
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

a

X-408-77-100
PREPRINT

Tire-7 yS ^i
GSFC SYSTEMS TEST AND

OPERATION LANGUAGE (STOL)
FUNCTIONAL REQUIREMENTS

AND LANGUAGE DESCRIPTION

FEBRUARY 1978

`0

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

(NASA-TM-79541)	 GSFC SYSTEMS TEST AND	 N78-22777
(7P E RATION LANGUAGE (STrL) Ffl ICTICNAL

PEQJIREt'FNTS AND LANGUAGE CESCRIPTICN (NASA)
44 p HC A03/MF A01	 CSCL 09B	 Unclas

G3/61	 16351

f^.

For information concerning availability
of this document contact:

Technical Infcrmation & Administrative Support Division
Code 250

Goddard Space Flint Center
Greenbelt, Maryland 20771

(Telephone 301-9824488)

w

"This paper presents the views of the •uthor(s), and does not nea wily
reflect the views of the Goddard Specs Fllpht Center, or NASA."

I

1

1

NASA/X-408-77-100

GSFC SYSTEMS TEST AND OPERATION LANGUAGE (STOL)

FUNCTIONAL REQUIREMENTS AND

LANGUAGE DESCRIPTION

Prepared for

GODDARD SPACE FLIGHT CENTER

By

COMPUTER SCIENCES CORPORATION

Under

Contract NAS 5-24300
Task Assignment 115

E

DRVVA(F

This document presents the functional requirements and description of the Sys-

tems Test and Operation Language (STOL) to be initially baselined at Goddard

Space Flight Center (GSFC). STOL represents the synthesis of several inde-

pendent language developments at GSFC, notably the Procedure Control Lan-

guage (PCL) family, the Orbiting Solar Observatory/atmosphere Explorer

(OSO/AE) language family and the Applications Technology Satellite/High Energy

Astronomy Observatory (ATS/HEAO) language family. By combining the best

" features of these languages with a mutually agreed upon syntax, the STOL de-

signers have produced a simple basic language to provide the basis for testing

and control of payload ground systems in the 1980s.

STOL is intended to be a standard language for controlling GSFC payload in-

tegration, test, and operations systems. To achieve this objective, STOL

requirements represent the distilled experience of the technical personnel who

were most responsible for, and familiar with, the predecessor languages and

their strengths and weaknesses.

The success of STOL as a standard depends directly upon its reliance on the

essential requirements of the predecessor languages and their representation

as a small, readily understandable language nucleus. The nucleus is designed

to be standardized and controlled on a GSFC-wide basis while making it easy

for each individual system to meet its unique requirements by adding its own

locally controlled extensions to STOL.

The requirement that STOL be a standard nucleus allowing local extensions

overrides all other requirements. The power of language to interface people

to complex operational systems resides fundamentally in this combination of

standardization and flexibility. This essential duality must not be compromised

away for the sake of expediency in achieving other language design or control

objectives.

Y:

i

r ,k

x
i

5

 2t	 .I

[I	 i ; , --	 f - -

The following GSFC personnel participated in the STOL design effort:

RCchard desJardins (510), Gardiner Hall (511), James McGuire (420), t
Phillip Merwarth (582), William Mocarsky (408), Walter Truszkowski (514), 	 1

and Anthony Villasenor (734).

The following contractor personnel assisted the design effort: Fred Brosi

(CSC), Preston Burch (OAO Corporation), David Carey (RCA), David Carey

(Westinghouse), Morris Gunzburg (OAO Corporation), William Havener (CSC),

Joseph McCann (RCA), John Nieberding (Westinghouse), Timothy Swanson

(CSC), and Fred Zussman (ORI).

The following GSFC management personnel also closely followed and supported 	 n

the STOL design activity: Robert Bartlett (408), Charles Fuechsel (401),

Jerold Hahn (511), Thomas Huber (730), Louis Koschmeder (734), and

Ann Merwarth (408). t

f

r

4

I

a

IV

..+^.	 ^ ^ .	 #	 ^	 ^i^^r_	 , •Y•..111MMt	 ^_'-^	 ^ `"^	 .a.	 -	 1	

P	

..,a..a	 ^ ^«^-.. 	 .+,--,°h :srrỳ ^` ^

TABLE OF CONTENTS
4

Section 1 - Introduction •	 1-1
2

Section 2 STOL Features and Implementation Considerations 2-1

2.1	 Required Language Features 2-1
2.2	 STOL Language Processor Implementation Con-

siderations	 2-2

Section 3 - Basic Capabilities 	 3-1

3.1 Standard Syntax and Language Elements 	 3-1
3.1.1 Character Set 3-1
3.1.2 Constants 3-1

•	 3.1.3 Variables ... •	 3-1
3.1.4 Directives	 • 3-2
3.2 Arithmetic and Logical Capabilities 3-4
3.2.1 Expressions 3-4
3.2.2 Mixed Mode Conversions	 . • • • .. • • 3-4
3.2.3 Arithmetic Assignment 3-4
3.3 Starting, Linking To, and Stopping Applications

Programs	 3-5
3.4 Binding Resources 3-6

Section 4 - Telemetry Directives 4-1

4.1 ACQUIRE Directive 4-2
4.2 LIMITS Directive 4-2
4.3 CONVERT Directive 4-3

Section 5 -- Command Directives	 5-1

5.1 Manual Commanding 5-1.......................	 , ...
5.2 Command Mode Setting 	 5-2
5.3 OBC Commanding • 5-2
5.4 Ground System-Generated Command Loading

(Spacecraft Load)	 • • ... 5-2
5.5 Payload Command, Group, and Load Transmittal 5`-3
5.6 Critical Command Control	 • 5-3
5.7 Command Buffer Clear • 5-4
5.8 Command Retransmission 5=4

V

I

TABLE OF CONTENTS (Cont'd)

Section 6 - Input/Output Directives 6-1

6.1 PAGE and SNAP Directives 6-1
6.2 FORMAT Directive 6-2
6 .3 HISTORY Directive G 6-2
6.4 LOG Directive 6-3
6.5 CHART Directive 6-3

Section 7 - Procedure Definition and Control 7-1

7.1 Procedure Definition 7-1..........................
7.1.1 PROC and ENDPROC Directives 7-1
7.1.2 EDIT Directive	 7-3
7 .2 Procedure Control	 7-4
7.2.1 START and RETURN Directives 7-4
7.2.2 WAIT Directive	 7-5
7.2.3 GO Directive 7-6
7.2.4 POSITION Directive 7-7
7.2.5 KILL Directive	 7-7
7.2.6 STEP Directive 	 7-8
7.2.7 Conditional (IF-Type) Directive	 7-8
7.2.8 Loop Command	 7-10

Section 8 - Miscellaneous 8-1

8111 Listing of Contents of Run-Time Data Base 8-1
&2 Extension Mechanisms 8-1
C. STOL Nucleus Capability 8-1
.8.2.2 Additional Parameters Allowed for a Directive 8-2
8.2.3 Additional Directives Allowed 8-2
8.2.4 Standard Controlled Extensions 8-2
8.3 Discrepancy Report/ Engineering Change Proposal

Form........... 8-3

Appendix A - STOL Directives and Short Forms

Appendix B - Discrepancy Report/Engineering Change Proposal
Form

Vi

SECTION 1 - INTRODUCTION

The Systems Test and Operation Language (STOL) provides the means for user

communication with payloads, applications programs, and other ground system

elements. It is a systems operation language that enables an operator or user

to communicate a command to a computer system. The system interprets

each high-level language directive from the user and performs the indicated

action, such as executing a program, printing out a snapshot, or sending a

payload command.

By using STOL, payload test and operations personnel may be relieved of re-

petitive tasks while ensuring that recurring, fixed sequences of operations

are always performed in exactly the same order, and guaranteeing repeatability=

of test procedures or Project Operations Control Center (POCC) operations.

However-, regardless of the level of automation achieved through use of STOL,

human control over all system activities is maintained, both through user

definition of the STOL procedures and through user manual override control

of the system during execution of a STOL procedure.

The individual statement or line of STOL code entered by a user when using

STOL is called a directive. The STOL directives entered by users are checked

for correct syntax and are processed by a STOL .language processor. This

processor interprets the directives and creates messages or data segments to

be passed on to the applications programs handling payload commanding, telem-

etry processing, and displays. This document describes the initial STOL to

be baselined under the cognizance of the GSFC STOL Configuration Control

Board.

Section 2 describes required language features and processor implementation,

considerations. In Section 3, basic capabilities are outlined. Sections 4, 5,

is

and 6 present the telemetry, command, and input/output directives, respec-

tively. Section 7 outlines procedure definition and control. In Section 8,

listing, extension, and STOL nucleus capabilities are discussed. Appendix A

presents the shortened form and reference page number of each directive.

The Discrepancy Report/Engineering Change proposal Form is given in Ap-

pendix B.

N

7

I

x

a

s

1-2

1

Y ^...`I's^. ^.s.....,.1,-	 .l":',",^^^" ^=?«'a..^`7.^w:^:...m[;.I,„<.. F.. r..7 _,..^.I.......^I^- 	 r', ._ i,.,	 i ... ^,-:•:-:..-x...=	 ^I

z,

SECTION 2 - STOL FEATURES AND IMPLEMENTATION
CONSIDERATIONS

The required language features and processor implementation considerations -r
are discussed below.

2.1 REQUIRED LANGUAGE FEATURES 	 ' T

The features listed below represent the essential generic characteristics of

the language. The language should

•	 Allow the user extensions to handle unique requirements while

remaining small and simple	 {

•	 Provide for a high degree of automatability	 t 2

•	 Allow both online interactive use and offline preparation of prede-

fined sequences of directives (procedures)

•	 Always allow for manual control override`

•	 Provide for structured programming constructs which aid in
1

achieving reliability and maintainability of procedures

•	 Permit abbreviation of keywords by interactive users to minimize

keystrokes	 ?

•	 Allow comment option for each statement I

j•	 Provide arithmetic and logic capability

•	 Provide for combination of statements into procedures with param-

eter and string substitution capability

•	 Remain executable in an interpretive mode (i.e., declarations are

considered unnecessary so that statements execute independently)

z z

2-1
K

'	 d

q

S

2.2 STOh LANGUAGE PROCESSOR IMPLEMENTATION CONSIDERATIONS

The features listed below are considered desirable for most systems. In some

systems, however, it may not always be feasible or desirable to provide all of

these options. t
E

•	 The language processor should provide run-time visibility. 	 The

directive currently in execution must be displayed, and the next
3

one in sequence should be displayed if possible
f

•	 The language processor should provide run-time traceability. 	 A

log should be produced showing each directive executed together 3

with the time of execution
1

q	 ;

•	 A mechanism should be provided that allows the user to escape

to the host computer's operating system

•	 The processor should allow several users to enter directives or
t

, a

to execute predefined procedures simultaneously, subject to pro- a

tection features.	 In particular, payload commanding should be

restricted to one physical terminal device at a time

•	 Implementors of payload data base languages for displays and other

functions should ascertain that their language forms are also com-
f

patible with STOL in the interest of simplicity and uniformity. 	 For € i

example, the method of describing a display in the data base defini-

tion language should be compatible with the means provided in STOL 3

for defining displays

• 	 Implementors of payload data bases should ensure that run-time

s } j

laW.brwYiFi

1 3	 f

'm••` 'ga^':er^W.ai.^auw:.^.w	 '.^_^1

SECTION 3 - BASIC CAPABILITIES

Syntax and language elements, arithmetic and logical capabilities, starting, 6

`;-	 linking to, and stopping programs, and binding resources are described in

this section.

3.1 STANDARD SYNTAX AND LANGUAGE ELEMENTS
f	 1

3.1.1 Character Set

The character set is the seven-bit ASCII character set.	 Cards punch d on an

IBM 029 keypunch are accepted as input.

3.1.2	 Constants
t

Integers may be represented as decimal, binary, octal, or hexadecimal num-

bers as shown respectively in the examples below. G:

'	 37, -1, 2483, 0

B1 100101 1 , B 1 1 1 , B101

0'45'

X1201, X101
i

M

Real (floating point) numbers are represented with a decimal point, either with

or without an exponent of 10, such as !

1.0, -879.5, 0. 0, 2.25E03, 3.6E-01

m

Character strings are enclosed by single quotation marks: .
f

'S/C ATT', 'OFF', 'CAN' 'T MEANS WON' 'T'

3.1.3 Variables

STOL allows the user to refer to two distinct classes of variables. One class

is the set of system global variables that constitute the operational data of the
r

system on which the STOL processor is executing.

i
Telemetry data, real-time derived parameters, system configuration flags,

and parameters are examples of system global data. 	 These variables are re-

4	 ^

ferred to in STOL by their system global names. 	 x

' Global variable names must begin with a letter (A through Z) and must contain x

eight or fewer characters that are either letters or numbers.	 ,Arrays of var-

iables with up to two dimensions are permitted. 	 Variables must be either in-

teger or real.

The values of the system global variables come from outside STOL. 	 They
s

reside in systemm common memory and are available to all users, including

STOL, subject to protection.

The other class of variables to be referenced in STOL are the procedure local

variables.	 'These local variables exist (i. e. , have a value) only when the pro-

cedure is open for execution.. (i. e. , during execution, waiting, or stacked on

a nest).	 The local variables are used for computations within procedures or

for passing arguments between procedures of a single user.

The local variables are also of either real or integer type.	 They have fixed
1

names for simplicity and are typed according to usage. 	 These names are as

4
follows:

X1, X2, ... , Xn, where n z 16

3.1.4: Directives	 j

The syntax of STOL directives is described below.

t	 Fields--The basic STOL statement is made up of four separate i

}

1

and distinct fields: label, directive, argument, and comment. 	 The

fields are order dependent, but their character position is format

free

3-2

p	

_

i
L	 ?

• Label--The label is a 1- through 8-character alphai.uinerfc field

that is followed by a colon. The first character of the label must

be alphabetic. The label field is optional

e	 Directive--The directive field contains either an alphanumeric

mnemonic identifier or in the case of command only a s ecial

k^

character (slash) followed by a possibly null alphanumeric mnemonic
x

41
identifier..	 The directive field is terminated by one or more blanks

unless the alphanumeric part is null. 	 In the absence of a label field,

the directive field becomes the first field in a statement. 	 if the

i 1 directive field is not recognized as a system name, it is assumed

to be the name of an application program which is to be run € r

•	 Argument--The argument field is a character string that is passed

to the invoked program when requested. 	 It is terminated by a semi-

colon or end of line.	 For uniformity, arguments within an argument

field should obey the standard syntax of STOL language elements

when applicable and should be separated by commas or blanks. 	 The

argument field may not begin with an equal sign; this avoids ambi-

guity between directive names and variable names in statements

such as 'KILL = X1' `

• •	 Comment--The comment field consists of a string of characters

preceded by the special character semicolon I

•	 Additional definition--The first nonblank character defines the start

01. a statement.	 A line of all blanks is considered a comment

•	 Continued line--The occurrence of two successive semicolons (;;)

>(defines a continued line, i.e., the next line is concatenated to the

F current line at the position indicated by the first semicolon

{ •	 Character strings--Pairs of single quote marks are optionally used
r!

` to set aside character strings within an argument field

3-3

^9 , Y	 (

1

4

j	 ,

• Short forms--Short mnemonic forms are specified for most direc-

tives (e.g., TE for TERM). Such short forms must be recognized

in addition to, rather than instead of, the standard mnemonics

3.2 ARITHMETIC AND LOGICAL CAPABILITIES

3.2.1 Expressions

The arithmetic and logical expressions and capabilities adhere to the following

set of operations on simple integer and real variables:

.EQ., .NE., .GT., .LT., .GE., .LE.

. NOT. , . AND., . OR., . XOR.

3.2.2 Mixed Mode Conversions

Implicit mixed mode conversions are performed by the STOL processor. For

logical operations, the integer value 0 is interpreted to be . FALSE., whereas

all nonzero values are interpreted to be. TRUE.

The logical value ". FALSE. " is stored as the integer 0 (i. e. , all Os). The

logical value ". TRUE. " is stored as the 1's complement of the integer 0 (i.e.,

all Is).

3.2.3 Arithmetic Assignment

All arithmetic statements assigning values to variables use the directive LET,

followed by a variable name, an equal sign, and an arithmetic expression.

STOL implementors are encouraged to permit the directive mnemonic "LET"

to be optionally omitted by the user. Some examples of valid assignment state-

ments are the following:

LET X1 = X2

TEST: LET X1 = 2.5 + X2

TLMIDX = 0	 ; omitting LET allowed but not required

- H ,:

3-4

.	 I

All applications programs are initiated by the use of the RUN mnemonic. The

RUN mnemonic may be (and is normally) omitted; that is, the short form of

RUN is simple null (no characters). If an application program is to be inter-

valed, i.e., run every multiple n of a system-unique fundamental interval (such

as a telemetry minor frame), the directive INTERVAL is used. A running

program is terminated by using the TERM mnemonic (short form, TE)

RUN programname argumentstring

TERM programname

INTERVAL programname, n argumentstring

programname argumentstring	 ; short form for RUN

The label and comment fields are optional. The following forms exemplify

running application program PROG at a given interval (e, g. , every fourth

minor frame):

INTERVAL PROG, 4

IN FROG, 4	 short form

Applications programs may run either synchronously or asynchronously. In

synchronous operation, an application program called by a STOL procedure

preempts execution of the procedure until execution of the application program

is complete; control of the system then returns to the STOL procedure. In

asynchronous operation, the involved application executes in parallel with the

invoking procedure. The design of the invoked application progra-ra determines

whether it will run synchronously or asynchronously.

1	 3-5

x

f	 t

^.	 . ^	 ,^^	 .^.	 ^	 _ ___•__.., ^,........ b..,asda^..^..^..Y..:^.'t d̂..,.^v..^.^....Y.»...._. ._.^W.:1.-.	 ,...... 1.	 -	 ^^	 . ^,.-_ ^.	 ..^..J..._..i 	 -.i 1

3.4 BINDING RESOURCES

Real resources (data set names, physical devices) are bound at run time to

logical resources (data definition names, logical port names) by the use of the

ASSIGN directive. The general form is

ASSIGN logicalname, realname

AS logicalname, realname 	 short form

which is optionally followed by a second comma and additional specification

Information as required. The real name may in fact be a logical reference to

some data set or other assignable name. This form is translated by the STOL

processor into the native language of the underlying operating system. Both

the realname and logicalname may be any legal text string accepted by the

underlying system, including the usual slashes or periods used as hierarchical

data set extenders, e.g.,

ASSIGN HISTAPE, MTl	 ; assign history tape to mag tape unit 1

Standard resource names such as MT1 will be recommended.

3-6

i

r
}a	 E

SECTION 4 - TELEMETRY DIRECTIVES

Telemetry points are referred to by their system global variable names.

These names generally fall into two general types as defined below. any name

meaningful to the underlying system is acceptable to STOL because STOL

simply passes tile' nanie to the underlying system for interpretation. (In some

implementations, this is effectively done at system assembly time by building

a symbol table for STOL processor use.)

A mnemonic name for a telemetr y variable must satisfy the standards for

variable names and is considered another system global variable. The data

point represented by such nanue could be telemetry, pseudotelemetry, or a

derived real-valued parameter.

Telemetry points may also be specified by their InatrL\ position in one of a

number of possible matrix formats, depending on what is supported by the

system. One possibility is the representation through the actual matrix posi-

tion in current telemetry format:

TM(I, J), where 0 s I, J s 127

This form of representation refers to the telemetry word In the Ith position in

the minor frame and Jth position in the major franc (Jill subcom) within the

current telemetry stream. Telemetry points can also be specified by their

matrix position in mission format:

TF(I, J) -+ TM(I', J')

This form of representation refers to the telemetry word position in the mission

ROM or mission format. if the current format is not the mission :format, the

system maps the I,J position into the current .actual matrix position I 1 ,J 1 in

the current format. Specific telemetry capabilities are described below.

_! -1

4.1 ACQUIRE DIRECTIVE
a

ACQUIRE is the directive that initiates input of the type of data selected, such 	 j
as primary realtime, secondary realtime, hardwire sensor, or tape recorder

data.. Either realtime or previously recorded 0. e. , playback) data from a

history file can be acgtlired using this directive. The argument string can in-

elude a device operational label, or device control information. The default

for ACQUIRE is a system-unique device and data type. Examples of this direc-

tive appear below.

ACQUIRE ON, type, parameters	 ; types include hardwire, PCM,

; tape, playback	 .

ACQUIRE OFF, type, parameters

AC	 short form; ON and system

defaults are assumed

4.2 LIMITS DIRECTIVE

LIMITS is the directive that defines and controls the limit checking of data

values in the system. The data may be telemetry, pseudotelemetry, or de-

rived parameters. Examples are given below.

LIMITS ON
	 ; turns all limits on

IMITS ON, TM(20,34)	 turns limits on for specified

data item

LIMITS OFF, TM(20,34), BIVOLTS 	 turns off several limits

LIM	 ; short form; ON is as-

sumed

LIMITS ON initiates limit checking of specified data values. The directive

assumes that limits have been previously defined and exist within the system.

The three allowable entry formats permit limit checking to be enabled for all

4-2

Lil

data values or for a data value specified by matrix or mnemonic identifier.

LIMITS OFF terminates limit checking of specified data values; the options

are exactly the same as for LIMITS ON.

LIMITS DEF defines limit conditions for data values in the system, including

telemetry, pseudoteleinetry, and derived parameters. The parameter formats

are system unique although recommended standard formats will be developed.

These established limits are maintained within the run-time system. The tAvo

allowable entry formats permit limits to be loaded by either matrix or mne-

monic identifier. The parameter string might contain limits, masks and values,

and program calls. Examples appear below.

LIMITS DEF, BIVOLTS, parameters

LIMITS DEF, TAI(20,34), parameters

4.3 CONVERT DIRECTIVE

CONVERT is the directive that defines engineering conversions for data values

in the system, including telemetry and pseudotelemetry. The data named may

be any allowable telemetry identifier. The type indicates the type of conversion,

either polynomial or piecewise straight lines, to be performed. The parameter

string contains the constant coefficients to be used in the conversion. The pa-

rameter formats are system unique although recommended standard formats

will be developed. Examples are given below.

CONVERT BIVOLTS, POLY, parameters

CONVERT TAI(20, 34), STRAIGHT, parameters

CON TM(20, 34), STRAIGHT, parameters

Gi

!	 I

4-3

^3{a' .^.Ya4 ^ t i,^.w-' ,.râa
f	 ^')	

..... ^	 ...	 1 _........4	 ^	 _ . ^. ' 	 v.a,^. ..:.^..

SECTION 5 - COMMAND DIRECTIVES

This section defines basic directives for commanding the payload. It is as-

sumed that every installation requires a number of different command modes

(e. g., one-stage commanding, two-stage commanding, verification through

the command counter in telemetry, verification through functional data in

telemetry). All command directives begin with a slash.

5.1 MANUAL COMMANDING

The /CMD directive is used to invoke the command processor with a single

command. The command processor may transmit the command directly to

the payload, insert the command into a command buffer, or take some other

action, depending upon its current mode. The short form of the directive is a

slash (/). Various examples of its usage are given below.

/CMD cmdfield	 ; general form

/CMD VAM, ON	 ; use of command mnemonics allowed

/VAM, ON	 pulse command, short form

/3, 16	 ; pulse command RIU 3, LINE 16 for MMS

/CU, RATE16	 serial magnitude command, short form

/3, 71, X1 1111'	 ; serial magnitude command RIU 3, NRZ = 001

data = hexadecimal 1111 for MMS

The cmdfield may be any text string recognized by the system as identifying a

particular command. It may be a command mnemonic or other representation

meaningful to the system,

I ,_?

t	 if

^r"A

l	 ;9

5-1

. ,

1 _y	 Iz 3_	

i	

A	

x
i

5.2 COMMAND MODE SETTING

The mode for command' the spacecraft no verify,commanding	 p	 (verify through telemetry,

etc.) is set via the MODE directive. Command modes are system unique.

	

{	 Various forms of the MODE directive appear below.

/MODE modelD	 ; general form

	

~	 /MODE VERIFY	 ; e.g., verification of commands through com-

• mand counter	 E

/MODE 2	 ; e.g., two-stage commanding

/M 2	 ; shortened form

5.3 OBC COMMANDING

Onboard Computers (OBCs) are treated as subsystems of the spacecraft. Com-

mands to load, to dump, to reset the OBC, or to perform similar functions,

are of the form

/OBC, parameters

The capability to patch memory, to load, to dump, to send OBC executive re-

quests, and to perform similar functions falls into this format.

5.4 GROUND SYSTEM-GENERATED COMMAND LOADING (SPACECRAFT
LOAD)

The /LOAD directive is provided to enable the system operator to uplink com-

mand and data loads to the payload.. These loads may have been defined by the

user or generated by the Command Management System. Examples are as

follows:

/LOAD loadname	 ; general form

/LOAD SNT1003	 ; e.g., command memory load for SNT 1003

/LOAD FILE1	 ; load predefined file

/L- FILE1	 ; shortened form

5-2

This directive is primarily used to load computers, microprocessors, and

command memories. It is assurraed that the loadname resides on CLhILE,

which has a default assignment in the system or may be reassigned by using

the ASSIGN statement. The format of the actual load may include the address 	 ' t

and load vectors for the computer or microprocessor.

5.5 PAYLOAD COMIXIAND, GROUP, AND LOAD 'TRANSMITTAL
:I

In two-stage commanding, the effect of /C.\ID and /LOAD is to load the com-
1	 ^i

mand buffer in the system.	 The second stage of commanding is to transmit

the contents of the buffer to the payload via the /SEND directive as sho«n below.

/SEND	 ; general form

/S	 ; short form

On a system-unique basis, use of the command buffer is avoidable through
:a

definition of an appropriate one-stage command mode controlled by the /MODE t

directive.

5.6 CRITICAL COMMAND CONTROL

A small number of commands in the system may be designated as "critical".

This means that to send the command, a separate manual intervention step is

required at the time the command is loaded into the system buffer.

"	 /ALLOW instructs the system to permit the loading of a critical payload com-

mand or group into the command buffer. 	 /CANCEL, has the effect of erasing ?

the current system request for loading that particular command,, into the buffer.
f. 3

It is assumed that a system-unique interactive signal alerts the operator that

the system has blocked on a critical command. These directives are shown {

below.
t f

/ALLOW	 ; general form

/A	 ; short form

/CANCEL	 general form t'i
/A	 ; short form

L

5-3
.r

5.7 COMMAND BUFFER CLEAR

The /CLEAR directive completely clears the command buffer at the request

of the user as shown below.

/CLEAR	 ; general form

/Z	 ; short form, zeroes the buffer

5.8 COMMAND RETRANSML MSION

5-4

'2111-

Six

SECTION 6	 IINPUT/OUTPUT DIRECTIVES

6.1 PAGE AND SNAP DIRECTIVES

These directives select a predefined display page for viewing on a cathode ray

tube (CRT) screen or for a snapshot on a printer. 	 The display image can be

created via procedure statements (refer to Section 6.2) and stored beforehand

in a data base orgenerated via a special program called into me -lo 	 for exe-

cution. P and SN are the respective short forms for PAGE and SNAP.

Each implementation has a default system-unique fundamental interval at which
A
A

display pages are nominally updated. In addition, implementors are encouraged

to allow intervalin- at other rates via an additional parameter. 	 Example forms

are shown below.

PAGE formatname, devicename 	 devicename is optional

PAGE POWER1, KC4	 display of format POWERI on

device KC4

SNAP ACS2, LP	 ; snapshot of ACS2 to device LP

1A
PAGE ACS2	 ; display of ACS2 on local device

PAGE CLEAR, KC4	 clearing of device KC4

PAGE ACS2, OFF	 turning off (freezing) of specified

display

SNAP devicename	 making of a hardcopy of specified

device

All device names, format names, and the fundamental interval are system

unique. Formatname CLEAR is reserved on
all

systems for clearing CRT

screens,

6-1

{-r

V

6.2 FORMAT DIRECTIVE

This directive defines a display format (layout of fixed text and variable fields)
n	 ,

as follows:

FORMAT formatname, arguments 	 ; general form

FORMAT 2, 3, 5, 'POWER SUBSYSTEMS'

FORMAT ACS2, 4, 20, TM(20, 34),	 . .

-	 FORMAT ACS2, CLEAR	 ; clearing of FORMAT ACS2; erasing of
old format

The first example of a FORMAT statement given above defines the placing of a
the text string'POWER SUBSYSTEMS' on page 2, line 3, column 5. The

second statement indicates that the current telemetry value TM(20, 34) is to r

go on page ACS2, line 4, column 20; additional specifiers might give the field

width and conversion format. s

The allowable arguments that specify a particular formatname are system
i	 x
i	 '=

unique. However, a standard set of formats will be developed. The short form

for FORMAT is FO.
'.

6.3 HISTORY DIRECTIVE

This directive generates a history file of ongoing operations such as telemetry

or attitude as specified.	 The logical device HISTFILE is assigned to a default

device or can be reassigned using the ASSIGN directive. Additional system-

unique options may be included as additional arguments.	 This directive is also

used to record telemetry data for later playback. 	 The various uses of this fi
'. directive are shown below.

HISTORY ON, datatypes	 general forth

HI	 ° short form telemetry is default

datatype

HISTORY OFF, datatypes

6-2

.:s.^ a	 ,^...._.,. /—̂s:+..i...^..^.-.. .,. 	 _..__ ..__._.._.....	_. _.	 .__..,,..__. _._.^>+,..^,..a ^i

^	
8
f

v

F

6.4 LOG DIRECTIVE

This directive provides documentation of procedure execution annotated with .1
f

`
i

Greenwich Mean Time (G1IT).	 All statements executed are written to the
A

system-defined LOGFILE data set, which provides backup capability even

in the event of printer failure. 	 Commands are always written to this data set

(as a hind of flight recorder), together with bit pattern, even if LOG OFF is
3 .a

specified.	 The LOGFILE data set is defaulted or assigned. 	 No short form is A

i
required.	 Examples are as fo1?ows:

LOG ON, type, device 	 ; general form
f

LOG OFF	 ; disabling of logging

LOG parameters	 ; ON assumed

6.5 CHART DIRECTIVE

x:F This directive assigns specified telemetry and hardwire data to analog and/or

event stripchart recorder pen numbers as follows:

CHART ON, 8, BIVOLTS	 ; assigning of BIVOLTS'to pen 8

CHART 0, TAI(20, 34) 	 ; ON assumed

':(CH OFF, parameters	 ; short form '`

T
f

.1
r•

SECTION 7 - PROCEDURE DEFINITION AND CONTROL

The directives described in this section are used to define new STOL proce-

dures, to modify old ones, and to control the execution of these procedures.

It is assumed that each procedure has a name and that all procedures defined

on a given system are stored in a system STOL procedure library and are

accessible by name.

7.1 PROCEDURE DEFINITION

r°	 7.1.1 PROC and ENDPROC Directives

The PROC and ENDPROC directives are respectively used as header and trailer !

directives to enclose a procedure definition. 	 The name of the procedure and

the number of parameters to be passed to it are specified in the PROC state- M

ment. The directives are given below.

PROC SC(n)	 ; beginning of the definition of a procedure

named 'SC' which receives n parameters when
k

it is invoked

ENDPROC	 ; end of the definition of SC
I

The integer n specifies the number of parameters to be passed to the procedure. i	 {

If no parameters are to be passed (a typical occurrence), the parentheses may

^	 be omitted. The parameters are passed as specified in subsequent sections 1

7.1.1.1 Parameter Passing by Text Substitution j	
:.

This type of parameter passing involves passing a character text string to ar
procedure as shown below. 	 The receiving procedure references the text string

by $n, where n is the nth argument in the calling sequence. 	 This capability)

is used to pass the names of displays and global variable references.	 This type
I -1

7-1

^,-

ti

of call is known as "call by name" in compiler theory; it is the mechanism

used in macro expansion. The following is an example:

PROC SC(3)	 ; definition of procedure SC with three parameters

c

PAGE $1, $3

w	 WAIT $2

(y,
A sample calling sequence for the above defined procedure is

LET WTIME = 10

START SC (POWERI, WTIME, KC4)

This calling sequence would expand into

PROC SC(3)

fi

di	 .
PAGE POWERI, KC4	 ; $1, $3 replaced

•

	

	 WAIT WTIDIE	 ; $2 replaced with WTIME (global variable)

7.1.1.2 Parameter Passing by Local Variable Reference

When the text string given as one of the parameters to be passed has the form

Xn, it is interpreted as a local variable reference rather than as a text string

to be passed. For example, nothing is accomplished by passing '112' as a text

string, because the name '112' refers to a different variable in the calling pro-

cedure from that in the called procedure. Instead, this type of parameter is

used to refer to the address of the local variable in the calling procedure. This

type of call is known as "call by reference" in compiler theory; it is the mech-

anism used in a FORTRAN subroutine call.

7-2

P

t

1^	 ^a
I.` •3

x

I

N'_L	 C	

p	 1	
S

1
^. r	! 	 I.. 4	

r	
a

I

4

7.1.1.3 Parameter Pass Through

Both types of parameter passing allow pass through to several levels of nesting

as in the following example:

PROC PROC4(1)	 ; definition of PROC4 with one parameter

START PR005($1, ...) 	 ; passing of the argument provided in any

; PROC4 call on through to the nested

^ltO'5

y

ENDPROC

A minimum of three levels of nesting procedures is required. Implementors

are cautioned that three levels of nesting might also represent a good maximum

number as keeping track of deeper nesting is very difficult for a user.

7.1.2 EDIT Directive

This directive invokes the STOL editor for creation or modification of a STOL

procedure as indicated below. The STOL editor is assumed to be interactive

and system unique. However, when the editor is entered, only one procedure

Is open for modification. When the user saves or scratches that procedure,

the editor returns the user to the main STOL processor. At this point, the

user can go on to execute other STOL statements or into another EDIT session

by naming another procedure to be edited (new or old).

EDIT SC	 ; opening of editfile 'SC' and invoking of editor

ED SC	 ; short form

The editor is responsible for creating a runnable procedure out of the state-

ments or statement modifications entered by the user. When the user completes

the editing session by directing the editor to save the procedure code upon which

7-3

E	 :;

t

the user was working, the editor renumbers the statements in sequential order,
.t

creates a correct label table, and prepares linkage and maintenance information

data such as catalog entries as required.

7.2 PROCEDURE CONTROL

,^ r

These directives are used to control the overall execution of STOL procedures.

Some directives are for use by an interactive user desiring to start up, to stop,
4

or otherwise to control a STOL procedure. Other directives are used within

a procedure to control the sequence of execution. A few directives may be

used for both purposes. Manually entered statements have priority over state- r

ments executed within a procedure.

7.2.1 START and RETURN Directives

These directives are used to transfer to, and return from, a named procedure. }	4

The named procedure must reside in the system procedure library or the op- 	 _a

tional device. It is assumed that there will be some system-unique type of

physical or logical access control to protect procedures from unauthorized use.

The START directive may be used by an operator directly or may be included

in a procedure body to call another procedure. When procedures are nested 	 4

in this way, RETURN is to the next higher procedure.

A procedure also RETURNS when it runs out of statements to execute (i.e.,

when it runs into an ENDPROC). Examples are as follows:

START SC (parameters), devicename (optional)
L

; start execution of procedure SC from the 	 4

; device specified; if no device specified,
E

; disk procedure library assumed

S SC	 ; short form; no parentheses needed _	 x ,

if no parameters

START SC AT 45	 ; start of procedure SC at line 45	 -
p

tt^

tj

x

}

START SC UNTIL LABL	 ; start SC and enter WAIT mode just

before executing statement LABL

START SC AT 45 UNTIL LABL

START SC(TM(20,34),X2) 	 ; passing of the global variable name

'TM(20, 34)' and the address of local

variable X2 in the calling procedure to

the called procedure SC

RETURN	 ; processing complete

IF (X1 . LT. X2) RETURN	 ; conditional return

A recursive START call (i.e., a procedure starting itself) is not allowed.

7.2.2 WAIT Directive

Procedure execution is suspended until the conditions of the WAIT are met. If

a WAIT directive is entered manually during the execution of a procedure, the

currently executing statement is completed before the WAIT is honored (refer

r
to Section 7.2.5). Examples are as follows:

WAIT 5	 ; wait 5 seconds

WAIT 2.5	 ; wait 2.5 seconds

^	 WAIT (POWER. EQ. 20)	 ; wait until the variable POWER = 20

WAIT 10 .OR. (POWER . EQ. 20) 	 logical operators OR., . XOR. ,

.AND. , . NOT.
:y	 •

WAIT	 ; indefinite wait

WAIT AT 45	 ; enter WAIT mode immediately be-

fore executing statement num-

ber 45

WAIT 10:23:46.2Z	 ; wait until specified GMT

7-5

' rya	
titis

1

WAIT 23:118	 ; wait specified time relative to some event

WAIT AT LABL	 ; enter WAIT mode immediately before executing.

the statement labeled 'LABL'

W	 ; short form

WAIT modes are initiated and terminated according to the type of WAIT state-

ment. The simple WAIT is unconditional; it is honored immediately and is

terminated only by a GO statement. The conditional WAIT (e. g. , WAIT 10,

WAIT (POWER . EQ. 20), WAIT 10:23:46.2Z) is honored immediately and is

terminated only if the wait condition becomes valid. The preconditional WAIT

AT statement is honored only when the precondition becomes satisfied; WAIT

mode is entered unconditionally at that point and is terminated only by a GO

statement.

Any WAIT statement supersedes any previous WAIT statement; e.g., if a simple

WAIT is entered manually while a WAIT 20 seconds is in effect, the 20-second

condition is superseded and the system goes into an unconditional wait.

7.2.3 GO Directive

All forms of the GO directive cause the system to go, i. e. , to start executing

statements. Examples are shown below.

GO	 canceling of WAIT mode and execution of next

; statement in sequence

G	 ; short form

GO 20	 ; position at line 20 and GO

GO LABL	 ; position at statement LABL and GO

GOTO 20	 regular form

76

allow the user to verify that the proper statement has been located prior to

execution. Procedure execution resumes only when the user enters a GO state-

ment. Examples are as follows:

POSITION SET1	 ; position at statement labeled ISET11

PO SET1	 ; short form

POSITION 20	 ; position at statement number 20

7.2.5 KILL Directive

This directive immediately stops execution of the procedure as shown below.

The automatic mode of procedure execution is canceled and WAIT mode is

entered. The currently executing statement is aborted (refer to Section 7.2.2).

There is no short form of directive KILL; it is not desirable to facilitate the

entry of a directive with so drastic an effect.

KILL	 ; enter WAIT mode immediately, position at next

; statement in sequence

KILLPROC	 ; enter WAIT mode immediately, return from cur-

; rent PROC and point to next statement in se-

; quence in calling PROC

KILLP	 ; short form of KILLPROC

KILLPROC ALL	 ; enter WAIT mode immediately, return from all

nested PROCs and await next statement from

operator

Operator entry of the KILL directive during execution of another directive from

the same operator immediately cancels the previous directive and causes the

system to enter WAIT mode. If a user wants the current directive to complete

7-7

LL

before halting, the WAIT directive rather than the KILL directive should be

entered. Implementors are encouraged to utilize suicide as a more reliable

means of implementing the KILL directive in most cases, while reserving

murder for the more recalcitrant applications programs.

7.2.6 STEP Directive

This directive executes the procedure one statement at a time under manual

control. After the execution of each statement, the system automatically enters

WAIT mode. The next step is executed upon receipt of a GO directive. After

a STEP statement is executed, the system always enters WAIT mode. Examples

are shown below.

STEP ON

STEP	 ; ON assumed

STEP OFF

A short form is not provided. Additional arguments may be used on some sys-

tems to indicate slow motion or other unique execution modes.

7.2.7 Conditional (IF-Type) Directive

Two forms of the conditional statement are provided. In both forms, the IF

condition is an arbitrary logical expression (using the logical and relational

operators of STOL) enclosed in parentheses. The IF condition is evaluated

at run time. If the IF condition evaluates to . TRUE. , the system executes one

specified set of actions; however, if the IF condition evaluates to . FALSE. ,

the system simply goes on to the next directive, or optionally executes a dif-

ferent specified set of actions. All conditional statements begin with the

directive IF, followed by the IF condition in parentheses:

IF (X . EQ. Y)

IF (TM(20, 34) . GE. 0)

4

I
IF (POWER .GT. 20 .OR. POWER . LT. 10) 	 ; determination of whether

POWER out of limits

7.2.7.1 Conditional Perform
y

One form of conditional statement, the conditional perform statement, causes

an entire statement to be performed only if the IF condition is . TRUE.. The

conditional statement may be any STOL statement other than another IF:

IF (IF-condition) statement

IF (IF-condition) WAIT	 ; conditional `VAIT

1

f
IF (IF-condition) LET COUNT = COUNT + 1	 ; counting of number of a

occurrences of some

event

IF (IF-condition) RUN PROG	 ; conditional running of

PROG (e.g., alarm)	 'a

IF (IF-condition) GOTO LABL	 ; conditional branch to

kf statement LABL

7.2.7.2 Conditional Perform Block

The second form of conditional statement, the conditional perform block or

` IF-THEN-ELSE, causes entire blocks of statements to be executed conditionally

.

as shown below.	 One block of statements, the THEN block, is executed if the

IF condition evaluates to . TRUE.; optionally another block of statements, the

ELSE block, is executed if the IF condition evaluates to . FALSE.:

IF (IF-condition)

THEN-block	
;.

;

ENDIF

7-9

i	 t	 1
.it	

x 4x^ik ^
-x't

+^	 ^*X {f^ .,.,.,^	 u	 ^	 ^	 ^:, , .^^	

^(

i	 r	 _^	

^r _

	 !	 x	 `,	 ^u .

..::	 x	 r	 _.arWam .,max; > iJ	 i k	 } —	 ...n.--^•.

ie

4

IF; (IF-condition),,

THEN-block

ELSE

€	 ELSE block (optional) 	 i

}}
f	 ENDIF

}
IF (X . EQ. Y)

START SC(1)

ELSE
t

START SC(2)

LET X=Y
9

ENDIF

The last example above starts the specified procedure SC with argument "1"

when X is equal to Y; if X is not equal to Y, it starts SC with parameter 11211

and then sets X equal to Y so that SC is to be started with parameter "1 11 in

subsequent times through the procedure. In this manner, procedures can 	 }
ti

} initialize themselves immediately upon being started after system initialization.

The word "THEN" does not appear explicitly in the statement format as it is not

necessary for recognition.

Implementors of STOL are encouraged to restrict the complexity of conditional

statements to enhance implementability and procedure readability.

3C	 7.2.8 Loop Command

There is no directive in STOL specifically for looping, I. e. , repeating a se-	 .

quence of statements over and over until some condition is satisfied. Experi-

ence in previous languages antecedent to STOL has shown that a loop capability

x

^"	 7-1.0

b

tIs rarely used even if readily available in the language. For simplicity of STOL,

k;
there is no explicit loop control construct. If looping is ever required, it can

be constructed from the conditional branch as in the following example:

LOOP: statement

IF (IF-condition) GOTO LOOP

y

.a

;a l
•I

rsr

i
3

'	 ba
`v

w

e :3

^^ z	

ay

e	 .

j

''	 `

8.1 LISTING OF CONTENTS OF RUN-TIME DATA BASE

The LIST directive is used to list (I. e.	 print out or display) some of the con-

tents of the run-time system data base.	 The following are examples of this

LIST PROC	 list of names of all PROCs

LIST PROC SC	 list of specified PROC, SC

LIST CURVE	 list of calibration curves

LI CURVE	 ;short form

LIST LIMITS	 list of current limits

LIST LINUTS TM(20,34) 	 ; list of current limits for specified var-

LIST IPGM	 list of names of programs that can be run

LIST FORNIAT	 list of names of all display formats

L
I
ST FORNIAT POWER1	 list of specified format, POWER1

A "pure" implementation of STOL will seldom, if ever, exist.	 Users will in-

variably have more operational requirements than those given in this document.

The S 1JL OL philosophy encourages each implementor to extend the language to

accomplish any additional unique requirements.	 The extension mechanisms

are described in the subsequent paragraphs.

8.2. 1 STOL Nucleus Capability

All STOL implementations are strongly encouraged to accept the STOL language

nucleus defined in this document as controlled by the GSFC STOL Configuration

c

^y

{

Control Board (CCB).	 Exceptions should be limited to those systems for which

STOL provides clearly excessive functionality (e. g., a data system that would

never command a spacecraft and for which the command functions are unneces-

o - sary and meaningiess).	 Unofficial subsets of STO L, while not encouraged, are
i

certainly better than. inverting a one -of-a-kind syntax for operating a system.

I 8.2.2 Additional Parameters Allowed for a Directive {

E_ Any implementation may accept additional parameters in the argument field of

a directive over and above those few mandated in the nucleus. 	 The syntax of P	 y
any additional parameters must be compatible with standard STOL syntax.

8.2.3 Additional Directives Allowed

Any implementation may define a new directive simply by providing an applica-
13

tion program of that name that is capable of interpreting the specified argu- {

inentstring.

8.2.4 Standard Controlled Extensions

Various standard extensions will be defined and controlled either by the GSFC

C ° STOL CCB or by a local STOL implementation group (e. g. , SMNI Project).
^f

Implementors are cautioned not to compromise the essential features of STOL

given in Section 2.	 The Systems Division for payload integration and test sys-

tems and the Mission Operations Division for POCC systems will undoubtedly i

standardize on some extensions for their particular applications.

It is requested that all STOL implementations, extensions, and local configure- i

tion control activities be brought to the attention of the GSFC STOL CCB by

memorandum to the Chairman, Code 730.	 This measure will ensure an up-to-

date mailing list for CCB minutes and language revisions and an informed

implementa+ion community.
T	 z

8-2

j

! 7t,

8.3 DISCREPANCY REPORT/ENGINEERING CHANGE PROPOSAL FORM	 l

STOIC as a GSFC standard is formally controlled by the GS"FC STOL CCB,
F

Systems Division, Engineering Directorate, Code 730. The Discrepancy

Report/Engineering Change Proposal (DR/ECP) Form shown in Appendix B

may be copied and used to submit observed discrepancies and ECPs for modi-

fying, or extending STOL. ECPs will be serially numbered by the Systems C

Division secretary upon receipt and tracked to closure by the CCB.

x	 ^
A

yy

P

K

8-3
9

1i

If

APPENDIX A — STOL DIRECTIVES AND SHORT FORMS

II

1
d

The short form and section reference for each mnemonic are provided below

(a dash is used where no short form is defined).

Short Section
Mnemonic	 Form Reference

j
/ALLOW	 /A 5.6

/CANCEL/X 5.6
=

/CLEAR	 /Z 5.7

/CMD	 / 5.1
_ /LOAD	 /L 5.4

St
{

^l /MODE	 /M 5.2
s
d

/OBC	 - 5.3

/RETRY	 /R 5.8

i /SEND/S 5.5

=j ACQUIRE	 AC 4.1

ASSIGN	 AS 3.4 $	 a

. E CHART	 CH 6.5 f

CONVERT	 CON 4.3

EDIT	 ED 7.1.2 1

ELSE 7.2.7

ENDIF	 — 7.2.7 +

ENDPROC	 — 7.1,1

FORMAT	 FO 6.2'

GOTO, GO	 G 7.2.3 t

HISTORY	 HI 6.3

IF	 — 7.2. ?

INTERVAL	 IN 3.3
F

KILL	 — 7.2.5

KILLPROC	 KILLP 7.2.5

a
A-1

;

i•

1
f

t

Short Section
Mnemonic Form Reference

LET (null) 3.2.3

LIMITS LIM 4.2

LIST LI 8.1

PAGE P 6.1

POSITION PO 7.2.4

PROC 7.1.1

RETURN - 7.2.1

RUN (null) 3.3

SNAP SN 6.1

START S 7.2.1

STEP - 7.2.6

TERM TE 3.3

WAIT W 7.2.2

4	
f	 (G	 i	 ^

GSFC STOL DISCREPANCY REPORVENGINEERING CHANGE PROPOSAL

OFFICE USE ONLY
SERIAL NUMBER	 RECEIVED BY	 DATE

INATOR USE ONLY
ORIGINATED BY	 PHONE	 DATE

DESCRIPTION OF DISCREPANCY OR PROPOSAL (ATTACH OR LIST SUPPORTING INFORMATION)

u

)SE ONLY
RESOLUTION OR DISPOSITION

a

t'.	 I
a

(RESPONSIBLE ENGINEER	 I APPROVED BY/DATE	 I CLOSED BY/DATE

	GeneralDisclaimer.pdf
	0006A02.pdf
	0006A03.pdf
	0006A03_.pdf
	0006A04.pdf
	0006A05.pdf
	0006A06.pdf
	0006A07.pdf
	0006A08.pdf
	0006A09.pdf
	0006A10.pdf
	0006A11.pdf
	0006A12.pdf
	0006A13.pdf
	0006A14.pdf
	0006B01.pdf
	0006B02.pdf
	0006B03.pdf
	0006B04.pdf
	0006B05.pdf
	0006B06.pdf
	0006B07.pdf
	0006B08.pdf
	0006B09.pdf
	0006B10.pdf
	0006B11.pdf
	0006B12.pdf
	0006B13.pdf
	0006B14.pdf
	0006C01.pdf
	0006C02.pdf
	0006C03.pdf
	0006C04.pdf
	0006C05.pdf
	0006C06.pdf
	0006C07.pdf
	0006C08.pdf
	0006C09.pdf
	0006C10.pdf
	0006C11.pdf
	0006C12.pdf
	0006C13.pdf
	0006C14.pdf
	0006D01.pdf
	0006D02.pdf
	0006D03.pdf
	0006D04.pdf

