cost savings potential is not as great as rotary piston.<br>Development problems may be caster, however. | Potential cost savings compared to baseline.<br>Potential application to all process requirements.                                                                            | Very complex<br>High cost compared to baseline systems.<br>Applicable only to low pressures (below 150 psi) | Complex staging required to reach even 150 psi.<br>High cost compared to baseline systems. | Complex staring required to reach even 150 pmf.<br>High cost compared to baseline avatemms. | ll to determine heat applications.                                                                                                                                                                                                                                                                                                                                                                                             |
|                          | ••                                                                                                                                                | • •                                                                                                        | •                                                                                                                                                                 | • •                                                                                                                                                                                                                                                                                         | •                                                                                                        | ••                                                                                                                                                                            | •••                                                                                                         | ••                                                                                         | ••                                                                                          | تع<br>عد                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Recommended Action       | Discontinue major development cifort. Limited<br>testing of available equipment and design<br>analysis to verify cost and reliability assessment. | Continue component testing to verify concept<br>functional capability, and pressure ratio<br>potential.(1) | Conduct pilot-scale development. Assess scaling,<br>leakage and pressure capability. Verify coal<br>metering to the powkets and water lock design. <sup>(2)</sup> | Conduct pilot scale development. Emphasize the unheated acrew.(3)                                                                                                                                                                                                                           | Discontinue development efforts in favor of<br>rotary µlston feeder development.                         | Conduct component development, emphasizing<br>piston scaling and wear, wolids loading and<br>unloading to preven jamming and system design<br>to minimize power requirements. | Ulscontinue development.                                                                                    | Discontinue Development                                                                    | Discontance development <sup>(4)</sup>                                                      | <ul> <li>(1) Because of development uncertainties parallel development efforts should be considered.</li> <li>(2) Recommendation contingent on results of prototype testing results.</li> <li>(3) This system has questionable cost advantages. Requires application analysis during Phase III to determine best applications.</li> <li>(4) This system should be analyzed for application to low pressure systems.</li> </ul> |
| Feed System              | Positive Displacement Feeder                                                                                                                      | Centrifugal/Kinetic Extruder<br><sup>c</sup> eeder                                                         | .Inear Pocket Feeder                                                                                                                                              | Screw Feeder                                                                                                                                                                                                                                                                                | Single Acting Platon Feeder                                                                              | Rotary Valve Piston Fooder                                                                                                                                                    | Standpipe Ball Couveyor<br>Feeder                                                                           | Fluid Dynamic Lock Feeder                                                                  | Gas-Solids Injector Feeder                                                                  | <ul> <li>(1) Because of development uncertainties parallel development</li> <li>(2) Recommendation contingent on results of prototype testing</li> <li>(3) This system has questionable cost advantages. Requires and</li> <li>(4) This system should be analyzed for application to low pros</li> </ul>                                                                                                                       |

1 

-----

. . . .

:

. . . . .

r,

~ ~ ~ ~ ~ ~

•

----

•

. . . . .

. . . . . . . . .

7

ł

-

I

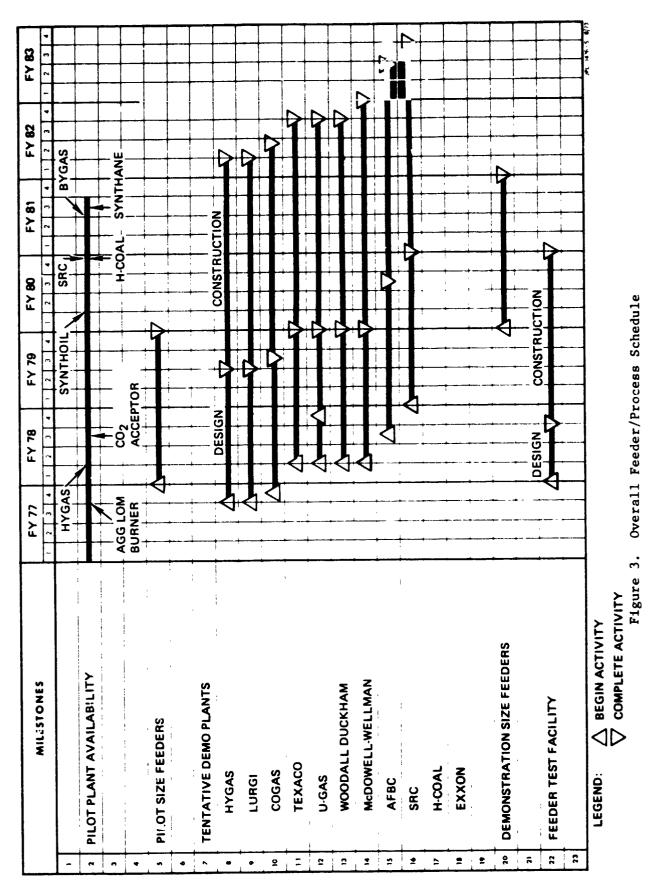
The reliability assessment performance by Kaman Sciences pinpointed the ancillary equipments as the critical elements in regard to feed system reliability. Therefore, system aspects should receive greater attention in the continuing program.

The process impact study conducted in conjunction with International Science and Technology revealed the potential sensitivity of the processes to feeder characteristics. These results emphasize the need to view the feeder as but one equipment of an integrated coal conversion plant.

#### FUTURE FEED SYSTEM DEVELOPMENT

The coal feed system development program has the objective to provide the coal conversion process plant designer several feeder options which could result in technical advantages and cost savings over conventional lockhopper and slurry pump systems. Basic to  $ch \in$  feeder development are the program elements of strategy which include:

- (1) Maintaining open options by continuing with parallel feeder development programs to increase the probability of successful development, and providing for the development of new concepts if they have advantages over other systems being developed.
- (2) Involve decision makers such as architect/engineering firms, utilities, and process developers in the pilot and demonstration phases, to assure that the feeders are tested against real process requirements and that the results will be rapidly disseminated throughout the industry.
- (3) Component testing and resolution of common problems by centralized testing to avoid duplication of effort.


77-55

- (4) Utilization of process pilot plants for testing to demonstrate process compatibility. The schedule of Figure 3 reveals that some of the pilot plant processes will have completed process demonstration and be available for component tests at the time pilot scale feeders become available for test.
- (5) Centralized demonstration test facility is suggested for duration testing of demonstration scale feeders. Plant designers will require such testing before they will commit to the incorporation of the feeders in demonstration or commercial plants.
- (6) Feeder integration into process demonstration plants is required as a commercialization step, yet their development schedule is lagging the demonstration plant schedule as shown in Figure 3. Late introduction of feeders into the demonstration plants, or introduction into second generation plants, should be considered.
- (7) Cost sharing by the contractors during the demonstration phase is recommended to stimulate contractor interest and introduce marketing considerations into the program.

The feed system evaluation and the strategic elements provided the basis for the plan which is summarized in the schedule of Figure 4. Shown in the figure are schedules for the specific feeder developments and related support tasks. Key features of the program illustrated by the schedule are the following:

 Component development of the centrifugal and kinetic extruder feeders is shown continuing in parallel until a better understanding of the concept is obtained. Then a single pilot plantscale effort is recommended.

77-55



77-55

Ì

ſ

**]** . .

and the second second second

1

1

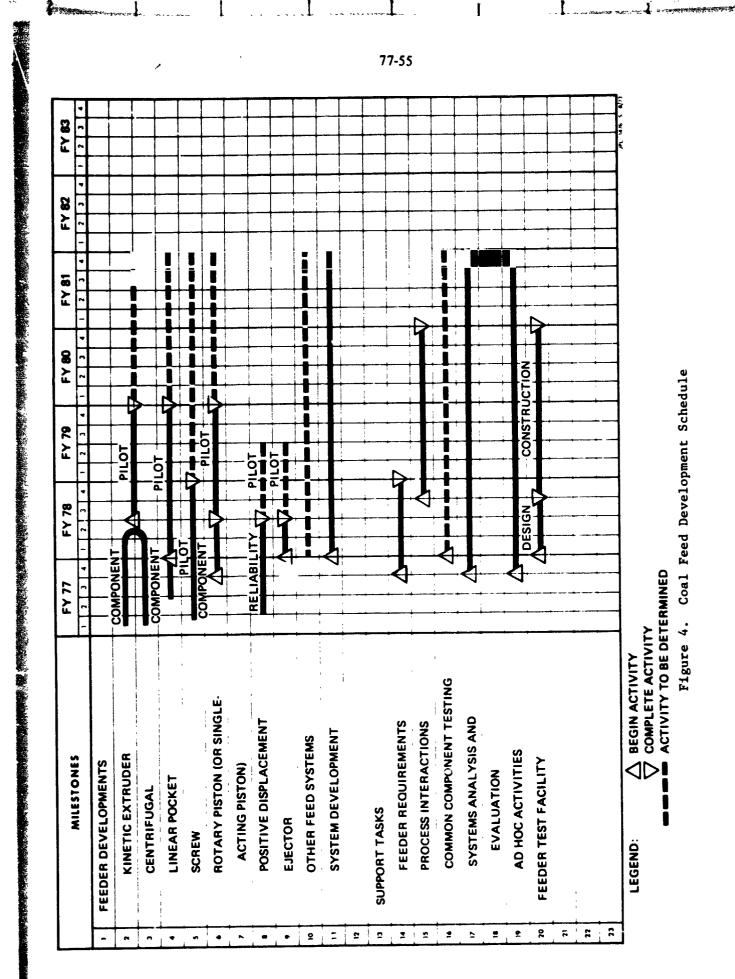
1

. ,

ļ

, ,

...........


. **'** 

I

1

ł

Ĺ



353

Ŷ,

ł

14 × 0

- Pilot-scale development of the linear pocket feeder is recommended if prototype testing is successful. The development effort should concentrate on seal effectiveness and life, metering of coal to the pockets, seal tube life and the effectiveness of the water lock or gas-water transfer subsystem.
- Continued pilot scale testing of the screw feeder is recommended with emphasis on the unheated design.
- Accelerated component testing of the rotary piston feeder is recommended, followed immediately by pilot-scale development (if component testing is successful). This will permit completion of the pilot phase of the development on a schedule consistent with the other feed system developments.
- It is the intent to reduce the number of feeders under development to a minimum set upon completion of the pilot scale phase of the program. Therefore, demonstration efforts for each of the feed systems are shown "to be determined" after the pilot phase.
- The positive displacement feeder is shown undergoing continued testing to obtain a better understanding of the capabilities, projected costs and reliability. A decision to proceed into pilot scale development will be made when the capabilities of the centrifugal/kinetic extruder feeders are determined by the component tests. If the tests of these two feeders are successful, it will be recommended that the development of the positive displacement feeder, which is a backup system, be discontinued.
- The ejector is shown subject to applications analysis prior to pilot scale development. Pilot plant development will only be recommended if special applications are sound.

#### 77-55

**`**...

- Other feed systems development will be undertaken when promising feeder concepts are identified.
- Feeder systems development is recommended to be conducted in conjunction with the specific feeder development efforts.
- Support tasks will be performed, as required, to guide the development efforts.
- The need for a demonstration-scale feeder test facility will be analyzed. If the facility is needed, design and construction will follow.