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ABSTRACT

Two subjects are discussed, which are believed relevant to the structural

analysis of vertical-axis wind turbines. The first involves the derivation

of dynamic differential equations, suitable for studying the vibrations of

rotating, curved, slender structures. The Hamiltonian procedure is advocated

for this purpose. Various reductions of the full system are displayed, which

govern the vibrating Troposkien when various order-of-magnitude restrictions

are placed on important parameters.

The final section discusses the possible advantages of the WKB asymptotic

method for solving these classes of problems. A special case of this method

is used illustratively to calculate eigenvalues and eigenfunctions for a
"flat" turbine blade with small flexural stiffness.
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Flexural rigidity for bending normal to x-y-plane

(Constant) x-component of equilibrium tensile force

Curvatures defined by Eqs. (4)

Kinetic minus potential energy
Instantaneous tensile force in blade

Equilibrium value of T

Vector of unknowns in WKB method

Variation of a quantity

Eigenvalue in WKB method

Parameter defined by Eq. (9)

Circular frequency of simple harmonic motion

Angular velocity about support axis of blade

Superscripts_ Etc.

(') Partial derivative with respect to time.

( )' Total derivative with respect to s

INTRODUCTION

The title of this paper is somewhat misleading, since it actually addresses

two subjects relevant to the structural analysis of vertical-axis wind turbines.

The first involves the derivation of differential equations needed for the

vibration and aeroelastic analysis of a rotating, curved, slender structure

like a beam in the Troposkien shape. It is emphasized that a systematic

procedure, such as that furnished by Hamilton's principle, can be useful both

for ensuring that the results are correct and for developing a hierarchy of

simplifications when various approximations are made.

The second subject concerns the possible advantages of what Steele (Ref. I)

chooses to call the WKB (Wentzel-Kramers-Brillouin) method for solving certain

of these problems. An elementary illustrative example is offered.

Admittedly, detailed structural design studies of Darrieus-type wind

turbines are best carried out by means of finite-element approximations. This

approach is unavoidable when the designer is faced with such complications
as interactions with the support structure, reinforcing struts, or variable

properties along the blades. Calculations of operating stresses, vibration

modes, etc. by finite elements appear in several published papers. Examples

are Weingarten and Nickell (Ref. 2); Weingarten and Lobitz (Ref. 3); and

Biffle (Ref. 4). Many other related citations are given in the survey paper

by Blackwell et al. (Ref. 5).

Parametric studies and the goal of fundamental understanding are not so

well served, on the other hand, by the purely numerical investigations of point

designs. It is believed that Troposkien vibrations offer some interesting

problems in applied mechanics, and the discovery of analytical or semi-analytical

solutions to appropriate differential equations can certainly not be ruled out.

The aim of this paper is to encourage that search.
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Figure I depicts a Darrieus machine, with a typical blade both in its

unperturbed equilibrium shape of Yo(Xo) and slightly deformed. The instan-

taneous time-dependent position of mass element _ ds is specified by coordinates

x,y,z, measured in a frame rotating with the constant angular velocity _ .

Various simplifications are here adopted from the outset. Thus, attention is

focused on a single, uniform blade by assuming its ends to be fully restrained

at the points (±x m, o, o). Gravitational force is neglected (cf. comparative
studies cited by Weingarten and Lobitz Ref. 3).

The current experimental Darrieus configurations deviate somewhat from

the true Troposkien shape (Blackwell and Reis, Ref. 6), and it is known that

these deviations can produce substantial equilibrium bending stresses (Ref. 3).

Here Yo(Xo) is chosen, however, to be the perfect "skiprope." This is a

restriction that is easy to remove, as are the prescribed limitations to

essentially infinite torsional and elongational rigidity of the blade. In fact,

during free vibration, torsion is often nearly uncoupled from the other degrees

of freedom when the blade elastic axis and line of C.G.'s coincide-- a design

feature that would seem desirable in practice.

VIBRATION EQUATIONS FOR SEVERAL IDEALIZED TROPOSKIENS

It is well known (e.g., Ref. 6) that the zero bending moment shape is

governed by

d2y o _2m
+

2 H
dx o

o

Yo = 0 (1)

With support conditions as in Fig. I, the solution of (I) is conveniently
expressed as

yo [ (X)]x-- = sn K(k) i+ __oo
Vm ; k

m

(2)

Here sn is Jacobi's elliptic function, whereas K is the complete elliptic

integral of the secona kind with argument

k = I+ o (3)2 2
m_ Ym

2 2
Equation (3) introduces a dimensionless group m _ Ym / Ho

slight modifications, is perhaps the key parameter for vibration and stability
studies.

which, with various

Principal symbols are defined in Fig. 1 and the list at the beginning.
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As suggested by Mallett in his work on the catenary (Ref. 7), distance s

along the blade seems to be an efficient choice for the spatial independent

variable. In terms of s, the instantaneous curvatures of the undeformed and

deformed shapes can be written, respectively,

K° = [_ ds 2

_2x 2

+ \ ds 2

_s 2

½

(4a)

(4b)

For the inextensible blade with flexural stiffnesses

priate Hamiltonian is

H = l/ L + (Length constraint)
!

_t 1

+ 2ay_ - 2az_ + 2 2 a2z2 ]y + -
J

EI and EI , an appro-
S Z

t2

dt = ½ m _2 + Y +

t I

+ T(s,t)[1 -\_s]{_x_2- (33-_s-)2 - \_s]{$z_2].I
dsdt

.2
Z

(5)

It is easily seen that the Lagrange multiplier on the constant-length constraint

is simply the tension T(s,t).

The principle _H = 0 is enforced by taking variations of (5) on x,y,z

and T. Suitable integrations by parts with respect to s or t then lead to the

general nonlinear dynamical system:

o _2x _x --

- EI s i--_- -- - T _s + m x
_s2 _s 2

= 0 (6a)

_s2 _s2 J
_ IT _-_s] +m [Y - _2Y -2_z] = 0_s

(6b)

22[ _2z]
-- EI

_s2 z _s2

0 (6c)

+ I=0
(6d)
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Small perturbations $, n , _ and T are introduced on the dependent

variables, products of small quantities are neglected, and the equilibrium

relations corresponding to (I) are subtracted out. There results the most

general system, governing the free dynamics of a uniform, inextensible

Tropo skien:

o " _2n _ To(S ) 3_
22 x " ,, ,

E1 -- x _2_ + Yo 3s _ss + x • +
s _s 2 _ o _s2 - -- o

o
(7a)

E1 Yo _ _ _2Tl _ _n , =

s _S2 _o Xo" _S 2 + Yo" --_S2 - _s To(S) _ss + Y o + m -2_-_ 2

(7b)

E1 _4 _ IT (s) _ ] --[_ 2_n _2 ]z _s4 _s o _ss + m + - = 0 (7c)

Xo ' _s$--_+ Yo' _s_--o-n= 0 (7d)

0

In principle, the assumption of simple harmonic time dependence at frequency

converts Eqs. (7) into an ordinary system, whose eigenvalues and eigenfunctions

describe the free vibration. It is also not difficult to add forcing terms,

such as aerodynamic loads.

Equations (7), as written, offer little attraction to the analyst. Accord-

ingly, several simpler versions will be discussed, along with the approximations

that lead to them. For reasons of space, little attention is paid to boundary

conditions, but their formulation is not a difficult matter.

1. The Rotating RoPe or Chain

When E1 = E1 = 0, a catenary-like structure is left.
S z

differential equations are

Its linearized

-- _ To om _s $-_ + x = 0 (8a)

o] [ ]-- _ To Yom - 2 _- - _'--s -_s ÷ T -- 0 (8b)

]m + 2_- 8 _-_ = 0 , (8c)
_s _s

with (7d) unchanged. Equations (8) are not relevant to wind turbines. The

reason for displaying them is to make the point that, even in this case, the

four variables remain coupled. In addition to the familiar centrifugal term
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2
- _ n , Coriolis effects couple the in- and out-of-plane degrees of freedom.

These latter gain in importance relative to the centrifugal as the vibration

frequency increases.

_en (8) are made dimensionless, a two-parameter system is found, involving

_ 2 2
m_ x

= m (9)
H
o

and the frequency ratio _/m It appears that _ _2/w2 is of O(I) for all

interesting designs. _/m is less than unity, but it remains 0(I) for the

lower vibration modes.

2. Small In-Plane and Large Out-of-Plane Bending Stiffnesses

It is obvious that Darrieus turbine blades with typical airfoil shapes will

have

E1
z

EI
s

>> 1 (i0)

Indeed, Ref. 3 quotes a value over 40 for this ratio on the SANDIA 17-meter

design. An interesting reduction of system (7) is found when both inequality

(I0) is satisfied and when

EI
S

2
H x
o m

<< 1 (li)

(this ratio is estimated to be 0.015 for the 17-meter). It can then be

reasoned that _ << n , so that the Coriolis term in (7b) is negligible, and

that the flexural terms may be dropped from (7a,b). The resulting equations are

"" _ [ _--_ + x ' T] = 0 (12a)m $ - _-_ TO _s o

] ]m - _2n - _s To _s : = 0 (12b)

___ + dYo _n = 0 (12c)
_s dx _s

o
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Three coupled dependent variables are involved in (12). Nevertheless,

they constitute a considerable simplification and might form the basis for

useful parametric studies. At considerable labor, one can eliminate _(s,t)

among (12 a,b,c). The result does not seem of great value, however, and

efforts to achieve a single equation in one unknown where unsuccessful.

3. The "Flat" Blade with Small Bending Stiffness

If in addition to the other assumptions behind system (12) the approximation
is made that

dY o

dx
o

<< 1
, (13)

then dropping the $ term in (12b) is justified. A further replacement of

T (s) by H /x ' where H is its large, constant x-component leads to
O O O ' O

_2n m ds

2 H dx
ax o o

o

['_ - _2n] = 0 (14)

This is essentially the in-plane-deformation equation employed by Ham (Ref. 8),

in his investigations on free vibration and flutter of the rotating blade.

In view of the apparent limitations on its validity, further study would seem

justified into the parameter ranges within which it can'be used in practice.

DISCUSSION OF ASYMPTOTIC METHODS AND AN APPLICATION

The excellent review by Steele (Ref. I) removes the need for any recapit-

ulation here of how these methods are applied to ordinary differential equations

arising in solid mechanics. The particular form useful in vibration problems

with spatially-varying coefficients is known by such names as "phase integral,"

WKB and WKBJ. In the form most broadly applicable here, it starts with a

homogeneous problem formulation in terms of a "state vector" U(s):

dU(s)
= A(s;X) V(s) (15)ds

Here A(s,%) is a prescribed coefficient matrix, containing an eigenvalue

which, in some sense, is a large quantity. A is expanded according to

1

A (s;_) = XAo(S) + Al(S) + _ A2(s ) + --- (1_).v

The series in (16) may be convergent or asymptotic. In either event, clever

changes of variable are employed to construct a corresponding succession of
approximate solutions.
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After the assumption of simple harmonic motion, it is worth noting that all

the systems presented in the preceding section can be recast in state vector

form. The same is true of equations for flutter stability or forced sinusoidal

response. The principal recommendation of this paper is that the WKB theory

should be put to work in order to determine what contribution it may make to

the subject at hand.

All that can be offered at present is a simple example to illustrate the

possibilities. For harmonic oscillations at frequency m , with mode shape

_(x ) it is an easy matter to recast the "flat - Troposkien" eq. (14) as follows:
O '

[ (d2_ + A2_ 1 +- I

dx 2 H Ho o
o

2)]Yo (Xo)
2 q =

Ym

0 , (17)

where

A (18)

In view of (2), the quantity in brackets of (17) may be rewritten

[] mYm 2 x.... 1 + cn K(k) 1 + _ k
x

o m

(19)

_ow (17), with the associated boundary conditions _x m) = 0 , is a

special case of the problem solved by Steele (Ref. i, Sect. 2), using the

Green-Liouville transformation. In more general terms, Steele transforms

the differential equation

d [ dY]+ [%2q(x)- r(x)] y = 0d-x p (x) dx (20)

by introducing

= _ (x) , y = _(x) n(¢) (21a,b)

With the following optimal choice of these functions:

(_,)2 = p/q

[and _ = pq ,

(20) is reduced to

= 0

(21c)

(21d)

(22)
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where

_(x) r (p_,) l= - (23)

When % is large, the limiting form of the solution can be re-transformed to

y(x) = _(x)exp [+i%_ (x)] , (24)

where x

xb

has the name "phase integral." xb
boundary conditions. Eigenvalues

(25) and the second B.C.

is a point associated with one of the

are readily estimated by combining (24),

In the present example, one associates Steele's x variable with x /x

and y with _. Here also o m

p(x) = I

q(x) = I + m022(<Ym 2 x
H cn K(k) I + ox ; k
o m

(26a)

(26b)

r (x) = 0

m A2x
X2 _ m

H
o

(26c)

(26d)

After specialization of the general solution, it is found that a first approxi-

mation to the free-vibration eigenvalues is

_ LL,__/., (n = 1,2, --.) , (27a)
n _ '

L

where [cf. (26b)]

CL = +

1

2

 2ym2H cn d
o

(27b)

The mode shape corresponding to
n

nn _ _sin [_n _(x°l_\Xm/j'

is

(28a)
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where

x x°/Xm/ --22

m YmHo (28b)

It is even possible, by one additional integration, to obtain a second

approximation to the eigenvalues _ in accordance with a scheme developed

in Sect. 3.3, Ref. i. Details are _ot given here, since corrections are

generally less than 5%.

In view of (18), (26d) and other knowledge of the properties of typical

Darrieus turbines, one can conclude that _ is quite a large parameter, except

possibly for the fundamental solution of (17). Accordingly, the WKB method

was applied for values of the parameter k [eq. (3)] ranging from 0.2 to 0.8.

(k = 0.57 characterizes a turbine with diameter equal to its height.)

Table I furnishes some numerical results* for the first five eigenvalues and

the corresponding dimensionless natural frequencies.

Figure 2 plots some representative vibration mode shapes for k = 0.2.

This parameter was chosen because the condition (13), implied in (17), is most

likely to be satisfied accurately in this rather "flat" case. The mode

corresponding to n = i is not shown, because it involves a low-frequency,

symmetrical stretching motion. Although not ruled out by (17), it obviously

violates the condition (6d) of inextensibility and is regarded as a physical

impossibility. For the same reason, n = I eigenvalues are enclosed by

parentheses in Table I.

Time has not permitted extensive comparisons between the foregoing results

and those of previous finlte-element analyses. One possibility is furnished,

however, by the data in Fig. 5 of Ref. 3. These relate to a blade llke those

of the SANDIA 17-meter turbine, but with the stiffening struts removed; the

rotation rate is 75 RPM. From the modal symmetries, it is clear that their

numbers are equivalent to (m2/_) = 1.55 and (m3/_) = 2.95 at k = 0.57.
From the data in Table I, the corresponding numbers by the WKB approximation

are 1.75 and 2.97, respectively.

The present computations were carried out on the digital computer only

for convenience. Nothing more is involved than subroutines giving elliptic

functions and the numerical evaluation of well-behaved integrals. It is

believed unlikely that any much more efficient scheme exists for dealing with

equations like (17). Further Troposkien dynamics investigations by means

of the WKB method will hopefully be stimulated by this very elementary first

attempt.

The author is indepted to Messrs. James Nathman and Larry Lehman for

carrying out these calculations.
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DISCUSSION

Question:

Since torsion is structurally coupled with out-of-plane bending in a curved

beam, isn't it true that _enever such bending occurs, torsion must occur?

Comment i: Since coriolis forces dominate the coupling between in-plane and

out-of-plane bending, blade chordwise elastic axis and center of gravity loca-

tions need no___!tcoincide , and blade design effort and manufacturing cost are

greatly reduced.

Comment 2: In certain experimental cases of Darrieus blade flutter, in-plane

and out-of-plane bending displacement perturbations are the same order of mag-
nitude.
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Answer: Agree with Comment 2. Feel we must gain more experience with various

sizes of rotor and other structural details before Comment 1 can be accepted

as a design principle for all Darrieus machines. Helicopter rotors also have

important Coriolis couplings, yet practice with them is to massbalance so that

the C.G. and quarter-chord axes coincide.

With regard to the question, author believes that the theory of his paper

requires, as a strict condition, that the torsional rigidity GJ just be

extremely large. He has found other possible circumstances, however, in which

coupling with torsion may be negligible. This occurs when the C.G. is at the

quarter chord and when a dimensionless parameter (involving GJ divided by the

mass moment of inertia in torsion) is large compare to unity.

TABLE I. - SECOND-APPROXIMATE EIGENVALUES _n AND DIMENSIONLESS NATURAL

FREQUENCIES _n/_ FOR TROPOSKIEN BLADES OF SEVEN

DIFFERENT ASPECT RATIOS

1

2

3

4

5

k 0.2 0.3 0.4 0.5 0.8

Ym/Xm O. 2625 O. 4100 O. 5807 O. 7908 2. 226

_I/_

_2

m2/_

13

_31_

_4

_41_

_5

m5/_

(1.511)

(0. 7395)

3.061

2.242

4.593

3.545

6.124

4.808

7.655

6.057

(1.525)

(0.719)

2.957

2.168

4.444

3.446

5.924

4.677

7.405

5.895

(1.489)

(0.689)

2.805

2.058

4.235

3.306

5.642

4.492

7.053

5.665

(1.440)

(0.648)

2.599

1.904

3.966

3.126

5.271

4.247

6. 593

5.364

0.6 0.7

1.071 1.486

(1.376) (1.057)

(0.593) (0.517)

2. 325 I. 964

1.691 1.388

3.638 3.251

2.907 2.649

4.797 4.187

3.928 3.507

6.016 5.304

4.983 4.510

(I.181)

(0.406)

1.479

0.909

2,801

2.356

3.360

2.903

4.433

3.926
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x0 = -xm
Equilibrium
Perturbed

\
Equilibrium shape

Xo(S),yo(s)

\

_- Y'Yo

ds (coordinates x,y,z)

' //
Z

I

Y Yo(s) + n(s,t)
: z _{s,t)xo Xmd

_r
X_X 0

Figure I. - Equilibrium and perturbed positions of a Troposkien shape

which is vibrating while rotating about xo-axis with constant
angular velocity _.
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n4

n2

_o2
--= 2.24
n

I ! I - I f

-1 -.5 0 .5 1

Xo/Xm

Figure 2. - First three physica!ly Rossible natural modes of vibration

for the Troposkien with (Bx_nZ/Ho)'= 1.555, corresponding to k = 0.2.
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