

Final Report
For the period June 1, 1974 - December 31, 1977

Prepared for the
National Aeronautics and Space Administration Langley Research Center
Hampton, Virginia

Under

Research Grant NSG 1040
Dr. Frank Hohl, Technical Monitor
Space Systems Division
Page
INTRODUCTION 1
MODEL 2
RESULTS 3
REFERENCES 11
APPENDIX 29
LIST OF TABLESTable
Al Subroutine for calculating the three-dimensional gravitational potential using only core storage 38
A2 Overlays for calculating the three-dimensional gravitational potential using core and disk storage 41
A3
Array dimensions 51
A4 Storage of the Fourier transformed Green's function H on desk file 9 52
A5
Outline of the GETPHI overlay 53
Figure Page
1 Evolution of an initially balanced, infinitesimallythin disk of 100,000 stars with an exponential radialdensity variation12
2 Evolution of the azimuthally averaged surface massdensity as a function of radius for the disk shownin figure13
Time evolution of the angular momentum (P) and the moment of inertia (I) for the unstable disk shown in figure 1 14
Time evolution of various kinetic to total potential energy ratios 15
Side view showing the evolution of the three-dimensional exponential disk 16
Evolution of an initially balanced three-dimensional stellar system of 100,000 stars with an exponential radial density variation 17
Time evolution of various kinetic to total potential energy ratios 18
Evolution of an infinitesimally thin exponential disk with a self-consistent exponential core component 19
Evolution of the surface mass density for the infinitesimally thin (two-dimensional) exponential disk plus core system 20
Evolution of the azimuthally averaged radial velocity dispersion for the two-dimensional exponential disk plus core system 21
Time variation of the moment of inertia and the angular momentum for the two-dimensional exponential disk plus core system 22
Side view of the evolution of the three-dimensional exponential disk plus core system 23
Evolution of the three-dimensional disk plus core system viewed in the equatorial ($x-y$) plane 24
Evolution of the projected surface mass density for thethree-dimensional disk plus core system25
Figure Page
15 Evolution of the volume-mass density as a function of z for various radii 26
Evolution of the radial velocity dispersion for the three-dimensional disk plus core system 27Evolution of various kinetic to total potential energyratios for the three-dimensional disk plus coresystem28PHI array (active), which contains the galacticdensity/potential mesh, and the extended PHI array,which is required for the Fourier potential solutionof an isolated galaxy55Program of Table A2 - Lower half ($0 \leq z \leq h-1=3$) ofthe extended PHI array showing row and cōlumn designa-tions of "chunks"56
Program of Table A2 - Arrays dimensioned in the initializing and star advancing overlays 57A4 Program of Table A2 - Arrays dimensioned in GETH overlay,which performs a Fourier transform of the Green function$H_{x, y, z}$ and stores the resulting $H_{\xi, \eta, \zeta}$58A5 Program of Table A2 - Arrays dimensioned in the GETPHIoverlay, which solves for the potential of an isolatedgalaxy59
Program of Table A2 - Alignment of arrays RHO1, RHO2, RHO3,and RHO4 during calls by the GETPHI overlay to its sub-routines60

COMPUTER SIMULATION OF PLASMA AND N-BODY PROBLEMS

By
Wynford L. Harries ${ }^{1}$, John B. Miller ${ }^{2}$, and Christopher Costner ${ }^{3}$

INTRODUCTION

In recent years, large N -body computer simulations (Miller and Prendergast, 1968; Hohl and Hockney, 1969) have become an important tool in investigating the structure of spiral galaxies, especially in determining the development of large-scale instabilities resulting in spiral and bar formation. Until recently, most of these simulations used essentially two-dimensional models with the "stars" confined to the plane of the galactic disk (Millex, Prendergast, and Quirk, 1970; Hoh1, 1971). These simulations have shown that the disks of stars have a tendency for the development of fast growing nonaxisymmetric instabilities resulting in bar formation. The bar instabilities occur even for velocity dispersions that are considerably larger than those found in the solar neighborhood or those predicted by Toomre (1964) as being locally stabilizing. Because of the difficulties in solving the highly nonlinear problem, global instability studies of disks of stars have been primarily numerical. Some limited work has been done for uniformly rotating disks (Hunter, 1963; Kalnajs, 1972), but generally linear stability analyses were used in the studies of disks of stars.

Any spiral structure in computer-generated galaxies is generally short lived and the final state is a rotating bar. The bar thus obtained rotates more slowly than the stars. For one case investigated by Hoh1 (1971), the bar rotates at 2.25τ and the stars rotate at 1.5τ where τ is the rotational period of the initial disk.

1 Professor, Department of Physics and Geophysical Sciences, Old Dominion University, Norfolk, Virginia 23508.

2 Research Associate, 0ld Dominion University Research Foundation, Norfolk, Virginia 23508.

3 Graduate Research Assistant, Department of Physics and Geophysical Sciences, 01d Dominion University, Norfolk, Virginia 23508.

It has been argued that core/halo components have a stabilizing effect on galaxies and result in longer lived spiral structure (Ostriker and Peebles, 1973). However, numerical experiments with large fixed stellar components representing the core/halo component (Hohl, 1970; Hockney and Brownrigg, 1974) show that multiaraed spiral structure develops and persists for many rotations but only in an evolving manner. That is, the spiral structure is either wound up into a tight pattern or it is wound $u p$ and then reappears again. A recent study of the effect of fixed core/halo components (Hoh1, 1976) does show that the bar instability is indeed inhibited by a sufficiently large fixed component.

The purpose of the present study is twofold: First, we want to determine the effect of a self-consistent (rather than fixed) core/halo component. This will show whether there are any instabilities (such as "twostream") or other important interactions present that may be suppressed with a fixed core. Second, we want to deternine the effects of finite thickness of the disk and of three-dimensional essentially spherical core/halo components.

MODEL
The model used for the present galaxy simulations consists of 100,000 representative stars that move inside an array of cells. For the disk simulations the stars are confined to move in the plane of the disk represented by a 64×64 active array. In the three-dimensional simulation the stars move inside a $64 \times 64 \times 16$ array of cells. The sum of the stars inside each cell defines the mass density at the center of each cell. Fast Fourier transform methods are used to obtain the gravitational field at
the center of each cell for a given density distribution. The force acting on a particular star is determined by bilinear (or trilinear) interpolation from the values of the gravitational fields at the surrounding 4 (or 8) cell centers. After the force acting on a star is determined, it is advanced by a small timestep, the new density is recalculated and the process is continued until the desired evolution is achieved. If a star leaves the array of cells, approximate methods are used to determine the force acting on the star. Details of the disk model are described in detail by Hohl and Hockney (1969) and by Hohl (1970). The extension of the model to three dimensions is described in the appendix.

RESULTS

Observational. evidence (deVoucouleurs 1959; Freeman 1970; Kormendy 1977) indicates that the luminosity (and presumably the density) in the outer regions of many spiral and SO galaxies decreases exponentially with radius. Also, previous simulations (Hohl 1971) showed that intially unstable stellar disks evolved into stable systems with radial density variations that closely approximated the sum of two exponentials. The inner exponential with a scale length of about 1 kpc describes the nonor slowly-rotating spheroidal or core component and the remaining exponential with a scale length of about 8 kpc describes the extended disk population. Thus, it seems reasonable to use an exponential density variation for the disk of the present computer simulations. Similarly, the central core used is described by an exponential density variation.

Figure 1 illustrates the evolution of a disk of 100,000 stars with an initially exponential surface density distribution $\mu(r)=\mu_{0} e^{-r / 2}$ with a cutoff at $r=10 \mathrm{kpc}$. The initial angular velocity of the disk was obtained from

$$
\begin{equation*}
\omega^{2}=\omega_{0}^{2}+\frac{1}{r \mu(r)} \frac{\partial}{\partial r}\left[\mu(r) \sigma_{r}^{2}(r)\right]+\frac{1}{r^{2}}\left[\sigma_{r}^{2}(r)-\sigma_{\theta}^{2}(r)\right] \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
\sigma_{\theta}(x)=\frac{k(x)}{2 \omega_{0}(x)} \sigma_{r}(x) \tag{2}
\end{equation*}
$$

Here, $\omega_{o}(r)$ is the angular velocity required to balance the cold (zero velocity dispersion) disk, $\omega(x)$ is the actual angular velocity, and $K(x)$ is the epicyclic frequency. The initial value of the radial velocity dispersion σ_{r} was taken to be that determined by Toomre (1964) as the minimum required to stabilize all axisymmetric instabilities,

$$
\begin{equation*}
\sigma_{r}(r)=\sigma_{r, \min }=3.36 \mathrm{G} \mathrm{\mu}(\mathrm{r}) / \mathrm{K}(\mathrm{r}) \tag{3}
\end{equation*}
$$

The time t is given in rotational periods $\left(\frac{2 \pi}{\omega_{0}}\right)$ of the cold disk at a radius of 5 kpc , that is half way to the edge of the initial disk.

As expected (Hohl 1970, 1971), only the snall-scale instabilities are prevented by $\sigma_{r}=\sigma_{r, \min }$ and the system quickly forms a two-arm spiral which eventually tends to evolve into a rotating bar. The evolution of the azimuthally averaged radial density variation for this systea is shown in Fig. 2. As previously observed (Hohl 1970, 1971) the eventual density variation approaches one which can be closely approximated by the sum of two exponentials. One exponential describing the central core component and the other describing the extended disk. The evolution of the radial velocity is such that there is some heating near the center, and a considerable increase in the velocity dispersion for stars expanding into the extended disk component. Numerous other diagnostics have been performed on the system. For example, Fig. 3 shows the time evolution of the moment of inertia I divided by the moment of inertia at $t=0$, and a similar ratio for the angular momentum. P. As can be seen, P is conserved in the
simulation but I is still increasing at a near linear rate after three rotations. The evolution of various components of the total kinetic energy divided by the total potential energy is shown in Fig. 4. The components T_{r} and T_{θ} represent the kinetic energies due to the velocity dispersions $\sum_{i} m_{i} \sigma_{i_{\theta}}{ }^{2}$ and $\sum_{i} m_{i} \sigma_{i_{I}}{ }^{2}$, respectively, while $T_{c i r}$ is the kinetic energy of rotation. Note that the ratio of the kinetic energy in rotation to the absolute value of the total gravitational energy of the system is approaching the value 0.14 predicted by Ostriker and Peebles (1973) for stability. At the same time, there occurs considerable heating of the system.

One of the aims of the present study is to determine the effect of adding the third degree of freedom by allowing a finite thickness of the exponential disk. Using again an exponential projected surface density variation $\mu=\mu_{0} e^{-r / 2}$ the stars are now distributed in the z-direction according to one-dimensional distribution $\operatorname{sech}^{2} z / c$ where c is a parameter determined from $\mu(r)$, (Hohl 1967). The central thickness of the disk is 2 kpc and the density is cut off at z_{1} given by

$$
\begin{equation*}
\sqrt{1-\left(\frac{r}{R}\right)^{2}} \operatorname{sech}^{2}\left(\frac{z_{1}}{c}\right)=0.1 \tag{4}
\end{equation*}
$$

where $R=10 \mathrm{kpc}$ is the radius of the disk. The radial and azimuthal velocity components are determined in a manner similar to that for the infinitesimally thin disk and the z-component of the velocity dispersion is determined by a force balance in the z-direction. Note also that all initial velocities are truncated such that stars have kinetic energies no greater than that which would allow them to reach the boundary of the system in the gravitational potential at $t=0$.

Figure 5 shows a side view of the initial disk and the evolution for up to 3 rotations. Note the rapid expansion in the plane of the disk. This is the result of the bar instability as shown in Fig. 6 which gives the evolution of the disk projected in the $x-y$ plane. Note that the evolution is very similar to that shown in Fig. I for the infinitely thin disk. Similarly the evolution of the surface density variation and the increases in the moment of inertia are nearly identical to those shown in Figs. 2 and 3 for the thin disk. The ratio of the various kinetic energy components for the total potential energy are shown in Fig. 7 for the finite thickness disk. Note that again the evolution is similar to that for the infinitely thin disk as shown in Fig. 4. An additional variable, the z-component of the kinetic energy, is given in Fig. 7 and shows that since this component remains small compared to the others one would. expect little difference in the evolution of the finite thickness disk when compared to the infinitely thin disk.

As shown in Figs. 1 and 6, exponential disks with velocity dispersion $Q Q=1)$ are violently unstable to the bar-forming instability. Previous work (Hoh1, 1976) with a superimposed fixed (nonself-consistent) central mass distribution indicated a stabilizing effect toward the bar-forming instability. A more realistic simulation is to allow core-disk interaction, thus, presently we are interested in the stabilizing effects of a completely self-consistent core or "spheroid" component. Again, the effect is investigated for both the infinitesimally thin disk (two-dimensional) and for the three-dimensional disk.

For. the core-disk system, 50 percent of the mass (50,000 stars) is contained in the nonrotating core and the remaining mass (50,000 stars) is contained in the disk. The disk component is again given the surface density variation $\mu_{\text {disk }}=\mu_{o} e^{-r / 2}$ whereas, the initial nonrotating core component is given a density variation $\mu_{\text {core }}=\mu_{0}^{-r / 0.5}$. Note that the disk and core density are cut off at $r=10 \mathrm{kpc}$ and $r=3.5 \mathrm{kpc}$, respectively. The initial velocity dispersion and rotation of the disk is obtained by again using Eq. (1), (2), and (3) with $\mu=\mu_{\text {disk. }}$ Similarly, as before, the z-dimensions of the disk are determined from Eq. (4). The initial velocity dispersion of the nonrotating core was obtained by taking $\sigma_{\theta}=\sigma_{r}$ and simply balancing the core in the presence of the disk. In order to assure that the core component was in a stable state at the start of the core-disk simulation, the core was allowed to evolve for several rotational periods $\left(2 \pi / \omega_{0}\right.$ at 5 kpc$)$ with the disk component held fixed. Starting from these initial conditions, the system evolved as shown in Fig. 8. Note that even though a two-arm spiral structure still forms, the system as a whole evolves in a much less violet manner than that displayed in Fig. 1. This can also be seen in Fig. 9 which shows the evolution of the surface mass density for both the core and disk component. Note that with the exception of a slow outward diffusion of stars near the edge, the core remains essentially stationary, while the disk component displays the outward shift of mass generally associated with bar formation. Similar information is contained in Fig. 10 which displays the evolution of the radial velocity dispersion for the core and disk component. Note the sharp increase in the velocity dispersion at $r=2 \mathrm{kpc}$ which is associated with a marked reduction in the angular momentum of the disk in this region.

In general, the simulations show that the formation of bars or two-armed spirals results in moving angular momentum outward to larger radii. Fig. 11 shows a marked reduction in the rate of increase of the moment of inertia when compared to the disks without a central core component.

The final system investigated is that of a three-dimensional exponential disk with a three-dimensional core or spheroid component. The spatial distribution of the stars for the disk component is obtained, as was done for the disk shown in Fig. 5 and 6, except that now the disk contains only 50,000 stars. For the nonrotating central core the density is given by $\rho=\rho_{0} e^{-\zeta / 0.5}$ where $\zeta=x^{2}+y^{2}+(z / c)^{2}$ with $c=5 / 7$. The density is cut off at $\zeta=7$. Thus, the central core or spheroid has an axis ratio of $7: 5$. Again the Gaussian velocity dispersion for the core is, obtained by a simple balance of the self-gravity of the total system. The velocity dispersion for the disk component is generated, as was done for the system shown in Fig. 6. Before initiating the simulation of the combined core-disk system, the core was allowed to evolve for several rotations (free-fall periods) to assure that no instabilities or other problems associated with the core component were present.

Figure 12 shows the evolution of the system perpendicular to the equatorial plane. Note the remarkable stability of the system when compared to the disk without the central core in Fig. 5. The evolution of the system in the equatorial plane is shown in Fig. 13 and displays the development of a comparatively weak two-arm spiral structure. It should be noted that because of the allowed initial relaxation, the core components of the two core-disk systems investigated here are expected to closely satisfy the collisionless Boltzmann equation. The same is not necessarily
true for the disk component since satisfying equation (l) only assures a balance of forces at $t=0$. Also, we know that for a stellax disk $\sigma_{r}=\sigma_{r, \min }$ does not assure stabilization of global nonaxisymmetric instabilities (Toomre, 1974; 1977). However, since one would hardly expect nature to generate a galaxy initially in an exact stable stationary state, and since we are interested in the further development of instabilities and the final state toward which the system evolves, an exact stationary and stable initial state is not necessary.

The evolution of the azimuthally averaged projected surface mass density for the three-dimensional core-disk system is shown in Fig. 14 and is nearly identical to that of the two-dimensional core-disk system shown in Fig. 9. Note that there is very little change in the density for the core with the exception of a slight outward diffusion near the edge. Azimuthally averaged values of the total density variation in the z-direction are shown in Fig. 15 for various values of r. Some of the fluctuations shown may be due to the relatively small sampling volume used. If we look at the evolution of the radial velocity dispersion shown in Fig. 16 we see that (as expected) the velocity dispersion for the two-dimensional core (Fig. 10) is higher. Also, the large increase in the velocity dispersion of the disk near $x=2 \mathrm{kpc}$ does not occur for the three-dimensional disk. Associated with this is the fact that there is very little change in the radial angular moment distribution during the evolution of the 3-D core-disk system, whereas, considerable outward shift of angular momentum occurs for the 2-D core-disk system. These results indicate that the global bar instability is much weaker for the 3-D system as for the 2-D system, as can be seen by comparing Figs. 8 and 13.

The time evolution of the various kinetic energy ratios for the 3-D disk-core system is shown in Fig. 17. As can be seen, there is little . change in the value of the various components during the evolution. Note that the value of the ratio of the kinetic energy in rotation to the total potential energy of the system is slightly higher than the value of the 0.14 predicted for stability by Ostriker and Peebles (1973). Also, the moment of inertia increases by only about one third of that shown in Fig. Il for the 2-D system. As was the case for all four systems investigated, the angular momentum was conserved to a sufficient degree of accuracy.

REFERENCES

Freeman, K. C. 1970, Ap. J., $160,811$.
Hockney, R. W., and Brownrigg, D. R. K. 1974, M.N.R.A.S., 167, 351.
Hoh1, F. 1967, Ap. J., 147, 1164.
Hoh1, F. 1970, NASA TR R-343, Clearinghouse for Federal Scientific Information, Springfield, Virginia 22151.

Hoh1, F. 1971, Ap. J., 168, 343.
Hoh1, F. 1976, Astron. J., 81, 30.
Hunter, C. 1963, M.N.R.A.S., 126, 299.
Kalnajs, A. 1972, Ap. J., 175, 63.
Kormendy, J. 1977, Ap. J., 217, 406.
Ostriker, J. P., and Peebles, P. J. E., 1973, Ap. J., 186, 467.
Toomre, A. 1964, Ap. J., 139, 1217.
Toomre, A. 1974, in IAU Highlights of Astronomy, vol. 3, ed. G. Coutopoulos (Boston: Reidel), p. 455.

Toomre, A. 1977, Ann. Rev. Astron. Astrophys., 15, 437.
Voucouleurs, G. de 1954, Hdb. d. Phys., 53311.

ORIGINAL PAGE if OF POOR QUALITY

Figure 1.- Evolution of an initially balanced, infinitesimally thin disk of 100,000 stars with an exponential radial density variation. The stars have an initial density variation given by Toomre's criterion.

Figure 3.- Time evolution of the angular momentum (P) and the moment of inertia (I) for the unstable disk shown in figure 1. Note the rapid increase in I as the bar begins to form at $t=1$.

Figure 4. - Time evolution of various kinetic to total potential energy ratios. Note that the ratio of rotational to potential energy is approaching the value of 0.14 predicted by 0striker and Peebles as required for stability.

Figure 5.- Side view showing the evolution of the three-dimensional exponential disk. The bar instability results in a rapid expansion in the plane of the disk.

$t=1.00$
$t=1.25$
$t=1.50$

$t=1.75$
$t=2.00$
$t=2.25$

$t=2.50$

$t=2.33$

Figure 6.- Evolution of an initially balanced three-dimensional stellar system of 100,000 stars with an exponential radial density variation.

ORIGINAL PAGE is
OF POOR QUALITY

Figure 7.- Time evolution of various kinetic to total potential energy ratios. Note the evolutions of the energy ratios are similar to those shown in figure 4.

Figure 8.- Evolution of an infinitesimally thin exponential disk with a self-consistent exponential core component. Note that the evolution if considerably less violent than that displayed in figure 1.

Figure 10.- Evolution of the azimuthally averaged radial velocity dispersion for the two dimensional exponential disk plus core system.

Figure 11.- Time variation of the moment of inertia and the angular momentum for the two-dimensional exponential disk plus core system.

Figure 12.- Side view of the evolution of the three-dimensional exponential disk plus core system. Note the remarkable stability when compared to the three-dimensional disk-only system shown in figure 5.

Figure 13.- Evolution of the three-dimensional disk plus core system viewed in the equatorial $(x-y)$ plane. Note the development of the comparably weak spiral structure.

Figure 15.- Evolution of the volume-mass density as a function of z for various radii.

Figure 16.- Evolution of the radial velocity dispersion for the three-dimensional disk plus core system.

Figure 17.- Evolution of various kinetic to total potential energy ratios for the three-dimensional disk plus core system.

APPENDIX

COMPUTER PROGRAM FOR GENERATING THE THREE-DIMENSIONAL
gRAVITATIONAL POTENTIAL DISTRIBUTION OF ISOLATED GALAXIES

MATHEMATICAL SUMMARY

The scaled gravitational potential at the center of cell (x, y, z) is . defined by the triple summation over the three-dimensional array of cells

$$
\begin{equation*}
\phi_{x, y, z}=\sum_{i=0}^{2 n-1} \sum_{j=0}^{2 n-1} \sum_{k=0}^{2 n-1} \rho_{i, j, k} H_{i-x, j-y, k-z}, \tag{AI}
\end{equation*}
$$

where

$$
\begin{aligned}
& H_{i, j, k}=\left(i^{2}+j^{2}+k^{2}\right)^{-1 / 2} \text { for } i+j+k \neq 0, \\
& H_{0,0,0}=1
\end{aligned}
$$

and $\rho_{i, j, k}$ is the mass density in cell (i, j, k). Because direct summation is much too time consuming to be practical, the triple summation is evaluated by the convolution method using fast Fourier transforms (ref. (A1)). That is, the Fourier transform of the potential equals the product of the Fourier transforms of ρ and H

$$
\begin{equation*}
\tilde{\rho}_{\xi, \eta ; \zeta}=\tilde{\rho}_{\xi ; \eta, \zeta} \tilde{H}_{\xi, \eta, \zeta} . \tag{A2}
\end{equation*}
$$

The gravitational potential $\phi_{x, y, z}$ is obtained by taking the inverse Fourier transform of equation (A2). Rather than the usual complex Fourier series, here a real expansion is used. For example, the Fourier transform of the density $\rho_{x, y, z}$ is given by

$$
\begin{equation*}
\tilde{\rho}_{\xi, n, \zeta}=\sum_{z=0}^{2 h-1} \sum_{y=0}^{2 n-1} \sum_{x=0}^{2 n-1} c(x, n) c(y, n) c(z, h) \rho_{x, y, z} f(\xi, x, n) f(n, y, n) f(\zeta, z, h) \tag{A3}
\end{equation*}
$$

where

$$
\begin{aligned}
& f(\xi, x, n)=\left\{\begin{array}{l}
\cos (\xi x / n), 0 \leq \xi \leq n \\
\text { in }[\pi(\xi-n) x / n], n<\xi<2 n
\end{array}\right. \\
& c(x, n)=1 / \sqrt{2} \text { if } x=0 \text { or } x=n \\
& c(x, n)=1
\end{aligned}
$$

otherwise, the symbols n and h define the $n \times n \times h$ active array and also the (2n) $\times(2 n) \times(2 h)$ larger array over which the Fourier transform must.be taken so that the potential for an isolated galaxy is obtained (see fig. Al). Note that the density may be nonzero only in the smaller $n \times n \times h$ array. Because of the symmetry of $H_{x, y, z}$, the Fourier transform $\tilde{H}_{\xi, n, \zeta}$ can be obtained by a finite cosine transform

$$
\begin{gathered}
\tilde{H}_{\xi, n, \zeta}=\sum_{z=0}^{h} \sum_{y=0}^{n} \sum_{x=0}^{n} c^{2}(x, n) c^{2}(y, n) c^{2}(z, h) H_{x, y, z} \\
\cdot \cos (\pi \xi x / n) \cos (\pi n y / n) \cos (\pi \zeta z / h)
\end{gathered}
$$

\qquad

$$
\begin{aligned}
& 0 \leq \xi, \eta \leq \mathrm{n} \\
& 0 \leq \xi \leq \mathrm{h}
\end{aligned}
$$

and

$$
\begin{aligned}
& \hat{H}_{\xi+n, n, \zeta}=\tilde{\mathrm{H}}_{\xi+n, n+n, \zeta}=\hat{\mathrm{H}}_{\xi+n, n, \zeta}=\mathrm{h}=\hat{\mathrm{H}}_{\xi+n, \eta+n, \zeta+\mathrm{h}} \\
& =\tilde{\mathrm{H}}_{\xi, n+n, \zeta}=\tilde{\mathrm{H}}_{\xi, n+n, \zeta+h}=\tilde{\mathrm{H}}_{\xi, n, \zeta \div \hbar}=\hat{\mathrm{H}}_{\xi, n, \zeta} .
\end{aligned}
$$

The next step in obtaining the potential is to multiply $\tilde{\rho}_{\zeta, \eta, \zeta}$-by $\tilde{H}_{\xi, n, \zeta}$ to obtain

$$
\begin{equation*}
\tilde{\varphi}_{\xi, \eta, \zeta}=\tilde{\rho}_{\xi, \eta, \zeta} \tilde{\tilde{H}}_{\xi, \eta, \zeta} \tag{A5}
\end{equation*}
$$

The gravitational potential for an isolated galaxy correctly defined over the $n \times n \times h$ aray is obtained by the Fourier synthesis

$$
\begin{equation*}
\Phi_{x, y, z}=\frac{1}{N^{3}} \sum_{\zeta=0}^{2 h-1} \sum_{n=0}^{2 n-1} \sum_{\xi=0}^{2 n-1} \tilde{\phi}_{\xi, n, \zeta}(\xi, x, n) f(n, y, n) f(\xi, z, h) \tag{A6}
\end{equation*}
$$

Note also, that since

$$
\tilde{\mathrm{H}}_{\xi, \eta, \zeta}=\hat{\mathrm{H}}_{\xi, \zeta, \eta}=\tilde{H}_{\eta, \xi, \zeta} \text {, etc. }
$$

different permutations of the same set of indices need not be stored. Thus, the transformed Green's function can be converted to a onedimensional array

$$
\hat{H}_{\xi, n, \zeta}=\tilde{F}_{n}
$$

where different permutations of ξ, η, ζ are stored in the same location n given by

$$
\begin{aligned}
n & =\sum_{i=z}^{\xi} \frac{i}{2}(i-1)+\frac{\eta}{2}(n-1)+\zeta \\
& =\xi(\xi-1)(2 \xi-1) / 12+\xi(\xi-1) / 4+n(n-1) / 2+\zeta
\end{aligned}
$$

Computer Program Subroutine Which Uses Only Core Storage
Table Al gives a Fortran listing of a computer progran which may be used to obtain the potential by use of a (2n) $\times(2 n) \times h$ array of cell. The variables 12A and 13A define the x, y and z dimensions, respectively, of the array used for the potential calculations. When the subroutine GETPHI is called, $\mathrm{RHO}(I, J, K)$ contains the mass density and GETPHI places the values of the corresponding gravitational potential in $\mathrm{RHO}(\mathrm{I}, \mathrm{J}, \mathrm{K})$. The subroutine FTRANS (I, I2B) has been written by R. Hockney (ref. A2)
and it performs a finite Fourier analysis or synthesis on the common input array Z and places the result in the common output array Y. The subroutine performs a cosine analysis for $I=2$, a periodic analysis for $I=3$, and a periodic synthesis for $I=4$. The subroutine GETSET(I, I2B) initializes FTRANS and is called every time the arguments of FTRANS (I, I2B) are changed. The Fourier transform $\tilde{H}_{\xi, \eta, \zeta}$ is calculated on an $(n+1) x(n+1) x(h+1)$ array only the first tine that the subroutine is called and is kept in storage for subsequent use.

The Fourier transform of $\rho_{x, y, z}$ in the x-direction is generated by obtaining the partial transform $\tilde{\rho}_{\xi, y, z}$ for $0 \leq \xi \leq 2 n-1$, $0 \leq y \leq n-1$ and $0 \leq z \leq h-1 . \tilde{\rho}_{\xi, y, z}$ is zero outside of this region because $\rho_{x, y, z}$ is nonzero only over the $\mathrm{n} \times \mathrm{n} \times \mathrm{h}$ active array. Next, the Fourier transform of
$\tilde{\rho}_{\xi, y, z}$ is performed in the y-direction obtaining the $x-y$ partial transform $\tilde{\rho}_{\xi, h, z}$ for $0 \leq \xi \leq 2 n-1,0 \leq n \leq 2 n-1$ and $0 \leq z \leq h-1$. Since $\tilde{\rho}_{\xi, \eta, z}$ is zero for $h \leq z \leq 2 h-1$, by use of one-dimensional arrays Y and Z the Fourier transform of $\tilde{\rho}_{\xi, n, z}$ can be taken in the z-direction to obtain the total transform $\tilde{\rho}_{\xi, \eta, \zeta}$ for $0 \leq \zeta \leq 2 h-1$. Next, $\tilde{\rho}_{\xi, \eta, \zeta}$ is multiplied by $\tilde{H}_{\xi, \eta, \zeta}$ to obtain $\tilde{\Phi}_{\xi, \eta, \zeta}$ and the inverse Fourier transform is performed in the z-direction. The resulting partial $x-y$ transform $\tilde{\phi}_{\xi, n}$, is placed in the $2 n \times 2 n \times h \quad \operatorname{RHO}(I, J, K)$ array for $0 \leq \xi \leq 2 n-1,0 \leq n \leq 2 n-1$ and $0 \leq z \leq h-1$. with values for $h \leq z \leq 2 h-1$ discarded. (The use of these one-dimensional arrays was first presented in reference $A 3$ for a two-dimensional potential solver). Next, the inverse Fourier transform of $\tilde{\Phi}_{\xi, \eta, z}$ is generated in the y-direction by obtaining.
the x-partial transform $\tilde{\phi}_{\xi, y, z}$ for $0 \leq \xi \leq 2 n-1,0 \leq y \leq n-1$ and $0 \leq z \leq h-1$. The final step is to perform the inverse Fourier transform in the x-direction for $0 \leq y \leq n-1$ and $0 \leq z \leq h-1$ to yield. the correct gravitational potential $\phi_{x, y, z}$ for an isolated galaxy over the $n \times n \times h$ array.

Overlayed Computer Program Which Uses Core and Disk Storage

The use of the listing of Table Al with the $64 \times 64 \times 16$ active density/potential array used in this paper would have necessitated the dimensioning of the RHO array at $128 \times 128 \times 16$ and the H array at $65 \times 65 \times 17$. As such, large dimensions would have excluded use of the CDC 6600 computer, the listing of Table A1 was modified to include use of overlayed programs and disk storage resulting in a maximum core storage. at any one time of array elements equaling about five fourths of the active array. The listing of this program in Table A2 includes (a) a section of an initializing overlay in which relevant constants are computed (b) a section of the star advancing overlay in which "chunks" of the density array are written on appropriate disk files, (c) another section of the star advancing overlay in which "chunks" of the computed potential array are read from disk files, (d) the GETH overlay which computer \hat{H}, and (e) the GETPHI overlay which computes the potential array from the density array.

The method used is the alignment in the direction of transformation of four identical arrays named $\mathrm{RHO1}, \mathrm{RHO2}, \mathrm{RHO} 3$, and $\mathrm{RHO4}$, each of which is dimensioned ($n / 2$) $\times(n / 2) \times h$ within the GETPHI overlay. (See figs. A2
and A5. For clarity, figures Al through A6 are drawn for an active array dimensioned $n \times n \times h=8 \times 8 \times 4$; table $A 3$ compares the array dimensions of these figures and the listing of table A2.) The active array is dimensioned as the PHI array within the initializing and star advancing overlays (see figures Al and A3) but is not dimensioned within the GETPHI overlay. As figure A2 suggests, the "chunks" RHO1, RHO2, RHO3 and RHO4 may be visualized as forming either a row or a colum of the lower half $(0 \leq z \leq h-1)$. of the extended array. Switching the lineup to a different row or column is accomplished by storing the array associated with each "chunk" location on a separate file; these eight files are also indicated in figure A 2.

As shown in figure A3 one "chunk" size array named oI is dimensioned in the initializing and star advancing overlays. "Chunks" of the active array are transferred between the PHI array of these overlays and the arrays RHO1, RHO2, RHO3 and RHO4 of the GETPHI overlay via "do loop" transfer to/from the $O K_{\text {_ }}$ array and storage on files $1,2,5$ and 6 .

At the beginning of a program run, the GETH overlay computes \tilde{H} in the $(n+1) x(n+1) x(h+1) H$ array in the same manner as the listing of table Al. All of $\tilde{H}_{\xi, n, \zeta}$, except for two boundary planes of elements $(\xi=n$, $0 \leq n \leq n, 0 \leq \zeta \leq h$ and $0 \leq \zeta \leq n, \eta=n, 0 \leq \zeta \leq h$), is then transferred in portions via "do loop" to the $(n / 2) \times(n / 2) \times(h+1)$ HH array from which it is written on disk file 9 (see figure A4). Elements of one boundary plane of $\tilde{H}_{\xi, \eta, \zeta}(\xi=n, 0 \leq n \leq n, 0 \leq \zeta \leq h)$ are transferred to the $(n+1) x(h+1) H N 21$ array which is in common with the GETPHI overlay; the $5-\eta$ transpose of that boundary plane is equal to the other boundary
plane $(0 \leq \zeta \leq n, \eta=n, 0 \leq \zeta \leq h)$ due to the symmetry of \tilde{H} across the $\zeta=n$ diagonal plane. During each potential solution the portions of \tilde{H} on file 9 are read sequentially into an $(n / 2) \times(n / 2) \times(h+1) H H$ array of the GETPHI overlay from which \tilde{H} elements, along with those in the HN21 array, are multiplied with $\tilde{\rho}$. This sequence (listed in table A4) utilizes the symmetry and periodicity of \hat{H} (equation (A4)) to provide a full set of (2n) $\times(2 n) \times(2 h) \hat{H}$ elements to the GETPHI overlay in a manner which minimizes the reading of file 9.

The GETPHI overlay consists of subroutines ANLX(JCOLUNN), ANLSYN(IROW) and SYNX (JCOLUMN) which dimension in common the arrays $H H, H N 21, R H O 1$, RHO2, RHO3 and RHO4 as pictures in figure 5. Figure 6 indicates the lineup of "chunks" associated with each call to a subroutine. The potential solution is mathematically identical with that described for the listing of table AI. Calling $\operatorname{ANLX}(1)$ and $A N L X(2)$ performs the Fourier transform of $\rho_{x, y, z}$ in the x-direction to form $\tilde{\rho}_{\zeta, y, z}$. Calling AVLSYN(1), ANLSYN(3), ANLSYN(2) and ANLSYN(4) in sequence performs the following: (a) a Fourier transform of $\tilde{\rho}_{\zeta, y, z}$ in the y - and z-directions to form $\tilde{\rho}_{\xi, \eta, \zeta}$; (b) multiplication with $\tilde{H}_{\xi, \eta, \zeta}$ to form $\tilde{\phi}_{\xi, \eta, \zeta}$; and (c) the inverse Fourier transform of $\tilde{\phi}_{\xi, \eta, \zeta}$ in the z - and y-directions to form $\overbrace{\zeta, y, z}$. Calling SYNX (1) and SYNX (2) performs the inverse Fourier transform of $\tilde{\phi}_{\xi, y, z}$ in the x-direction to form $\phi_{x, y, z}$. The GETPHI overlay is outlined in more detail in table A5.

Efficiencies of the Two Computer Programs

The program of table A2 is considerably more efficient than that of able Al because the addition of some peripheral processing time and a nall increase in central processing time is much more than compensated or by a 75 percent decrease in the required core storage. The maximum umber of active array elements dimensionable on the CDC 6600 with the rograms of table AI and A2 are respectively 16384 (e.g. $32 \times 32 \times 16$) ad 65536 (e.g. $64 \times 64 \times 16$); the latter program can have other otentially useful active array dimensions of $32 \times 32 \times 8,32 \times 32 \times 16$, ad $32 \times 32 \times 32$. Solution of the $64 \times 64 \times 16$ active array by the DC 6600 requires about 300 (octal) words of core storage and with \tilde{H} Iready computed takes about 75 seconds of central processing time.

REFERENCES

A1. Hohl, Frank; and Hockney, R. W.: A Computer Model of Disks of Stars. J. Comput. Phys., vol. 4, no. 3, Oct. 1969, pp. 306-324.

A2. Hockney, R. W.: The Potential Calculation and Some Applications. Methods in Computational Physics, vol. 9 - Plasma Physics, Berni Alder; Sidney Fernbach; and Mannuel Rotenberg, eds., Academic Press, 1970, pp. 135-211.

A3. Hohl, Frank: Evolution of a Stationary Disk of Stars. J. Comput. Phys., vol. 9, no. 1, Feb. 1972, pp. 10-25.

TABLE A1

SUBROUTINE FOR CALCULATING THE THREE-DIMENSIOMAL GRAVITATIONAL POTENTIAL USTING ONLY CORE STORAGE

```
    SUBROUT {NE GETPH{
    COMMON Z(1025),Y(IO25),RHO(64.64.16).12A.13A.1TEST
    DIMENSION H(33.33.17)
    IF(ITEST*EO.O) GO TO I I
    ITEST=0
    128=12A-1
    N=2**I2A
    NO2=N/2
    N21=NO2+1
    13吕=13A-1
    NH=2**13A
    NHO2=NH/2
    NH21=NHO2+1
    RNI=10/(N*N*NH)
    DO 1 K=1,NH21
    DO I J=1.N21
    DO 1 I=1,N21
    RI=(K-1)*(K-1)+(J-1)*{J-1)+(I-1)*(I-1)
    IF(RI*LT*I*)RI=I.
    H(I|J.K)=RNI/SORT (RI)
1 CONTINUE
    CALL GETSET (2,12B)
    DO 2 K=1.NH21
    DO 2 J=I:N21
    DO 3 1=1.N21
3 Z(I)=H(I|J*K)
    CALL FTRANS(2.12B)
    DO 4 I=1.N21
4 H(IVJ*K)=Y(I)
2 CONTINUE
    DO 5 K=1.NHZ1
    DO 5 I=1.N2I
    DO G J=1 N21
○ Z(J)=H(I•J.K)
    CALL FTRANS (2,I2B)
    DO 7 J=1 N21
7 H(I:J.K)=Y(J)
5 CONTINUE
    CALL GETSET(2,13B)
    DO 10 J=1 *N21
    DO 10 I=1,NE1
    DO 8 K=1 *NH21
    8 Z(K)=H(IT,J+K)
    CALL FTRANS (2.138)
    DO 9 K=1.NH21
    H(I,J,K)=Y(K)
10 CONTINUE
1I CONTINUE
    WRITE (6,43)
43 FORMAT(1OH H(I.J.K))
    OO 42 K=1.NH2I
    DO 42 J=1,N21
    WRITE(6.41) J.K
    WR{TE{5,40) (H(I*J*K)*I=1.N21)
    FORMAT(14H I=1.N21 J=13.5H K=13)
4O FORMAT{2H BEIG.8)
42 CONTINUE
    CALL GETSET(3.I2A)
    DO 14 K=1,NHOZ
    DO 14 J=1.NO2
    DO 12 I=1 N
12Z(I)=PHO(I,J,K)
    CALL FTRANS(3,12A)
    DO 13 j=1.N
13 RHO(I:J.K)=Y(I)
14 CONTINUE
```

```
        DO 17 K=1.NHOZ
        DO 17 I=1,N
        00 15 J=1.N
    IS z(J)=RHO(I,J.K)
        CALL FTRANS(3,I2A)
        OO 16 J=1,N
    16 RHO(I,J.K)=Y(J)
    17 CONTINUE
        DO 20 I=1,N
        00 20 J=1.N
        00 19 K=1.NHOZ
        Z(K)=R4O(I,J.< )
le Z(K+N4O2)=0.
    CALL GETSET(3.13A)
    CALLL FTPANS(3.13A)
    IF(I.GT.N2I.AND.J.LE.N2I) GO TO 22
    IF(I*LE*N21.AND.J.GT.N2I) GO TO 24
    IF{I.ST.N21.AND.J.GT.N21) GO TO 26
    DO 19 K=1,N4O2
    Z(K)=Y(K)*⿻𨈑㇒(1)|J.K)
19Z(K+NHOZ)=Y(K+NHOZ)*H(I,J.K)
    Z(1)=Y(1)*H(1.J.!)
    Z(NH21)=Y(VH21)*H(I*J.NH21)
    GO TO 21
22 DO 23 K=2.NHO2
    Z(K)=Y(K)*H(1-NOZ,J,K)
23 Z(K+NHO2)=Y(K+NHO2)*H(I -NO2.J.K)
    Z(1)=Y(1)*H(I-NOZ.J.1)
    Z(NH21)=Y(NH21)*H(I-NOZ.J,NH21)
    GO TO 21
24 DO 25 K=2.NHOO
    Z(K)=Y(K)*H(I,J-NOZ.K)
25 Z(K+NHOZ)=Y(K+NHO2)*H(I,J-NOZ.K)
    Z(1)=Y(I)*H(1)\-NO2.!)
    Z(NH21)=Y(NH21)*H(I,J-NOZ.NH21)
    GO TO 21
26 DO 27 K=2.NHO2
    Z(K)=Y(K)*H(I-NO2.J-NO2.K)
27Z(K+NHO2)=Y(K+NHOZ)*H(I-NOZ.J-NO2.K)
    Z(1)=Y(1)*H(1-NO2.J-NO2.!)
    Z(NH21)=Y(NH21)*H(I-NOZ.J-NO2.NH21)
    21 CONTINUE
    CALL GETSET(4.13A)
    CALL FTPANS (4.13A)
    DO 23 K=1.NHOZ
28 RHO(I , J.K)=Y(K)
20 CONTINUE
    CALL GETSET(4.12A)
    DO 29 K=1.NHO2
    DO 29 J=1.N
    DO 30 I=1,N
30 Z(I)=RHO(I,J.K)
    CALL FTRANS(4.12A)
    DO 31 t=1,N
31 RHO(I*Jっく)=Y(I)
29 CONTINUE
    DO 32 K=1.NHO2
    DO 32 I=1.NO2
    DO 33 J=1.N
33 Z(J)=RHO(1.J.K)
    CALL FTRANS(4.12A)
    DO 34 J=1,NO2
34 RHO(I,J.K)=Y(J)
32 CONTINUE
    RETURN
    END
```

TABLE A2
OVERLAYS FOR CALCULATING THE THREE-DIIENSIONAL GRAVITATIONAL POTENTIAL USING CORE AND DISK STORAGE

ORIGINAL Page Is OF POOR QUALITY

THE FOLLOWING IS THE SECTION OF AN.INITIALIZING OVERLAY IN WHICH CONSTANTS OOI
C FËLATED TO THE DIMENSIONS OF THE PHI (DENSITY/POTENTIAL) ARRAY ARE COU.- 002 C PUTED. IT IS CALLED ONCE AT THE BEGINNING OF A PROGFAM RUN. IN THIS : 003
C LISTING THE VALUES OF 12A. I3A AND THE OIMENSION AND LAEELED COMMON OOA
C STATEMENTS ARE SET FOR AN ACTIVE PHI ARRAY DIMENSICNEO 64 BY 64 5Y 15. 005
I2A=7 006
$\begin{array}{lll}13 A=5 & 0007\end{array}$
$128=12 A-1 \quad 008$
$13 B=13 A-1 \quad 009$
$\mathrm{N}=2 * * 12 \mathrm{~A} \quad 010$
NOZ=N/2 011
$\mathrm{N} 21=\mathrm{NO}+1 \quad 012$
NO4 $=\mathrm{N} / 4$. 013
$\mathrm{N} 34=\mathrm{NO} 2+\mathrm{NO} 40014$
$\mathrm{NH}=2 * * 13 \mathrm{~A} \quad$ 015
NHO2=NH/2 016
$\mathrm{NH} \mathrm{NI}=\mathrm{NHOZ+1} \quad 017$
C 018

C	
C	019
020	

C THE FOLLOWING IS THE SECTION OF THE STAR ADVANCING OVERLAY IN WHIGH CTUNKS OZ3
C OF THE PHI AHRAY (CONTAINING THE DENSITY MESH) ANE AHITTEN ONTO OISK FILES O24
C 1.2.S AND 6. THE STAR ADVANCING GVERLAY IS CALLED UNCE PER TIFE STEP. OZS. DIMENSION PHi (64.64.16).OI (32.32.16) 026
DO $520 \mathrm{~K}=1, \mathrm{NHO} \quad 027$
DO $520 J=1$ + NO4 028
00 520 $1=1$. NO4 029
$5200 I(I, J, K)=$ PHI (I.J.K) 030 WRITE(1) O1 03! REWIND 1 032 DO 525 K=1.NHO2 033
DO $525 \mathrm{~J}=1 . \mathrm{NO} \quad 034$
DO 525 $1=1$.NO4 035
$52501(I, J, K)=P H I(I \cdot N O 4+J, K) \quad 036$
WRITE(5) OI 037
REWIND $5 \quad 038$
$00530 \mathrm{~K}=1 . \mathrm{NHOZ} 039$
DO $530 \mathrm{~J}=1 . \mathrm{NO} \quad 040$
$00530 \quad i=1$, NO4 041
530 OI (I, J.K)=PHI(NO++I•J.K) 042
WRITE(2) OI 043
REWIND 2 044
DO $535 \mathrm{~K}=1, \mathrm{NHO2} 045$
DO $535 \mathrm{~J}=1$. NO4 046
$005351=1$, NO4 047
$535 \mathrm{OI}(I, J, K)=\mathrm{PHI}(\mathrm{NO} 4+\mathrm{I}, \mathrm{NO} 4+J, K) \quad 048$
WRITE(6) OI 049
RENIND 6 050
$\begin{array}{ll}C & 051 \\ C & 052\end{array}$
C
$\mathrm{C} * * * * * * * * * * * * * * * * * * * x * * * * * * * * * * * * x * ~ 055 ~$
C THE FOLLOWING IS THE SECTION OF THE STAR AUVANCING OVERLAY IN WHICH GHUN<S OSG
C OF THE PHI ARRAY (CGNTAINING THE POTENTIAL MESH) ARE FEAD FROM DISK FILES OYT
C 1.2 .5 ANO 6.
DIMENSION PHI（64．64．16）．OI（32．32．16） READ（1）OI 059
REWIND 1 60
DO $30 \mathrm{~K}=1$ ，NHOZ 061
DO $30 \quad \mathrm{~J}=1$ ．NO4 062
DO $30 \quad I=1$ ．NO4 063
30 PHI（I•J．K）＝OI（I，J，K） 064
READ（S）OI 065
REWIND 5 066
OO $\triangle O K=1$ ．NHO 067
DO $40 \mathrm{~J}=1 . \mathrm{NO}$ 068
DO $40 \quad \mathrm{I}=1$ ，NO4 069
40 PHI（I，NO4＋J．K）＝OI（I．J．K） 070
REAO（2）OI 071 071
REWINC 2 072
DO $50 \mathrm{~K}=1$ ，NHO2 073
DO $50 \mathrm{~J}=1, \mathrm{NO} 4$ 074
$0050 \quad i=1$ ．${ }^{2} 04$ 075
50 PHI（NO4＋1：J，K）＝OI（I，J，K） 076
READ（6）OI 077
RĖWIND 6 078
DO $60 \mathrm{~K}=1$ ． NHOZ 079
$0060 \mathrm{~J}=1 . \mathrm{NO} 4$ 080
DO $60 \mathrm{I}=1$ ，N04 081
60 PHI $\left(\mathrm{NO}_{4}+\mathrm{I}, \mathrm{NO} 4+\mathrm{J}, \mathrm{K}\right)=\mathrm{OI}(\mathrm{I}, \mathrm{J}, \mathrm{K})$ 032 083
C
C
C

$$
c
$$

C THE FOLLO＇NING IS THE GETH OVERLAY．WHICH CO：PUTES $=9.0$ STORES THE TRANS
CORMED GREENS FUNCTION．IT IS CALLED ONCE AT TrE EEGINNING OF A pROGRAIA
c RUN． 090088
089
OVERLAY（IFILE．4．0） 092
PROGRAM GETH
PROGRAM GETH
093
093
C THIS OVERLAY PERFORMS A COSINE ANALYSIS OF THE THREE－DIMENSIONAL GREENS 094
C FUNCTION ARFAY．IT THEN WRITES CHUNKS OF THIS AFRAY ON DISK FILE 9 IN THE 095
C O＋DEF IN WHICH THEY נILL BE READ INTO THE HH LRZZV EVAIN THE GETPHI 095
C JVERLAY．VALUES FOR $I=N / 2+1$ AND $J=N / 2+1$ ARE TそANSEミデ＝En TO TriE HN2I ARRAY 097
C WHICH IS IN COMMON \＃ITH THE GETPHI OVERLAY． 09e
 099
COMMON／HNZ1COM／HN21（65：17） 100
COMMON Z（1025），Y（1025）
101
101
DIMENSION H（65．65．17），HH（32．32，17）
102
102
RNT：I．ノ（N＊N＊NH） 103
DO ：$K=1, N H 21$
104
104
DO $1 J=1, N 21$ 105
DO 1 I＝1，N21
106
106
$R I=(K-1) *(K-1)+(J-1) *(J-1)+(I-1) *(I-1)$ 107
IF（RI－LT•1－）RI＝1． 108
H（I．J．K）$=$ RN I／SORT（RI）
109
109
1 continue 110
CALL GETSET（2．123）
CALL GETSET（2．123）
$11!$
$11!$
DO $2 \mathrm{~K}=1$ ， NH 21
112
112
OO J＝1．N21 113
$3 \mathrm{Z}(\mathrm{I})=\mathrm{H}(1, \mathrm{~J}, \mathrm{~K})$ 114

ORIGINAL PaGE is OZ POOR QUALITY

CALL FTRANS (2.128) 116DO $41=1$, N2 1
4 H(I. $\mathfrak{A}, K)=Y(I)$ 117
2 CONTINUE118
DO 5 K=1.NH21 119
DO $5 I=1$. N2 1 120
DO $6 \mathrm{~J}=1 \cdot \mathrm{~N} 21$ 121 121
$6 Z(J)=H(I, J, K)$ 122
CALL FTRANS (2.12B) 123 124
DO $7 \mathrm{~J}=1$, N2 1
7 H(I.JっK)=Y(J) 126
5 CONTINUE 127
CALL GETSET (2,13B)
128
128
OO $10 \mathrm{~J}=\mathrm{I}$, N2! 129
DO 10 I=1,N2! 130
DO $8 \mathrm{~K}=1, \mathrm{NH} 2 \mathrm{I}$ 131
g $Z(K)=H(I . J . K)$ 132
CALL FTRANS(2.13B) 133
DO $9 \mathrm{~K}=1$, NH 21 134
9 H(I.J.K)=Y(K) 135
10 CONTINUE
10 CONTINUE
136
DO $30 \quad \mathrm{I}=1$, NO4 137
DO $30 \mathrm{~J}=1 . \mathrm{NO} 4$ 138
DO $30 \mathrm{~K}=1$, NH21 139
30 HH(I.J.K) $=\mathrm{H}(1,3, K)$ 140
WRITE(9) HH
141
141
DO $35 \quad 1=1$. NO4 142
DO $35 \mathrm{~J}=1$, NO4 143
DO $35 K=1$, NH21 144
$35 \mathrm{HH}(I, J * K)=H(I, N O 4+J \cdot K)$ 145
WRITE(9) HH 146
$0040 \quad \mathrm{I}=1 . \mathrm{NO}_{4}$ 147
DO $40 \mathrm{~J}=\mathrm{I}$.NO4 148
DO $40 \mathrm{~K}=1$, NH21 149
$40 \mathrm{HH}(I, J . K)=H(I, J, K)$ 150
WRITE(9) HH 151
DO $45 \quad \mathrm{I}=1$, NO4 152
DO $45 \mathrm{~J}=1$, NO4 153
DO $45 \mathrm{~K}=1$: NH 21 154
$45 \mathrm{HH}(\mathrm{I} \cdot \mathrm{J}, \mathrm{K})=\mathrm{H}(\mathrm{NO} 4+1, \mathrm{~J}, \mathrm{~K})$ 155
WRITE(9) HH 156
DO $50 \quad 1=1$.NO4 157
$0050 \mathrm{~J}=1$, NO4 158
$0050 \mathrm{~K}=1$. NH21 159
$\mathrm{HH}(I, J, K)=\mathrm{H}(\mathrm{NO} 4+1, \mathrm{NO} 4+\mathrm{J}, \mathrm{K})$ 160
WRITE(${ }^{(1)} \mathrm{HH}$ 161
DO $55 \quad 1=1$.NO4 162
DO $55 \mathrm{J=1.NO4}$ 163
$0055 \mathrm{~K}=1$. NH 21 164
$55 \mathrm{HH}(1, J, K)=\mathrm{H}(\mathrm{NO}+1 \cdot \mathrm{~J} \cdot \mathrm{~K})$ 165
WRITE(9) HH 166
REWINO 9
167
167
DO $15 \mathrm{~K}=1, \mathrm{NH} 21$ 68
DO $15 \mathrm{I}=1$.N21 169
15 HN2: (I,K)=H(I,N21,K) 170
RETURN 171
END 172

$Z(N O Z+1)=0$.
5 Z(N34+1)=0 316
CALL FTRANS (3.12A) 317
DO 10 I=1:NO4 318
RHOI ($1, J, K)=Y(1)$ 319
RHO2 (I +J.K) $=\mathrm{Y}(\mathrm{NO} 4+1)$ 320
RHO3(1.J.K) $=Y\left(\mathrm{NO}_{2}+1\right)$ 321
10 RHO4(I.J.K) $=\mathrm{Y}(\mathrm{N} 34+1)$ 322
IF (JCOLUMN-EO.2) GO TO 12 323
WRITE(1) RHOI 324
REWIND 1 325
WRITE(2) RHOZ 326
REWIND 2 327
WRITE(3) RHO3 328
RENINO 3 329
WRITE(4) RHO4 330
REWIND 4 331
GO TO 15 332
12 CONTINUE 333
WRITE(5) RHOI 334
REWIND 5 335
WRITE(6) RHOZ 336
REWIND 6 337
WRITE(7) RHO3 3.38
REWIND 7 339
WRITE(8) RHOA 340
REWIND 8 341
15 RETURN 342
END 343
SUBROUTINE ANLSYN(IROW) 344
 345
COMMON/TRANCOM/RHO1 (32.32.16), RHO2(32.32.15).RHO3(32.32 346
$1 \mathrm{RHO}(32,32,16), \mathrm{HH}(32,32,17)$ 347
COMMON/HN2ICOM/HNZ1 (65.17) 348
COMMON Z(1025), Y(1025) 349
GO TO(1,2.3.A) IROW 350
1 CONTINUE 351
READ(I) RHOI 352
REWIND I 353
REAO (5) RHOZ 354
REWIND 5 355
GO TO 5 356
2: CONTINUE 357
READ(2) RHOL 358
REWIND 2 359
READ(S) RHOL 360
REWINC 6 361
GO TO 5 362
3 CONTINUE 363
READ (3) RHOI 364
REWIND 3 365
READ (7) RHO2 366
REWIND 7 367
GO TO 5 368
4 continue 369
READ (4) RHOI 370
REWINC 4 371
READ (3) RHOL 372
RE'NINO 8 373
5 CONTINUE 374
CALL GETSET (3.12A) 375
DO $10 \mathrm{~K}=1$. NHO2 376
DO $10 \quad 1=1$, NO4 377
DO $7 \mathrm{~J}=1$, NO4 378
$Z(J)=$ RHOI (I, J,K) 379
$Z(N O A+J)=R H O 2(I, J . K)$ 380
$Z(N O 2+J)=0$. 381
7 Z(N34+J)=0. 382
CALL FTRANS (3.12A) 383 384
DO $10 \mathrm{~J}=1 \cdot \mathrm{NO4}$ 385
RHOI (I.J.K) $=\mathrm{Y}$ (J) 386
RHO2 (I. J.K K$)=\mathrm{Y}(\mathrm{NOL}+\mathrm{J})$ 387
RHO3 (I.J.K) $=Y\left(\mathrm{NO}^{2}+J\right)$ 388
O RHO4(I:J.K) $=$ Y(N3A+J) 389
GO TO(30.49.75.75) IROW 390
9 CONTINUE 391
10 CONTINUE $392 ゙$
REAO (9) HH 393
io JCOLUMN=1 394
DO 70 I $=1$.NO4 395
DO $70 \mathrm{~J}=1$, NO4 396
DO $52 \mathrm{~K}=1, \mathrm{NHO2}$ 397
Z(K)=RHOI (I.J.K) 392
i2 $Z(N H O 2+K)=0$. 395
CALL GETSET(3.13A 400
CALL FTRANS (3.13A) 401
IF (IROW-NE-3) GO TO 300 402
IF (I.NE.1)GO TO 300 403
LL=J 404
GO TO 200 405
$140070 \mathrm{~K}=1 . \mathrm{NHO2}$ 406
'O RHOI $(I, J, K)=Y(K)$ 407
GO TO 100 408
' 4 CONTINUE. 409
READ (9) HH 410
'5 JCOLUMN=2 411
DO 95 $I=1$.NO4 412413
DO DO $77 \mathrm{~K}=1 . \mathrm{NHOL}$414
$Z(K)=R H O 2(1, J, K)$ 415
$7 \mathrm{Z}(\mathrm{NHOR}+\mathrm{K})=0$ 。 416
CALL GETSET (3.13A) 417
CALL FTRANS (3.13A) 418
IF (IROW•NE.3) GO TO 300 419
IF(I.NE. 1)GO To 300 420
LL=NO4 $+J$ 421
GO TO 200 422
$90095 K=1+\mathrm{NHOL}$ 423
5 RHOZ (I.J.K) =Y(K) 424
GO TO 125 425
O JCOLUMN=3 426
DO 120 I=1. NOA_{4} 427
DO $120 \mathrm{~J}=1$.NO4 4.28
DO $101 \mathrm{~K}=1, \mathrm{NHO} 2$ 429
$Z(K)=R H O 3(1, J, K)$ 430
l $Z(\mathrm{NHOZ}+\mathrm{K})=0$. 431
CALL GETSET(3.13A) 432
CALL FTRANS (3.13A) 433
GO TO(103.105.107.115) IROM 434
3 IF (J.NE.1)GO TO 300 435
LL=1 436
GO TO 200 437
5 3F(J.NE.1)GO TO 300 438
$\mathrm{LL}=\mathrm{NO}+\mathrm{I}$ 439
GO TO 200 440
7 IF (I.NE. 1 .AND.J.NE. 1')GO TO 300 441
IF (1.EQ.1.AND.J.EO. 1)GO TO 111 442
IF:I.EG.I)GO TO 109 443
LL=1444
GO TO 200 445
9 LL=J 446
GO TO 200 447
1 LL=N21 448
GO TO 200449
5 IF (J.NE-1) GO TO 300 450
LL $=$ NO4 +1 451
GO TO 200 452
$700120 \mathrm{~K}=1$. NHO2 453
:0 RHO3(I * J.K) =Y(K) 454
GO TO(74.74.400.390) IROW 455
:5 JCOLUMN=4 456

ORIGINAL PAGE IS
REAO (1) RHOI OF POOR QUALITY 530 531
READ (2) RHOZ
REWINO 2 532
READ (3) RHO3 533
REWIND 3 535534
READ(4) RHO4 536
REWIND. 4 537
GO TO 2
1 CONTINUE 539
READ (5) RHOI 549
REWIND 5 541
READ(6) RHO2 542
REWIND 6 543
READ (7) RHO3 544
REWIND 7 545
READ (8) RHO4 546
REWIND 8 547
2 CONTINUE 548
4 CALL GETSET(4.12A) 549
DO $10 \mathrm{K=1.NHO2}$ 550
DO $10 \mathrm{~J}=1$, NO4 551
$00 \quad 5 \quad 1=1$. NO4 552
Z(I)=RHO1 (I.J.K) 553
Z(NO4+I)=RHOZ(I *J.K) 554
Z(NO2+1)=RHO3(I •J.K) 555
5 Z (N34+1)=RHO4(1,J.K) 556
CALL FTRANS (4.12A) 557
DO $101=1$, NOA 558
RHOI (I.J.K) $=\mathrm{Y}(\mathrm{I})$ 559
10 RHO2 (1.J.K) $=$ Y (NO4+1) 560
IF (JCOLUMN.EO.2) GO TO 12 561
WRITE(1) RHOI 562
REWIND 1 563
WRITE(Z) RHOZ 564
REWIND 2 565
GO TO 15 566
12 CONTINUE 567
WRITE(5) RHOI 568
REWIND 5 569
WRITE(6) RHOL 570
REWIND 6 571
15 RETURN 572
END 573

Array name	General dimensions (note 1)	Dimensions used in actual runs and listing of Table A2	Dimensions used in Figs. Al-A6	Overlays in which dimensioned		
				Star adv. and initi.	GETH	GETPHI
PHI (active)	$n \times n \times h$	$64 \times 64 \times 16$	$8 \times 8 \times 4$	x		
01	$(n / 2) \times(n / 2) \times h$	$32 \times 32 \times 16$	$4 \times 4 \times 4$	x		
H	$(n+1) \times(n+1) \times(n+1)$	$65 \times 65 \times 17$	$9 \times 9 \times 5$	x		
HH	$(n / 2) \times(n / 2) \times(n+1)$	$32 \times 32 \times 17$	$4 \times 4 \times 5$		x	x
HN2 1 (note 2)	$(n+1) \times(n+1)$	65×17	9×5		x	x
$\begin{aligned} & \text { RHO1, RHO2 } \\ & \text { RH03, RHO4 } \end{aligned}$	$(n / 2) \times(n / 2) \times h$	$32 \times 32 \times 16$	$4 \times 4 \times 4$			x
Extended PHI	$(2 n) \times(2 n) \times(2 h)$	$128 \times 128 \times 32$	$16 \times 16 \times 8$	not actually dimensioned (note 3)		

Note 1: The notation $a \times b \times c$ represents the array dimensions of the subscripts x, y and z, respectively, (or the subscripts ξ, 17 and ζ, respectively, of the transformed array) such that $a \times b \times c$ equals the total number of array elements. The Fortran variables N and $N H$ are equal to $2 n$ and $2 h$, respectively.

Note 2: HN21 is a two-dimensional array containing a boundary plane of \tilde{H}_{H} elements. Its first subscript corresponds to ξ or η equivalently, while its second subscripten, ${ }^{\circ}$ rresponds to ζ.

Note 3: White the program uses smaller arrays in order to avoid dimensioning the ($2 n$) $\times(2 n) \times(2 h)$ extended PHI array of Fig.], its mathematical existence is necessary for the Fourier solution of the potential of an isolated galaxy.

DRIGINAL PAGE IS DE POOR QUALITY

TABLE A4

Storage of the Fourier Transformed Green's Function \tilde{H} on Desk File 9
(Program of Table. A2)

Record No. of file 9	Storage sequence within GETH- overlay (Note 1)	Use sequence within GETPHI overlay (Note 2)
1	A	$(1,1),(1,3)$ 2
3	B	$(1,2),(1,4),(3,2),(3,4)$
4	A	$(3,1),(3,3)$
5	C	$(2,1),(2,3)$
6	D	$(2,2),(2,4),(4,2),(4,4)$

Note 1: Within the GETH overlay, this is the location in the H array (as designated by letters A-D of Fig. A4) from which "do loop" transfer is made to the $H H$ array followed by writing on the indicated record of disk file 9.

Note 2: Following reading of the indicated record of disk file 9 into the HH array within the GETPHI overlay, this is the sequence of locations in the extended PHI array (as designated by "chunks" (IROW, JCOLUMN) of Fig. A2) upon which z-direction one-dimensional array operations are performed. These operations include multiplication by \tilde{H}, the appropriate portion of which is now contained in the $H H$ array. This method minimizes reading of file 9 by using the periodicity and symmetry of \hat{H}.
(Refer to Fig. A6 for orientation of arrays RH01, RH02, RH03 and RH04 and to Fig." A2 for file numbers corresponding to the "locations" of these arrays.)

Listing line Nos. of Table A2
A. CALL ANLX(1): Fig. A6(a).

1. Read files 1 and 2 into RHO1 and RH02, respectively. 299-302
2. Set RH03=RH04=0. 316-317
3. Perform Fourier transform in x-direction over RHO1, 370-323 RHO2, RHO3 and RH04: $\rho_{x, y, z} \rightarrow \tilde{\rho}_{\xi, y, z}$
4. Write RHO1, RH02, RHO3 and RHO4 onto files 1, 2, 3 325-332 and 4, respectively.
B. CALL ANLX(2): Fig. A6(b).
5. Read files 5 and 6 into RH01 and RHO2, respectively 305-308
6. Same as steps A. 2 and A. 3
7. Write RH01, RH02, RHO3 and RHO4 onto files 5, 6, 7 335-342 and 8, respectively.
C. CALL ANLSYN(T): Fig. A6(c).
8. Read files 1 and 5 into RHO1 and RHO2, respectively 353-356
9. Set $\mathrm{RHO}=\mathrm{RH} 04=0 \quad 382-383$
10. Perform Fourier transform in y-direction over RHO1, 376-389 RH02, RH03 and RH04: $\tilde{\rho}_{x, y, z} \rightarrow \tilde{\rho}_{\xi, \eta, z}$
11. Read record 1 of fite 9 into HH 393
12. For each one-dimensional array in z-direction of which RHOT is composed:
a. Transfer to one-dimensional array Z, dimensioned at least $2 h+1$
b. Set $Z=0$ for $z \geq h^{\prime}$ '
c. Perform Fourier transform in z-direction over Z for $0 \leq Z \leq 2 h-1$ with the result appearing in one-dimensional array $\gamma: \mathcal{\rho}_{\xi, \pi, z} \rightarrow \hat{\rho}_{\xi, \pi, \xi}$
d. Multiply γ by $\hat{H}_{\xi, \eta, \zeta}$ to form ${\underset{\xi}{\phi}}_{\xi, \eta, \zeta} \stackrel{\rho_{\rho}}{\rho_{\xi, \eta, \zeta}} \hat{H}_{\xi, \eta, \zeta}$
e. Perform inverse Fourier transform in z-direction over Y and store result for $0 \leq z \leq h-1$ in RHOI: $\boldsymbol{\phi}_{\xi, \eta, \zeta} \rightarrow \boldsymbol{\phi}_{\xi, n, z}$
13. Repete step C. 5 for RHO3 426-454,471-483
14. Read record 2 of file 9 into HH
15. Repete step C. 5 for RH02 and RH04

410
9. Perform inverse Fourier transform in y-direction $411-424,456-469,477-483$ over RH01, RHO2, RHO3 and RH04: $\tilde{\Phi}_{\xi, n, z} \rightarrow \tilde{\varphi}_{\xi, y, z}$
10. Write RHO1 and RHO2 onto files 1 and 5, 500-503 respectively.
D. CALL AMLSYN(3): Fig. A6(e).

1. Read files 3 and 7 into RHOT and RH02, respectively. 365-368
2. Same as steps C.2-C. 9 except for sequencing of reading tape 9 into $H H$ and the z-directional operations. Table A4 details this sequencing.
3. Write RHO1 and RHO2 onto files 3 and 7, respectively. 512-515
E. CALL ANLSYN(2): Fig. A6(d).
4. Same as step D except that files 2 and 6 correspond to RHO1 and RH02, respectively, for read and write operations.
F. CALL ANLSYN(4): Fig. A6(f).
5. Same as step D except that files 4 and 8 correspond to RHO1 and RH02, respectively, for read and write operations.
G. CALL SYNX(1): Fig. A6(a).
6. Read files 1, 2, 3 and 4 into RHO1, RHO2, RHO3 and

530-537 RH04, respectively.
2. Perform inverse Fourier transform in x-direction 550-560 over RHO1, RHO2, RHO3 and RHO4: ${ }_{9}^{y}, y, z \rightarrow \phi_{x, y}, z$
3. Write RH01 and RH02 onto files 1 and 2, respectively. 562-565
H. CALL $\operatorname{SYNX}(2)$: Fig. A6(b).

1. Read files 5, 6, 7 and 8 into RHOT, RHO2, RHO3 and

540-547 RHO4, respectively.
2. Same as step G. 2
3. Write RHO1 and RH02 onto files 5 and 6, respectively. 568-571

Figure Al.- PHI array (active), which contains the galactic density/potential mesh, and the extended PHI array, which is required for the Fourier potential solution of an isolated galaxy. Each $x-, y-$, or z-axis represents the following: (a) the $x-, y-$, or z-spacial direction; (b) the untransformed array subscript x, y, or z; and (c) the $x-$, $y \ldots$, or z-direction transformed array subscript ξ, η or ζ, respectively. for clarity in this and the following figures, the PIII array is dimensioncd $n \times n \times h=8 \times 8 \times 4$ while in the program as listed in Table A2 and as actually run it is dimensioned $64 \times 64 \times 16$ (Table A3 refors).

Figure A2.- (Program of Table A2) - Lower half ($0 \leq z \leq h-1=3$) of the extended PHI array showing row and column designations of "chunks." IROW 1 and 2 of JCOLUMN 1 and 2 constitute the active PHI array. The numbers on "chunks" of JCOLUMN 1 and 2 indicate the numbers of the disk files on which those chunks are stored. The "chunks" of JCOLUMN 3 and 4 do not require disk file storage.

Figure A3.- (Program of Table A2) m Arrays dimensioned jn the initializing and star advancing overlays. The numbers on the "chunks" indicate the disk files on which they are stored.

Figure A4.- (Program of Table A2) - Arrays dimensioned in GETH overlay, which performs a Fourier transform of the Greens function $H_{x, y, z}$ and stores the resulting Il $_{\xi, \eta, 5^{\circ}}$ (Letters A, B, C and D are referenced by Table A4.) x, y, z

Figure A5.- (Program of Table A2) - Arrays dimensioned in the GETPHI overlay, which solves for the potential of an isolated galaxy.

Figure AG.- (Program of Table A2) - Alignment of arrays RHO1, RHO2, RHO3, and RHO4 during calls by the GETPHI overlay to its subroutines. Although the active PHI array and the extended PHI array are not dimensioned within the GETPHI overlay, their projections on the planes $x=0, y=0$, and $z=0$ are represented by dashed and solid lines, respectively. Axes labels represent subscripts of axray elements which are untransformed (x, y, z), transformed (ξ, η, ζ) or either, as appropriate.

