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COMPUTER SIMULATION OF PLASMA AND N-BODY PROBLEMS

L]

By

Wynford L. Harriesl!, John B. Miller?, and Christopher Costner?
INTRODUCTION

In recent years, large N-body computer simulations (Miller and Prendergast,
1968; Hohl and Hockney, 1969) have become an important tool in investigating
the structure of spiral galaxies, especially in determining the development of
large-scale instabilities resulting in spiral and bar formation. Until recently,
most of these simulations used essentially two-dimensional models with the
"stars'' confined to the plane of the galactic disk (Miller, Prendexrgast, and
Quirk, 1970; Hohl, 1971). These simulations have shown that the disks of stars
have a tendency for the development of fast growing nonaxisymmetric instabilities
resulting in bar formation. The bar instabilities occur even for velocity
dispersions that are considerably larger than those found in the solar neighbor-
hood or those predicted by Toomre (1964) as being locally stabilizing. Because
of the difficulties in solving the highly nonlinear problem, global instability
studies of disks of stars have been -primarily numerical., Some limited work
has been done for uniformly rotating disks (Hunter, 1963; Kalnajs, 1972}, but
generally linear stability analyses were used in the studies of disks of stars.
Any spiral structure in computer-generated galaxies is generally short
lived and the final state is a rotating bar. The bar thus obtained rotates
more slowly than the Stars.- For one case investigated by Hohl (1971), the
bar rotates at 2.25t and the stars rotate at 1.5t where T 1s the rotational

period of the initial disk.
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It has been argued that core/halo components have a stabilizing
effect on galaxies and result in longer lived spiral structure (Ostriker_
and Peebles, 1973). However, numerical experiments with large fixed
stellar components representing the core/halc component (Hohl, 1970;
Hockney and Brownrigg, 1974) ghow that multiarmed spiral structure devel-
-ops and persists for many rotations but only in an evolving manner. That
is, the spiral structure 1s either wound up into a tight pattern or it is
wound up and then reappears again. A recent study of the effect of fixed
core/halo components (Hohl, 1976) does show that the bar instability is
indeed inhibited by a sufficiently large fixed component.

The purpose of the present study is twofold. First, we want to deter-
mine the effect of a self-consistent (rather than fixed) core/halo compon-
ent. This will show whether there are any instabilities {(such as "two-
stream') or other important interactions presert that may be suppressed
with a fixed core. Second, we want to determine the effects of finite
thickness of the disk and of three-dimensionazl essentially spherical

core/halo components.

MODEL
The model used for the present galaxy simulations consists of 100,000
representative stars that move inside an array of cells. For the disk
simulations the stars are confined to move in the plane of the disk repre-
senited by a 64 x 64 active array. In the three-dimensional simulation the
stars move inside a 64 % 64 x 16 array of cells. The sum of the stars in-
side each cell defines the mass density at the center of each cell. Fast

Fourier transform methods are used to obtain the gravitational field at



the center of each cell for a given density distribution. The force act-
ing on a particular star is determined by bilinear (of trilinear)
interpolation from the values of the gravitational fields at the surround-
ing 4 (or 8) cell centers. After the force acting on a star is determined,
it is advanced by a small timestep, the new density is recalculated and
the process is continued until the desired evolution is achieved. If a
star leaves the array of cells, approximate methods are used to determine
the force acting on the star. Details of the disk model are described in

detail by Hohl and Hockney (1969) and by Hohl (1970). The extension of

the model to three dimensions is described in the appendix.
RESULTS

Observational evidence (deVoucouleurs 1959; Freeman 1970; Kormendy
1977) indicates that the luminosity (and presumably the density) in the
outer regions of many spiral and SO galaxies decreases exponegtially with
radius. Also, previous simulations (Hohl 1971) showed that iqtially -
stable stellar disks evolved into stable systems with radiél density
variations that closely approximated the sum of two exponentials. The
inner exponential with a scale length of about 1 kpc describes the non-

Or slowly-rotating spheroidal or core component and the remaining
exponential with a scale length of about 8 kpc describes the extended disk
population. Thus, it seems reasonable to use an exponential density
variation for the disk of the present computer simulations. Similarly,
the central core used is described by an exponential density variation.

Figure 1 illustrates the evolution of a disk of 100,000 stars with an

/2 with

initially exponential surface density distribution up(r) = uoe_
a cutoff at r = 10 kpc. The initial angular velocity of the disk was

obtained from
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Here, mO(r) is the angular velocity required to balance the cold (zero
velocity dispersion) disk, w(xr) is the actual angular velocity, and

k(xr) is the epicyclic frequency. The initial value of the radial veloci-
ty dispersion o, was taken to be that determined by Toomre (1964) as

the minimum required to stabilize all axisymmetric instabilities,

= 3.36 Gu(r)/x(x) | (33

o {r) = o_ _.
+ () r,min

The time t is given in rotational perio&s (%E:) of the cold disk at a
o
radius of 5 kpc, that is half way to the edge of the initial disk.
As expected (Hohl 1970, 1971), only the small-scale instabilities are

prevented by o = ¢

" r,min and the system quickly forms a two-arm spiral

which eventually tends to evolve into a rotating bar. The evolution of the
azimuthally averaged radial density variation for this systez is shown in
Fig. 2. As previously observed (Hohl 1970, 1971) the eventual deénsity
variation approaches one which can be closely approximated by the sum of
two exponentials. One exponential describing the central core component
and the other describing the extended disk. The evolution of the radial
velocity is such that there is some heating near the center, and a consider-
able increase in the velocity dispersion for stars expanding into the
extended disk component. Numerous other diagnostics have been performed

on the system. For example, Figs 3 shows the time evolution of the moment
of inertia I divided by the moment of inertia at t = 0, end a similar

ratio for the angular momentum. P. As can be seen, P 1is conserved in the



simulation but I 1is still increasing at a near linear rate after three
rotations. The evolution of various components of the total kinetic
energy divided by the total potential enerszy is shown in Fig. 4. The
components Tr and Ty represent the kinetic energies due to the
velocity dispersions E m. o 2' and X ma. 2, respectively, while Tcir

3] i T
is the kinetic energy of rotaticn. Note that the ratio of the kinetic
energy in rotation to the absoluté value of the total gravitational energy
of the system is approaching the value 0.14 predicted by Ostriker and
Peebles (1973) for stability. At the same time, there occurs considerable
heating of the system.

One of the aims of the present study is to determine the effect of
’adding the third degree of freedom by allowing a finite thickness of the
exponential disk. Using again an exponential projected surface density
variation yp = S e"r/2 fhe stars are now distributed in the z-direction
according to one-dimensional distribution sechzz/c wvhere c¢ 1is a param-
eter determined from p(r), (Hohl 1967). The central thickness of the disk

is 2 kpe and the density is cut off at z. given by

1
2
T’ 2 zl
Jl —(—) sech (—)= 0.1 (4)
R. c

where R = 10 kpc is the radius of the disk. The radial and azimuthal
velocity components are determined in a manﬁer similar to that for the
infinitesimally thin disk and the z-component of the ﬁelocity dispersion
is determined by a force balance in the z-direction. Note also that all
initial velocities are truncated such that stars have kinetic energies no
greater than that which would allow them to reach the boundary of the

system in the gravitational potential at t = 0.



Figure 5 shows a side view of the initial disk and the evolution for
up to 3 rotations. Note the rapid expansion in the plaﬁe of the disk.

"This is the result of tﬁe bar instability as shown in Fig. 6 which gives
the evolution of the disk projected in the x-y plane. Note that the
evolution is very similar to that shown in Fig. 1 for tﬁe infinitely thin
disk. Similarly the evolution of‘the surface density variation and the
increases in the moment of inertia are nearly identical to those shown in
Figs. 2 and 3 for the thin disk. The ratio of the various kinetic energy
components for the total potential energy are shown in Fig. 7 for the
finite thickness disk. Note that again the evolution is similar'to that
for the infinitely thin disk as shown in Fig. 4. An additional variable,
the z-component of the kinetic emergy, is givem in Fig. 7 and shows that
since this component remains small compare& to the others one would. expect
little difference in the evolution of the finite thickness disk when com-
pared to the infinitely thin disk.

As shown in Figs. 1 and 6, exponential disks with velocity dispersion
(@ = 1) are violently unstable to the bar-forming instability. Previous
work (Hohl, 1976) with a superimposed fixed (nonself-consistent) central
mass distribution indicated a stabilizing effect toward the bér—forming
instability. A more realistic simulation is to allow core-disk interaction,
thus, presently we are interested in the stabilizing effects of a completely
self-consistent core or "spheroid" component. Again, the effect is investi-
gated for both the infinitesimally thin disk (two-dimensional) and for the

three-dimensional disk.



For.the core-disk system, 50 percent of the mass (50,000 stars) is
contained in the nonrotating core and the remaining mass (50,000 stars)

is contained in the disk. The disk component is again given the surface

Oe-r/2

whereas, the initial nonrotating core

component is given a density variation M = u —r/O.S. Note that the
P g Y core 0

density variation udisk = |

disk and core density are cut off at t = 10 kpc and r = 3.5 kpc,
respectively. The initial velocity dispersion and rotation of the disk

is obtained by again using Eq. (1), (2), and (3) with u = LETPRIS Similarly,
as before, the z-dimensions of the disk are determined from Eq. (4). The
initial velocity dispersion of the nonrotating core was obtained by taking
9g = 0. and simply balancing the core in the presence of the disk. In
order to assure that the core comﬁonent was in a stable state at the start
of the core-disk simulation, the core was allowed to evolve for several
rotatioﬁal periods (2ﬁ/wo at 5 kpc) with the disk component held fixed.
Starting from these initial conditions, the system evolved as shown in_
Fig. 8. Note that even though a two-arm spiral structure still forms, the
system as a whole evolves in a much less violet manner than that displayed
in Fig. 1. This can also be seen in Fig. 9 which shows the evolution of
the surface mass density for both the core and disk component. Note that
with the exception of a slow outward diffusion of stars mnear the edge, the
core remains essentially stationary, while the disk component displays the
outward shift of mass geherally associated with bar formation. Similar
information is contained in Fig. 10 which displays the evolution of the
radial velocity dispersion for the core and disk component. Note the sharp
increase in the velocity dispersion at 1 = 2 kpc which is associated with

a marked reduction in the angular momentum of the disk in this Tregion,.



In ggneral, the simulations show that the formation of bars or two-armed
spirals results in moving angular momentum outward to laréer radii.

Fig. 11 shows a marked reduction in the rate of increase of the moment
of inertia when compared to the disks without a central core component.

The final system investigated is that of a three-dimensional
exponential disk with a three-dimensional core or spheroid component.

The spatial distribution of the stars for the disk component is obtained,

as was done for the disk shown in Fig. 5 and 6, except that now the disk
contains only 50,000 stars. For the nonrotating central core the density

is given by p = po\e_C/O's where [ = x2 + y2 + (z/c)2 with c = 5/7,

The density is cut off at ¢ = 7. Thus, the central core or spheroid has

an axis ratio of 7:5. Again the Gaussian velocity dispersion for the core
1s obtained by a simple balance of the self-gravity of the total system.

The velocity dispersion for the disk component is generatgd, as was done for
the system shown in Fig. 6. Before initiating the simulation éf the com-
bined core-disk system, the core was aliowed to evolve for several rotations
(free-fall periods) to assure that no instabilities or other problems
associated with the core component were present.

Figure 12 shows the evolution of the system perpendicular to the
equatorial plane. ' Note the remarkable stability of the system when com-
pared to the disk without the central core in Fig. 5. The evolution of
the system in the equatorial plane is shown in Fig. 13 and displéys the
development of a comparatively weak two-arm spiral structure. It should
be noted that because of the allowed initial relaxation, the core components
of the two core-disk systems investigated here are expected to closely

satisfy the collisionless Boltzmann equation. The same is not necessarily



true for the disk component since satisfying equation (1) only assures
a balancé of forces at t = 0. Also, we know that for a stellar disk
0. = Or,min does not assure stabilization of global nonaxisymmetric
instabilities (Toomre, 1974; 1977). However, since one would hardly
expect nature to generate a galaxy initially in an exact stable statlon-
ary state, and since we are interested in the further development of
instabilities and the final state toward which the system evolves, an -
exact stationary and stable initial state is not necessary.

The eveolution of the azimuthally averaged projected surface mass
density for the three-dimensional core-disk system is shown in Fig. 14
and is nearly identical to that of the two-dimensional core-disk system
shown in Fig. 9. Note that there is very little change in the density
for the core with the exception of a slight outward diffusion near Fhe
edge. Azimuthally averaged values of the total demsity variationm
in the z-direction are shown in Fig. 15 for various values of 1. Some
of the fluctuations shown may be due to the relatively small sampling volume
uséd. If we look at the eveolution of the radial velocity dispersion Shown
in Fig. 16 we see that (as expected) the velocity dispersion for the
two-dimensional core (Fig. 10) is higher. Also, the large increase in the
velocity dispersion of the disk near r = 2 kpc does not occur for the
three-dimensional disk. Associated with this is the fact that there is
very little change in the radial anguiar moment distribution during the
evolution of the 3-D core-disk system, whereas, considerable outward shift
of angular momentum cccurs for the 2-D core-disk system. These results

indicate that the global bar instability is much weaker for the 3-D

system as for the 2-D system, as can be seen by comparing Figs. 8 and 13.



The time evolution of the various kinetic energy ratios for the 3-D
disk-core system is shown in Fig. 17. As can be seen, there is little .
change in the value of the various components during the evolution. Note
that the value of the ratio of the kinetic energy in rotation to the total

‘potential energy of the system is slightly higher than the value of the
0.14 predicted for stability by Ostriker and Peebles (1973). Also, the
moment of inertia increases by only about one third of that shown in
Fig. 11 for the 2-D system. As was the case for all four systems investi-
gated, the angular momentum was conserved to a sufficient degree of

accuracy.

10
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| Figure 8.- Evolution of an infinitesimally thin exponential disk

with a self-consistent exponential core component. Note that

the evolution if considerably less violent than that displayed 19
in figure 1,
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APPENDIX

COMPUTER PROGRAM FOR GENERATING THE THREE-DIMENSIONAL

GRAVITATIONAL POTENTIAL DISTRIBUTION OF ISOLATED GALAXIES

MATHEMATICAL SUMMARY

The scaled gravitational potential at the center of cell (X,y,z) is

defined by the triple summation over the three-dimensional array of cells

¢X,Y,Z ) e pi:j:k Hi_ic:j—y':k"z’ (Al)

i=) 3=0 k=0

where

. ~-1/2
2..2..2 .. P
Hi,j,k (17+37+k™) for i+ j+k#0,

I

=1

Hy,0,0 7 1

and o; 5,k is the mass density in cell (i,j,k). Because direct summation
2J2 -

is much too time consuming to be practical, the triple summation is eval-

uated by the convolution method using fast Fourier transforms (ref. (A1)).

That is, the Fourier transform of the potential equals the product of the

Fourier transforms of p and H
a, i
=5 . _H ]
YEomr - PEinsg TE,m,z

The gravitational potential ¢X - is obtained by taking the inverse

3/

(AZ)

Fourier transform of equation (A2). Rather than the usual complex Fourier
series, here a real expansion is used. For example, the Fourier transform

of the density o is given b
Y Px,y.2 Y

2h-1 2n-1 2n:1
v S,
pE:n:C - / C(X,H)C(y)n)c(z,h) px,

LEE.x,n)E(n,y,n}£(Z,2,h)
7= y’: xX=

Ys
(A3)
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where )
os (£ x/n), 0 =& <n

f(g,x,n) =

in [w(g-n)x/n], n < & < 2n
c(x,n) = 1/¥2 if x=0 or x =n,
ci{x,n) =1,

otherwise, the symbols n and h define the n xn x h active array
and also the (2n) x (2n) x (2h) larger arraey over which the Fourier
transform must be taken so that the potential for an isolated galaxy is

obtained (see fig. Al). Note that the density may be nonzero only in the

smaller n xn xh array. Because of the symmetry of Hx vz’ the
> >
. n . . .
Fourier transform HE T can be obtained by a finite cosine transform

e
H

7=

i 2 2 2
¢ (x,n) ¢ " {y,n) ¢ (z,h) H
£,1n,2C ;TZ Xéé X,¥,2

. cos (w&Ex/n) cos (mny/n) cos (wzz/h), (A4)

Oig,'-"i =n
0<&E<h

and
= ﬁ = - = rﬁ
E”'n:n,c E + n,NFR, L E+n:n:% = h E+n,ﬂ+n,§+h
= =i = H . =1 .
£,n+0, L g,n+n,z+h g,n,5+h £,n,%
The next step in obtaining the potential is to multiply 3; n.z -by
. 3 >
ﬁ to obtain
E,M,T
ny " "y
= H . AS
¢E,n,c pE,n,c £,n5C (AS)
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The gravitational potential for an isolated galaxy correctly definsd

over the n xn x h aray is obtained by the Fourier synthesis

1 2n-1 2p-1
bx gz T —lg ? 2 . (e M) £(n, YR E(E, 7,0 (26)
Note also, that since
ﬁ = ﬁ = ﬁ etc.

E,n,z; g);Jn n}g}g,

different permutations of the same set of indices need not be stored.
Thus, the transformed Green's function can be converted to a one-

dimensional array

i = ¥

£,n,¢ n
where different permutations of §g,n,f are stored in the same location

n given by

3
n = Z 20 + 21 - g
l:

0

E(e-1){2&-1)/12 + g(&-1}/4 + n(n-1)/2 + ¢

Computer Program Subroutine Which Uses Only Core Storage

Table Al gives a Fortran listing of a computer program which may be
used to obtain the potential by use of a2 (2n) x {(2n} x h array of cell.
The variables 12A and 13A define the x,y\ and z dimensions, respectively,
of the array used for the potential calculations. When the subroutine
GETPHI is called, RHO(I,J,K} contains the mass density and GETPHI places
the values of the corresponding gravitational potential in RHO(I,J,K).

The subroutine FTRANS(X,I2B) has been written by R. Hockney (zref. A2)

31



and it performs a finite Fourier analysis or synthesis on the common
input array 7~ and places the result in the common output array Y.

The subroutine performs a cosine analysis for 1 = 2, a periodic analysis
for I = 3, and a periodic synthesis for 1 ; 4. The subroutine
GETSET(I,1I2B) initializes FTRANS and is called every time the arguments

of FTRANS(I,I2B) are changed. The Fourier transform ﬁE - is calcu-
. 2> 5

lated on an (n+l1) x (n+l) x (h+1) array only the first time that the
subroutine is called and is kept in storage for subsequent use.

The Fourier transform of Py V.2 in the x-direction is generated
2t >

by obtaining the partial transform EE v,z for 0 <-§ < Zn-1,
]

0D <y<n-1l and 0 < z £ h-1. is zero outside of

bt
g’y’z

this region because 0 V.2 is nonzero only over the
3 3> =

nxnxh active array. Next, the Fourier transform of

Eg v,z is performed in the y-direction obtaining the x-y partial trans-
2 2
form Eg h.z for 0<£E<2n-1, 0<n<2n-1 and 0 <z < h-1. Since
a >
SE n.z is zero for h < z < 2h-1, by use of one-dimensional arrays Y and
E =

. " ] . . .
Z the Fourier transform of Pe nz can be taken in the z-direction to
>

obtain the total transform 3 for 0 <z £ 2h-1. Next, E is
E,n,t £,1,8
multiplied by B to obtain $ and the inverse Fourier transform
£,M,% E,N,¢L

is performed in the z-direction. The resulting partial x-y transform
$E’n, is placed in the 2n x 2n x h RHO(L,J,K) array for

0 s.gvs.Zn—l, 0 <n<2n-1 and O =< z < h-1 with values for h £z < 2h-1
discarded. (The use of these one-dimensional arrays was first presented in
reference A3 for a two-dimensional potential solver). Next, the inverse

. " . . - . s
Fourier transform of ¢ is generated in the y-direction by obtaining

E:N,Z

wl
(3]



A Y
the x-partial transform ¢€ v,z for 0 =& <2n-1, 0 =y <n-1 and

0 =<

™

£ h-1. The final step is to perform the inverse Fourier transform
in the x-direction for 0 <y <tmn-1 and 0 < z < h-1 to yield the
correct gravitational potential ¢ for an isoclated galaxy over

X,Y,Z
the n xnxh array.

Overlayed Computer Program Which Uses
Core and Disk Storage

The use of the listing of Table Al with the 64 x 64 x 16 -active
density/potential array used in this paper would héve necessitated the
dimensioning of the RHO array at 128 x 128 x 16 and the H array at
65 x 65 x 17. As such, large dimensions would have excluded use of the
CDC 6600 computer, the listing of Table Al was modified to include use of
overlayed programs and disk storage resulting in a maximum core storage
at any one time of array elements equaling about five fourths of the
'actgve array. The Yisting of this program in Table A2 includes (a) a
section of an initializing overlay in which relevant constants are computed
(b) a section of the star advancing overlay in which "chunks"” of the den~
sity array are written on appropriate disk files, (c) another section 0%
the star advancing overlay in which "chunks" of the computed potential
array are read from disk files, (d) the GETH overlay which computer ﬁ,
and (e) the GETPHI overlay which computes the potential array from the
density array.

The method used i; the alignment in the direction of transformation of
four identical arrays named ‘RHO1, RHO2, RHO3, and RHO4, each of which is

dimensioned (n/2) x (n/2) x h within the GETPHI overlay. (See figs. AZ
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and AS5. For clarity, figures.Al through A6 are drawn for an active array
dimensioned n xn x h = 8 x 8 x4; table A3 compares the array dimensions
of these figures and the listing of table A2.) The active array is
dimensioned as the PHI array within the initializing and star advancing
overlays (see figures Al and A3) but is not dimensioned within the

GETPHI overiay. As figure A2 suggests, the 'chunks' RHO1l, RHOZ, RHO3

and RHO4 may be visualized as forming either a row or a column of the
lower half (0 < z < h-1) . of the extended array. Switching the lineup to
a different row or column is accomplished by storing the array associated
with each "chunk" location on a separate file; these eight files are also
indicated in figure AZ.

As shown in figure A3 one "chunk" size array named 0I is dimensioned
in the initializing and star advancing overlays. "Chunks" of the active
array are transferred between the PHI array of these overlays and the
arrays RHO1l, RHO2, RHO3 and RHO4 of the GETPHI gverlay via "do loop' trans-
fer to/from the  OK_ array and storage on files 1, 2, 5 and 6.

At the beéinning of a program run,the GETH overlay cocputes H in the
(n+1) x (n+l) x (h+l) H array in the same manner as the listing of table
Al, All of ﬁg,n,;’ except for two boundary planes of elements (& = n,
D<n<n, 0<z<h and 0<z=<mn,n=mn,0<g=<h}, is then transferred
in portions via "do loop™ to the (n/2) x (n/2) x (h+1) HA array from
which it is written on disk file 9 (see figure A4). Elements of one

Y
boundary plane of H (E=n, 0 <n<n, 0 <z <h} are transferred to

£,M,8
the (n+l1) x (h+1) HN21 array which is in common with the GETPHI overlay;

the z-n transpose of that boundary plane is equal to the other boundary
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plane (0 £z <n, n=mn, 0 <7 <h) due to the symmetry of ﬁ across
the z=n diagonal plane. During each potential solution the portions .of
E on file 9 are read sequentially into an (n/2) x (n/2) x (h+1) HH
array of the GETPHI overlay from which it elements, along with those in
the HN21 array, are multiplied with B’ . This sequence (listed in
téble A4} utilizes the symmetry and periodicity of ﬁ (equation (A4})

to provide a full set of (2n) x (2n) x (2h) ﬁ elements to the GETPHI
overlay in a manner which minimizes the reading of file 9.

The GETPHI overlay consists of subroutines ANLX({JCOLUMN), ANLSYN(IROW)
and SYNX{JCOLUMN) which dimension in common the arrays HH, HN21, RHOI,
RHO2, RHO3 and RHO4 as pictures in figure 5. Figure 6 indicates the
lineup of ™chunks" associated with each call to a subroutine. The potential
solution is mathematically identical with that described for the listing
of table Al. Calling ANLX(1) and ANLX(2) performs the Fourier transform

vl

Py, 2 in the x-direction to form P v,z Calling ANLSYN(1),

ANLSYN(3), ANLSYN(2) and ANLSYN(4) in sequence performs the following:

of

- g
(2) a Fourier transform of o

£,y,z in the y- and z-directions to form
H 2

" i ",
; {b) multiplication with H to form ;5 and (c¢) the in-
pE,TbC ( J P N 1 P (pg:n.’g’ ( )
verse Fourier transform of $€ . in the z- and y-directions to form
> >
s
¢; v,z Calling SYNX(1) and SYNX(2) performs the inverse Fourier trans-
El 2

form of $ in the x-direction to form ¢ . The GETPHI overlay

EJ}F’Z XJYJZ

is outlined in more detail in table AS.
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Efficiencies of the Two Computer Programs

The program of table A2 is considerably more efficient than that of
able Al because the addition of some pevripheral processing time and a
nall increase in central processing time is much more than compensated
>r by a 75 percent decrease in the required core storage. The maximum
amber of active array elements dimensionable on the CDC 6600 with the
rograms of table Al and AZ are respectively 16384 (e.g. 32 X 32 X 16)
ad 65536 (e.g. 64 x 64 x 16); the latter program can have other
otentially useful active array dimensions of 32 x 32 x 8, 32 x 32 x 16,
nd 32 x 32 x 32, Solution of the -64 X 64 x 16 active array by thfa
DC 6600 requires about 300 (octal) words of core storage and with ﬁ

lready computed takes about 75 seconds of central processing time.
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TABLE Al
SUBROUTINE FOR CALCULATING THE THREE-DIMENSIONAL
GRAVITATIONAL POTENTTAL USING OMLY CORE STORAGE
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10

a3

a1

20

az

12

13
14

SUBRQUTENE GETPHI

COMMON Z(1025)+Y{1025) RHO(68+68+16)+12A4 132+ 1TIHT
DIMENSION H({33433+17)
IF(]{TEST«EQ.Q} GO TO 11

ITEST=0
128=12A~1
M=2%%12A
NO2=Nr2
NZ21=NOZ2+!
I13B=13A-1
NH=Z*¥ 134
NHOZ2=NH/2
NHZ1=NHOZ+1
RNTI=1e/ (N*N¥NH )
DO 1 K=1+MNHZ1
DO 1 J=1+N21
Do 1 I=lanN2i

RI=(K=1)%{K-1}+{J=1)3%{J=13+{1=1)%(I~1}

IF{RIsLTalas? RIF1W

HUI v JsKIERNIZSAQRT(RID

CONT INUE

CcaLl. GETSET(2.128)
DO 2 K=1eNH21

DO 2 J=1l.N21

DO 3 I=1.N21
FASREI ISR WEL

CALL FTRANS(2+128)
DO a4 I=t1.N21
HiT«JeKISY(TY

CONT INUE

DO 5 K=1eNH21

DO 5 I=leNZ21

DO & J=1.N21
ZiJysHITAJeK)

CALL FTRANS(2:128)
DO 7 J=l.n21
HilsJeXK3I=¥Y{J}

CONT INUE

CALL GEYSET(24138)
DO 10 J=1.N21

DO 10 I=1.MN21

DO B K=1.NH21
ZIKI=H{I+JeK)

CALL FTRANS(2.[38)
DO 9 K=1+NHZ21
HIl+JsRI=Y K

CONT INUE

CONTINUE
WRITZ(6+43)

FORMATC(IOH H{I+JsX))

DO 42 K=1+NH21
Do az J=1.N21
WRITE(6sa1 1 J+K

WRITE(S+40) (HII JeK)sI=ToN2L Y

FORMAT(1aH  1=1+N21
FORMAT{2H BE1648)
CONT INUE

CALL GETSET(3.12A)
DO .14 K=1,NHO2

DO 14 J=1+NOZ2

0o 12 I=1+«N
Z(II¥=RHO(T 1 JeK)
CALL FTRANS(3+124)
DO 13 [=1a.N
RHO( L+ JeKKI=Y (1)
CONTINUE

()EtIc;[ﬁLAl; Iﬂé_ ‘
GE
OF POOR QUALITgS


http:WRITE(6.43
http:ZJ)=H(I.JK
http:Z(I)H(I.J.lK

15

16
17

ie

19

22

23

24

25

28

27

21

28

3a
3z

DO 17 K=1.NHO2

00 17 I=1.N

DO 15 J=14«N

Z{JISRHO(I + 1K)

CALL FTRANS(3+12A1)

DO 186 J=1.N

RHO{ ]+ J+K3=Y ()

CONT INUE

DO 20 I=1+N

DO 20 J=1.N

DO 18 K=]1 NHO2

Z{K)=RHO( I s 2%

ZK+NHO2y =0,

CALL GETSET(3.134)

CALL FTRANS(3.134)
IF(I-GT.NEI.AND-J.LE-N213 GO TO 22
IF(I.LE-Ngl.AND-J-GT.NZI) GO TO 2a
IF{Ia%T 21 2 ANDJaGTLN21} GO TO 25
B0 19 K= +NHOZ

ZUKISY (KI*H{ T« J ek}
ZIR+NHOZ =Y (IK+NHO2 1 %H [ 2 Jo K }
ZLIISYLLI¥H (T dat )
Z(NHal)=Y(Vﬁ2!)*HtIoJ.NH2;)

GO To 21

DO 23 K=2.NHOZ2
ZUKI=Y (K ) FH{ I ~NO2 s J e k)
ZUKSNHO2) =Y (KFNHOZ 3 XH (I =NOZ2 s J K }
ZOLISY (L) RHEE=NO2eJe 1)
Z(NH213=Y(NH21)*H(i—NOE-J-NHEl)
GO TO 21

DO 25 K=2 NMHO2
ZIK)I=Y(KI*H({ [ + J-NO2 +K}

ZAKINHOZ 1Y (K+NHO2 ) *H (] + J=-NO2 1K)
Z{1I=Y (L IRH( T+ J=NC2+1)
Z(NH21)=Y(NHZI)*H(I»J-NOE.NH2])
GO TO 21

DO 27 K=2.NHOQZ2
Z(K):YtK]*H(I—NOZ-J—NOE-K)

Z(K+NH02J=Y(K+NHOE)*H(I—NOEoJ—NOE‘K)

ZULI=Y (1 I#H{ ]I —NO2 4 J=NC24 1 }
ZINHZ1 )Y INHE1 I¥*H (1 ~NOZ + J-NOZ s NHZ1 )
CONT |NUE

CALL GETSET(4+13A}
CALL FTPANS(44+13A)
DD 28 X=1«NHOZ
RHOCI « JaK1=Y (K)
CONT INUE

CALL GETSET(4.12A)
DO 29 K=1.NHOZ

DO 29 J=1.M

DO 30 I=1.N
Z(!)=RHO(IvJ‘K)
CAELL ®“TRANS(4.1243%
DO 31 [=1.N
REFO(TI+Ja<)3=Y{1}
CONT INUE

DO 32 K=1«NHO2

DO 32 I=1.M02

DO 33 J=1.N
ZIJI=RHO([+ JoX3
CALL FTRANS(4.12A)
RO 34 J=1.NOZ2
RHO( L2 JsK)=Y {J)
CONT IS

RETURN

END

ORIGINAL PAGE IS
OF POOR QUALITY
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http:Z(K+NH02)=Y(K+NH02)*H(I.JK
http:IF(I.LE.N2I.AND.J.GT.N2

TABLE A2
OVERLAYS FOR CALCULATING THE THREE-DIMENSIONAL GRAVITATIONAL
POTENTIAL USING CORE AND DISK STORAGE
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PUTED .

O00O0nN

12A=7

13A=5
12B=12A~1
13B=13A=-1
N=2#%*[2A
NO2=N/2
N21=NO2+1
NGa=Ns4
N34=NC2+NGS
NH=2*%[3A
NHO2=NH/2
NH2 1 =NHOZ2+1

OF THE PHI ARRAY
1+2+5 AND 6.

ONONOOaN

LISTING THE VALUES OF [2A.
STATEMENTS ARE SZ7 FOR AN ACTIVE PAl

DIMENSION PHI (644644161401 (32+32418)
DO 520 K=1.NHD2
DC 520 J=1.N04
DO S20 I=1.NM04

520
WRITEtLl Y OF
REWIND 1}

oo 525
Do 525
Do 525

525
WRITE{(S) OI
REWIND 5

OI{l+ ZhKISPHI (1 +J4K)

K=1+NA02
J=1 e NOG
I=1+N0O4
OIIIeJd /KIZPHT (] «NO8+J K}

DO 530 K=1+NHOZ
BO S30 J=1.M04
D0 S30 I=1.NDa

530
WRITE{(2) Ol
REWIND 2

Ol (oo KI=PHI(MOI+T s ) K)

Do 535 K=1.NHD2
DO S35 J=1.NO4

DO S35
535

WRITE{6) O1

REWINE 6

OO0

I=1 +NO4
Ol {I+JaKI=PHIINC4+] +NOA+I KDY

ARE

INAL p
11F‘1%)(H% (Q[;icﬂg 15

THE FOLLOWING IS THe SECTION OF AN INITIALIZING OVERLAY [N WHICH CONSTANTS
RELATED TO Thk DIMENSIONS OF THE PAl (DENSITY/POTENTIEL)Y ARRAY ARE COY-
IT IS CALLED ONCE AT THE BEGINNING OF A PROGRAM RUN,
134 AND THE DIMENSION 4ND LABSLED COMMON

AQRAY DiMENSICNID 64 8Y 64 BY lbe

IN THIS !

FERERREFEXREERFXERAEFIFREFERTERERRFREFAEEFERERRRRREFE T E SR EFEENSRHERE TN *
FEEEEER R A AR AR T L RN R AR R R R R R AR AR R R AR FRFEEFFFFE LR RN RN E TR #F R F X%
THE FOLLOWING IS THE SECTION OF THE STAR ADVANCING OVERLAY [N WHICH CAUNKS
(CONTALINING THE DENSITY MESH)
THe STAR ADVANCING OVERLAY IS CALLED ONE PER TINE STER.

wITTEN ONTO DIS< FILES

CHEEFERFRRERR LR EREEFFFIEFFRRFIEFEEEFTTFAREEFFHREFFERFEFES £ TR SR R T A F N 5%
CEFFERFRRFFAE T AT EFRTEF R TR ERARF LR AT R AL EREFFHRATET L FLFCEFFRREF RN X FTA4F XS

C THE FOLLOWING IS THE SECTION OF THE STAR ADVANCING OVIZRLAY IN

C OF THE PHI ARRAY
C 1+2+5 AND 6

(CONTALINING THE POTENTIAL

MESH)

WHlCH CTHUNLS
ART READ FROM DISK FILES

0ol
002
003
oDa
005
006
007
Qo8
009
olo
Qll1
o112
Di3
ol4
o1s
ols
oL7
018
[e] 3=
a20
021
oz22
023
024
[eF=3=1
0256
027
gz28
o od=l
030
031
a32
033
034
035
036
037
038
039
040
a41
o042
043
oaa
045
Q46
047
048
049
0so
0SSl
ps2
053
054
053
Q%6
0o7
058
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o0nNn

C*‘*****%**-}**********************************-X-i++f¥-*-’-b+-}+-ﬁ§-**-)—**** bttt 3.0 3t 3
Ci—{--l--l-*'k***-l-*I-'l‘-i—**-I-******************************—*

C
C
C

annon

B Ib
ORIGINAL PAG
()E\:P()()El clljjkIqurY

. DIMENSION PHI(64164416)+,01(32432+161}
READ(1) Ol
REWIND 1
DO 30 K=1,NHOZ
DO 30 J=1+nO4
DO 30 I=1.NO4
30 PHICI+JeK)I=0I (1 vdsK)
READ(S) ©O1
REWIND 5
DO 40 K=1 .NHO2
DO 40 J=1 .NO4
DO 30 I=1.NO4
40 PH[(I-NO4+J-K)=OI(I.J-K)
REAQ{(2) O] : T
REWING 2
DO 50 K=1,NHO2
DO 50 J=1,.NOa
DO 50 I=}.NDo4
50 PHIINO&+IsJsKI=0I ([sJsK)
READ(&) 01
REWIND &
DO &0 K=1 «NHOZ2
PO 50 J=1..NOG
DO 60 I=1,M04
50 PHI INOSG+] +NOS+J4K ISOTCT ot eK)

THE FOLLOWING 1S THE GETH OVERLAY+ WHICH COMPUTZS 2np STORES THE TRANS—
FORMED GREENS FUNCTIONs T IS CALLED ONCE AT TS SSGINNING OF A DROGRAM
RUNW

OVERLAY(IFILE+3+0)

PROGRAM GETH
THIS OVERLAY PERFORMS A COSINE AMALYSIS OF THE T SE-DIMINSTONAL GREENS
FUNCTION ARRAY. 1T THEN WRITES CHUNKS OF THIS ARRAY OM DISY FILE 9 [N THE
OHDER IN WHICH THEY WILL BE READ INTO THE HH LR2AY DuPING THE GETPHI
OVERLAY. VALUES FOR [=N/2+1 AND J=N/251 ARE TRANSFESSED TO TeE AN2] ARRAY
¥HICH 1S IN COMMON WITH THE GETPH! OVERLAY.

COMMONSALLCOM/N s NOZ2 s N2 1 s NO4 N34« NHy NHOZ ¢ N2l » T25 0 I220 [ 38 ¢ 138

COMMONAHNEZLCOM/HN2L (65417}

COMMON Z(1025). Y(1025)

DIMENSTON H{65:65+171+HH(22+232+17)

RMNT=T o/ (N*N*NH )

DO 1| K=],.NHZ1

DO 1 J=l.N2!

DO 1 l=1.N21

RI= (=1 1¥{K=1 )+ {J=1 )% (I=1 )+ (I~-13%([~1)

IF(RIel.Tele) RIZ1

HI{l+J2aK)I=RNI/SGRT IR

1 CONTINUE

CALL GETSET(2.128)

DO 2 K=1.NH21

DO 2 J=1.N21

DO 3 I=1+N21

3 ZLI)SH{ 1+ JeK)

kg ah ol b ot b Lok FEL E R L R TR P

0359
[e]:14]
o6l
062
063
064
065
066
Q&7
068
069
070
a7l

[sIrg=4
073
074

07S
076
o077
n78
079
080
o8l

032
083
084
085
08s
087

088
089

090
091
[
093
co9a
095
Q95
097
9B
099
100
1¢1
102
103
14s
105
136
107
108
10¢
110
111
112
113
114
115
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30

35

40

a5

=19

59

15

CALL FTRANSI(2+128)

DO 4 I=1.N21
HiIsJdekI=YL(I)

CONT INUE

DO 5 K=11NH21

DO 5 I=1.N21

DO & J=1..N21
ZUJI=HII s KK

CAtl FTRANS(2»128)

DO 7 J=1.N21
H{I+JsK)=Y ()}

CONT INUE

CALL GETSETI(2.138)

DO 10 J=1.N21

DO 10 I=1.N21

DO 8 K=1+NH21
ZAIKI=HI] s JeK)

CALL FTRANS(2.13B)

DO 9 K=1+NH21
H{J«JeKI=Y(K)

CONT INUE

DO 30 I=1.+NO4%

DO 3G J=1.NMO4s

DO 30 K=1 4NHZ1

HH{T +JaKI=H(I+2+K)
WRITE{(9) HH

DO 35 1=1.+NO4

DO 32 J=1«NO4

DO 32 K=} «NH21

HHIT + J+KI=H{ T +NO&+J oK)
WRITE(D) HH
DO 40 [=1.NO3
DO 40 J=1+NOAS
DO 40 K=1+NH21
HHI{T+JeK)=H{ I+ J+K)
WRITE(D)Y HH

00 45 [=1.NO4

DO 4S5 J=} «NOa

DO 45 K={1 +N21

HHITI v 2K I=HINOS+T +JoK)
WRITE(gl‘HH -

DO 50 1=1.NO4

DO 50 J=1..NOa

DO 50 K=1.NH21

HH{T« JoK)=H(NOG+ ] +NOa+JeK )

WRITE(S) HH

DO S5 1=1.+NO4

DO 55 J=1.NDO4

DO 55 K=1.NHZ]
MH{I+J+K)=HINOS4+T « 3K}
WRITE(9) HH

REWIND @

DO 15 K=]+N421

DO 15 E=z=] «N21

HM21 (I+K)=H{I.N21 +K)
RETURN

END

1146
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131

132
133
135
135
135
137
138
139
140
141

142
t43
144
145
146
147
148
149
150
151

152
153
154
185
156
157
158
159
160
1561

162
163
164
165
166
167
158
169
170
171

172
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173
174
175
CHRAFXFEEFEXEFRERRERREEERERRERRAEEFRNRERH XX R REFETTREREFFRRERFEFEFEF R RRRRER | 76

CERFFIEXREFFERFERFFEERERFARLFREERFERREEFRFXERRRAAEAFF A S FEFEFFFFFLEF R AT AR F N EER 177

anon

C THE FOLLOWING 1S THE GETPH! QVERLAY. WHICH COMPUTZS THZ POTENTIAL MESH. 178
C IT REPLACES CHUNKS OF DEMSITY STORED ON DISK FILES [+2+3 AND & SITH 179
C CORRESPONDING CHUNKS OF THE POTENTIAL MESH. IT i3S CALLED ONCE PER TIME 180
C STZP. 181
OQVERLAY (GFILE+S.03 182
PRCOGRAM GETPHI 183

Trls OVERLAY SCOLVES FOR THE POTENTIAL MESH (DIMSNSIONED N/Z2 BY N/2 BY 184
N=/2) DUE TO A DENSITY MESH (DIMENSIONED N/2 BY N/2 BY Nri/2) BY DOING A 185
FPZR10ODIC ANALYSIS OF THE DENSITY AND THEN A PERIODIC SYNTHESIS OF THE 186

PRODUCT OF THE TRANSFORMED GREENS FUNCTION (DIMENSIONZID (N/2+1) 8Y (N/2+1) 187
BY (NH/2+1)}) AND THE TRANSFORMED DENSITYs FORYALLY SPEA<INGs EACH OF THE 188

TRANSFCRMS (EXCEPT THE COSINE ANALYSIS OF THE GREENS FUNCTION. WHICH IS 189
PORFORNEDC IN THE GETH QVERLAY) REUUIRES AN ARRAY DIMENSIONED N &Y N 4OY 190
Nde TO REZDULE CORE STORAGE THIS OVERLAY PERFORMS THESE TRANSFCRMS IN 194

CHUNKS 8Y THE AL IGNMENT OF FOUR SMALLER ARRAYS NAMED RhOls RHOE2. RHO3. AND 192
PHO4s EACH OF WHICH IS DIMENSIONED N/&4 8Y N/4 8Y NH/2. THE CHUNKS OF THE 193
LOWER HALF {1 «tEs Z +LEs NH/2) CF THE EXTENDED ARRAY NOT IN CORE AT ANY 194
OANE TINE ARE STORED ON DISK FILES 1| THROUGH 8. THE FOLLOWING ARE TWO TOP 195

VIZSWS OF THE LOWER HALF OF THE EXTEMNOZD ARRAY. BOTH 0OF THESE VIEWS 196
DESIGNATE THE CHUNKS AS IROW AND JCOLUMN IROW 1 AND 2 OF JCOLUMN 197
1 AND 2 CONSTITUTE THE ACTIVE MESHA. [N THE CIAGRAM ON THE LEFT THE 198
NUMSERS WITHIN THE CHUNKS OF JCOLUMN 1 AND 2 INDICATS THAE DISK FILES ON 192
WHICH THOSE CHUNKS ARE STORED. (NO DISK STORAGE 1S5S RECUIRED FOR JCOLUMN 3 200
OR 4«1 REFERRING TO THE DIAGRAM ON THE RIGHTs THE NUMBERS WITHIN THE 201
CHUNKS ARE THE ORDSR IN WrICH CHUNKS OF THE TRANSFORMID CENSITY ARE 202
MUTIPLIED (SLEMENT By ELEMENT) B8Y THE APPROPRIATE PORTION OF THE 2e3
TRANSFORMED GREEZNS FUNCTION WHICH HAS BEEN READ FROM DIS< FILE © INTO 204

ARRAY HHIN/SG NG +NH/ZH] Ve {AN EXCEPTION 15 THE 58T OF TRANSFORMED GREENS 205
FUNCTION BOUNDARY VALUES FOR I=Ns2+1 AND J=N/2+1 WHICH REMAIN AT ALL TIMES 206
IN COMMON IN THE ARRAY HNZ2I(N/2+1NH/2+1)s) A PLUS IN A CHUNK INDICATES 207
THAT NEWw VALUES MUST BE READ INTO ARRAY HH BEFORE THAT CHUNK IS MULTIPLIED 208

oo OOOO00O0O00O0NON NN N0DO0O 0O OODNONONOOONNON

3Y HH. THES SYSTIM MIMIMIZES PERIPHERAL PROCESS TIME BY UTILIZING THE 209
PEZRIOCDICITY OF THE TRANSFORMED GREENS FUNCTION, 210
211

- 212

213

TWD TORP VIEWS OF LOWER HALF OF EXTENDED MESHIN 3Y N By NH/Z) — IROW 1 214
AND 2 OF JCOLUMN 1 AND 2 CONSTITUTS THE ACTIVE MESH{N/2 8Y N2 BY 215
NH/2) e THE DIRECTIONS ARE X{1}) AND OMSGAX(I) — DOWN ON PAGE. 216
Y{J) AND OMEGAY(J} —~ TO RIGHT ON PAGEs Z(X) AND OMEGAZIK) - OUT OF 217
PAGEs 218
219

220

JCOLUMN SJCTOLUTAN 221

1 2 3 4 1 2 3 4 222

223

EE R T EEFFEXRFREXRFERRR D24

* * * ¥ #* * 3 F 4+ F * * 225

IROW=1 *1 x5 % X * IROW=1 * 1 * 3 ® 2 % 4 #* 224
L R T P U FEEXREFFEFFRERERE 2PT

* * * ¥ * 4 F 4+ * *+ * 2p8

IROW=2 * 2 % & * * * IROW=2 * 9 ¥11 *10 *12 * 229
EE TS ISR X TR ) AFFEFFEFERREFFRRR 230

* * * * * , * 4+ * * * * 231

JIROW=3 * 3 % 7 % £ * IROW=3 % 7 #+ S *# 8 # & * 232
L TS RN R ) FEFRFFFERELREFERR 233

* * * * * ¥ 4+ E * * 234

IROW=4 * a4 % 8 % ¥ * IROW=4 *15 *13 *16 *14 * 235
P ER T T E ) FERFFFRRREXRFEERSE 235

237

DISK FILES OM WHICH CHUNKS ORDER IN WHICH CHUNKS ARE 238
ARE STORED MULTIPLIED BY APPROPRIATE 239
PORTION OF TRANSFORMED 240

GREENS FUNCTICON 2491

242

an

243
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CQMMON/ALLCOM/N-NDE-Nax.Noq.Naa.NH.NHoz.NHat.lan.rza-raA.138

COMMON/TPANCOM/RHO!(32-32-16)-RH02(32v32'l&)-RH03(32032016)-

1 RHO4({32+32+ 16+ HH{3243241 7 :

COMMON/HN21COMAHNZ (65417 )
THE INITIALIZING QVERLAY OR STAR ADVANC ING OVERLAY LTORES THE DENSETY
CHUNKS OF IROW 1 AND Z FOR JCOLUMN=I ON DISK FILES I AND 2 RESPECTIVSLY
AND FOR JCOLUMN=2 ON DISK FILES 5 AND 6 RESPECTIVELYs THE GETPHI OVERLAY
REPLACES THE DENSITY ON THESE DISK FILES WITH THE CCRRESPONDING VALUSS OF
POTENTJAL WHICH ARE THEN USED IN THE STAR ADVANCING OVERLAY. THIS I3
ACCOMPL ISHED THROUGH CALLING SUBROUT INES ANMLX(JCOLUMN} « ANLESYNEIROW) AnD
SYNX{JCOLUMNY AS DETAILED BELOWe

SUBROUTINE ANLX{JCOLUMN} READS RESPECTIVELY [RQW 1 AND 2 FROM THE
FOLLOWING DISK FILES — 1 AND 2 FOR JCOLUMN=1s =~ 5 AND 6 FOR JCOLUMN=Z,
IT THEN PERFORMS A PERIODIC ANALYSIS IN THE X DIRECTION OVER JCOLUMN FoR
I=21+.M AND WRITSES THE RESULTS RESPECTIVELY FOR [ROW 1+24+39s AND 4 ON ThE
FOLLOWING DISK FILES — 1,243, AND 4 FOR JCOLUMNS=I» — S.5+7. AND 8 FOR
JCoLUMN=2,

CALL. ANLX{I)

CALL ANLX(2)
SUBROQUTINE ANLSYN{IROW) READS RESPECTIVELY JCOLUMN 1 AND 2 FROM THE
FOLLOWING DISX FILES ~ { AND 3 FOR IROW=1s ~ 2 AND & FOR IROW=Zs -~ 3 AND
7 FOR JROW=3s =~ 4 AND 8 FOR IROW=4. IT THEN PERFORMS A PERIODIC ANALYSIS
IN THE Y DIRECTION OVER [ROW FOR <=lsNe FOR EACH CHUNK IT THEN PERFORMS A
PERIODIC ANALYSIS IN THE Z DIRECTION FOR K=1.NHs ELEMENT 8Y ELEMENT
NYULTIPLICATION WITH A SIMILARLY SHAPED CHUNK OF THE TRANSFORMED GREENS
FUNCTION AND THEN A PERIODIC SYNTHESIS IN THE Z DIRECTICN FOR K= NHe THE
RESULT FOR K=1.MH/2 [S THEN PERIODICALLY SYNTHESIZED IN THE Y DIRECTICSN

OVER TROW FOR J=]sM. THIS LAST RESULT FOR JCOLUMN 1 AND 2 15 WRITTEN
RESPECTIVELY ON THE FOLLOWING DISK FILES -~ 1 AND 5 FOR iROW=ls — 2 AND &
FOR IROW=2+ ~ 3 AND 7 FOR lROW=3, - 4 AND 8 FOR [ROW=4e. THE ORDER IN

WHICH ANLSYN IS CALLED FOR IROW 1 THROUGH 4 MINIMIZES READING FROM DIsx
FILE 9 OF CHUNKS OF THE TRAMNSFORMED GREENS FUMCTION A3 MENTIONED ABOVE.
CALL ANLSYN(1)
CALL ANLSYN(3;
CALL ANLSYN(2)
CALL ANLSYN(4}
SUBROUTINE SYNX(JCOLUMN) READS RESPECTIVELY IROW 1+2+3s AND 4 FROM ThS
FOLLOWING DISK FILES = 1,2,3. AND & FOR JCOLUMNS1s - S.5,7+ AND 8 F0OR
JCOLUMN=2, IT THEN PERFORMS A PERIODIC SYNTAESIS IN THE X DIRECTION QVER
SCOLUMN FOR J=1 4N, IT THEN WRITES THE RESULT RESPECTIVELY FOR IROW ! AND
2 ON THE FOLLOWING DISK FILES —~ 1 AND 2 FOR JCOLUMN=Is « 5 AND & FOR
JCOLUMN=2 .
CALL, SYNX(1)
CALL SYNX(2)
RETURN
END
SUBROUT INE ANLXtJCOLUMN)
COMMON/ALLCOM/N-NOZ-NE!vNOQ-NJQ-NH-NHOE-NHEl.l2A.128013Ao!35
COMMON/TRANCOM/RHOI(32-32-IG)!RHOE(BE-SZoIé)oRHO3!32-32a16)-
1 RHO4(32+32,16)HH{32,32.17)
COMMON Z(1025;, Y(1025)
IF(JCOLUMNLEQ.2) GO TO 2
REAGtI) RHD1
REWIND 1
READ(2) RHOZ2
REWIND 2
GO TO 3
CONT INUE
READ (S5} RHOI
REWINC 5
READ(&) RHO2
REWIND &
3 CONTINUE
CALL GETSET(3.12A)
DO 10 K=1.NHOZ2
DO 10 J=],.N04
D0 5 I=1,N04
ZLTISRHOT (o JaK)
Z(ND4+[ }=RHOZ2{] s JsK)

~

244
245
2496
247
248
249
250
251

252
253
254
255
256
257
258
259
260
261

262
263
264
265
266
267
z&8
269
270
271

272
273
274
275
276
277
278
279
280
281

2382
283
284
285
285
287
288
289
290
291

292
293
294
295
298
297
298
299
300
301

30z
303
304
365
306
307
308
309
210
311

312
313
31la
315

46


http:RH04(32.32,Ie).HH(32.32.17
http:132,32.16).RHO3-32.16

PA
03.1(}%‘0% QU ALITH
oF ¥

ZINO2+11=0. 31e
Z{N34+1)=0a 317
CALL FTRANS(3+124) 318
DO 10 t=1.MNO4 319
RHOL LI+ K=Y (1Y 320
RHQ2 (I« JeRI=Y{NOG+]) 321
RHO3(] « JaK)I=Y(NO2+]} 32z
RHOA (s JaK)=Y(N34+]} a23
IF(JCOLUMNSEG+2) GO TO 12 323
WRITZ(1 )} RHOL 325
REWIND 1 326
WRITZ(2) rRHO2 327
REWIND 2 328
WRITE(3) RAQ3 3E9
REWIND 3 330
WRITE(4) RHD4 331
REWIND 4 332
GO To 15 333
CONTINUE 334
WRITE(S) RHO1 33s
REWIND S 338
WRITE{6) RHOZ2 337
REWIND & 3438
WRITZ(7) RHO3 339
REWIND 7 340
WRITE(8) RHOS 3a1
REWIND B8 342
RETURN 343
END 344
SUBROUTINE ANLSYN{IROW) 345
COMMON/ALLCOM/N!NOZ;NEI|N04¢N340NH-NH02-NH2[oIEA-IEBoISAvIBB 346
COMMON/TQANCGM/RHOI{32-32|16)'RH02(32-320153oQH03(329320161‘ 347
1 RHOA (32432416 )4 HH(32432.17) 348
COMMON/HNZ I COM/HNZE (65417) 349
COMMON Z(10253), Y({1025) 350
GO TO{11+2+3+4) IROW ) 351
CONT INUE 382
RZAD(I) RHO1 —— 353
RIEWINMD 1 - 354
READ(S) RHOZ 355
REWIND 5 358
GO TO 5 357
CONT INUE 358
READ(2) RHO! 359
REWIND 2 360
READ(5) RROZ2 361
REWING & 362
GO TO S5 363
CONT INUE 364
READ(3)Y RHOL 365
REwIND 3 366
READ(7) RHOZ2 367
REWIND 7 368
GO TO 5 36%
CONT [ NUE 370
READ(4) RHO1 371
REWING & azza
READ(8) RHO2 373 -
REWIND 8 3va
CONT INUE 37s
CALL. GETSET(2+12A) 376
DO 10 K=1.NHO2 377
DO 10 1=1,NDa 378
DO 7 J=14NO4 : 379
Z{JI=ZRHOL (1 +J.K ) 380
ZINO2+JI=RHOZ (I v J4K) 381
ZINOZ2+J)=0. 382
ZIN35+I)=0. 383

CALL FTRANS(3.]12A) 384
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I3
Q9

ui’

Do 10 J=1.NC4 .

RHOY {FeJdeKI=ZY L]

RHC2 {1+ JaK)=Y (NOA+ )
RHO3 (I v+ JeK)=Y (NO2+J)
RHOAG LT+ JeK)=Y (N35+D)

GO TO(30+49.75+4753 IROW
CONT INUE

CONT INUE

‘READ(9) HH

SJCOLUMN=L

DO 70 I=1.NO4

PO 70 JF1.NQ4

DO 52 K=1.NHO2
ZIK}=RHO1 (I +JK2
ZINHO2+K)=0a

CALL GETSETI(3s13A1
CALL FTRANS(3+13A)
IF{IROWNE«3) GO TO 300
IF(1.NE21)GO TC 300
LL=J

GO TOQ 200

DO 70 X=1+NHOZ2

RHOI ( I+ JeK3}=Y(K)

GO TO 100

CONT INUE.

READ{9) HH
JCoLUMN=2

D 93 [=1+NO4

DO 95 J=1+NO4

DO 77 K=1.NHOZ2
ZIK)=RHOZ (1 +.JsK)
ZINHOZ+K =0,

CALLL GETSET(3+134)
CALL FTRANS{3+13A13
IF(IROWeNE«3) GO 7O 300
IFtI«NEs11G0O TO 300
LL=NO&+J
GO TO 200
DO S5 K=1.NHO2
RHOZ {1+ JsKI=Y(K)

GO TO 125

JCOLUMN=3

DO 120 I=1.MNO4

DO 120 J=1:+NO4&

DO 101 K=1.NHO2
ZIRI=RHOZ L +J i)
ZINHOZ+K } =04

CALL GETSET(3.134)

CALL FTRANS({3.+13A)

GO TO(103+,105+107+1151 [RQW
IF(JeNES1)GO TO 300

L=t

GO TO 200

IF{J«NE«1)GD TO 300
LEL=NOSG+ ]

GO TO 200
IFtleNEsl « ANDeJoNEL13GO TO 300
IF{1+EQe] ¢ ANDeJ+EQ41)IG0O TO 111
IFt1+EQs1 G0 TO 109

LL=1

GQ TO 200

LL=J

Go TO 200

LL=N21

GO TO 200

IF{J«NE«l) GO TQ 300
LL=NOd+ 1

G0 TO 200

D0 (20 K=1.NHOZ

RHOI (T +JeXK)=Y (K}

GO TO{T4+734400+390) IROW
JCOLUMN=S

URIGINAL PAGE Ib
OF POOR QUALITY

28s
38&
3a7
388
38s
3%
391
392
393
394
- 355
395
397
398
3%5
a00
401
402
403
a4Qa
405
406
407
408
2409
alqg
all
alz
413
414
als
ale
&17

418 .

419
q8Z20
az1
az3a
a23
az4
4235
426
az7
a23a
828
a3
431
432
433
434
435
4356
437
438
439
440
&4l
842
%43
444
445
446
aa7
443
489
450
451
852
453
454
455
456
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127

129
145

200

205

300

305

310

390
400

4905

415

420

425

430

435

1

DO 145 I=1.NO&

DO 145 J=1.+NO4

D0 127 K=l yNHOZ
ZKI=RHQA (T 4 Jak )

ZI(NHOZ+K =0,

CALL GETSET(3+134A)

CALL FTRANS(3«13A)
IF(IROWNE»3) GO TO 300
IF(laNE«11G0 TO 300
LL=NOSG+J

GO TO 200

DO 145 K=1,NHOZ2
RHOG{ s JeKI=Y (K}

GO TO (4004+400+49+49) IROW
DO 205 K=2+NHOZ
ZIKI=YIK ) FHNZL (L, +K)
Z{I{NHOZ2+K ) =Y (NHO2+K)®¥HN21 (L L +K)
ZI1)=Y {1 1 ERN21 (L o1}
ZINHZ2I 3 =Y (NH21 ) ¥HN21 (LL +NH21 )
GO TO 310

DO 305 K=2.NH02
ZIRKI=YIR)I¥HH{T s JoK)
ZINHO2+K) =Y (NHO24K)#HH (1 « S+ K
ZO1I=Y L1 )¥HHE(T+Jdaly

ZINH21 =Y {NH2L ) *HHL ] + JaNH21)
CALL, GETSET(4+13A)

CALL FTRANS(4.13A)

GO TO(S54479+1174129) JCOLUMN
REWIND 9

CALL GETSET(4.12A1}

00 410 K=1.NHOZ2

DO 410 [=1.NOa

00 405 J=1.NOg

ZL)ZRHOT (e J oKD
ZINOG+JI=RHOZ {1 s JsK )
ZINOZ+JIZRHOI (I o JaK)
ZIN24+J)ISRHEOS (L v+ JaK)

CALL FTRANS{a+I2A)

DO 410 J=1+NOs&

RHO1 {IeJdeK)=Y(.2)

RHOZ {1+ J+K)=Y I(NOS+Y)

GO TO(415.,420+425.430) IROW
CONT ENUE

WRITE(I) RHO1

REWIND 1

WRITE(S) RHOZ

REWIND S

GO To 435

CONT INUE

WRITE(Z2) RHOL

REWIND 2

WRITE(6) RHOZ2

REWIND 6

G0 To 435

CONT INUE

WRITE(3) RHOL

REWIND 3

WRITE(T)Y RHOZ

REWIND 7

GO TO 435

CONTINUE

WRITE(4a) RHOI

REWIND &

WRITE(B) RHO2

REWIND B8

RETURN

END

SUBROUT INE SYNX [ JCOLUMMN)

ORIGINAL paGR I
S
OF POOR QUALITY

COMMON/ALLCOM/NsNOZ2 ¢+ N21 +NO4 s N34+ NHs NHOZ2 o NHZE + 122,128, 134, 138
COMMON/TRANCOM/RHOL (32232416 )1+ RHOZ(32+32+16) +RHOZ (32423241650

RHO4 (32,432,416 +HH{32,32.17)
COMMON Z{1025)4Y(1025)
IF{JCOLUNNWEGe2) GO TO 1
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450
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4562
463
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45686
467
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473
474
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4876
877
478
479
480
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482
483
484
485
485
487
488
489
490
491

492
493
494
495
495
497
498
499
500
501
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10

12

15

ORIGINAY, PAGE Id-
READ (1) RMOI OF POOR QUALITY

REWIND 1

READ(2) RHOZ

REWIND 2

READ{3) RHO3

REWIND 3

READ{4} RHO4
REWIND- 4

GO TO 2

CONTINUE

READ(S) RHOI

REWIND 5

READ(6) RHOZ2

REWIND &

READ(7) RHO3

REWING 7

READ(8) RHOs

REWIND 8

CONT INUE

CALL, GETSET(4+12A)
DO 10 K=] +NHOZ

DO 10 J=1.NO4

PO 5 1=1.+NO4%
Z{11=RHOL (1 sJdsK)
ZINOA+I }SRHOZ (T +JeK)
ZINO2+1)=RHO3 (1 +J+K)
ZIN33+1 1=RHOA (1 v J K )
CALL FTRANS (4+12A)
DO 10 1=1.NOa

RHOI (TeJeKy=Y (T}
RHOZ2 (1 e JaK3=Y (NO4+1)
IF (JCOLUMNGEQe2) GO TO 12
WRITE(1} RHOI1

REWIND |

WRITE(2) RHO2
REWIND 2

GO TO 1S

CONTINUE

WRITE(S) RHOL

REWIND 5

WRITE(6) RHO2
REWIND 6

RETURN

END

530
531
532
533
534
535
536
537
538
539

540"

S4a1
542
543
544
545
546
547
548
549
550
G51
552
553
554
555
556
7
558
559
560
S61
562
563
564
5695
566
567
568
569
570
571
572
sS73
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TABLE A3

Array Dimensions
(Program of Table A2}

General Dimensions used . {verlays in which dimensioned
: . in actual runs Dimensions used -
Array name RSO and Tisting of  in Figs. Al-A6
Table A2 Star adv. GETH  GETPHI
. and initl.
|
PHI{active) nxnxh 64 x 64 x 16 8x8x4 X
) (n/2} x (n/2) x h 32 x 32 x 16 4 x 4 x4 X
H {(n+1) x {n+1) x (h+1) 65 x 65 x 17 9x9 x5 X
HH (n/2) x (n/2) x [(h+1) 32 x 32 x 17 4 x4 x5 X X
HN21 (n¥1) x (h+1) 65 x 17 9 x5 X X
(note 2)
RHOT,RHO2 (n/2) x (n/2) x h 32 x 32 x 16 4 x4 x4 X
RHO3,RH04
Extended (2n) x (2n) x (2h) 128 x 128 x 32 16 x 16 x 8 not actually dimensioned
PHI : (note 3)

Note 1: The notation a x b x ¢ represents the array dimensions of the subscripts x, y and z,
respectively, (or the subscripts ¢, n and g, respectively, of the transformed array) such Lhat
a X b x c equals the total nunber of array elements. The Fortran variables N and NH are equal
to 2n and 2h, respectively. '

Note 2: HN21 1is a two-dimensional array containing a boundary plane of ﬁ elements, Its first

subscript corresponds to £ or n equivalently, while its second subscrip%’géﬁresponds to gz,

Note 3: While the program uses smaller arrays in order to avoid dimensioning the (2n) x (2n) x (2h)
extended PHI array of Fig., 1, its mathematical existence is necessary for the Fourier solution of the
potential of an isolated galaxy.
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TABLE A4

l’\,
Storage of the Fourier Transformed Green's Function H
on Desk File 9

(Program of Table A2)

Record No. Storage sequence within Use sequence within GETPHI
of file 9 GETH- overlay (Note 1) overlay (Note 2)

1 A (1,1),(1,3)

2 B {1,2),(1,4).(3,2),(3,4)

3 A (3,1),(3,3)

4 c (2,1),{2,3)

5 — D (2,2),(2,4),(4,2),(4,4)

6 c (4,1),{(4,3)

Note 1: Within the GETH overlay, this is the location in the H array (as
designated by letters A-D of Fig. A4) from wh1ch "do 1oop" transfer is made
to the HH array followed by writing on the indicated record of disk file 9.

Note 2: Following reading of the indicated record of disk ¥ile 9 into the

HH array within the GETPHI overlay, this is the sequence of locations in
the extended PHI array (as designated by “"chunks" (IROW,JCOLUMN) of Fig. A2)
upon which z-direction one-dimensional, array operations are performed. These
operations include multiplication by H the apnropr1ate portion of which is
now contained in the HH array. This method minimizes reading of fTile 9 by
using the periodicity and symmetry of
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TABLE A5

Qutline of the GETPHI Overilay
(Program of Table A2)

(Refer to Fig. A6 for orientation of arrays RHOT,

RHOZ, RHO3 and RHO4

and to Fig. A2 for file numbers corresponding to the “"locations" of
these arrays.)

Listing 1ine Nos.

of Table AZ
A. CALL ANLX(1): Fig. A6{(a).
1. Read files 1 and 2 into RHO1 and RHO2, respectively. 299-302
2. Set RHO3=RH0O4=0. 316-317
3. Perform Fourier transform in x-dxrect1on over RHO1, 3710-323
RHOZ, RHO3 and RHO4: px’y’z °r.y.z
4. Write RHO1, RHO2, RHO3 and RHO4 onto files 1, 2, 3 325-332
and 4, respectively.
B. CALL ANLX(2): Fig. A6(b).
1. Read files 5 and 6 into RHO1 and RHO2, respectively  305-308
2. Same as steps A.2 and A.3
3. Write RHO1, RHOZ, RHO3 and RHO4 onto files 5, 6, 7 335-342
and 8, respectively.
C. CALL ANLSYN(T): Fig. A6{c).
1. Read files 1 and 5 into RHO1 and RHOZ, respectively 353-356
2. Set RHO3=RH04=0 382383
3. Perform Fourier transform in y~d1rect1on over RHO1, 376-389
RHO2, RHO3 and RHO4:
ay;z E:n:
4, Read record 1 of file 9 into HH 383
5. For each one-dimensional array in z-direction of
which RHO1 is composed:
a. Transfer to one-dimensional array Z,
dimensioned at least 2h+1
b. Set Z=0 for z >h
¢. Perform Fourier transform in z-direction over
Z Tor 0 £ z < 2h-1 with the result appearing
in o?e d1mens1ona; array Y: Bg,n,z + &Eanag
d. MU}t1P1y Y by E5TsL to form Eanst pE:nsg EsNsi

e. Perform inverse Fourier transform in z-direction

over Y and store result for 0 <z <h -1
i RHOI: Esn,T $€sn52
Repete step C.5 for RHO3
Read record 2 of- file 9 into HH
Repete step C.5 for RH02 and RHO4
. Perform inverse Fourier transform in y-direction
over RHO1, RHO2, RHO3 and RHO4: %a naz $€>y 5

10. Write RHOT and RHO2 onto files 1 and 5,
respectively.

W 00 ~1

426-454,471-483

410
411-424,456-469,477-483
486-497

500-503
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CALL ANLSYN(3): Fig. A6(e).
1. Read files 3 and 7 into RHOT and RHO2, respectively.
2. Same as steps C.2-C.9 except for sequencing of
reading tape 9 into HH and the z-directional
operations. Table A4 details this sequencing.
3. Hrite RHO1 and RHOZ onto files 3 and 7, respectively.

CALL ANLSYN(2): Fig. A6(d).
1. Same as step D except that files 2 and 6 correspond
to RHOT and RHO2, respectively, for read and write
operations.

CALL ANLSYN(4)}: Fig. A6(F).
1. Same as step D except that files 4 and 8 correspond
to RHOT and RHO2, respectively, for read and write
operations. -

CALL SYNX(1)}: Fig. Aé&(a).
1. Read files 1, 2, 3 and 4 into RHOT, RHO2, RHO3 and
RHO4, respectively.
2. Perform inverse Fourier transform in x-direction

over RHO1, RHOZ2, RHO3 and RHO4: Bg,y,z - ¢x,y,z

3. MWrite RHOT and RHOZ2 onto files 1 and 2, respectively.

CALL SYNX(2): Fig. A6(b).
1. Read files 5, 6, 7 and 8 into RHO1, RHOZ2, RHO3 and
RHO4, respectively.
2. Same as step G.2

3. Write RHOT and RHO2 onto files 5 and 6, respectively.

Listing Line Nos.
of Table A2

365-368

512-515

530-537
550-560

562~565

540-547

568-571
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z,({)
{“~4=2h~1=7

nxnxh . _
{active) PHI array = — —, ﬁfmﬁ“f—1—3
N\ // 7
N / 7 |
/ a
D 00,00 7 |
[ i ] V4
/’ G sk = ¥, (1)
A""‘-“"‘ “““““ “""( 1/ '
| ] 7 y=2n-1=15
| | /
] '
! | 7
mmmmmmm .
n—1=7

x,(§)

{2n} x (2n) x {2h)
extended PHI array

X=2n-1=18

Figure Al,- PHI array (active), which contains the galactic density/potential mesh, and

the extended PHI array, which is required for the Fourier potential solution of an
isolated galaxy. Bach x-, y-, or z-axis represents the following: (a) the x-, y-, or
z-spacial dirvection; (b) the untransformed array subscript x, ¥y, or z; and (c) the x-,
yw, or z-dircction transformed array subscript &, nm or i, respectively, Tor clarity
in this and the following figures, the PII array is dimensioned n x n X h=8x8x1
while in the program as listed in Table A2 and as actually run it is dimonsioncd

64 x 64 x 16 (Table A3 refers).
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(0,0,3)"‘\,j < il < #
v o awaw, e
A v
(1] ] AT 1
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: . 77
Py 1 1 ‘ 11 (0, 15, 0)
5 H A A (P A
i ] ;‘/ - 1/ |/ i/ |/
[
AT A
B o Vaa s
(15, 0, 0}
x, (£}

Figure A2,- (Program of Table A2) - Lower half (O<z<h-1 =
row and column designations of "chunks." IROW 1 and 2
PHI array. The numbers on '"chunks' of JCOLUMN 1 and 2

3) of the extended PHMI array showing
of JCOLUMN 1 and 2 constitute the active
indicate the numbers of the disk files

on which those chunks are stored. The 'chunks" of JCOLUMN 2 and 4 do not require disk file

storage.
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"do foop” transfer |

Storage on disk
files 1,2, 58&06

24 (0,7,3)

-_-’.-y

Ol array

(7,0,0)

X PHI array

Figure A3,- (Program of Table A2) -~ Arrays dimensioned in the initializing and star advancing
overlays. The numbers on the "chunks" indicate the disk files on which they are stored.
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“do loop' transfer

Storage on
dislk file ©
z, (§)
’. (0, 8,4) Vo,a
/
) A B ¥
pAWANENAN AW arawd L]
VA SV AyAeNd P 44
y VAV A SNAY AN %%
g oA MY v,(n)/
AN (0, 0)
A (Ll
VTV
Ve
HH array . . //:’do loop”
HN21 array

bhlcpnnnon)

(8, 0, 0) / transfar
X, (£) H array k / ;

Figure Ad.-~ (Program of Table A2) - Arrays dimensioned in GETH overlay, which performs a Fourier

transform of the Greens function M . and stores the resulting IE e (Letters A, B, C
and D are referenced by Table A4.) 2 s,



65

Read from Storage on

disk filo 9 . disk files 1-8
L
//
% /
]
7
/]
/
HH array RHO1array RHOZarray RHO3array RHO4array

HN21 array
{in common)

Figﬁre A5,~ (Program of Table A2) - Arrays dimensioned in the GETPHI overlay, which solves
for the potential of an isolated galaxy.
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2 le: (“

= ) 272 /
i - / . y -
RHOT v ( RHOT 7y ( : Yy, )
RHO2 | RHO2 | /RHO1 RHO2RHO3RHO4
RHO3 RHO3
RHO4 RHO4
%, (f)  CALLANLX(1) Aly)  CALLANLX (2] % CALLANLSYN (1)
CALL SYNX (1) CALL SYNX {2}
{al o) fel,
jz () z {{) z, (§) -
/"""""""""‘"1 /‘“—"""_'"—‘_| /"""'"""""'"'""]
/ g | /
B /7 ,l - / -
f ¥, (n] Y, {n) " , g Y, (n)
RHO1RHOZRHO3RHO4 i+ |
RHOTRHOZRHO3 RHO4
s /

RHO1RHO2RAOIRHOA
CALL ANLSYN (2) CALL ANLSYN (3) CALL ANLSYN (4]
Ad} lel {f)

Figure A6,-~ (Program of Table A2) - Alignment of arrays RHOLl, RHOZ, RHO3, and RHO4 during calls by
the GETPHI overlay to its subroutines. Although the active PHI array and the extended PHI array
are not dimensioned within the GETPHI overlay, their projections on the planes x = 0, v = 0,
and- z = 0 are represented by dashed and solid lines, respectively. Axes lahels represent

subscripts of array elements which are untransformed (x,y,z), transformed (£,n,z) or either,
as appropriate,



