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ABSTRACT

The second-degree nonlinear aeroelastic equations for a flexible, twisted, non-

uniform wind turbine blade are developed using Hamilton's principle. The

derivation of these equations has its basis in the geometric nonlinear theory
of elasticity. These equations with periodic coefficients are suitable for

determining the aeroelastic stability and response of large wind turbine
blades. Methods for solving these equations are discussed.

INTRODUCTION

The recent renewed efforts in wind power machines is due to their prospec-
tive use as an alternate energy source. As a result of these efforts several

wind turbine projects have been initiated by NASA Lewis Research Center as a

part of ERDA's overall wind energy program. To make the wind energy cost
effective, progressively larger wind turbines ranging from lO0 kW with a rotor
diameter of 125 feet to 2000 kW with a rotor diameter of 200 to 300 feet are

being considered, and these wind turbines are now in conceptual design.
However, as the blade flexibility increases, susceptibility to aeroelasticin-

stability increases. Also, the efficient construction and operation of wind
turbines require that the vibratory loads and stresses on the rotor as well

as on the combined rotor-tower system be reduced to the lowest possible
levels. Thus, the aeroelastic and structural dynamic considerations have a

direct bearing on the manufacture, life, and operation of these large wind

turbine systems. Although the structural dynamic and aeroelastic technology

used to develop rotory wing aircraft appears to be adequate for the develop-

ment of wind power machines, this technology has to be transformed from

aircraft applications to wind power applications, and additional studies have

to be conducted to determine the effects of the parameters peculiar to wind

power machines on the aeroelastic and structural dynamic behaviour.

The aeroelastic considerations that are common to both the wind turbine blade

and the helicopter blade are flap-lag-torsion, flap-torsion, flap-lag

instabilities and torsional divergence. The wind velocity gradients due to

earth's boundary layer and the gravity loads in the case of wind turbine rotor

and the forward velocity in the case of helicopter rotor lead to timewise

periodic coefficients in the equations of motion. Several previous studies

have considered the helicopter blade and developed the nonlinear aeroelastic

equations of motion. More recently reference l derived a set of nonlinear
aeroelastic equations and compared them to some of the recent equations available

in the literature. These comparisons indicated several descrepancies with
the results of reference I, particularly in the nonlinear terms. The reasons

for these descrepancies were explained in reference I. For wind turbine

blades reference 2 presented a set of nonlinear aeroelastic equations. An
examination of these equations reveals that the reference 2 fails to recover
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several nonlinear elastic and aerodynamic terms which are of the same order
as those retained. The reasons for this failure are the use of an incorrect

torsional curvature and the linearization of the resultant transformation

matrix between the undeformed and deformed blade coordinates while developing

nonlinear equations of motion. In view of this, it is felt that a compre-
hensive development of the nonlinear aeroelastic equations of motion of wind

turbine elastic blade is required. The purpose of this paper is to derive

such a set of equations.

The derivation of the nonlinear elastic and dynamic forces follows essentially

along the lines of reference I. In this reference the pretwist of the blades

was combined with the elastic twist, following the common practice in the

helicopter blade literature. In the present paper, however, the pretwist

together with the control inputs will be introduced before the elastic deforma-

tions, and a brief summary of the development will be presented. A formal NASA

report which is under preparation will provide the details of the development.

Methods for solving these equations will be discussed.

MATHEMATICAL MODEL AND COORDINATE SYSTEMS

The mathematical model chosen to represent the wind turbine blade consists of

a straight, slender, variable twisted, nonuniform elastic blade. The elastic
axis, the mass axis, and the tension axis are taken to be noncoincident; the

elastic axis and the feathering axis are assumed coincident with the quarter-

chord of the blade. The generalized aerodynamic forces are calculated from

strip theory based on a quasi-steady approximation.

Several orthogonal coordinate systems will be employed in the derivation of

equations of motion; those which are common to both the dynamic and aerodynamic

aspects of the derivation are shown in figures l to 3. The axis system

X.YIZ I is fixed in an inertial frame with the origin at the centerline of the
h_b. The axis system XYZ is obtained by rotating about ZT axis by the angle

= _t and then about the negative $_ axis by an angle Bpc ' the angle of

built-in coning. All the deformations of the blade are referenced to the XYZ

system. The q and _ axes with the origin at the elastic axis of the cross

section are principal axes and are inclined to the Y and Z axes by an amount equal

to the geometric pitch angle. The geometric pitch angle is given by e = ept + ec

where 8pt is the built-in twist angle (pretwist) and ec is the collective

pitch angle.

The generalized coordinates defining the configuration of the deformed blade

are shown in figure 3. The deformations u, v, w, and @ both displace and

rotate the xn_ coordinate system to x3Y3Z 3 where x3 axis is tangent to
the deformed elastic axis.
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DEVELOPMENT OF EQUATIONS OF MOTION

The equations of motion are derived using Hamilton's principle

_to tl (6T - aV + aW)dt = 0 (l)

where

aW = aWD + aWA (2)

In equation (I), T is the kinetic energy, V is the strain energy, and 6W
is the virtual work done by all the nonconservative damping and aerodynamic
forces. These are given by

= (°xx Yxx + °xnYxn + ax_ Yx_ )dn d: dx (3)

m

T =½_0 R /_ A drl drlp _ • _dn d: dx (4)

fR= - YXX _YxxaWD _0 E* dn d_ dx

fR rz-

- G*JJ A (_xn + " ayx_)dn d_ dxJO _Yxn Yx_
(5)

_0 R6WA : (Au6U + AvaV + Aw6W + M¢6¢)dx (6)

For the strain energy, the stresses are proportional to strains a = Ey ;

a.An = GY.xn, and o_x_ = GYx_ In the kinetic energy, d_l/dt is theX_eloci_
vector of an arbitrary point in the blade. The coefficients E* and G* ac-

count for internal damping of the material in tension and shear. The loads

Au, Av, Aw, and Me are of aerodynamic origin. To develop the explicit ex-

pressions for strains and the aerodynamic loads, the expressions for curva-

tures _x3, my3, and _z3 and the transformation matrix, [T], between co-

ordinate axes systems xn_ and x3Y3Z 3 are needed. Imposing the geometric

pitch rotation before the elastic deformation and following the procedures of
reference l, the second-degree expressions for curvatures and transformation
matrix are given by
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[T]=

V '2 W'2
-) - (v' cos O + w'sin e)(-v' sin e + w' cos e)= _' + ' (I

_x 3 Opt 2

_Y3 ='w'' (cos e - ¢ sin e) + v"(sin e + ¢ cos e)

_z3 = v"(cos e - ¢ sin e) + w"(sin e + _ cos B)

(7)

v,2 W '2
I - •

2 2

-v'(cos e - ¢ sin B)

-w'(sin e + ¢ cos e)

v'cos e + w'sin e

i (v'co + e)2
2 2

- vIsin B + w'cos 8

¢ - (v'cos e + w'sin e)

• (-v'sin e---+W'cos e

v'(sin e + ¢ cos e)

-w'(cos e - ¢)sin e 1 _(-v'sin e+ w'cos o]2
-@ 2

2

Using equations (7) and (8) and following the procedure of reference l, the following

strain displacement relations can be derived.

Yxx : u' + :[-w"(cos e - ¢ sin B) + v"(sin e + ¢ COS e)]

-n[V"(cos B - ¢ sin B) + w"(sin e + ¢ cos B)]

I

+ (n2 + 2) (_+ 0, ept)

= I !

Yxn -_[0 + (v v" - w'w")cos e sin e - v'w"cos2e

, V'2 - W '2
+w'v"sin2e + ept (Tcos2e + v'w'sin2e T COSZe)]

Yx{ = n[¢' + (v'v" - w'w")cos e sin e - v'w"cos2o + w'v"sin2e

v,2 w,2
+ e' (TCOS2e + v'w'sin28 - T COS2e)]pt

(9)

The position vector of a general point in the cross section of the deformed blade

is given by

xlIixuulYl : v + IT]T n

zI w

(lO)
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where the axial foreshortening of the elastic axis due to bending is given by

UF = I fO x (v,2 + w,2)dx (ll)

The angular velocity of the triad xn{ is obtained by projecting _ and it
is given by

= ( Bpc + "ept + (12)

The remaining details of the derivation of the equations of motion follow from
reference I. An essential feature of the derivation is the introduction of a

mathematical ordering scheme which is compatible with the assumption of a slender

beam. This scheme was discussed in reference I. Adapting the same scheme, the

higher terms in the generalized elastic and inertia forces are dropped. The

aerodynamic forces derived in reference l are modified so as to make them suitable

for wind turbine blades. In this modification both the velocity gradients due to

the earth's boundary layer and wind gusts are considered. The aerodynamic forces

are retained in a general second-degree form because the ordering scheme which

is imposed would depend on the order assigned to the inflow ratio, pretwist,

collective pitch and other aerodynamic parameters. The final equations of motion
of the blade are as follows:

Su - QD - lu = Au
u

Sv - QD - Iv : Av
v

Sw - QD - lw = Aw
W

S@ - QD@

+ FGu

+ FGv (13)

I¢ = A_

In the above equations the generalized elastic forces Su , Sv , Sw , and Sa ,
the inertia forces Iu , Iv , lw , and Im , the aerodynamic forces A, , A,, _ Aw ,
and A ¢ are nonlinear coupled _artial dlfferential operators in u ,Uv , w , and

@ , and the generalized damping forces are linear uncoupled partial differential

operators in u, v, w, and _ . The parameters FG and FG account for gravi-
tational effects. Because of space limitations, theUdetails _f the development

of the equations of motions and the explicit expressions for all the generalized

forces are not presented herein. However, these details will be given in a
formal NASA report which is under preparation.

METHODS OF SOLUTION

There are three methods to solve the equations of motion derived above. These

are: (l) Galerkin's method 3 and Floquet-Liapunov theory4; (2) Integrating Matrix

methodb and Floquet-Liapunov theory; and (3) Approximate method b in conjunction
with multiblade coordinates. Any one of these methods can be used to solve the

above equations of motion • However, the choice depends on the system parameters.
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The first two methods are independent of the number of blades whereas the third

method is dependent upon the number of blades on the rotor since the multiblade
coordinate transformations are functions of the number of blades• These multi-

blade coordinate transformations have been developed and applied to rotors with

polar symmetry, i.e., rotors with three or more blades. More recently, a similar
transformation has been developed for rotors with only two blades in reference 7.

The first two methods involve a numerical integration of the equations of motion

whereas the third method does not. But the validity of the third method depends

on the parameters of the system in addition to the number of blades. Several

studies have been conducted in the literature to determine the validity of the
third method for rotors with three or more blades. Based on the results of these

studies and the experience of the writer, it appears that the third method can be
applied to wind turbine rotors with three or more blades in the preliminary analyses•

However, for rotors with two blades the applicability of the transformation given

in reference 7, and the validity of the third method which uses this transformation
need further research.

CONCLUSIONS

A set of nonlinear second-degree coupled axial-flap-lag-torsional equations of

motion for a single, flexible, twisted, nonuniform wind turbine blade were pre-

sented. Methods for solving these equations were discussed.
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DISCUSSION

Can you identify any reasons why earlier publications have not included
your underlined terms especially if you contend that some are of the
order of magnitude as the usually accepted terms?

Most of the earlier publications were unable to include these under-
lined terms because of a partial linearization of the resultant
rotational transformation matrix between the coordinates of the deformed
and the undeformed blade or the use of an incorrect expression for the
torsional curvature.

Hodges and Friedmann had a long controversy on omitted terms. They
finally agreed. How is your system different?

Examining the latest references of both Hodges and Friedmann, it is
clear that they are not in complete agreement. Hodges partially
linearized the transformation matrix between the coordinates of the
deformed and the undeformed blade in his dissertation and hence obtained
an incorrect expression for the torsional curvature. He tried to
correct this in subsequent publications. In so doing, the torsional
curvature was improperly identified. Friedmann also partially linear-
ized the resultant transformation matrix while developing the nonlinear
equations of motion in most of his publications. More discussion on
these terms was presented in the cited reference I.

Both Hodges and Friedmann in their publications combined the pretwist
with the elastic twist of the blades. In the present development since
the derivation of the nonlinear equations of motion involves finite
rotations, the sequence of which is important, the pretwist together
with the control inputs are introduced before the elastic deformations.

It is believed that prior researchers in rotory wing aeroelasticity,
e.g., Daughaday, DuWaldt, Pizialli and others have in fact developed
nonlinear terms you refer to.

I am aware of some of the earlier publications by Daughaday, DuWaldt,
and Pizialli. In these publications, they have not addressed the
nonlinear ter_ _nn_fAH _n the subject n_ner
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Figure I.
blade.

- Coordinate systems of undeformed

(Section pitch angle, e, not shown.)

Zo, Z

_Yo ,Y

Figure 2. - Coordinate systems of blade cross
section.
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Figure 3. - Schematic representation of undeformed

and deformed blade. (Section pitch angle, 0,

not shown.)
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