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ABSTRACT

An aeroelastic investigation of horizontal axis wind turbines

is described. The study is divided into two simpler areas, namely,

the aeroelastic stability of a single blade on a rigid tower, and

the mechanical vibrations of the rotor system on a flexible tower.

Some resulting instabilities and forced vibration behavior are

described.

INTRODUCTION

The aeroelastic analysis of horizontal axis wind turbines may

be divided into two convenient areas, namely, (a) the investigation

of the aeroelastic stability and response of a single blade on a

rigid tower, and (b) the investigation of the mechanical stability

and vibrations of the rotor system on a flexible tower. With a

reasonable understanding of the behavior in these two areas, the

more complex problem involving a completely coupled blade-tower

aeroelastic system can be better understood.

The present report deals with some work performed for ERDA in

the two areas cited above. The aim has been to investigate the

basic mechanisms and to reduce these analyses to forms in which

they can be readily used for trade-off analyses.

AEROELASTIC STABILITY OF SINGLE BLADE

Using the equivalent hinge concept, the nonlinear equations of

motion were written for large deflections of a rigid blade, with

elastic hinges at the root, rotating about a rigid tower. The blade

was assumed to have a flapping (8), lagging (_), and feathering (e)

degree of freedom, and the effects of preconing of the blade rela-

tive to the feathering hinge (_), and of the feathering hinge rela-

tive to the plane of rotation (SH), were included. Quasi-steady

aerodynamic forces were assumed. The equations were first solved

to obtain the static, steady state displacement in flap (80 ) and

lag (_0) . Then the equations of motion were linearized by assuming

small perturbations about the steady state flap and lag displace-

ments found above. The resulting linear equations take the form

[A]{_} + [D]{x} + [K] {x} = 0 (1)
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where {x} represents the perturbation displacements in 8, _, e and

[A], [D], [K] represent the 3x3 mass, damping, and stiffness matrices

respectively. These equations were investigated for stability by

recasting them as standard first order equations, and extracting

the eigenvalues Pn = an + i b n using standard procedures. The

resulting an'S indicate the damping characteristics, and the bn'S

the frequencies of the resulting oscillations.

A wide range of parametric variations are being investigated.

Figure 1 shows some typical results from this analysis showing

effects of preconing on the stability margins. The results are

presented in the form of modal critical damping ratio _ _ - an/b n

since it is believed this more clearly indicates the strength of the

instability (or stability) than simple stability boundaries. It is

seen here that positive droop angles (8) can particularly decrease

the stability margin.

The analyses described above have been based on equivalent

hinges in order to provide a rapid and reasonably accurate tool for

predicting stability characteristics. However, a more elaborate

program is being developed which allows for distributed flexibility

of all three hinges, and this program will be used to validate the

results using equivalent hinges.

The linear aeroelastic stability analyses have been supplement-

ed by some nonlinear, large deflection analyses again using equiva-

lent hinges, to determine the nonlinear limit cycle behavior of

these instabilities. The harmonic balance method was applied and

the resulting nonlinear equations were solved by the Newton-Raphson

technique. Both the self-excited aeroelastic instabilities and the

dynamic response to gravity and wind shear loads were investigated.

Figure 2 shows the nonlinear limit cycle behavior of a predominantly

flapping-torsion type instability as rotation speed _ is increased.

The nonlinearity tends to be of a softening type, i.e., steady limit

cycles can occur somewhat below the linear critical rotation speed

if a large enough disturbance is given to the system.

MECHANICAL VIBRATIONS OF ROTOR-TOWER SYSTEM

The mechanical instabilities and vibrations that may result

from the interaction of the flexible rotating blades with the base

motions of the supporting tower were also investigated. The sim-

plest of these interactions involves the coupling of the tower side

motions (qL) with the blade lagging motions (_), which can give

rise to a strong mechanical instability (the "gound resonance" effect

of helicopters), as well as significant forced vibration effects

due to blade unbalance and gravity forces. Using the equivalent

hinge concept, the equations of motion for small vibrations of such

a rotor-tower system are

i d 2
ML_L + CLqL + klql + _ _icos_i) _2 i= _ Sisin _i' Sidt2(

Si c°s_i qL + Ii_i + c_$i + k_ i = g[Sisin_i + Si_icos_i ]

i = 1,2,...N (2)
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where _ = _t + 2_(i-l)/N represents the angular position of the

ith bla_e, g is the acceleration of gravity, M L is the equivalent

tower mass of the tower and rotor, and S: and I_ represent the

static moment and moment of inertia of t_e i th _lade about the lag

hinge.

The mechanical stability of this rotor-tower system can be

found by neglecting gravity and blade unbalance forces

(g = 0, S i = const), and introducing the multiblade coordinate
transformation

¢i = a(t) sinai + b(t) cos_i
(3)

This eliminates all the periodic coefficients in Eqs. (2) for N_3,

and the stability of the resulting equations in qL, a, b, can be

investigated in the standard manner. Figure 3 shows the results

for a typical 3-bladed rotor with varying amounts of critical

damping ratio _i in the tower and in the blades. In general adding

damping stabilizes the system, but under certain circumstances, the

addition of unequal amounts of damping can destabilize the system

from the no damping case. For a 2-bladed rotor, effects are similar,

but with additional small instability regions.

Effects of small, static unbalance can be found by assuming

that S 1 = S + AS, S 2 = S 3 = ... = S. The right hand side of
Eqs. (2) then reduces to the forcing function _2 S sin _t. By neg-

lecting the small AS variations in the periodic coefficients, and

introducing again the multiblade coordinate transformation, Eq.(3),

the basic equations reduce to the forced harmonic response of a

conventional spring mass system involving the coordinates qL, a, b.

The resulting tower and rotor responses become

qL (t) = qLS sin_t + qLC cos_t

b +a b +a b -a

_i (t) - c s + ( s c2 2 ) sin2_t + (c2 s) cos2_t

(4)

where as, ac , bs, b c are the sine and cosine responses of the coor-
dinates, a, b. Figure 4 shows the amplitude of the blade lagging

response #i for a typical case. It is seen that strong 2/rev

resonance responses occur in the blade when the rotation speed

equals 1/2 the lagging natural frequency _¢ or when _ equals the

tower natural frequency e L. Adding damping to the blade or to the
tower reduces the respectlve amplitude accordingly.

The effects of gravity loading can similarly be investigated

by examining Eqs.(2). Generally, gravity acts directly on each

blade without much tower interaction. Strong i/rev resonances may

occur when _ equals the lagging frequency _ and weak .5/rev para-

metric resonances may possibly occur when _equals twice _¢.

More comprehensive rotor-tower interactions were investigated

by including the tower yawing motions (8v) and the blade flapping

motions (8) in the previous analyses. T_e mechanical instability

regions occurred at slightly lower rotation speeds

than before, but the general mechanisms were not changed signifi-

cantly. These additional degrees of freedom
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also affected somewhat the static unbalance loads. Of more signi-

ficance was the direct effect of wind shear and tower shadow on the

blade flapping loads when these additional motions were introduced.

The investigation of these mechanical vibrations are continuing.
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a.

DISCUSSION

Comment: It is the flywheel resonance and mechanical insta-

bility problems that have primarily dictated natural fre-

quencies of the tower well above the operating range of the
rotor•

Yes. These factors play important roles, together with the

forced vibrations due to rotor static unbalance, gravity

loads, and air loads. Generally, I believe, to avoid signi-

ficant "ground resonance" type mechanical instability, the

blade lagging frequency (in-plane vibrations) would need to

be above the rotation speed of the rotor. Low natural

frequencies of the tower usually give rise to large forced

vibration as the rotor speed passes through the tower natural

frequency (and also through one half the tower natural

frequency for two bladed rotors).
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Figure ] - Effect of precone and droop on aeroelastic stability of lag mode.
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Figure 4. - Forced response of rotor to static unbalance.
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