
Z 	 DEPARTMENT OF PHYSICS AND GEOPHYSICAL SCIENCESo SCHOOL OF SCIENCES AND HEALTH PROFESSIONS
 
OLD DOMINION UNIVERSITY
 
NORFOLK, VIRGINIA
 

Z 	 Technical Report PGSTR-PH77-66 

0 

(9)
 
LJ 	 PLASM2A AND N-BODY PROBLE S Final Report, 1 

Ju~n. 1974 - 31 Dec., 1977 (Old Dominion Univ. 
Research Foundation) 64 p HC A04/M A01 UnclasCSC 03B G3/90 57753
 

C10 	 Byr*"
 
W 	 Wynford L. Harries 

> 	 John B. Miller
 

7 and
 
Christopher Costner
 

z
0 
z 

Final Report 
For the period June 1, 1974 - December 31, 1977 

Prepared for the
 
National Aeronautics and Space Administration


0 Langley Research Center
 
-- Hampton, Virginia
0 

Under
 
Research Grant NSG 1040
 
Dr. Frank Hohl, Technical Monitor
 
Space Systems Division
 

December 1977
 



TABLE OF CONTENTS



Page



INTRODUCTION ................. ...................... .. 1



MODEL .............. .............................. 2



RESULTS ................... ...................... .. 3



REFERENCES .............. ........................ ... 11



APPENDIX ............. ............................ ... 29



LIST OF TABLES-


Table



Al Subroutine for calculating the three-dimensional


gravitational potential using only core storage ..... 38



gravitational potential using core and disk


A2 Overlays for calculating the three-dimensional



storage ......... ........................... 41



A3 Array dimensions ... .......... .......... 51



A4 Storage of the Fourier transformed Green's function H


on desk file 9 .......... ................ ... 52



AS Outline of the GETPHI overlay ..... ................. 53



ii 



LIST OF FIGURES 

Figure Page 

1 Evolution of an initially balanced, infinitesimally 
thin disk of 100,000 stars with an exponential radial 
density variation .......... ..................... 12 

2 Evolution of the azimuthally averaged surface mass 
density as a function of radius for the disk shown 
in figure I.......... .................... ... 13 

3 Time evolution of the angular momentum (P) and the 
moment of inertia (I) for the unstable disk shown 
in figure 1 ....... ..... ................... 14 

4 Time evolution of various kinetic to total potential 
energy ratios ............ .................... 15 

5 Side view showing the evolution of the three-dimensional 
exponential disk ....... .................... .. 16 

6 Evolution of an initially balanced three-dimensional 
stellar system of 100,000 stars with an exponential 
radial density variation ...... ................ 17 

7 Time evolution of various kinetic to total potential 
energy ratios ......... .................... ... 18 

8 Evolution of an infinitesimally thin exponential disk 
with a self-consistent exponential core component . . . . 19 

9 Evolution of the surface mass density for the 
infinitesimally thin (two-dimensional) exponential 
disk plus core system ..... ............... .. 20 

10 Evolution of the azimuthally averaged radial velocity 
dispersion for the two-dimensional exponential disk 
plus core system ....... .................... ... 21 

11 Time variation of the moment of inertia and the angular 
momentum for the two-dimensional exponential disk plus 
core system .......... .............. ......... 22 

12 Side view of the evolution of the three-dimensional 
exponential disk plus core system ... ..... ....... 23 

13 Evolution of the three-dimensional disk plus core system 
viewed in the equatorial (x-y) plane .. .......... . 24 

14 Evolution of the projected surface mass density for the 

three-dimensional disk plus core system .. ......... ... 25 

(cont'd.)



iii 



LIST OF FIGURES - CONCLUDED 

Figure Page 

15 Evolution of the volume-mass density as a function 
of z for various radii ..... ................... 26 

16 Evolution of the radial velocity dispersion for the 
three-dimensional disk plus core system .. ..... . . . 27 

17 Evolution of various kinetic to total potential energy 
ratios for the three-dimensional disk plus core 
system ............ ............... ........ 28 

Al PHI array (active), which contains the galactic 
density/potential mesh, and the extended PHI array, 
which is required for the Fourier potential solution 
of an isolated galaxy ...... ................. .... 55 

A2 Program of Table A2 - Lower half (0 < z < h-i = 3) of 
the extended PHI array showing row and column designa­
tions of "chunks" ....... ................ .... 56 

A3 Program of Table A2 - Arrays dimensioned in'the 
initializing and star advancing overlays ............. 57 

A4 Program of Table A2 - Arrays dimensioned in GETH overlay, 
which performs a Fourier transform of the Green function 
HxyI z and stores the resulting H ... ......... . 58 

AS Program of Table A2 - Arrays dimensioned in the GETPHI 
overlay, which solves for the potential of an isolated 
galaxy ........... .............. ........... 59 

A6 Program of Table A2 - Alignment of arrays RHOI, RH02, RHO3, 
and RH04 during calls by the GETPHI overlay to its sub­
routines .......... ......................... ... 60 

iv 



COMPUTER SIMULATION OF PLASMA AND N-BODY PROBLEMS



By 

Wynford L. Harries', John B. Miller2 , and Christopher Costner 3



INTRODUCTION



In recent years, large N-body computer simulations (Miller and Prndergast,



1968; Hohl and Hockney, 1969) have become an important tool in investigating



the structure of spiral galaxies, especially in determining the development of



large-scale instabilities resulting in spiral and bar formation. Until recently,



most of these simulations used essentially two-dimensional models with the



"stars" confined to the plane of the galactic disk (Miller, Prendergast, and



Quirk, 1970; Hohl, 1971). These simulations have shown that the disks of stars



have a tendency for the development of fast growing nonaxisymmetric instabilities



resulting in bar formation. The bar instabilities occur even for velocity



dispersions that are considerably larger than those found in the solar neighbor­


hood or those predicted by Toomre (1964) as being locally stabilizing. Because



of the difficulties in solving the highly nonlinear problem, global instability



studies of disks of stars have been-primarily numerical. Some limited work



has been done for uniformly rotating disks (Hunter, 1963; Kalnajs, 1972), but



generally linear stability analyses were used in the studies of disks of stars.



Any spiral structure in computer-generated galaxies is generally short



lived and the final state is a rotating bar. The bar thus obtained rotates



more slowly than the stars. For one case investigated by Hohl (1971), the



bar rotates at 2.2T and the stars rotate at 1.5T where T is the rotational



period of the initial disk.
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It has been argued that core/halo components have a stabilizing



effect on galaxies and result in longer lived spiral structure (Ostriker
 


and Peebles, 1973). However, numerical experiments with large fixed



stellar components representing the core/halo component (Hohl, 1970;



Hockney and Brownrigg, 1974) show that multiarned spiral strubture devel­


-ops and persists for many rotations but only in an evolving manner. That



is, the spiral structure is either wound up into a tight pattern or it is



wound up and then reappears again. A recent study of the effect of fixed



core/halo components (Hohl, 1976) does show that the bar instability is



indeed inhibited by a sufficiently large fixed componefit.



The purpose of the present study is twofold; First, we want to deter­


mine the effect of a self-consistent (rather than fixed) core/halo compon­


ent. This will show whether there are any instabilities (such as "two­

stream") or other important interactions present that may be suppressed



with a fixed core. Second, we want to determine the effects of finite



thickness of'the disk and of three-dimensional essentially spherical



core/halo components.



MODEL



The model used for the present galaxy simulations consists of 100,000



representative stars that move inside an array of cells. For the disk



simulations the stars are confined to move in the plane of the disk repre­


sented by a 64 x 64 active array. In the three-dimensional simulation the



stars move inside a 64 x 64 x 16 array of cells. The'sum of the stars in­


side each cell defines the mass density at the center of each cell. Fast



Fourier transform methods are used to obtain the gravitational field at
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the center of each cell for a given density distribution. The force act­


ing on a particular star is determined by bilinear (or trilinear)



interpolation from the values of the gravitational fields at the surround­


ing 4 (or 8) cell centers. After the force acting on a star is determined,



it is advanced by a small timestep, the new density is recalculated and



the process is continued until the desired evolution is achieved. If a



star leaves the array of cells, approximate methods are used to determine



the force acting on the star. Details of the disk model are described in



detail by Hohl and Hockney (1969) and by Hohl (1970). The extension of



the model to three dimensions is described in the appendix.



RESULTS



Observational evidence (deVoucouleurs 1959; Freeman 1970; Kormendy



1977) indicates that the luminosity (and presumably the density) in the



outer regions of many spiral and SO galaxies decreases exponentially with



radius. Also, previous simulations (Hohl 1971) showed that intially un­


stable stellar disks evolved into stable systems with radial density



variations that closely approximated the sum of two exponentials. The



inner exponential with a scale length of about 1 kpc describes the non­


or slowly-rotating spheroidal or core component and the remaining



exponential with a scale length of about 8 kpc describes the extended disk



population. Thus, it seems reasonable to use an exponential density



variation for the disk of the present computer simulations. Similarly,



the central core used is described by an exponential density variation.



Figure 1 illustrates the evolution of a disk of 100,000 stars with an



-
initially exponential surface density distribution 
 p(r) = v0e r/2 with


a cutoff at r = 10 kpc. The initial angular velocity of the disk was


obtained from
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-2 2 j a [ 2 (r)] + rj_ [a2r 21 = W ()o - Ca2(r)] 
rp(r) 3r r 

with 

0 (r) = (r) a (r) (2) 
°(r)2w 

Here, wo(r) is the angular velocity required to balance the cold (zero



velocity dispersion) disk w(r) is the actual angular velocity, and



K(r) is the epicyclic frequency. The initial value of the radial veloci­


ty dispersion ar was taken to be that determined by Toomre (1964) as 

the minimum required to stabilize all axisymmetric instabilities, 

Cy(r) = ar,min 3.36 Gp(r)/K(r) (3) 

The time t is given in rotational periods (2\±) of the cold disk at a 

radius of 5 kpc, that is half way to the edge of the initial disk. 


As expected (Hohl 1970, 1971), only the small-scale instabilities are 


prevented by ar = a min and the system quickly forms a two-arm spiral



which eventually tends to evolve into a rotating bar. The evolution of the



azimuthally averaged radial density variation for this system is shown in



Fig. 2. As previously observed (Hohl 1970, 1971) the eventual density



variation approaches one which can be closely approximated by the sum of



two exponentials. One exponential describing the central core component



and the other describing the extended disk. The evolution of the radial



velocity is such that there is some heating near the center, and a consider­


able increase in the velocity dispersion for stars expanding into the



extended disk component. Numerous other diagnostics have been performed



on the system. For example, Figs 3 shows the time evolution of the moment



of inertia I 
 divided by the moment of inertia at t = 0, and a similar



ratio for the angular momentum. P. As can be seen, P is conserved in the
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simulation but I is still increasing at a near linear rate after three



rotations. The evolution of various components of the total kinetic



energy divided by the total potential energy is shown in Fig. 4. The



components Tr and Te represent the kinetic energies due to the 
2 2 

velocity dispersions Z m.a. 
i I 10 

and Z m.a. ?, respectively, while 
i i I1 

T. 
c-r 

is the kinetic energy of rotation. Note that the ratio of the kinetic



energy in rotation to the absolute value of the total gravitational energy



of the system is approaching the value 0.14 predicted by Ostriker and



Peebles (1973) for stability. At the same time, there occurs considerable



heating of the system.



One of the aims of the present study is to determine the effect of 

adding the third degree of freedom by allowing a finite thickness of the 

exponential disk. Using again an exponential projected surface density 

variation = ee the stars are now distributed in the z-direction 

according to one-dimensional distribution sech2z/c where c is a param­

eter determined from p(r), (Hohl 1967). The central thickness of the disk 

is 2 kpc and the density is cut off at z1 given by


41 r( sech2Qlfr1' 0.1 (4) 

where R = 10 kpc is the radius of the disk. The radial and azimuthal 

velocity components are determined in a manner similar to that for the 

infinitesimally thin disk and the z-component of the velocity dispersion 

is determined by a force balance in the z-direction. Note also that all 

initial velocities are truncated such that stars have kinetic energies no 

greater than that which would allow them to reach the boundary of the



system in the gravitational potential at t = 0.
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Figure 5 shows a side view of the initial disk and the evolution for 

up to 3 rotations. Note the rapid expansion in the plane of the disk. 

This is the result of the bar instability as shown in Fig. 6 which gives 

the evolution of the disk projected in the x-y plane. Note that the 

evolution is very similar to that shown in Fig. 1 for the infinitely thin



disk. Similarly the evolution of the surface density variation and the



increases in the moment of inertia are nearly identical to those shown in



Figs. 2 and 3 for the thin disk. 
The ratio of the various kinetic energy



components for the total potential energy are shown in Fig. 7 for the



finite thickness disk. Note that again the evolution is similar to that



for the infinitely thin disk as shown in Fig. 4. An additional variable,



the z-component of the kinetic energy, is given in Fig. 7 and shows that



since this component remains small compared to the others one wouldexpect



little difference in the evolution of the finite thickness disk when com­


pared to the infinitely thin disk.



As shown in Figs. 1 and 6, exponential disks with velocity dispersion



(Q ; 1) are violently unstable to the bar-forming instability. Previous 

work (Hohl, 1976) with a superimposed fixed (nonself-consistent) central 


mass distribution indicated a stabilizing effect toward the bar-forming 


instability. 
A more realistic simulation is to allow core-disk interaction,



thus, presently we are interested in the stabilizing effects of a completely



self-consistent core or "spheroid" component. 
 Again, the effect is investi­


gated for both the infinitesimally thin disk (two-dimensional) and for the



three-dimensional disk.
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For-the core-disk system, 50 percent of the mass 
 (50,000 stars) is



contained in the nonrotating core and the remaining mass 
 (50,000 stars)



is contained in the disk. The disk component is again given the surface



e
density variation pdisk = po whereas, the initial nonrotating core



component is given a density variation -
 "
Ucore = o r/0 5 Note that the 


disk and core density are cut off at 
 r = 10 kpc and r = 3.5 kpc,



respectively. 
 The initial velocity dispersion and rotation of the disk



is obtained by again using Eq. (1), (2), 
 and (3) with 11= pisk" Similarly,



as before, the z-dimensions of the disk are determined from Eq. (4). 
 The



initial velocity dispersion of the nonrotating core was obtained by taking



ae = ar and simply balancing the core in the presence of the disk. 
 In



order to assure that the core component was in & stable state at the start



of the core-disk simulation, the core was allowed to evolve for several



rotational periods (2w/

° at 5 kpc) with the disk component held fixed.



Starting from these initial conditions, the system evolved as shown in



Fig. 8. 
 Note that even though a two-arm spiral structure still forms, the



system as a whole evolves in a much less violet manner than that displayed



in Fig. 1. 
 This can also be seen in Fig. 9 which shows the evolution of



the surface mass 
 density for both the core and disk component. Note that



with the exception of a slow outward diffusion of stars near the edge, the



core remains essentially stationary, while the disk component displays the



outward shift of mass generally associated with bar formation. Similar



information is contained in Fig. 10 which displays the evolution of the



radial velocity dispersion for the core and disk component. 
Note the sharp



increase in the velocity dispersion at r 
 = 2 kpc which is associated with



a marked reduction in the angular momentum of the disk in this region.­
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In general, the simulations show that the formation of bars or two-armed



spirals results in moving angular momentum outward to larger radii.



Fig. 11 shows a marked reduction in the rate of increase of the moment



of inertia when compared to the disks without a central core component.



The final system investigated is that of a three-dimensional



exponential disk with a three-dimensional core or spheroid component.



The spatial distribution of the stars for the disk component is obtained,



as was done for the disk shown in Fig. S and 6, except that now the disk



contains only 50,000 stars. For the nonrotating central core the density



is given by p = po0 e-V0.5 where X2 + y2 + (z/c)2 with c = 5/7.



The density is cut off at 
 = 7. Thus, the central core or spheroid has



an axis ratio of 7:5. 
 Again the Gaussian velocity dispersion for the core



is obtained by a simple balance of the self-gravity of the total system.



The velocity dispersion for the disk component is generated, as was done for



the system shown in Fig. 6. 
 Before initiating the simulation of the com­


bined core-disk system, the core was allowed to evolve for several rotations



(free-fall periods) to assure that no instabilities or other problems



associated with the core component were present.



Figure 12 shows the evolution of the system perpendicular to the



equatorial plane. Note the remarkable stability of the system when com­


pared to the disk without the central 
 core in Fig. S. The evolution of



the system in the equatorial plane is shown in Fig. 13 and displays the



development of a comparatively weak two-arm spiral structure. 
 It should



be noted that because of the allowed initial relaxation, the core components



of the two core-disk systems investigated here are expected to closely



satisfy the collisionless Boltzmann equation. 
 The same is not necessarily
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true for the disk component since satisfying equation (1) only assures



a balance of forces at t = 0. Also, we know that for a stellar disk



= ar does not assure stabilization of global nonaxisymmetric 

instabilities (Toomre, 1974; 1977). However, since one would hardly 

expect nature to generate a galaxy initially in an exact stable station­

ary state, and since we are interested in the further development of 

instabilities and the final state toward which the system evolves, an 

exact stationary and stable initial state is not necessary. 

The evolution of the azimuthally averaged projected surface mass



density for the three-dimensional core-disk system is shown in Fig. 14



and is nearly identical to that of the two-dimensional core-disk system



shown in Fig. 9. Note that there is very little change in the density



for the core with the exception of a slight outward diffusion near the



edge. Azimuthally averaged values of the total density variation



in the z-direction are shown in Fig. 15 for various values of r. Some



of the fluctuations shown may be due to the relatively small sampling :volume 

used. If we look at the evolution of the radial velocity dispersion shown
 


in Fig. 16 we see that (as expected) the velocity dispersion for the



two-dimensional core (Fig. 10) is higher. Also, the large increase in the



velocity dispersion of the disk near r = 2 kpc does not occur for the



three-dimensional disk. Associated with this is the fact that there is



very little change in the radial angular moment distribution during the



evolution of the 3-D core-disk system, whereas, considerable outward shift



of angular momentum occurs for the 2-D core-disk system. These results



indicate that the global bar instability is much weaker for the 3-D



system as for the 2-D system, as can be seen by comparing Figs. 8 and 13.
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The time evolution of the various kinetic energy ratios for the 3-D



disk-core system is shown in Fig. 17. As can be seen, there is little



change in the value of the various components during the evolution. Note



that the value of the ratio of the kinetic energy in rotation to the total



potential energy of the system is slightly higher than the value of the



0.14 predicted for stability by Ostriker and Peebles (197-). Also, the



moment of inertia increases by only about one third of that shown in



Fig. 11 for the 2D system. As was the case for all four systems investi­


gated, the angular momentum was conserved to a sufficient degree of



accuracy.
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Figure l.- Evolution of an initially balanced, infinitesimally thin disk


of 100,000 stars with an exponential radial density variation. The


stars have an initial density variation given by Toomre's criterion.
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Figure 3.- Time evolution of the angular momentum (P)and the moment of inertia (I) 
for the unstable disk shown in figure 1. Note the rapid increase in I as the


bar begins to form at t 1. 
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Figure 4.- Time evolution of various kinetic to total potential energy ratios. Note


that the ratio of rotational to potential energy is approaching the value of 0.14


predicted by Ostriker and Peebles as required for stability.
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Figure S.- Side view showing the evolution of the three-dimensional exponential disk.


The bar instability results in a rapid expansion in the plane of the disk.
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Figure 6.- Evolution of an initially balanced three-dimensional stellar system

of 100,000 stars with an exponential radial density variation.
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Figure 8.- Evolution of an infinitesimally thin exponential disk


with a self-consistent exponential core component. Note that


the evolution if considerably less violent than that displayed


in figure 1.
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APPENDIX



COMPUTER PROGRAM FOR GENERATING THE THREE-DIMENSIONAL



GRAVITATIONAL POTENTIAL DISTRIBUTION OF ISOLATED GALAXIES



MATHEMATICAL SUMMARY 

The scaled gravitational potential at the center of cell (x,y,z) is 

defined by the triple summation over the three-dimensional array of cells 

t' =j 2=j 0i,j,k Hxj-y,k-z. (Al) 

Xf',jZ i=0 j=0 k=0 

where


- 2 2 2-1/2 

H 'j, k = (i2+j +k ) for i + j + k 0, 

H0,0,0 1, 

and pi,j,k is the mass density in cell (i,j,k). Because direct summation 

is much too time consuming to be practical, the triple summation is eval­

uated by the convolution method using fast Fourier transforms (ref. (Al)). 

That is, the Fourier transform of the potential equals the product of the 

Fourier transforms of p and H 

4' Pn, = 11 (A2)
g,n,T;nc 

The gravitational potential 4xyIz is obtained by taking the inverse 

Fourier transform of equation (A2). Rather than the usual complex Fourier 

series, here a real expansion is used. For example, the Fourier transform 

of the density pxy is given by 

2h-1 2n-1l 

=Pn, 4 y 2 c(x,n)c(y,n)c(z,h) xjy, f(E,x,n)f(jyn)f( ,z,h) 

(A3) 

29 



where 
os (E x/n), 0 g

f ( , x,nTO: 
in [Tr(E-n) x/n] , n < < 2a 

c(x,n) = I/V2 if x = 0 or x =n, 

c(x,n3) 1, 

otherwise, the symbols n and h define the n x n x h active array



and also the (2n) x (2n) x (2h) larger array over which the Fourier 

transform must.be taken so that the potential for an isolated galaxy is 

obtained (see fig. Al). Note that the density may be nonzero only in the 

smaller n x n x h array. Because of the symetry of Hxyz' the 

Fourier transform H,,, can be obtained by a finite cosine transform 

M= =- k= c2 (x,n) c (y,n) cCz,h) Hx,y,z 

cos (irx/n) cos (tmy/n) cos (ncz/h), (A4) 

0 < _ n 

0 h 

and 

= =E+nn, + n,q+n, E+n,n,. h +n,n+n,c+h 

E,+n, E,n+n, +h hnC-,



-Thenext step in obtaining the potential is to multiply p, -by



H to obtain


= 
 , (AS)
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The gravitational potential for an isolated galaxy correctly defined



over the n x n x h aray is obtained by the Fourier synthesis


?hi 2n -1 2 1 

= + 2l ( ,x,n)f(ny,n)f( ,z,h) (A6) 

Note also, that since



=
H, , = , , etc. 

different permutations of the same set of indices need not be stored.



Thus, the transformed Green's function can be converted to a one­


dimensional array



where different permutations of ,n, are stored in the same location



n given by



n (i-1)+ 2(u-) + 

- 2 
i=z



= (E-i)(2-l)/12 + E(-l)/4 + n(-l)/2 + 

Computer Program Subroutine Which Uses Only Core Storage



Table Al gives a Fortran listing of a computer program which may be 

used to obtain the potential by use of a (2n) x (2n) x h array of cell-


The variables 12A and 13A define the x,y and z dimensions, respectively,



of the array used for the potential calculations. When the subroutine



GETPHI is called, RHO(I,J,K) contains the mass density and GETPHI places



the values of the corresponding gravitational potential in RHOCIJ,K.



The subroutine FTRANS(I,12B) has been written by R. Hockney (ref. A2)
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and it performs a finite Fourier analysis or synthesis on the common 

input array ' and places the result in the common output array Y. 

The subroutine performs a cosine analysis for I = 2, a periodic analysis 

for I = 3, and a periodic synthesis for I = 4. The subroutine 

GETSET(I,I2B) initializes FTRANS and is called every time the arguments



of FTRANS(I,12B) are changed. The Fourier transform H is calcu­


lated on an (n+l) x (n+l) x (h+l) array only the first time that the



subroutine is called and is kept in storage for subsequent use.



The Fourier transform of pxyoz in the x-direction is generated 

by obtaining the partial transform P ,yzY for 0 2n-l, 

0 sy :n-l and 0 c z sh-l. P ,y'z is zero outside of 

this region because Px yTz is nonzero only over the 

n x n x h active array. Next, the Fourier transform of 

P Iylz is performed in the y-direction obtaining the x-y partial trans­

form PE,h,z for 0 < 2n-l, 0 s n S 2n-i and 0 sL z :t h-l. Since 

P ,'z is zero for h < z < 2h-l, by use of one-dimensional arrays Y and 

Z the Fourier transform of PE,n,z can be taken in the z-direction to 

fo L h1 Nex,pobtain the total transform Pfor 0 c 2h-l. Next, IS 

multiplied by to obtain 4, and the inverse Fourier transform 

is performed in the z-direction. The resulting partial x-y transform 

is placed in the 2n x 2n x h RHO(I,J,K) array for 

0 & 2n-l, 0 f - 2n-1 and 0 z h-L. with values for h ! zS2h-I 

discarded. (The use of these one-dimensional arrays was first presented in 

reference A3 for a two-dimensional potential solver). Next, the inverse 

Fourier transform of is generated in the y-direction by obtaining 
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the x-partial transform ,yz for 0 . 2n-l, 0 : . y :. n-I and 

0 s z :L h-i. The final step is to perform the inverse Fourier transform 

in the x-direction for 0 < y < n-I and 0 < z < h-i to yield,the 

correct gravitational potential xIyIz for an isolated galaxy over 

the n x n x h array. 

Overlayed Computer Program Which Uses


Core and Disk Storage



The use of the listing of Table Al with the 64 x 64 x 16 -active



density/potential array used in this paper would have necessitated the



dimensioning of the RHO array at 128 x 128 x 16 and the H array at



65 x 65 x 17. As such,large dimensions would have excluded use of the



CDC 6600 computer, the listing of Table Al was modified to include use of



overlayed programs and disk storage resulting in a maximum core storage



at any one time of array elements equaling about five fourths of the



active array. The listing of this program in Table A2 includes (a) a
V 

section of an initializing overlay in which relevant constants are computed



(b) a section of the star advancing overlay in which "chunks" of the den­

sity array are written on appropriate disk files, (c) another section of 

the star advancing overlay in which "chunks" of the computed potential 

array are read from disk files, (d) the GETH overlay which computer ,


and (e) the GETPHI overlay which computes the potential array from the


density array.


The method used is the alignment in the direction of transformation of



four identical arrays namedRH01, RH02, RH03, and RH04, each of which is



dimensioned (n/2) x (n/2) x h within the GETPHI overlay. (See figs. A2
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and AS. For clarity, figures Al through A6 are drawn for an active array



dimensioned n x n x h = 8 x 8 x '4; table A3 compares the array dimensions



of these figures and the listing of table A2.) The active array is



dimensioned as the PHI array within the initializing and star advancing



overlays (see figures Al and A3) but is not dimensioned within the



GETPHI overlay. As figure A2 suggests, the "chunks" RHOI, RH02, RHO3



and RH04 may be visualized as forming either a row or a column of the



lower half (0 : z . h-l) of the extended array. Switching the lineup to 

a different row or column is accomplished by storing the array associated 

with each "chunk" location on a separate file; these eight files are also 

indicated in figure A2. 

As shown in figure A3 one "chunk" size array named 01 is dimensioned



in the initializing and star advancing overlays. "Chunks" of the active



array are transferred between the PHI array of these overlays and the



arrays RH01, RH02, RH03 and RH04 of the GETPHI overlay via "do loop" trans­


fer to/from the OK array and storage on files 1, 2, 5 and 6.



At the beginning of a program run,the GETH overlay conputes 1 in the



(n+l) x (n+l) x (h+l) H array in the same manner as the listing of table



Al. All of H ,, except for two boundary planes of elements ( =,



= 
 
0 : n, 0 ! h and 0 : c n, n n, 0 s :5 h), is then transferred 

in portions via "do loop" to the (n/2) x (n/2) x (h+l) Mi array from 

which it is written on disk file 9 (see figure A4). Elements of one 

boundary plane of H (C = n, 0 j n :. n, 0 S h) are transferred to 

array which is in common with the GETPHI overlay;the (n+l) x (h+l) HN21 
 

the c-n transpose of that boundary plane is equal to the other boundary
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plane (0 : .n, n = n, 0 h) due to the symmetry of H across 

the =n diagonal plane.' During- each potential solution the portions of 

H on file 9 are read sequentially into an (n/2) x (n/2) x (h+l) HH 

array of the GETPHI overlay from which H elements, along with those in 

the 11N21 array, are multiplied with p . This sequence (listed in 

table A4) utilizes the symmetry and periodicity of H (equation (A4)) 

to provide a full set of (2n) x (2n) x (2h) H elements to the GETPHI 

overlay in a manner which minimizes the reading of file 9. 

The GETPHI overlay consists of subroutines ANLX(JC0LU\N), ANLSYN(IROW) 

and SYNX(JCOLUNJ) which dimension in common the arrays HH, N21, RHOI, 

RH02, RHO3 and RH04 as pictures in figure S. Figure 6 indicates the 

lineup of mchunks" associated with each call to a subroutine. The potential 

solution is mathematically identical with that described for the listing



of table Al. Calling ANLX(l) and ANLX(2) performs the Fourier transform



of Px,y,z in the x-direction to form P y*z" Calling ANLSYN(l),



ANLSYN(3), ANLSYN(2) and ANLSYN(4) in sequence performs the following:



(a) a Fourier transform of P ,yz in the y- and z-directions to form



• (b) multiplication with H to form ; and (c) the in­

verse Fourier transform of in the z- and y-directions to form 

y Calling SYNX(1) and SYNX(2) performs the inverse Fourier trans­


form of ,ylz in the x-direction to form xy z" The GETPHI overlay



is outlined in more detail in table A5.
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Efficiencies of the Two Computer Programs



The program of table A2 is considerably more efficient than that of



able Al because the addition of some peripheral processing time and a



nail increase in central processing time is much more than compensated



:r by a 75 percent decrease in the required core storage. The maximum



amber of active array elements dimensionable on the CDC 6600 with the



rograms of table Al and AZ are respectively 16384 (e.g. 32 x 32 x 16)



id 65536 (e.g. 64 x 64 x 16); the latter program can have other



2tentially useful active array dimensions of 32 x 32 x 8, 32 x 32 x 16,



ad 32 x 32 x 32. Solution of the 64 x 64 x 16 active array by the



DC 6600 requires about 300 (octal) words of core storage and with H



iready computed takes about 75 seconds of central processing time.
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TABLE Al



SUBROUTINE FOR CALCULATING THE THREE-DIMENSIONAL



GRAVITATIONAL POTENTIAL USING ONLY CORE STORAGE
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SUBROUTINE GETPHI



COMMON ZC1025),Y(1025),RHO(64,6416)*12A 13A.ITEST


DIMENSION H(33,33,17)



IF(ITEST.EO.O) GO TO II



ITEST=O


128=1A-I 	 ORIG j 'f IS 

RAGE J,
N=2**I2A 
 OP0R QUALTYNOE=N/2 
NI N02+1


13a=13A-I


NH=2**I3A


NHO2=NH/2


NH21=NH02+1



" RNI1./(N*N*NH)


DO I KiINH21



O0 I J1I.N21


00 I I=I,N2I


R!:(K-I)* (K-I)+(J--I)*(J-I)+C I-I )*( I-)
 


IFiRI.LT.I.) RP1I1



HCI.JK)=RNI/SORT(RI)


I CONTINUE


CALL GETSET(2,12B)


DO 2 K=I,.NH21



DO 2 J=IN21


DO 	 3 Ime.N)



3 	 Z(I)H(I.J.lK)


CALL FTRANS(24 2I8)



00 4 I 1.,N21


4 HCI.JK)=Y(t)



2 CONTINUE


Do 5 K=I.NH21


DO 5 I=I,N2I



DO 6 J=IN21


t ZJ)=H(I.JK)



CALL FTRANSC¢EI2)


DO 7 J=I.N21



7 	 H(I.J.K) Y(J) 

5 	 CONTINUE


CALL GETSET(2,13B)



DO 10 J1I.N1


00 10 I=I,N2I


00 8 K:INH21



a 	 ZK)i=HCI,J.K)


CALL FTRANS(2.(38)


DO 9 K1I.NHEI



9 H(I.J,K)Y(K)


10 CONTINUE


II CONTINUE



WRITE(6.43)



43 	 FORMATCIOH H(I.JK)) 

DO 42 K=INH21 

DO 42 J 1,N21 ­
WRITE(6,41) J.K



WRITE(640) (H(I,J,K),11,NIY



41 FORMAT(14H I=I.N2I J=13.SH K=13)



40 FORMAT(?H 8E16.8)



42 CONTINUE


CALL GETSET(3.12A)



-
DO 	 14 K=I .NHO2 
 

00 14 J=I.NOE


00 12 I=I.N



"K )

12 	 Z(I)=RHO(I.J



CALL FTRANS(3,IZA)


DO 13 II,N



=


13 PHO8I ,J.K Y(I)



14 CONTINUE



http:WRITE(6.43
http:ZJ)=H(I.JK
http:Z(I)H(I.J.lK


DO 17 K=I.NHO2 
00 17 1=,N ORIGINAL PAGE IS 
DO 	 15 J=IN



1S Z(J) RHO(1,J,K) OF POOR QUALITY 
CALL FTRANS(3,12A) 
00 16 J=IN 

16 RHO(I.JK)=Y(J) 
17 CONTINUE 

DO 20 IIN


DO 20 J=I.N



00 18 K1I.NHO2


Z(K)=RHO(IJ.C



12 	 Z(K+NH02=O.


CALL GETSET(3.I3A)


CALL FTRANS(3.13A)


IF(I.GT.N2I.AND.J.LE.N2I) GO TO 22


IF(I.LE.N2I.AND.J.GT.N2


1 ) GO TO 24


IF(I.GT.NI2.AN.J.GT.N2I) GO TO 26


DO 19 K=I.N02


Z(K)=Y(K)*H(I-J.K)



19 Z(K+NH02)=Y(K+NH02)*H(I.JK)



Z(I)=YCI)*H(I.J.1.)


Z(NH2I)=Y(NH21)*H(IrJ.NH2I)



GO TO 21


22 DO 23 K=2.NH02



Z(IK)=Y(K)1H(I-NO.J.K)


23 Z(K+NHO2)=Y(K+NHO)*H(I-NO .J.K



Z(1)=Y(I)*H(I-N02.J. 
 )


Z(NH2I )=Y(NH2I )*H(-NO2.J,NH2l)


GO TO 21



24 DO 25 K=2,NHo2


Z(K)=Y(K)H(IJ-NO2,K)



25 ZCK4NH02}Y(K+NH02)*H(I,J-No2.K)


Z(1)=Y(I)*H(I.J-N023.)



Z(NH21)=Y(NH2I}*H(IJ-NO2,NH2)


GO TO 21



26 00 27 K=2.NHO2


ZCK)=YCKI*H(I-N02.J--N02.K)



27 Z(K+NHO2)}Y(K+NH02)*H(I-NOa.J-NO2EK)



Z(1)=Y(I3*H(I-N02.J-NO2.'


Z(NHZI)=Y(NH21I)H(I-N2.J-NO,.NH21


3


21 	 CONTINUE



CALL GETSETC4.13A)


CALL FTPANS(4.13A)


DO 28 K=I.NHO2



28 RHO(I.J.K)=Y(K)


20 CONTINUE



CALL GETSET(C,12A


)



DO 29 K=I.NHO2


DO 29 J=I.N


DO 30 I=IN



30 Z(I)=RHO(IJ.K)



CALL TRANS(4.12A)


DO 31 1=1,N



31 R'O(IJ.)=Y(l)


29 CONTINUE



DO 32 K=1.NH02


D0 32 I=I.N02



DO 33 )=IN

33 Z(J)PRHO(I.J,K)



CALL FTRANS(4.12A)


DO 34 J=1,N02



34 PHO(I.J.K)=yCJ)


32 CONTINUE



RETURN



END
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TABLE A2



OVERLAYS FOR CALCULATING THE THREE-DIMENSIONAL GRAVITATIONAL



POTENTIAL USING CORE AND DISK STORAGE
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010

020

030

040

050

0ORIGIN~AL AOPooa QUAJ Ls 

C THE FOLLOWING IS THE SECTION OF AN INITIALIZING OVERLAY IN WHICH CONSTANTS 001


C RELATED TO THE DIMENSIONS OF THE PHI -
(DENSITY/POTEITIAL) ARRAY ARE CO

 002
C PL TEO. IT IS CALLED ONCE AT THE BEGINNING OF A PROGqAM RUN. 
 IN THIS 003

C LISTING THE VALUES OF 12A. 
 13A 	 AND THE DIMENSION AND LABELED COMON 
 004

C STATEMENTS ARE SET FOR AN ACTIVE PHI 
 ARRAY DIMENSIONE0 64 BY 64 BY 
 16. 005



12A=7 
 006


I3A=5 
 007


12B=I2A-I 
 

008

135=I3A-1 
 

009


N=2**I2A 
 
N02=N/2 
 oil


N2I=N2+1 
 012


N04=N/4 
 -013


N34=NO2+NO4 
 014
NH=2**I3A 
 

015


NHOEZNH/2 
 

016


SNHZINH02+1 
 

017

C 
 

018

C 
 

019
C 
 

c 	 022
C THE FOLLOWING IS 
 THE SECTION OF THE STAR ADVANCING OVERLAY 
 IN WHICH CrUNKS 023

C OF THE PHI ARRAY (CONTAINING THE DENSITY MESH) A.E I-ITTEN ONTO DIS 
 FILES 024
C 1-2.5 AND 6. TH 
 STAR ADVANCING OVERLAY 
 IS CALLED ONCE 
 PER TIME STEP. 025"



DIMENSION PHI(64.64.16),OI(32.32,16) 
 026

DO 520 K1I.NHO 
 

027


DO 520 J1 ,N04 
 028

DO 520 I=I.NO4 
 

029


5 0 	 OI(I.J.K)=PHI(IJ.K) 
 

WRITE(I 0) 
 031
032


REWIND 1 
 
00 525 K=I,NHO2 
 

033


O 525 J=l.NO4 
 034

DO 525 InIN04 
 

525 OI(IJ,K)=PHI(I.NO4+JK) 035


036


WRITE(S) 01 
 037

REWIND 5 
 

038
DO 530 K I.NH02 
 
039



DO 530 J=I,NO4 
 
DO 530 I=I.NO4 
 

530 OI(I.J.K)=PHI(NO.+I.J,K) 
041


042
WRITE(2) 01 
 
043
REWIND 2 
 
044



DO 535 K=I,NHO2 045


DO 535 J=I.NO4 
 046


00 535 1=I,NO4 
 047
535 	 0I(IJ.K)=PHI(NO4+I,N04+J,K) 
 

048


WRITE(6) 01 
 049


REWIND 6 
 

C 
 
051


C 
 
052


C 
 
053



.... 
 054


~ 055C THE FOLLOWING IS 
 THE SECTION OF THE STAR ADVANCING OVERLAY IN WHICH CHUN<S 056



C OF THE PHI ARRAY (CONTAINING THE POTENTIAL MESH) 
 ARE 	 READ FROM DISK FILES 0D7


C 1.2,5 AND 6. 
 058



42 



ORIGIN1AL PAGE; lbOF pOOR QUALITY 

,DIMENSION PHI (64.64.16).01(32.32.16)


READ(1) 0I 059



REWIND 1 
 060



O0 30 KI,NNH02 
 061



DO 30 J.IN04 062



DO 30 I1I,N04 
 063


064
30 	 PHI(I.J.K)=oI(IJ,K) 
 

READ(S) 01 065



REWIND 5 
 066



00 40 K=. NHO2 
 067



DO 40 J1I.N04 	 068


069
DO 40 I=I,NO4 
 

40 PHI(I.NO4+J.K)=OI(I.J.K) 
 070



READ(2) O1 
 071


072
REWIND 2 
 
073
DO 	 50 K=1,NHO2 
 
074



00 50 1=1.N04 
 
DO 	 50 J=I,N04 
 

075



50 PHI(N04+I.JK)=01 (I.J.K) 076



READ(6) 01 
 077


078
REWIND 6 
 
079
DO 	 60 K=I.NHOa 
 
080
DO 	 60 J=I.N04 
 
081
DO 60 I=INo4 
 
08
60 PHI(NO4+INO4+JIc=0ICI.JK) 
 

C 
 083



C 
 084


085


086



C 
 

087



C THE FOLLOWING IS THE GETH OVERLAY, WHICH COPUTES :',D STORES THE TRANS- 089


C ORMED GREENS FUNCTION. IT IS CALLED ONCE AT TE =EGI-NNiNG OF A P4OGRAm 090


C RUN.01
OVERLAYCIFILE.4.0) 
 

091



093
PROGRAM GETH 
 
" THIS093


C THIS OVERLAY PERFORMS A COSINE ANALYSIS OF THE THREE-DIMENSIONAL GREENS 094


C FUNCTION ARRAY, IT THEN WRITES CHUNKS OF THIS ARAY ON DIS FILE 9 IN THE 095


C 

0 
DEP IN WHICH THEY ILL BE READ INTO THE HH AR? V : INt; THE GETPHI 096



C OVERLAY. VALUES FOR I=N/2+I AND J=N/2+I ARE TRANSFE; ED TO THE HN21 ARRAY 097


C WHICH IS IN COMMON WITH THE GETPHI OVERLAY. 	 098



COMMON/ALLCOM/N.NOa.N21.NO4N34,NHNHO2,NH! 12. 2I.13A.136 099


C0MMONHNZICOM/HN2(65.17) o00


COMMON Z(1025). Y(1025) 101


DIMENSION H(65,65,17).HH(32. 2,17) 102


RNI=I./(N*N*NH) 103



DO 	 I K=INHPI 
 104



00 1 J=IN21 105


DO I 1=1,N21 10



-I II+
RI=( l)+ l-I)*(*{R -i)107 J-I)*{J 
 

108



H(IJ.K) PNI/SORT(R) 109



I CONTINUE I10


CALL GETSET(2,12 3 ) II



DO 2 K1,NH2I 112


DO 2 J=1.N21 113


DO 3 I1IN21 114



3 Z(I)=H(IJK) i5



IF(RI.LT.I.) RI=I. 
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CALL FTRANS(2.I28) 
 116


DO 4 I=I.N2I 
 117



4 H(I,J.K)=Y(1) 
 118


2 CONTINUE 
 i19


DO 5 K=I.NH21 
 120


DO 5 I=I.N21 
 121


DO 6 J=1.N21 
 122



6 ZCJ)=H(IXJ.Kl 
 123


CALL FTRANS(2,12B) 
 124


DO 7 J=IN21 
 125



7 H(I.J.K)=Y(J} 
 126


* CONTINUE 
 127



CALL GETSET(2,13B) 
 128

00 10 J=IN21 
 129


DO 10 I=IN21 
 130

DO 8 KINH21 
 131



8 Z(K)=H(IJK 
 132


CALL FTRANSC2.13B) 
 133


DO 9 K=I.NH21 
 134



9 HCI.J.K)=Y(K) 
 135

10 CONTINUE 
 136



DO 30 I=I.N04 
 137

00 30 J=I,N04 
 138


DO 30 K=INH21 
 139



30 HH(IJK)=H(IJK) 
 140


WRITE(9) HH 
 141


DO 35 I=I.N04 
 142

DO 35 J=I,N04 
 143


DO 35 K1I.NH21 
 144


35 HH(I.J.K)=H(I.NO4+J.K, 
 145


WRITEC9) HH 
 146


DO 40 1=1.N04 
 147


DO 40 J=I.NO4 
 148

DO 40 K=I.NH21-
 149



40 HH(I,JK)=H(I.J.K) 
 150

WRITE(9) HH 
 151


O0 45 I=I.N04 
 152


DO 45 J=I.N04 
 153

DO 45 K=INH21 
 154



45 HH(I.JK)=H(N04+IJ.K) 
 155

WRITE(9) HH 
 156


DO 50 I=I.N04 
 157


00 50 J=INO4 
 158


DO 50 K= .NH2I 
 159



50 HHf!.J,K)=H(N04+INO4+JK) 
 160

WRITEC()-HH 
 161


00 55 1=1.N04 
 162


DO 55 J=I.NO4 
 163


DO 55 KCI.NH21 
 164



55 HH(I,JK)=H(N04+IJ.K) 
 165


WRITEC9) HH 
 166


REWINO 9 
 167


DO 15 K=INH21 
 168


DO 15 I=I .N21 
 169



15 HN2I(I.K)=H(I.N2,K) 
 170


RETURN 
 171


END 
 172
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ORIGINAL PAGE IS


OF POOR QUALITY



C 173


C 174 
C 175



175
" THE FOLLOWING ISTHE GETPHI OVERLAY, WHICH COMPUTES T E POTENTIAL MESH. 178

177



CIT REPLACES CHUNKS OF DENSITY STORED ON DISK FILES 1.2.5 AND 6 AITH 179


C CORRESPONDING CHUNKS OF THE POTENTIAL MESH. IT IS CALLED ONCE PER TIME 180


C STEP. 181



OVERLAY(GFILE,5,O) 182


PROGRAM GETPHI 183



C T IS OVERLAY SOLVES FOR THE POTENTIAL MESH (DIMENSIONED N/2 BY N/2 BY 184


C NH/2) DUE TO A DENSITY MESH (DIMENSIONED N/2 BY N/2 BY NH/2) BY DOING A I5


C PERIODIC ANALYSIS OF THE DENSITY AND THEN A PERIODIC SYNTHESIS OF THE 186


C PRODUCT OF THE TRANSFORMED GREENS FUNCTION (DIMENSIONED (N/2+I 3 BY (N/2+I) 187



C BY (NH/2+I)) AND THE TRANSFORMED DENSITY. FORMALLY SPEAKING. EACH OF THE 188


C TRANSFORMS (EXCEPT THE COSINE ANALYSIS OF THE GREENS FUNCTION. WHICH IS 189


C PERFORMtED IN THE GETH OVERLAY) REQUIRES AN ARRAY DIMENSIONED N BY N aY 190


C N . TO REDULE CORE STORAGE THIS OVLRLAY PERFORMS THESE TRANSFORMS IN 191


C CHUNKS BY THE ALIGNMENT OF FOUR SMALLER ARRAYS NAMED RHO1. RHO2. RHO3, AND 192


C PH04, EACH OF WHICH IS DIMENSIONED N/4 BY N/4 BY NH/2. THE CHUNKS OF THE 193


C LOWER HALF (I .LE. Z .LE. NH/2) OF THE EXTENDED ARRAY NOT IN CORE AT ANY 194


C ONE TIME ARE STORED ON DISK FILES I THROUGH 8. THE FOLLOWING ARE TWO TOP 195


C VIEWS OF THE LOWER HALF OF THE EXTENOED ARRAY. BOT OF THESE VIEWS 196


C DESIGNATE THE CHUNKS AS IROW AND JCOLUMN. IROW I AND 2 OF JCCLUMN 197


C I AND 2 CONSTITUTE THE ACTIVE MESH. IN THE DIAGRAM ON THE LEFT THE 198


C NUMBERS WITHIN THE CHUNKS OF JCOLUMN I AND 2 INDICATE THE DISK FILES ON 199


C 1,HICH THOSE CHUNKS ARE STORED. (NO DISK STORAGE IS REQUIRED FOR JCOLUMN 3 200


C OR 4.) REFERRING TO THE DIAGRAM ON THE RIGHT, THE NUMBERS WITHIN THE 201


C CHUNKS ARE THE ORDER IN WHICH CHUNKS OF THE TRANSFORMED DENSITY ARE 202


C MUTIPLIED (ELEMENT BY ELEMENT) BY THE APPROPRIATE PORTION OF THE 203



C TRANSFORMED GREENS FUNCTION WHICH HAS BEEN READ FROM DISC FILE 9 INTO 204


C ARRAY HH(N/4.N/4.NH/2+1). CAN EXCEPTION IS THE SET OF TRANSFORMED GREENS 205


C FUNCTION BOUNDARY VALUES FOR I=N/2+1 AND J=N/2+I WHICH REMAIN AT ALL TIMES 206


C IN COMMON IN THE ARRAY HN2I(N/2+I,NH/2+I).) A PLUS IN A CHUNK INDICATES 207


C THAT NEW VALUES MUST BE READ INTO ARRAY HH BEFORE THAT CHUNK IS MLTIPLIED 208


C BY HH. THIS SYSTEM MINIMIZES PERIPHERAL PROCESS TIME BY UTILIZING THE 209


C PERIODICITY OF THE TRANSFORMED GREENS FUNCTION. 210


C 211


C 212 
C 213 
C TWO TOP VIEWS OF LOWER HALF OF EXTENDED MESH(N BY N BY NH/21 - IROW 1 214 
C AND 2 OF JCOLUMN I AND 2 CONSTITUTE THE ACTIVE MESH(N/2 BY N/2 BY 215 
C NH/2). THE DIRECTIONS ARE X(I) AND OMEGAXCI) - DOWN ON PAGE. 216 
C Y(J) AND OMEGAY(J) - TO RIGHT ON PAGE. Z(K) AND OMEGAZIK) - OUT OF 217 
C PAGE. 218 
C 219 
C 220 
C JCOLUMN JCOLUMN 221 
C 1 2 3 4 1 2 3 4 222 
C 223 

C *******,*,********224



C * *+ * +--+ * *
 225


C IROW=1 * * 5 IROW= * I * 3 * 2 * 4 * 226



C ***********f******227



C + * *+..e * 228 
C IROW=2 * 2 * 6 * * * IROW=2 * 9 *11 *10 *12 * 229 

C ******************230 

C IROW=3 3 7 * IROW=3 *7* 5* 8* 6 *232



C ***********,******233



C * +* *
 234 
C IROW=4 4 * 8 * * * IROW=4 *15 *13 *16 *14 * 235 

C ******,***********236 

C 237


C DISK FILES ON WHICH CHUNKS ORDER IN WHICH CHUNKS ARE 238


C ARE STORED MULTIPLIED BY APPROPRIATE 239



PORTION OF TRANSFORMED 240


GREENS FUNCTION 241



C 242


C 242
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DE POOR QUALITY 

244


COMMON/ALLCOM/NNO2,NINO4,N34.NH.NHOZNH21.IZA,IZB.I3AlB 
 

245
COMMON/TRANCOM/RHOI (3)32.I6).RHo 132,32.16).RHO3-32.16),.

I RH04(32.32,Ie).HH(32.32.17) 246



247
COMMON/HN21COM/HNI (65.17) 248


C THE INITIALIZING OVERLAY OR STAR ADVANCING OVERLAY STORES THE DENSITY 
 249
C CHUNKS OF IROW 
 I AND 2 FOR JCOLUMN=I 
 ON DISK FILES I AND 2 RESPECTIVELY
C AND FOR JCOLUMN=2 ON DISK FILES 5 AND 6 RESPECTIVELY. 

250


THE GETPHI OVERLAY 251
C REPLACES THE DENSITY ON THESE DISK FILES WITH THE CORRESPONDING VALUES OF 
 252
C POTENTIAL WHICH ARE THEN USED IN THE STAR ADVANCING OVERLAY. 
 THIS 15 253
C 
 ACCOMPLISHED THROUGH CALLING SUBROUTINES ANLX(JCOLUMN). ANLSYNCIPOW) A



ND 254
C SYNXCJCOLUMN, 
 AS DETAILED BELOW. 
 
255



C 256


C 256


C SUBROUTINE ANLX(JCOLUMN) READS RESPECTIVELY IROW 257
 
C FOLLOWING DISK 	 FILES 
 

I AND 2 FROM THE 
 258
 -
 I AND 2 FOR JCOLUMN=I. 
 - 5 AND 6 FOR JCOLUMN=2. 259C IT THEN PERFORMS A 
 PERIODIC ANALYSIS IN THE X DIRECTION OVER JCOLUMN FOR 260
C 
 I1I.N AND WRITES THE RESULTS RESPECTIVELY FOR IROW 1,2,3, AND 4 ON ThE
C FOLLOWING DISK FILES ­

261


1.2.3, AND 4 FOR JCOLUMN=I, - 5.6,7, AND 8 FOR 262 
C JCOLUMN=Z. 

CALL ANLX(1) 263


CALL ANLX(2) 264
265



C 
 SUBROUTINE ANLSYN(IROW) READS RESPECTIVELY JCOLUMN I AND 2 FROM THE
C FOLLOWING DISK FILES 266

-
 I AND 5 FOR IPOW=I. - 2 AND 6 
 FOR IROW=2, - 3 	 AND 267
C 7 FOR IROW=3. 	 ­ 4 AND B FOR IROW=4. 
 IT THEN PERFORMS 	 A PERIODIC ANALYSIS 268
C IN THE Y DIRECTION OVER 
IROW FOR J=I 'N. 
 FOR EACH CHUNK IT THEN PERFORMS A 269
C PERIODIC ANALYSIS IN 
 THE Z DIRECTION FOR K=I.NH, ELEMENT BY ELEMENT
C MULTIPLICATION WITH A SIMILARLY SHAPED CHUNK OF THE TRANSFORMED GREENS 
 
270


271
C 
 FUNCTION AND THEN A PERIODIC SYNTHESIS IN THE Z DIRECTION FOR K=I .NH. THE 272
C RESULT FOR K=I.NH/2 IS THEN PERIODICALLY SYNTHESIZED IN THE Y DIRECTION 
 273
C OVER IROW FOR J=IN. 
 THIS LAST RESULT 	 FOR JCOLUMN I AND 2 
IS WRITTEN 274
C RESPECTIVELY ON THE FOLLOWING DISK FILES 
 - I AND 5 FOR IROW=I. - 2 AND 6 
 275
C FOR IROW=2. ­ 3 AND 7 FOR IROW=3. 
 - 4 AND 8 FOR IROW=4. THE ORDER IN 276
C 
 WHICH ANLSYN IS CALLED FOR IROW I THROUGH 4 MINIMIZES READING FROM DISK 
 277
C -ILE 9 OF CHUNKS OF THE TRANSFORMED GREENS FUNCTION AS MENTIONED ABOVE. 
 278
CALL ANLSYN(I) 
 
279
CALL ANLSYN(3) 
 

CALL ANLSYN(2) 280



CALL ANLSYN(4) 281



C SUBROUTINE SYNX(JCOLUMN) READS RESPECTIVELY 	 
282



IROW 1.2,3. AND 4 FROM T-HE
C FOLLOWING DISK FILES-I,2,3, AND 	
283 


4 FOR JCOLUMN=I. - 5.6.7. AND 8 FO 284
C JCOLUMN=2. 
 IT THEN PERFORMS 	 A 
 PERIODIC SYNTHESIS 
 IN THE X DIRECTION OVER
C JCOLUMN FOR J=IN. 
 IT THEN WRITES THE RESULT RESPECTIVELY FOR 
285



IROW I AND 286
C 2 ON THE FOLLOWING DISK FILES 
 - I AND 2 FOR JCOLUMN=I. ­
 5 AND 6 FOR 	 287
C JCOLU4N=2. 
 
:88
CALL SYNX(I) 
 

CALL SYNXC2) 	 289


290



RETURN 290


END 92


SUBROUTINE ANLX(JCOLUMN)

COMMON/ALLCOM/N.NON2IN04.N34.NHNHO2,NH2I, 	 293


I2A.128.13A4I3S 
 294
COMMON/TRANCOM/RHOI(3 
 32.16).RH02c32.32.I6),RH0332.3,IS).

I RH04(32.32.16).HH(32.
 295



3 2 1 )
7

 296
COMMON ZIOS. Y(1025) 
 
297
IF(JCOLUMN.EO.2) 
 GO TO 2 
 
298
READ(I) RHOI 
 

REWIND 1 
 299
20


READ(?) RHO2 
 

301
REWIND 2 
 
302
GO TO 3 
 

2 CONTINUE 
 303


304
READ(5) RHOI 
 

REWIND 5 
 305



READ(6) RHO2 
 306


307


REWIND 6 
 307



3 CONTINUE 
 309


CALL GETSET(3.12A) 
 309


DO 10 KaI,NHO2 
 

311
DO 10 J=I,NO4 
 
312
00 5 I=I.N04 
 

Z(I)=RHOI (I.JK) 313



Z(N04+)=RHO2(I J.K) 314


315
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OFPL



Z(NO2+1)=O.
5 	 Z(N34+I)=O. 
 
316



CALL FTRANSI3ISA, 
 317



DO IC=I.N04 318


RHOI LIJ.K)=Y(I) 
 319


RHO2(I.JK)=Y(No4+) 
 

320


RHO31.J.K)=Y(NO+, 
 322



10 	 RHO4cI.J.KI=Y(N3
 
IFCJCOLUMN.EO.2) 
 

WRITECI) RHOI 
 
REWINO i 
 
WRITE(2) RH02 
 
REWIND 2 
 
WRITE(3) RHO3 
 
REWIND 3 
 
WRITE(4) RHO4 
 
REWIND 4 
 

GO TO Is 
 
2 CONTINUE 
 

WRITE(5) RHO! 
 
REWIND 5 
 
WPITEC6) RHO2 
 
REWIND 6 
 
WRITE(7) RH03 
 
REWIND 7 
 
WRITE(8) RH04 
 
REWIND 8 
 

15 	 RETURN 
 
END 
 

4 +I 
 322


GO 	 TO I 
 323



324


325


326


327


328


339


330


331



332


333


334


335


336


337


338


339


340


341


343


343



SUBROUTINE ANLSYNCIROW) 	 344
345
COMMCN/ALLCOM/N.NOa.NaI NO4.N34,NH.NHOa.NH2I.IEA.12BI13A.13B 
 
COMMCN/TPANCOM/RHOJ(		 346



3 23 ! 6) RHO 2(32 J2 1 6 103 3347

1 RHO4(32.32.16),HN(32,32,17)


COMMON/HN2ICOM/HNI(65.17) 
 
COMMON Z(1025), Y(!02S) 
 
GO TO(112.3,4) IROW 
 

1 	 CONTINUE 
 
READ(I) PHOI 
 
REWIND 1 
 
READ(S) RHO2 
 
REWIND 5 
 

GO TO S 
 
2 CONTINUE 
 

READ(2) RHO! 
 
REWIND 2 
 
READ(5) RHO2 
 
REWIND 6 
 
GO TO s 
 

3 CONTINUE 
 

READ(3) RHO! 
 
REWIND 3 
 
READ(7) RHO2 
 
REWIND 7 
 
GO TO 5 
 

4 	 CONTINUE 
 
READ(4) RHOI 
 
REWIND 4 
 
READ(S) PHO2 
 
REWIND 8 
 

5 	 CONTINUE 
 
CALL GETSET(3.I2AI

DO 10 K1I.NHO2 
 
DO 10 IfINO4 
 
DO 7 J=1,N04 
 
ZCJ)=RHOI(I1JK 
 
Z(N04+J)=RH02(1JK) 
 
ZNO2+J)=O. 
 

7 Z(N34+J)=O. 
 
CALL FTPANS(3.12AI 
 

348


349


350


351


352


353


354


355



356


357


358


359


360


361


363



363


364


365


366


367


368


36


370


371


372


373


374


375


376


378


378


379


380


381


382


383


384
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DO 10 J=INO4 as



RHOI (I.J.K)=YtJl 386



RHO2(I.JK)=YNO4J) 387


RH03(1.J,K)=Y(N02+J) 388 

0 RH04(1.J.K)=Y(N34+J, 389 
GO TO(30.49.75.75) IROW 390 

9 CONTINUE 391 
10 CONTINUE 392 

PREAD(9) HH 393 
iO JCOLU.MN=I 39 

DO 70 I=1,NO4 395 
DO 70 J=I,N04 396 
DO 52 KfINHO2 397 
Z(K}=RHOI(I,J.K) 39a 

i2 Z(NHO2+K)=O. 399 
CALL GETSET(3,13A) 400 
CALL FTRANS(3,I3A) 401 
IF(IROW.NE.3) GO TO 300 402 
IFCI.NE.1)GO TO 300 403 
LL=J 404 
GO TO 200 405 

4 O0 70 K1I.NHO2 406 
'0 RHOIrI,JK)=Y(K) 407 

GO TO 100 408 
'4 CONTINUE. 409 

READ(9) HH 410 
'5 JCOLUMN=2 411 

O0 95 I=I.N04 412 
DO 95 J=l.N04 413 
DO 77 K=INH02 414 
Z(K)nRH02(!.J.K) 415 

'7 Z(NH02+K)=O. 416 
CALL GETSET(3.13A) 417 
CALL FTRANS(3.3A1 418 
IF(IROW.NE.3) GO TO 300 419 
IF(I.NE.l)GO TO 300 420 
LL=NO4+J 421 
GO TO 200 422 

'9 DO 95 K=IqNHO2 423 
'5 RHO2(IJ.K)=Y(K) 424 

GO TO 125 425 
0 JCOLUMN=3 426 

DO 120 I=I.N04 427 
DO 120 J=I.NO4 428 
DO 101 K=,NHO2 429 
Z(K)=RH03(tJK) 430 

' Z(NHO2+K)0. 431 
CALL GETSET(3.13A) 432 
CALL FTRANS(3,13&) 433 
GO TO(103.105.107.115) IROW 434 

3 IF(J.NE.1I)GO TO 300 435 
LL=I 436 

- GO TO 200 437 
5 IFCJ.NE.I)GO TO 300 438 

LL=N04+1 439 
GO TO 200 440 

7 IFCI.NE.I .AND.J-NE.I)GO TO 300 441 
IF(I.EQ.1.AND.J.EO.I)GO TO 111 442 
IFI.OEQ.I)GO TO 109 443 
LL=I 444 
GO TO 200 445 

9 LL=J 446 
GO TO 200 447 

1 LL-N21 448 
GO TO 200 449 

5 IF(J.NE.1) GO TO 300 450 

LL=NO4+1 451 
GO TO 200 452 

7 DO 120 K=I.NHO2 453 
0 RHO3(I.J.K)=Y(K) 454 

GO TO(74,74.400,390) IROW 455 
'5 JCOLUMN=4 456 
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Do 145 o1l.N04 
 457



00 145 J=I,N04 458


00 127 K=INHO2 469


Z(K) RH04(IJ.K) 
 460



127 Z(NH02+K)=O. 
 461


CALL GETSET(3.13A) 
 462


CALL FTRANS(3.13A) 
 463


IF(IROW.NE.3) GO TO 300 
 464


IF(I.NE.I)CO TO 300 
 465


LL=NO4+J 
 466


GO TO 200 
 467



129 DO 145 K=I.NHO2 
 468

145 RHO4(IJ.K)=Y(K) 
 469



GO TO (400.400,49,49) ROW 
 470


200 DO 205 K=.NHO2 
 471



Z(K)=Y(K)*HN21(LLK) 
 472


205 Z(NHO2+K)=Y(NH02+K)*HN2I(LL.K) 
 473


Z(I)=Y(1 *HN2I (LL..1 
 474


Z(NH21)=YNHZ1)*HN21 (LL.NH2I1 
 475


GO TO 310 
 476


300 00 305 K=2.NHO2 
 477


Z(K)=Y(K)*HH(I,JK) 
 478



305 Z(NHO2+K)=Y(NHO2+K)*HH(I.J.K) 
 479


Z(1=Y(1 )*HH(I.Jl) 
 480


Z(NH21)=Y(NH2I)*HH(I.J.NH2I) 
 481



310 CALL GETSET(4,13A) 
 482


CALL FTRANS(4.I3A) 
 483


GO TO(54.79.117.129) JCOLUMN 
 484



390 REWIND 9 
 485


400 CALL GETSET(4.12A) 
 486



0 410 K=I.NHO2 
 487


DO 410 I1I.N04 
 488


00 405 J=INO4 
 489


Z(J)oRHOI(I.J4K. 
 490


Z(N04+J)=RH02(t.J.K) 
 491


Z(NO2J)RHO3(I.j.K) 
 492



405 Z(N34+J)=RHO4I.J.K) 
 493


CALL FTRANS(4,12A) 
 494


DO 410 J=I,NO4 
 495


RHOI (I.J.K)=Y(j) 
 496



410 RHO2(IJ,K)=YCN04+J) 
 497


GO T0(415.420.425.430) IROW 
 498



415 CONTINUE 
 499


WRITECl) RHOI 
 500


REWIND I 
 SO


WRITE(5) RHO2 
 502

REWIND 5 
 503


GO TO 435 
 504



420 CONTINUE 
 505


WRITEE2) RHOI 
 506


REWIND 2 
 507


WRITE(6) PH02 
 508

REWIND 6 
 509


GO TO 435 
 510



425 CONTINUE 
 51i


WRITE(3) RHO! 
 512


REWIND 3 
 513


WRITE(7) PH02 
 514


REWIND 7 
 515


GO TO 435 
 516



430 CONTINUE 
 517


WPITE(4) RHOI 
 518


REWIND 4 
 519


WRITE(S) RH02 
 520


REWIND 8 
 521



435 RETURN 
 522


END 
 523


SUBROUTINE SYNX(JCOLUMN) 
 524


COMMON/ALLCOM/N.N02.N21,N04,N34,NH,NHO2.NHE


2 .12A.12813A.138 5B

COMMON/TRANCOM/PHOI (32,32.16).RHOa(32,32,IG),H03(32.32.16), 
 526


1 RH04(32,32.16),HH(32,32.17) 
 527


COMMON Z(1025),Y(1025) 
 528


IF(JCOLUXN.EG.2) GO TO 1 
 529
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REWIND 1 	 531 

READ12) RHO2 	 532


REWIND 2 	 533


READ(3) RHOJ 	 534



REWIND 3 535


READ(4) PH04 536

REWIND-4 	 53



GO TO 2 
 538


I CONTINUE 
 539


READI5) RHOI 540


REWIND 5 541


READ6I RH02 542


REWIND 6 543


READMT RH03 	 944



REWIND 7 545



READ(S) RHO4 546


REWIND 8 
 547



2 CONTINUE 548


4 CALL GETSET(4.1IA) 549



DO 10 K=I,NHO2 
 550


DO 10 J=I,N04 951


DO 5 I=I.N04 552


ZCI)=RHOI (IJ.K) S53


Z(N04+I)=RHO2(I.J.K) 554


Z(N02+I )RH03(I.J.K) 555



* 	 Z(N34+I)=RHO4(I.J.K) 556


CALL FTRANS(4,IEA) 557


DO 10 I=I.NO4 558


RHOI(IJ.K)=Y(I} 559



10 RHO2(IJK)=Y(N4+I2 560



IF(JCOLUMN.EO.2) GO TO 12 561


WRITE(I) RHOI 562


REWIND I 563


564


WRITE(2) RHO2 
 
REWIND 2 965



GO TO 15 566


12 CONTINUE 567



WRITE(5) RHOI 56B


REWIND 5 569



WRITE(6) RHO2 570


REWIND 6 571



15 RETURN 572


END 573



so





TABLE A3



Array Dimensions


(Program of Table A2)



General Dimensions used Overlays inwhich dimensioned


Array name dimensions in actual runs Dimensions used
(note ) and listing of in Figs. Al-A6 

(note ~ Table A2 
Star 	 adv. 
 GETH GETPHI


and initl.



PHI(active) n x n x h 	 64 x 64 x 16 8 x 8 x 4 x



01 	 (n/2) x (n/2) x h 32 x 32 x 16 4 x 4 x 4 x 

H (n+l) x (n+l) x (h+l) 65 x 65 x 17 9 x 9 x 5 	 x 

HH (n/2) x (n/2) x (h+l) 32 x 32 x 17 4 x 4 x 5 	 x x 

HN21 (n+l) x (h+l) 65 x 17 9 x 5 x x 
(note 2) 
RHO1,RHO2 (n/2) x (n/2) x h 32 x 32 x 16 4 x 4 x 4 x 
RHO3,RHO4 

Extended (2n) x (2n) x (2h) 128 x 128 x 32 16 x 16 x 8 not actually dimensioned


PHI (note 3)



Note 1: The notation a x b x c represents the array dimensions of the subscripts x, y and z,


respectively, (or the subscripts c,n and r, respectively, of the transformed array) such that


a x b x c equals the total number of array elements. The Fortran variables N and NH are equal


to 2n and 2h, respectively.



• . elements. Its first 
Note 2! HN21 is a two-dimensional array containing a boundary plane of He t 
subscript corresponds to g or n equivalently, while its second subscrip 'cdresponds to .



u, 	 Note 3: While the program uses smaller arrays in order to avoid dimensioning the (2n) x (2n) x (2h) 
extended PHI array of Fig. 1, its mathematical existence is necessary for the Fourier solution of the 
potential of an isolated galaxy, 
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TABLE A4



Storage of the Fourier Transformed Green's Function H


on Desk File 9



(Program of Table A2)



Record No. Storage sequence within Use sequence within GETPHI


of file 9 GETH-overlay (Note 1) overlay (Note 2)



1 A (l,I),(1,3)



2 B (1,2),(1,4),(3,2),(3,4)



3 A (3,1),(3,3)



4 C (2,1),(2,3)



5 D (2,2),(2,4),(4,2),(4,4)



6 C (4,1),(4,3)



Note 1: Within the GETH overlay, this is the location in the H array (as


designated by letters A-D of Fig. A4) from which "do loop" transfer is made


to the HH array followed by writing on the {ndicated record of disk file 9.



Note 2: Following reading of the indicated record of disk file 9 into the


HH array within the GETPHI overlay, this is the sequence of locations in


the extended PHI array (as designated by "chunks" (IROW,JCOLUMN) of Fig. A2)


upon which z-direction one-dimensional array operations are performed. These


operations include multiplication by H, the appropriate portion of which is


now contained in the HH array. This method minimizes reading of file 9 by
 

using the periodicity and symmetry of .
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TABLE A5



Outline of the GETPHI Overlay


(Program of Table A2)



(Refer to Fig. A6 for orientation of arrays RHOI, RH02, RH03 and RH04


and to Fig. A2 for file,numbers corresponding to the "locations" of


these arrays.) 	 Listing line Nos.



A. CALL ANLX(l): Fig. A6(a).

1. Read files 1 and 2 into RHOl and RH02, respectively.

2. Set RHO3=RHO4=O. 
 
3. Perform Fourier transform in x-direction over RHO], 
 

RH02, RH03 and RH04: pxyz P ,yz
 

4. Write RHOI, RH02, RH03 and RH04 onto files 1, 2, 3 
 

and 4, respectively.



B. CALL ANLX(2): Fig. A6(b).


1. Read files 5 and 6 into RHOl and RH02, respectively

2. Same as steps A.2 and A.3


3. Write RHOI, RH02, RH03 and RH04 onto files 5, 6, 7 
 

and 8, respectively.



C. CALL ANLSYN(l): Fig. A6(c).

1. Read files 1 and 5 into RHOI and RH02, respectively

2. Set RH03=RHO4=O 
 
3. Perform Fourier transform iny-direction over RHOl, 
 

RH02, RH03 and RH04: PxXyz >P ,n,z


4. Read record 1 of file 9 into HH 
 
5. For each one-dimensional array inz-direction of



which RHOI is composed:


a. Transfer to one-dimensional array Z,



dimensioned at least 2h+l


b. Set Z=O for z _h ',


c. Perform Fourier transform in z-direction over



Z for 0 < z < 2h-I with the result appearing
-inone-dimensional array Y: Ig,n,z * ,, 

d. Multiply Y by E,n, to form Zn,5 = P=,n, 
 
e. Perform inverse Fourier transform in z-direction



over Y and store result for 0 : z : h - 1 
in RHOI: 

6. Repete step C.5 for RH03 
 
7. Read record 2 of-file 9 into HH 
 
8. Repete step C.5 for RH02 and RH04 
 
9. Perform inverse Fourier transform iny-direction 
 

over RHO], RH02, RH03 and RH04: -,n,z,y,z


10. 	 Write RHOl and RH02 onto files I and 5, 
 

respectively.



of Table A2



299-302


316-317


310-323



325-332



305-308



335-342



353-356


382-383


376-389



393



En,



426-454,471-483


410


411-424,456-469,477-483


486-497



500-503



53





Listing Line Nos.


of Table A2



D. 	 CALL ANLSYN(3): Fig. A6(e).

1. 	 Read files 3 and 7 into RHOl and RH02, respectively. 365-368


2. 	 Same as steps C.2-C.9 except for sequencing of



reading tape 9 into HH and the z-directional


operations. Table A4 details this sequencing.



3. 	 Write RHOl and RH02 onto files 3 and 7, respectively. 512-515



E. 	 CALL ANLSYN(2): Fig. A6(d).


1. 	 Same as step D except that files 2 and 6 correspond



to RHOl and RH02, respectively, for read and write


operations.



F. 	 CALL ANLSYN(4): Fig. A6(f).

1. 	 -Same as step D except that files 4 and 8 correspond



to RHOI and RH02, respectively, for read and write


operations.



G. 	 CALL SYNX(1): Fig. A6(a).


1. 	 Read'files 1, 2, 3 and 4 into RHOl, RH02, RH03 and 530-537



RH04, respectively.


2. 	 Perform inverse Fourier transform in x-direction 550-560 

over RHOl, RH02, RH03 and RH04: ?,y,z + *x,y,z 
3. 	 Write RHOI and RH02 onto files 1 and 2, respectively. 562-565



H. 	 CALL SYNX(2): Fig. A6(b).


1. 	 Read files 5, 6, 7 and 8 into RHOI, RH02, RH03 and 540-547



RH04, respectively.


2. 	 Same as step G.2


3. 	 Write RHOl and RH02 onto files 5 and 6, respectively. 568-571
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Figure Al.- PHI array (active), which contains the galactic density/potential mesh, and



the extended P-I array, which is required for the Fourier potential solution of an



isolated galaxy. Each x-, y-, or z-axis represents the following: (a)the x-, y-, or 

z-spacial direction; (b)the untransformed array subscript x, y, or z; and (c)the x-, 

y-, or z-direction transformed array subscript E, n or ,, respectively. For clarity 

in this and the following figures, the PIII array is dimensioned n x n x h - 8 x 8 x 4 
listed in Table A2 and as actually run it is dimensioned
while in the program as 
 

64 x 64 x 16 (Table A3 refers).
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Figure A2.- (Program of Table A2) - Lower half (O_ zh-l = 3) of the extended PHI array showing 
row and column designations of "chunks." IROWV 1 and 2 of JCOLUMN 1 and 2 constitute the active 
PHI array. The numbers on "chunks" of JCOLJMN 1 and 2 indicate the numbers of the disk files 
on which those chunks are stored. The "chunks" of JCOLUMN I and 4 do not require disk file


storage.
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Arrays dimensioned in tho initializing and star advancing
Figure A3.- (Program of Table A2) 
 
The numbers on the "chunks" indicate the disk files on which they are stored.
overlays. 
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Figure A4.- (Program of Table A2) - Arrays dimensioned in GETH overlay, which performs a Fourier 
transform of the Greens function H and stores the resulting 11g . (Letters A, B, C 
and D are referenced by Table A4.) X yZ 
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Figure AS.­ (Program of Table A2) - Arrays dimensioned in the GETPHI 
for the potential of an isolated galaxy. 

overlay, which solves 
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Figure A6.- (Program of Table A2) - Alignment of arrays Jdl01, RHO2, RI03, and Jul04 during calls by 

the GETPHI overlay to its subroutines. Although the active PHI array and the extended PHI array


are not dimensioned within the GETPHI overlay, their projections on the planes x = 0, y - 0,


and, z - 0 are represented by dashed and solid lines, respectively. Axes labels represent


subscripts of array elements which are untransformed (x,y,z), transformed ( ,nc) or either, 
as appropriate.




