(NASA-CR-157466) ELEVATION 'SCANNING IASER/MOLTI-SENSOR HAZARD DETECTION SYSTEM CONTROLLER AND MTRROR/MAST SPEED CONTROL COMPONENTS (Rensselaer Polytechnic Inst. " N78-29132 troy, N. Y.) 135 P HC A07/MEA01

Rensselaer IPotynechroic Ifortitutie

RPI TECHNICAL REPORT MP-59
ELEVATION SCANNING LAS ER/MULTI-SENSOR
HAZARD DETECTION SYSTEM CONTROLLER AND MIRROR/MAST SPEED CONTROL COMPONENTS
by
J. Craig S. Yerazunis
A STUDY SUPPORTED BY THE NATIONAI AERONAUTICS AND SPACE ADMINISTRATION

Grant NSG-7369

School of Engineering Rensselaer Polytechnic Instztute Troy, New York

August 1978

CONTENTS

Page
LIST OF FIGURES iv
LIST OF TABLES vi
ACKNOWLEDGEMENT vir
ABSTRACT viii

1. INTRODUCTION 1
2. SYSTEM CAPABILITIES 5
2.1 Azimuth Angles 5
2.2 Elevation Angles 11
2.3 Rate Buffer 16
2.4 Features 18
3. CONTROLLER OPERATION 19
3.1 Azimuth 19
3.2 Elevation 20
3.3 Fire Protection Circuit 21
3.4 System Initialization 23
3.5 Rate Buffer 23
3.6 Memory 24
3.7 Diagnostic Procedures 24
4. CONTROLLER I/O 25
4.1 Inputs 25
4.2 Outputs 25
4.3 Notes on I/O 26
5. ALIGNMENT, CALIBRATION, TEST PROCEDURES 27
5.1 Alıgnment in Elevation 27
5.2 Alignment in Azimuth 27
5.3 System Calibration 28
5.4 Test Procedures 28
6. RELATED SUBSYSTEMS 29
6.1 Mirror and Mast Speed Control 29
6.1.1 Control Circuit 29
6.1.2 Motor Selection 32
6.1.3 Test Results 37
6.2 Mirror 37
6.2.1 Mirror Description 39
6.2.2 Cleaning 39
6.2.3 Some Calculations 39 39
6.3 New Telemetry Data Interface 41
6.4 Handshake Capability 44
6.5 Encoders 49 49
6.6 Proms 50
6.7 Programs for Angle Listings 50
CONCLUSION 53
LITERATURE CITED 55
APPENDIX A - Schematics, Card Layout, Timing Diagram) 56
APPENDIX B - Manufacturer's Data Sheets 68
APPENDIX C - Program Listings 104

LIST OF FIGURES

Page
FIGURE 2.0 Elevation Scanning Conceptualization 6
FIGURE 2.1.1 Azimuth Angles 7
FIGURE 2.2.1 Elevation Angles 12
FIGURE 2.2.2 Mirror Limitations on Beta Angles 15
FIGURE 2.3.1 Rate Buffer Clear Angle 17
FIGURE 3.2.1 Ecload Circuit 22
FIGURE 6.1.1.1 Block Dlagram of Mast/Mirror Speed Control 31
FIGURE 6.1.2.1 Elevation Motor Load Inertia 33
FIGURE 6.1.2.2 Mast Motor Load Inertia 36
FIGURE 6.2.3.1 Laser Beam/Mirror Axis Offset 40
FIGURE 6.3.1 Telemetry Word Format 42
FIGURE 6.3.2 DMA Address Formation in Interface 43
FIGURE 6.3.3 Laser Data Core Location 45
FIGURE 6.3.4 Vehicle Data Core Location 46
FIGURE 6.4.1 Handshake System 47
FIGURE 6.4.2 Format of "Latch Data" Word 48
FIGURE A. 1 Azimuth Board Chip Layout 57
FIGURE A. 2 Elevation Board Chip Layout 58
FIGURE A. 3 Rate Buffer Board Chip Layout 59
figure A. 4 Memory Board Chip Layout 60
FIGURE A. 5 Controller Timing Diagram 61
FIGURE A. 6 Azimuth Board Schematic 62
FIGURE A. 7 Elevation Board Schematic 63
FIGURE A. 8 Rate Buffer Board Schematic 64

FIGURE A. 9 Memory Board Schematic 65
FIGURE A. 10 Controller Block Diagram 66

LIST OF TABLES

Page
TABLE 2.1.1 Available Azimuth Angles 9
TABLE 2.1.2 Available Center of Scan Angles 10
TABLE 2.2.1 Available Beta Angles 13
TABLE 2.3.1 Rate Buffer Clear Angle 17

The author would like to express his appreciation to those people associated with the Mars Rover Project who have helped with the development of the systems herein described, and who have made this year a very enjoyable one for me.

Dr. Stephen Yerazunis, whose motivation kept us all going through the problems.

Dr. David Gisser, whose counseling on electrical problems has been a big help.

Dr. Dean Frederick for his help with control related problems.
Bill Meshach and Jim Odenthal, for their help on most every phase of the work detailed in this report. They are responsible for the early conceptualization of the ML/MD System.

Dave Knaub, for his help with mechanical related problems.
Bill Kennedy, who did much development work on the motor speed control circuitry and wrote the computer prograns in Appendix C, and Scott Wertans who constructed most of the controller and did the circuit drawings.

Also, Bill Cambalik, Todd Comins, Dave Cipolle, and Jeff Turner who worked on vehicle oriented tasks which freed me to pursue the new ML/MD System.

Abstract

Positioned at the front of the R.P.I. Mars Roving Vehicle is an electro-mechanical assembly called the Elevation Scanning Mast. With associated electronics, it is capable of pounting a lasex beam anywhere in three-space below the top of the mast. Photo-detectors mounted on the mast record any back scattered light returned from the local terrain to the mast. Described in this paper are the electro-mechanical and electronic systems Involved with pointing the laser beam along the desired vector. The system makes use of a rotating 8 -sided mirror, driven by a phase-locked DC motor servo system, and monitored by a precision optical shaft encoder. This upper assembly is then rotated about an orthogonal axis to allow scanning into all 360° axound the vehicle. This axis is also driven by a phase-locked DC motor servo-system, and monıtored with an optical shaft encoder. The electronics are realized in standard TTL integrated circuits with UV-erasable proms used to store desired coordinates of laser fire. Related topics such as the interface to the existing test vehicle at R.P.I. are discussed.

The Mars Rover Project was begun at R.P.I. in 1972. Under a NASA grant several students began working in various directions on concepts for an unmanned vehicle which would be capable of exploring the surface of Mars. In early vehicle designs much emphasis was placed on mechanical aspects such as folding to fit in a capsule, wheel design, and maneuverability. Later goals were to develop a vehicle with remote control capability via a "command" R.F. link, and to return vehicle state data to an off-board computer via a "telemetry" R.F. link. The vehicle state data consists of strut positions, wheel tachometer reading, steering angle, gyro information, etc. Sufficient capacity was allowed for in the telemetry system to accommodate future systems. By 1974, the main goal of the project was to develop a test vehicle which was capable of autonomous roving, that is, of obstacle detection and avoidance under closed-loop computer control. The vehicle was to gather information with some sort of "vision" system and return it along with vehicle state data via telemetry. The obstacle detection system was chosen to employ a "laser triangulation" scheme. A laser is at the top of a vertical mast at the front end of the vehicle and points downward toward the ground, it's beam making an angle of perhaps 40° with the vertical mast (this is called the elevation angle, β). The mast rotates about its long axis in an oscillatory type of movement, thus causing the laser spot on the ground to describe an, arc of about 140° in the azimuth (e) direction in front of the vehicle. Mounted at a lower point on the mast is a detector with a narrow field of view $\left(\sim 3^{\circ}\right)$ aimed at an angle with respect to the mast called α, toward the ground such that on flat terrain it will always "see" the laser spot, but when an obstacle of appreciable size ($\sim 10^{\prime \prime}$) intercepts the laser beam, the laser spot will be outside the field of view of the detector, and
the obstacle is detected. As the mast sweeps thru the azimuth direction the laser is fired at 15 different locations (7 to the left of the vehicle, 7 to the right, and 1 straight ahead of the vehicle). Thus, triangulation occurs in the plane which contains the vertical mast. The angle the laser makes with the mast (β) and the angle at which the receiver is pointed (K) are fixed. The system yields the information: "direction blocked" or "direction open" for 15 different directions in front of the vehicle. Using this system, autonomous roving was achieved and tested under various conditions and with varying degrees of success through 1977 and into 1978. While results were sometimes impressive, and much was learned by having an actual machine to work with, by March 1977, it was felt that a higher level terrain sensing system should be implemented, particularly if the rover was to behave optimally in the real pitch and roll situations which it would encounter on Mars.

The higher level obstacle detection system continues to use the concept of laser triangulation. However, the new system is capable of firing the laser at various values of point angle β, and the detector is capable of "looking" at various angles ((α) at the terrain. Trangulation still occurs within the plane which contains the mast. The new system, called the "multi-laser/multi-detector" or "elevation scanning" system is capable of placing up to 1024 points of laser light on the terrain with each azimuth scan as compared to 15 in the former system.

During the 1977/78 academic year the group concerned itself with conceptualizing and developing the necessary systems to implement this higher level system. Many concepts were considered on the way to developing the new system. The new mast will rotate continuously instead of oscillating. The former mast had problems with alignment which were in part caused by .
the accelerations it underwent in reversing direction. The fully rotating mast necessitates the use of slip rings to transfer data and power to and from the mast. To simulate many lasers at different pointing angles, the new system uses a single laser which is reflected by an 8 -sided rotating mirror at the top of the mast. (Increasing the number of sides decreases the rate at which the laser must fire, but also decreases the angle ($\ln \ell$) through which the beam may be pointed). With 8 sides the laser can be pointed at any desired angle within a 90° field. A new laser was purchased which has a capability of 10 Khz firing rate (the former laser had a $1 \mathrm{Kh} z$ maximum). Speeds of this order are dictated by geometry and desired system performance. Finally the new system will have a multi-element detector. Either a 20 element photo diode array, or a 1024 element CCD linear array will be used, though neither is complete at this time. With this system the height of terrain can be computed (from β, α, and θ) for up to 1024 points around the vehicle. Existing systems such as telemetry and the computer interface, as well as the command link had to be modified slightly to adapt to the new data flow. Concurrently throughout 1977/78, the software group has been exploring the possible methods to handle the increased amount of data the new system will deliver.

The major objective of the study described herein was the design and construction of the electronic controller to control and monitor this advanced scanning concept. The controller's function is to monitor mirror and mast positions and to output control signals to the laser, receiver, and telemetry systems, such that the overall system will place the array of laser light points on the terrain as desired, and, upon receiving the data from the multielement detector, buffer it, and serve as an interface to the telemetry system. The locations of the 1024 laser shots are programable. The sections which
follow detail the capabilities and operation of the multi-laser, multidetector controller, how it integrates with other system components, and some early test results. Details of several related subsystems are given in Part 6.

2.

SYSTEM CAPABILITIES
Figure 2.0 shows schematically the elvation scanning system. The mirror will sweep the laser beam through angles of elevation (β) and the rotating mast will sweep in the azimuth (θ) direction. The choices for actual angles of fire in elevation (β_{K}) and in azimuth (ϵ_{K}) are limited by encoder resolution and orientation. The mirror imposes some additional limitations on possible angles. Available fire angles, naming conventions, and other considerations will be discussed, along with the rate buffer and interface with telemetry and command links.

2.1 Azimuth Angles

Consider a "grid" of 256 radial azimuth angles spaced 360/256 = 1.4° apart. These form the set of possible azimuth angles at which to initiate an elevation scan. The particular azimuth angle selected at which to initiate angle, θ_{K}, Figure 2.1 .1 shows θ_{K} and a few subsequent radials $\left(\theta_{\mathrm{K}+1}, \theta_{\mathrm{K}+2}, \ldots\right)$. Since the mast is always rotating, all elevation shots in an elevation scan initiated at θ_{K} will occur within $\Delta \theta$ of θ_{K}. The angle $\theta_{\mathrm{K}}+\Delta E / 2$ is called the azimuth data angle. The azimuth location of any shot is known to be the azimuth data angle $\pm \Delta G 2$. Therefore, the set of possible azimuth angles at which to scan in elevation is the set of azimuth data angles, and the accuracy of the azimuth angle is $\pm \Delta \theta / 2$. Table 2.1.1 lists the set of azimuth data angles. Since $\delta \theta$ may be greater than 1.4° (as shown in Fig. 2.1.1), the next available azimuth initiate angle will be θ_{K+2}.
An 8-bit word in azimuth memory exists for each possible azimuth angle, θ_{K}. To select a particular Θ_{K}, a " 1 " is stored in the most significant bit of ϵ_{K} 's word. This is known as the fire bit, and will cause an elevation scan

Figure 2:0
Elevation Scanning Conceptualization

2.1.1 AZIMUTH ANGLES
to initiate at ϵ_{K}. The five least significant bits in G_{K} 's memory word should be programmed to contain a tag to identify θ_{K}. This tag is the azimuth shot number, which has a value between 0 and 31 encoded in five bits. The azimuth shot number will be used in the computer to andex a look-up table which will contain the actual value of θ_{K}. An additional bit is set to a "I" in $\theta_{\mathbb{K}}^{\prime \prime}$'s memory word if θ_{K} is the last azimath in the scan. This is called the azimuth end of scan bit (AMEOS) and will be used to generate the end of scan bit (EDS) sent back to the computer. In each scan up to 32 different azimuth initiate angles may be specified. Table 2.1.1 Insts the set of possible azimuth data angles and their associated azimuth initiate angles. Note that this list was generated for $\Delta \theta=1.875^{\circ}$. The program may, of course, be rerun for other Δe^{\prime} s.

The capability exists to offset the entire set of azimuth angles with the azimuth center of scan angle. This will have the effect of shifting the entire scaming pattern thru an angle in azimuth. Available center of scan (CSA) angles correspond to every other azimuth initiate angle. Therefore, there are 128 possible center of scan (CSA) angles spaced 2.8° apart. The computer can send the CSA via the command link. Table 2.1 .2 shows the set of possible C^{\prime} 's and the associated 8-bit computer command. When a center of scan angle is received it must remain in the command recenver's UARI for a time period called data hold time, where data hold time $=1 / 256 W_{\theta}$; $\ddot{W}_{\theta}=$ mast speed, rev/sec.

On the edge of the azimuth baard of the controller, eight L.E.D. ${ }^{\text {th }}$ s indicate the last azimuth at which an elevation scan was initiated. See Iayout in Appendix A for exact location of the indicator. This number can be converted from octal to degrees (vehacle fixed frame) using Table 2.1.1.

For test and alıghnment purposes, the controller may be run in the azimuth test mode, in which the azimuth memory will not be used, but rather

TABLE 2.1.1
CODING OF AZIMUTH DATA ANGLES IN OCTAL, BINARY AND DECTMAL FORMATS

AZIMUTH DATA AVgles	Inftiate angle		ADDS. IN	MEMORY	
DESxESS	DEGREES	OCTAL	BITARY	DECIMAL	HFX
-179.0625	-180.0000	000	00000000	0	00
-177.6563	-178.5938	001	ccccooot	1	01
-176.2500	-177.1875	002	00000010	2	02
-174.8438	-175.7813	003	00000011	3	03
-173.4375	-174.3750	004	00000100	4	04
-172.0313	-172.9688	005	$0 \mathrm{CCOO101}$	5	05
-170.6250	-171.5625	006	00000110	6	06
-169.2188	-170.1563	007	00000111	7	07
-167.8125	-168.7500	010	00001000	8	08
-166.4063	-167.3438	011	00001001	9	09
-165.0000	-165.9375	012	00001010	10	0 A
-163.5938	-164.5313	013	0 C00 1011	11	OB
-162.1875	-163.1250	014	00001100	12	0 C
-160.7813	-161.7188	015	00001101	13	0D
-159.3750	-160.3125	016	00001110	14	05
-157.9688	-158.9063	017	00001111	15	OF
-156.5625	- 157.5000	020	00010000	16	10
-155.1563	-156.0938	021	00010001	17	11
-153.7500	-154.6875	022	00010010	18	12
-152.3438	-153.2813	023	00010011	19	13
-150.9375	-151.8750	024	00010100	20	14
-149.5313	-150.4688	025	0001 C 101	21	15
-148. 1250	-149.0625	026	00010110	22	16
-146.7188	-147.6563	027	00010111	23	17
-145.3125	-146.2500	030	00011000	24	18
-143.9053	-144.8438	031	00011001	25.	19
-142.5000	- 143.4375	032	00011010	26	1 A
-141.0938	-142.0313	033	00011011	27	1 B
-139.6875	-140.6250	034	00011100	28	1 C
-138.2813	-139.2188	035	00011101	29	1 D
-136.8750	-137.8125	036	00011110	30	1 E
-135.4683	-136.4063	037	00011111	31	TF'

MAST VELOCITY $=3.142 \mathrm{RAD} / \mathrm{SEC}=30.0 \mathrm{RPM}$
MIRROR VELOCITY $=75.398 \mathrm{RAD} / \mathrm{SEC}=720.0 \mathrm{RPM}$
DATA HOLD TIME= 7.812 HSEC
DELTA FGETA= 1.8750 DEGREES
SCANS PER SECOHD= 0.500

AZIMOTH DATA Angles	initiate angle		ADDR. IN	Memosy	
DEGRETS	DEGREES	OCTAE	BIVARY	DECIMAL	HEX
-1.34.0625	-135.0000	040	00100000	32	20
-132.6563	-133.5938	041	00100001	33	21
-131.2500	-132.1875	042	00100010	34	22
-129.8438	-130.7813	043	00100011	35	23
-128.4375	-129.3750	044	00100100	36	24
-127.0313	-127.9688	045	00100101	37	25
-125.6250	-126.5625	046	00100110	38	26
-124.2188	-125. 1563	047	00100111	39	27
-122.3125	-123.7500	050	00101000	40	28
-121.4063	-122.3438	051	00101001	41	29
-120.0000	-120.9375	052	00101010	42	2 A
-118.5938	-119.5313	053	00101011	43	2 B
-117.1875	-118.1250	054	00101100	44	2 C
-115.7813	-116.7188	055	00101101	45	2 D
-114.3750	-115.3125	056	00101110	46	2 E
-112.9688	-113.9063	057	00101111	47	2F
-111.5625	-112.5000	060	00110000	48	30
-110.1563	-111.0938	061	00110001	49	31
-108.7500	-109.6875	062	00110010	50	32
-107.3438	-108.2813	063	00110011	51	33
-105.9375	-106.8750	064	00110100	52	34
-104.5313	-105.4688	065	00110101	53	35
-103.1250	-104.0625	066	00110110	54	36
-101.7188	-102.6563	067	00110111	55	37
-100.3125	-101.2500	070	00111000	56	38
-98.9063	-99.8438	071	00111001	57	39
-97.5000	-98.4375	072	00111010	58	3 E
-96.0938	-97.0313	073	00111011	59	3 B
-94.6875	-95.6250	074	00111100	60	3 C
-93.2813	-94.2188	075	00111101	61	3D
-91.8750	-92.8125	076	00111110	62	3 E
-90.4688	-91.4063	077	00111111	63	3 F

MAST YELOCTTY $=3.142 \mathrm{RAD} / \mathrm{SEC}=30.0 \mathrm{RPR}$

INIPIATE ANGLE DESREFS
-90.0000
-88.5938
-87.1875
-85.7813
-84.3750
-82.9688
-81.5625
-80.1563
-78.7500
-77.3438
-75.9375
-74.5313
-73.1250
-71.7188
-70.3125
-68.9063
-67.5000
-66.0938
-64.6875
-63.2813
-61.8750
-60.4688
-59.0625
-57.6563
-56.2500
-54.8438
-53.4375
-52.0313
-50.6250
-49.2188
-47.8125
-45.4063

	ADDR. IN	MEMOPY	
OCTAL	BINARY	DECIMAL	HER
100	01000000	64	40
101	01000001	65	41
102	01600010	E6	42
103	01000011	67	43
104	01000100	68	44
105	01000101	69	45
106	01000110	70	46
107	01000111	71	47
110	01001000	72	48
111	01001001	73	49
112	01001010	74	4 A
113	01001011	75	4 B
114	01001100	76	4 C
115	01001101	77	4 D
116	01001110	78	4E
117	01001111	79	4 E
120	01010000	80	50
121	01010001	81	51
122	01010010	82	52
123	01010011	83	53
124	01010100	84	54
125	01010101	85	55
126	01010110	86	56
127	01010111	87	57
130	01011000	88	58
131	01011001	89	59
132	01011010	SC	5 A
133	01011011	91	5 B
134	01011100	92	5 C
135	01011101	93	5 D
136	01011110	94	5 E
137	01011111	95	5 F

[^0]| AZIMUTH DATA | ANGLES I | INITIATE ANGLE | | ADDE. IN | MEMORY | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DE3RESS | | degrees | OCTAL | BINARY | decimal | HEX |
| -44.0020 | | -45.0000 | 140 | 011 CCCO | 9ϵ | 60 |
| -42.6563 | | -43.5938 | 141 | 01100001 | 97 | 61 |
| -41.2500 | | -42.1875 | 142 | 01100010 | 98 | 62 |
| -39.8438 | | -40.7813 | 143 | 01100011 | 99 | 63 |
| -38.4375 | | -39.3750 | 144 | 01100100 | 100 | 64 |
| -37.0313 | | -37.9688 | 145 | 01100101 | 101 | 65 |
| -35.6250 | | -36.5625 | 146 | 01100110 | 102 | 66 |
| -34.2188 | ORIGINAL PAGE IS | S - 35.1563 | 147 | 01100111 | 103 | 67 |
| -32.8125 | OF POOR QUALITY | Y -33.7500 | 150 | 01101000 | 104 | 68 |
| -31.4063 | | - -32.3438 | 151 | 01101001 | 105 | 69 |
| -30.0000 | | -30.9375 | 152 | 01101010 | 106 | 64 |
| -28.5938 | | -29.5313 | 153 | 01101011 | 107 | 6 B |
| -27.1875 | | -28.1250 | 154 | 01101100 | 108 | 6 C |
| -25.7813 | | -26.7188 | 155 | 01101101 | 109 | 6 D |
| -24.3750 | | -25. 3125 | 156 | 01101110 | 110 | 6 E |
| -22.9688 | | -23.9063 | 157 | 01101111 | 111 | 65 |
| -21.5625 | | -22.5000 | 160 | 01110000 | 112 | 70 |
| -20.1563 | | -21.0938 | 161 | 01110001 | 113 | 71 |
| -18.7500 | | -19.6875 | 162 | 01110010 | 114 | 72 |
| -17.3438 | | -18.2813 | 163 | 01110011 | 115 | 73 |
| -15.9375 | | -16.8750 | 164 | 01110100 | 116 | 74 |
| -14.5313 | | -15.4688 | 165 | 01110101 | 117 | 75 |
| -13.1250 | | -14.0625 | 16ε | 01110110 | 118 | $7 €$ |
| -11.7188 | | -12.6563 | 167 | 01110111 | 119 | 77 |
| -10.3125 | | -11.2500 | 170 | 01111000 | 120 | 78 |
| -8.9063 | | -9.8438 | 171 | 01111001 | 121 | 75 |
| -7.5000 | | -8.4375 | 172 | 01111010 | 122 | 78 |
| -6.0938 | | -7.0313 | 173 | 01111011 | 123 | 7 F |
| -4.6875 | | -5.6250 | 174 | 01111100 | 124 | 70 |
| -3.2813 | | -4.2188 | 175 | 01111101 | 125 | 71 |
| -1.8750 | | -2.8125 | 176 | 01111110 | 126 | 75 |
| -0.4688 | | -1.4063 | 177 | 01111111 | 127 | 71 |

MAST VELOCITY $=3.142 \mathrm{RAD} / \mathrm{SEC}=30.0 \mathrm{RPM}$
MIRROR VELOCITY $=75.398 \mathrm{RAD} / \mathrm{SEC}=720.0 \mathrm{RPM}$
DATA HOLD TIME= 7.812 MSEC
DELTA IHETA $=1.8750$ DEGREES
SCANS PER SECOND= 0.500
AZIMUTH DATY ANGLFS
DEGUEES
0.9375
2.3437
3.7500
5.1562
6.5625
7.9687
9.3750
10.7812
12.1875
13.5937
15.0000
16.4062
17.8125
19.2187
20.0250
22.0312
23.4370
24.8437
26.2500
27.6562
29.0625
30.4687
31.3750
33.2812
34.0875
36.0937
37.5000
38.9062
40.3125
41.7187
43.1250
44.5312
initiate angle degrees
0.0000
1.4063
2.8125
4.2188
5.6250
7.0313
8.4375
9.8438
11.2500
12.6563
14.0625
15.4688
16.8750
18.2813
19.6875
21.0938
22.5000
23.9063
25.3125
26.7188
28. 1250
29.5313
30.9375
32.3438
33.7500
35.1563
36.5625
37.9688
39.3750
40.7813
42.1875
43.5938

	ADDr. IN	MEMCRy	
OCTAL	BINARY	LECILAL	HEX
200	1-ccccoo	128	80
201	10000001	129	81
202	10C00010	130	82
203	10000011	131	83
204	10000100	132	84
205	10000101	133	85
206	10000110	134	86
207	10000111	135	87
210	10001000	136	88
211	10001001	137	89
212	10001010	138	8A
213	10001011	139	8 B
214	10001100	140	8 C
215	10001101	141	8 D
216	10001110	142	8 E
217	10001111	143	8 F
220	10010000	144	90
221	10010001	145	91
222	10010010	146	92
223	10010011	147	93
224	10010100	148	94
225	10010101	149	95
226	10010110	150	96
227	10010111	151	97
230	10011000	152	98
231	10011001	153	99
232	10011010	154	9A
233	10011011	155	98
234	10011100	$15 ¢$	9 C
235	10011101	157	9 D
236	10011110	158	9 E
237	10011111	159	$9 F$

MAST VELOCITP $=3.142 \mathrm{RAD} / \mathrm{SEC}=30.0 \mathrm{RPM}$
MIRROR VELOCITY $=75.398 \mathrm{RAD} / \mathrm{SEC}=720.0 \mathrm{RPM}$
DATA HOLD TIME= 7.812 MSEC
DELTA THETA= 1.8750 DEGREES
SCANS PER SECOND= 0.500

AZIMUTH DITA 4 VGLES	InIttatc angle		ADDE. IN	MEMORY	
DE3ヶ8.S	degrees	OCTAL	binany	DECIMAL	HEX
45.7375	45.0000	240	101cccoo	160	A0
47.3437	46.4063	241	10100001	161	41
48.7500	47.8125	242	1010c010	162	A 2
50.1562	49.2188	243	10100011	163	A 3
51.8025	50.6250	244	10100160	164	A4
52.9687	52.0313	245	10100101	165	A5
54.3750	53.4375	246	10100110	166	A 6
55.7812	54.8438	247	10100111	167	A7
57.1875	56.2500	250	10101000	168	A 8
58.5937	57.6563	251	10101001	169	A9
60.0000	59.0625	252	10101010	17 C	Aa
61.4062	60.4688	253	10101011	171	1 B
62.8125	61.8750	254	10101100	172	AC
64.2187	63.2813	255	10101101	173	AD
65.6250	64.6875	256	10101110	174	$A E$
67.0312	66.0938	257	10101111	175	AF
68.4375	67.5000	260	10110000	176	B0
69.8437	68.9063	261	10110001	177	B1
71.2500	70.3125	262	10110010	178	B2
72.6562	71.7188	263	10110011	179	B3
74.0525	73. 1250	264	10110100	180	B4
75.4687	74.5313	265	10110101	181	85
76.8750	75.9375	266	10110110	182	B6
78.2812	77.3438	267	10110111	183	E7
79.6375	78.7500	270	10111060	184	B8
81.0937	80.1563	271	10111001	185	89
82.5000	81.5625	272	10111010	186	BA
83.9062	82.9688	273	10111011	187	EE
85.3125	84.3750	274	10111100	188	BC
86.7187	85.7813	275	10111101	189	ED
88.1250	87.1875	276	10111110	190	BE
89.5312	88.5938	277	10111111	191	PF

MAST VELOCIIY=	$3.142 \mathrm{RAD} / \mathrm{SEC}=$	30.0 RPM
MIRROR VELOCITY=	$75.398 \mathrm{RAD} / \mathrm{SEC}=$	720.0 RPM
DATA HOLD PIME=	7.812 us EC	
DELTA THETA= 1.8	3750 DEGREES	
SCANS PER SECOND=	0.500	

ORIGINAL PAGE IS OF POOR QUALITY
AZIMOFH BUTA ANGLES
EESABUS
90.9375
92.3437
93.7500
95.1562
96.5625
97.9687
99.3750
100.7812
102.1875
103.5937
105.0000
106.4062
107.8125
109.2187
110.6250
112.0312
113.4375
114.8437
116.2500
117.6562
119.0625
120.4687
121.8750
123.2812
124.6875
126.0937
127.5000
128.9062
130.3125
131.7187
133.1250
134.5312
INITIATE ANGLE
DEGREES
90.0000
91.4063
92.8125
94.2188
95.6250
97.0313
98.4375
99.8438
101.2500
102.6563
104.0625
105.4688
106.8750
108.2813
109.6875
111.0938
112.5000
113.9063
115.3125
116.7188
118.1250
119.5313
120.9375
122.3438
123.7500
125.1563
126.5625
127.9688
129.3750
130.7813
132.1875
133.5938

	ADDR. IN	MEMORY	
OCTAL	binazy	decimal	HEX
300	110ccooo	192	co
301	11000001	193	C1
302	11000010	194	C2
303	11000011	195	C3
304	11000100	196	C4
305	11000101	197	C5
306	11000110	198	C6
307	11000111	199	C7
310	11001600	200	C8
311	11001001	201	C9
312	11001010	202	CA
313	11001011	203	CB
314	11001100	204	CC
315	11001101	205	CD
316	11001110	206	CE
317	11001111	207	CF
320	11010600	208	D 0
321	11010001	209	D1
322	11010010	210	D2
323	11010011	211	D3
324	11010100	212	D4
325	11010101	213	D5
326	11010110	214	D6
327	11010111	215	D7
330	11011000	216	D8
331	11011001	217	D9
332	11011010	218	DA
333	11011011	219	DB
334	11011100	220	DC
335	11011101	221	LD
336	11011110	222	DE
337	11011111	223	DE

MAST VELOCITY $=3.142 \mathrm{HAD} / \mathrm{SEC}=30.0 \mathrm{REM}$ MIRROR VELOCITY $=75.398 \mathrm{RAD} / \mathrm{SEC}=720.0 \mathrm{RPM}$ DATA HOLD TIME= 7.812 MSEC
DELTA THETA= 1.8750 DEGREES
SCANS PER SECOND= 0.500

AZIMUPG DAFA ANGLTS
DEGates
135.3373
137.3437
138.7500
140.1562
141.5625
142.9687
144.3750
145.7812
147.1875
148.5937
150.0000
151.4062
152.8125
154.2187
155.6250
157.0312
158.4375
159.8437
161.2500
162.6562
164.0625
165.4687
166.8750
158.2812
169.6875
171.0937
172.5000
173.9062
175.3125
176.7187
178.1250
179.5312

INITIATE ANGLE

	ADDE. IN	R	
OCTAL	binary	decimal	HEX
340	1110ccoo	224	20
341	11100001	225	E1
342	111cco 10	226	22
343	11100011	227	E 3
344	11100160	228	E4
345	11100101	229	E5
346	11100110	230	E6
347	11100111	231	E7
350	11101000	232	E8
351	11101001	233	E9
352	11101010	234	EA
353	11101011	235	EB
354	11101100	236	EC
355	11101101	237	ED
356	11101110	238	re
357	11101111	239	EF
360	11110000	24 C	F 0
361	11110001	241	F1
362	11110010	242	F2
363	11110011	243	F3
364	11110100	244	F4
365	11110101	245	F5
366	11110110	246	F6
367	11110111	247	F7
370	11111000	248	F8
371	11111001	249	F9
372	11111010	250	FA
373	11111011	251	FE
374	11111100	252	FC
375	11111101	253	FI
376	11111110	254	Fe
377	11111111	255	FF

degrees
135.0000
136.4063
137.8125
139.2188
140.6250
142.0313
143.4375
144.8438
146.2500
147.6563
149.0625
150.4688
151.8750
153.2813
154.6875
156.0938
157.5000
158.9063
160.3125
161.7188
163. 1250
164.5313
165.9375
167.3438
168.7500
170.1563
171.5625
172.9688
174. 3750
175.7813
177. 1875
178.5938

EX E 1 22 4 6 8
MAST VELOCITY $=3.142 \mathrm{RAD} / \mathrm{SEC}=30.0 \mathrm{RPM}$

| MIRROR $V E L O C I T Y=$ | 75.398 RAD $/ \mathrm{SRC}=720.0 \mathrm{RPM}$ |
| :--- | :--- |\quad ORIGINAL PAGE IS

DATA HOLD TIME= 7.812 MSEC
OF POOR QUALITY
DELTA THERA= 1.8750 DEGREES
SCANS PER SECOND= 0.500

TABLE 2.1.2
AVAILABLE AZIMUTH CENTER OE SCAN ANGLES

CENTER Of SCAN
ANGL ${ }^{\square}$
-180.0000
-177.1875
-174.3750
-171.5625
-168.7500
-165.9375
-163.1250
-160.3125
-157.5000
-154.6875
-151.8750
-149.0625
-146. 2500
-143.4375
-140.6250
-137.8125

- 135.0000
- 132.1875
-129.3750
-126.5625
-123.7500
-120.9375
-118.1250
-115.3125
-112.5000
-109.6875
-106.8750
-104.0625
-101.2500
-98.4375
-90.6250
-92.8125
-90.0000
-87.1875
-84.3750
-81.5625
-78.7500
-75.9375
-73.1250
-70.3125
-67.5000
-64.6875
-61.8750
-59.0625
-56.2500
-53.4375
-50.6250
-47.8125
-45.0000
-42.1875
-33.3750
-36.5625
-33.7500
-30.9375
-23.1250

RLF. ANGLE

OCTAL	BIAARY	HEX
200	10000000	80
176	01111110	$7 E$
174	01111100	7 C
172	01111010	7 A
170	01111000	78
166	01110110	7 G
164	01110100	74
162	01110010	72
150	01110000	70
156	01101110	6 E
154	01101100	6 C
152	01101010	6 A
150	01101000	68
146	01100110	66
144	01100100	64

$136 \quad 01011110 \quad 5 \mathrm{E}$
$13401011100 \quad 5 \mathrm{C}$
13201011010 5A
$130 \quad 01011000 \quad 58$
$12801010110 \quad 56$
$124 \quad 01010100 \quad 54$
$12201010010 \quad 52$
$120 \quad 01010000 \quad 50$
$116^{\circ} 010011104 \mathrm{E}$
$11401001100 \quad 4 \mathrm{C}$
112010010104 A
$110 \quad 01001000 \quad 48$
$10601000110 \quad 46$
$104 \quad 01000100 \quad 44$
1020100001042
$100 \quad 01000000 \quad 40$
07600111110 3E
07400111100 3C
07200111010 3A
$070 \quad 00111000 \quad 38$
$\begin{array}{lll}066 & 00110110 & 36 \\ 004 & 00110100 & 34\end{array}$
$06200110010 \quad 32$
$060 \quad 0011000030$
$\begin{array}{lll}056 & 00101110 & 2 E \\ 054 & 00101100 & 2 C\end{array}$
05200101010 2A
$\begin{array}{lll}050 & 00101000 & 28 \\ 046 & 00100110 & 26\end{array}$
$044 \quad 00100100 \quad 24$
$04200100010 \quad 22$
$040 \quad 0010000020$
$03600011110 \quad 1 \mathrm{E}$
$034 \quad 00011100$ 1C
$032 \quad \mathrm{G} 0011010$ 1A
$030 \quad 00011000 \quad 18$
$\begin{array}{lll}026 & 00010110 & 16 \\ 024 & 00010100 & 14\end{array}$

COMPOTER CJMMAND NORT

OCTAL	EINAPY
300	$110 C C C C O$

$277 \quad 10111111$
$276 \quad 10111110$
27510111101
27410111100
27310111011
27210111010
27110111001
270 10111C00
26710110111
26610110110
26510110101
$264 \quad 10110100$
$263 \quad 10110011$
26210110010
$261 \quad 10110001$
260 10110cco
$257 \quad 10101111$
$256 \quad 10161110$
$255 \quad 10101101$
25410101100
$253 \quad 10101011$
252 101C1010
$251 \quad 10101001$
250 101c1cco
$247 \quad 10100111$
$246 \quad 10100110$
$245 \quad 10100101$
244 10100100
$243 \quad 10100011$
$242 \quad 10100010$
$241 \quad 10100001$
240 101CCCCO
23710011111
23610011110
23510011101
$234 \quad 10011100$
23310011011
23210011010
$231 \quad 10011001$
230 16011000
22710010111
22610010110
22510010101
22410010100
22310010011
222 16010010
$221 \quad 10010001$
220 1001CCC0
21710001111
$216 \quad 10001110$
21510001101
214 1cce11co
21310001011
212 1CCC1010

TABLC 21.2 Tofer: :...

TABLE 2.1.2 (Continued)

-25.3125	022	C0010010	12	211	10001001
-22.5000	020	00010000	10	210	10001cco
-19.6875	016	C0001110	0 E	207	10000111
-16.3730	014	. 00001100	0 C	206	10ccol10
-14.0625	012	co001010	0A	205	10000101
-11.2500	010	00001000	08	204	106C01c0
-0.4375	006	00000110	06	203	10000011
-5.6250	004	00000100	04	202	10CCC010
-2.8125	002	00000010	02	201	10000001
0.0000	000	00000000	00	200	1CCCCCO0
2.8125	376	11111110	FE	377	11111111
5.6250	374	11111100	FC	376	11111110
3.4375	372	11111010	FA	375	11111101
11.2500	370	11111000	F8	374	11111100
14.0625	366	11110110	F6	373	11111011
16.8750	364	11110100	F4	372	11111010
19.6875	362	11110010	F2	371	11111001
22.5000	360	11110000	F0	370	11111000
25.3125	356	11101110	EE	367	11110111
28.1250	354	11101100	BC	366	11110110
30.7375	352	11101010	Ⓐ	365	11110101
33.7500	350	11101000	E8	364	11110100
36.5625	346	11100110	E6	363	11110011
39.3750	344	11100100	E4	362	11110010
42.1875	342	11100010	E2	361	11110001
45.0000	340	11100000	E0	360	11110 CC0
47.8125	336	11011110	DE	357	11101111
50.5250	334	11011100	DC	356	11101110
53.4375	332	11011010	DA	355	11101101
56.2500	330	11011000	D8	354	111011c0
59.0625	326	11010110	D6	353	11101011
61.8750	324	11010100	D4	352	11101010
64.68750RIGINAL PAGE	802	11010010	D2	351	11101001
67.5000 OF POOR QUALIT	TY20	11010000	D0	350	111C1000
70.3125 (316	11001110	CE	347	11100111
73.1250	314	11001100	CC	346	11100110
75.9375	312	11001010	CA	345	11100101
78.7500	310	11001000	C8	344	11100100
81.5625	306	11000110	c6	343	11100011
84.3750	304	11000100	C4	342	11100010
87.1875	302	11000010	$こ 2$	341	11100001
90.0000	300	11000000	CO	340	111 CCCCO
92.8125	276	10111110	B9	337	11011111
95.6250	274	10111100	BC	336	11011110
98.4375	272	10111010	BA	335	11011101
101.2500	270	10111000	B8	334	110111 Co
104.0625	266	10110110	B6	333	11011011
106.8750	264	10110100	34	332	11011010
109.6875	262	10110010	B2	331	11011001
112.5000	260	10110000	80	330	11011060
115.3125	256	10101110	AE	327	11010111
118.1250	254	10101100	AC	326	11010110
120.9375	252	10101010	AA	325	11010101
123.7500	250	10101000	A 8	324	11010160
126.5625	246	10100110	A 6	323	11010011
129.3750	244	10100100	A 4	322	11010010
132.1875	242	10100010	A 2	321	11010001
135.3000	240	10100000	A0	320	11010 Cc0
137.8125	236	10011110	97	317	11001111
140.6250	234	10011100	9 C	316	11001110

TABLE 2.1.2 (Continued)

143.4315	232	10011010	$9 A$	315	11001101
140.2500	230	10011000	98	314	$110011 C 0$
149.0625	226	10010110	96	313	11001011
151.8750	224	19010100	94	312	11001010
154.6875	222	10010010	92	311	11001001
157.50100	220	10010000	90	310	$11001 C 00$
160.3125	216	10001110	8 E	307	11000111
153.1250	214	10001100	8 C	306	11000110
165.9375	212	10001010	8 A	305	11000101
168.7500	210	10001000	88	304	$11 C C 01 C 0$
171.5625	206	10000110	86	303	11000011
174.3750	204	10000100	84	302	11000010
177.1875	202	10000010	82	301	11000001

one azimuth initiate angle $\left(\theta_{K}\right)$ may be entered using 8 mini-switches on the azimuth board (see Appendix A for location). In this mode the azimuth shot number will automatically be set to zero. For testing elevation scanning at a fixed azimuth, the "azimuth override" switch should be set.

The controller can output an "end of elevation scan" (EOES) and/or an "end of scan" (EOS) signal. The EOES signal will be high at the end of each elevation scan. The EOS signal will be high when the last elevation shot at the last azimuth angle is completed. Either of these signals may be sent to the computer in the telemetry word to initiate an interrupt. The choice will be made according to how the software handles the data.

2.2 Elevation Angles

The set of possible fire locations in the elevation direction (β) form a "grid" of 256 radials within a 90° scan sector. The angular separation between adjacent radials is $90 / 256=0.35^{\circ}$. The particular elevation angle at which a laser fire is desired is called β_{K}. Figure 2.2.1 shows β_{K} and a few adjacent β^{i} s. Table 2.2 .1 lists all available β angles. Due to a constraint on how fast the laser can fire, the minlmum separation in for consecutive laser shots will usually be greater than 0.35°. The value of the minimum separation of adjacent laser shots, $\Delta \beta_{m i n}$, is determined by the mirror speed, since: laser frequency $=2 \mathrm{~W}_{\mathrm{m}} / \Delta \beta_{\text {min }}$ where $W_{\text {m }}$ is the speed of the mirror in revolutions/second. Table 2.2 .1 shows $D \beta_{\text {min }}$ for given scan speed, $\Delta \theta$, and laser speed capability. The $\Delta \beta_{\text {min }}$ restriction must be kept in mind when programming the elevation memory so pulse rates exceeding the lasex capability are not requested. An additional constraint on β angles is imposed by the mirror. Since the laser beam has a finite width, and the mirror face a finite length, full laser power cannot be delivered into the

2.2.1 ELEVATION ANGLES

available elevation	a angles		ADDR. IV	MEMORY	
Legrees		OCTAL	BINARY	DECIMAL	HEX
0.0000	*	000	00000000	0	00
0.3516	+	001	COCOCOO1	1	01
0.7031	*	002	coocoo 10	2	02
1.0547	*	003	c0000011	3	03
1.4063	*	004	cocooto	4	04
1.7578	*	005	C0000101	5	05
2.1094	*	006	00000110	6	06
2.4609	*	007	c0000111	7	07
2.8125	*	070	c0001000	8	08
3.1641	*	011	00001001	9	09
3.5156	*	012	C0001010	10	OA
3.8672		013	C0001011	11	OB
4.2188	*	014	C0001100	12	OC
4.5703	*	015	C0001101	13	OD
4.9219		016	C0001110	14	OE
5.2734		017	C0001111	15	OP
5.6250	*	020	C001c000	16	10
5.9766	*	021	C0010001	17	11
6.3281	*	022	c0010010	18	12
6.6797	*	023	c0010011	19	13
7.0313	*	024	c0010 100	20	14
7.3828	*	025	C0010101	21	15
7.7344	*	026	cool0110	22	16
8.0859	*	027	C00 10111	23	17
8.4375	*	030	00011000	24	18
8.7891	*	031	00011001	25	19
9.1406	*	032	C0011010	26	1 A
9.4922		033	C0011011	27	1 B
9.8438		034	00011100	28	1 C
10.1953		035	00011101	29	1D
10.5469		036	C0011110	30	1 E
10.8984		037	C0011111	31	1 F

DELTA BLTA MLA. = 1.05469 DEGREES

```
* ASTERISK INDLCATES ONLY PARTIAL LASER PONER AVAILABLE AT TfIS ELEVATION
```

above data valid when:
LASER LTMITED TO 10000.0 HERTZ MIRROR VECOCITY $=720.0$ RPM BEAM WIDTH= 0.3750 INCHES

Avarlable elevatio	v amgles		ADDR．In	merory	
degrees		OCTAL	BINARY	DECIMAL	HこX
11.2500	＊	040	00100000	32	20
11.6016	＊	041	c0100001	33	21
11.9531	＊	042	00100010	34	22
12.3047	＊	043	00100011	35	23
12.6563	＊	044	00100100	36	24
13.0078		045	00100101	37	25
13.3594	＊	046	co100110	38	26
13.7109	＊	047	00100111	39	27
14.0625		050	00101000	40	28
14.4141		051	00101001	41	29
14.7656		052	00101010	42	2A
15.1172		053	00101011	43	2e
15.4688		054	00101100	44	2C
15.8203		055	00101101	45	2D
16.1719		056	00101110	46	2 E
16.5234		057	00101111	47	$2 F$
16.8750	－	060	00110000	48	30
17.2266		061	00110001	49	31
17.5781		062	00110010	50	32
17.9297		063	00110011	51	33
18.2813		064	00110100	52	34
18.6328		065	00110101	53	35
18.9844		066	00110110	54	36
19.3359		067	00110111	55	37
19.6875		070	00111000	56	38
20.0391		071	00111001	57	39
20.3906		072	00111010	58	3 A
20.7422		073	00111011	59	38
21.0938		074	00111100	60	3 C
21.4453		075	00111101	61	3 D
21.7969		076	00111110	62	3 E
22.1484		077	00111111	63	3 F

DELTA BETA MIN．$=1.05469$ DEGREES
＊ASTERISK INDICATES ONLY PARTIAL LASER POかER AVAIL』BLE AT this ELEVATION

ABOVE DATA VALID FHEN：
LASER LIMITED TO 10000.0 HERTZ
MIRROR VELOCITY＝ 720.0 RPM
BEAM $\operatorname{HIDTH}=0.3750$ INCRES

AVAILable elevatioy	ANGLES		ADDR. In	MEMORY	
DEGREDS		octal	BINARY	DECIMAL	HDX
22.5000		100	01000000	64	40
22.8516		101	01000001	65	41
23.2031		102	01000010	66	42
23.5547		103	01000011	67	43
23.9053		104	01000100	68	44
24.2578		105	01000101	69	45
24.6094		106	01000110	70	46
24.9609		107	01000111	71	47
25.3125		110	01001000	72	48
25.6641		111	01001001	73	49
26.0156		112	01001010	74	4 A
26.3672		113	01001011	75	4 B
26.7188		114	01001100	76	4 C
27.0703		115	01001101	77	4 D
27.4219		116	01001110	78	4 E
27.7734		117	01001111	79	4 F
28.1250		120	01010000	80	50
28.4766		121	01010001	81	51
28.8281		122	01010010	82	52
29.1797		123	01010011	83	53
29.5313		124	01010100	84	54
29.8828		125	01010101	85	55
30.2344	ORIGINAL PAGE IS	126	01010110	86	56
30.5859	OF POOR QUALITY	127	01010111	87	57
30.9375	O POOR QUALHY	130	01011000	88	58
31.2891		131	01011001	89	59
31.6406		132	01011010	90	5 A
31.9922		133	01011011	91	5 B
32.3438		134	01011100	92	5 C
32.6953		135	01011101	93	5D
33.0469		136	01011110	94	5 E
33.3984		137	01011111	95	5 F

DELTA BETA MIN. = 1.05469 DEGREES

* ASTERTSK INDICATES ONLY PABTIAL LASER POWRR AVAILABLE AY THIS RLEVATION

ABOVE DATA VALID WHON:
LASER LIMITRD TO 10000.0 HRRTZ
MIRROR VELOCITY $=720.0 \mathrm{BPM}$
BEAM $\mathrm{HIDTH}=0.3750$ INCHES

available elevaiton angles		ADDR. IN	MEMORY	
degases	OCTAL	binary	CECIMAL	H3 X
33.7500	140	01100000	96	60
34.1016	141	011ccoot	97	61
34.4531	142	01100010	98	62
34.8047	143	01100011	99	63
35.1563	144	01100100	100	64
35.5078	145	01100101	101	65
35.8594	146	01100110	102	66
36.2109	147	01100111	103	67
36.5625	150	01101000	104	68
36.9141	151	01101001	105	69
37.2656	152	01101010	106	6 A
37.6172	153	01101011	107	6 B
37.9688	154	01101100	108	6 C
38.3203	155	01101101	109	6 D
38.6719	156	01101110	110	6 E
39.0234	157	01101111	111	6 F
39.3750	160	01110000	112	70
39.7266	161	01110001	113	71
40.0781	162	01110010	114	72
40.4297	163	01110011	115	73
40.7813	164	01110100	116	74
41.1328	165	01110101	117	75
41.4844	166	01110110	118	76
41.8359	167	01110111	119	77
42.1875	170	01111000	120	78
42.5391	171	01111001	121	79
42.8906	172	01111010	122	7 A
43.2422	173	01111011	123	7 B
43.5938	174	01111100	124	7 C
43.9453	175	01111101	125	7 D
44.2969	176	01111110	126	7 E
44.6484	177	01111111	127	7 F

DELTA BEPA MIN. $=1.05469$ DEGREES

```
* ASterisk Indicates only partial laser poder available at this elevation
```

above data valid hese:
LASER LIMITED TO 10000.0 HERTZ MIRRCR VRLOCITY $=720.0 \mathrm{RPM}$ BEAM AIDTH= 0.3750 INCHES

avatlable elevation angles		ADDR. IN	MEMORY	
drgaers	octal	BINARY	EECIMAL	HSx
45.0000	200	10000000	128	80
45.3516	201	10 Cccoot	129	81
45.7031	202	10000010	130	82
46.0547	203	10000011	131	83
46.4063	204	10000100	132	84
46.7578	205	10000101	133	85
47.1094	206	10000110	134	86
47.4609	207	10000111	135	87
47.8125	210	10001000	136	88
48.1641	211	10001001	137	89
48.5156	212	10001010	138	8 A
48.8672	213	10001011	139	8B
49.2188	214	10001100	140	8 C
49.5703 IGINAL PAGE IS	215	10001101	141	8 D
49.9219 KIGINAL PAGITM	216	10001110	142	8 E
50.2734 UF POOR QUASIL	217	10001111	143	$8{ }^{\text {P }}$
50.6250	220	10010000	144	90
50.9766	221	10010001	145	91
51.3281	222	10010010	146	92
51.6797	223	10010011	147	93
52.0313	224	10010100	148	94
52.3828	225	10010101	149	95
52.7344	226	10010110	150	96
53.0853	227	10010111	151	97
53.4375	230	10011000	152	98
53.7891	231	10011001	153	99
54.1406	232	10011010	154	9 A
54.4922	233	10011011	155	98
54.8438	234	10011100	156	9 C
56.1953	235	10011101	157	9 D
55.5469	236	10011110	158	9 E
55.8984	237	10011111	159	9 F

DELTA BETA NIN. $=1.05469$ DGGREES

* asterisk indicates only parrial laser pofer available at this elevation

ABOVE DATA VALID WHEK:
LASER LIMITED TO 10000.0 HERTZ
MIRHOK VELOCITY $=720.0$ RPM
BEAM AIDTH= 0.3750 INCHES

Availabse Elavaition angles		ADDR. In	MEMORY	
Degiees	OCTAL	BINARY	decimal	HEX
56.2500	240	10100000	160	A0
56.6016	241	10100001	161	A 1
56.9531	242	10100010	162	A2
57.3047	243	10100011	163	A 3
57.6563	244	10100100	164	44
56.0078	245	10100101	165	A5
58.3534	246	10100110	166	A6
58.7109	247	10100111	167	A 7
59.0625	250	10101000	168	48
59.4141	251	10101001	169	A 9
59.7656	252	10101010	170	AA
60.1172	253	10101011	171	AB
60.4688	254	10101100	172	$A C$
60.8203	255	10101101	173	AD
61.1719	256	10101110	174	AE
61.5234	257	10101111	175	AF
61.8750	260	10110000	176	B0
52.2266	261	10110001	177	B1
62.5781	262	10110010	178	B2
62.9297	263	10110011	179	B3
63.2813	264	10110100	180	84
63.6328	265	10110101	181	B5
63.9844	266	10110110	182	B6
54.3359	267	10110111	183	87
64.6875	270	10111000	184	E8
65.0391	271	10111001	185	B9
65.3906	272	10111010	186	EA
65.7422	273	10111011	187	BB
66.0938	274	10111100	188	BC
66.4453	275	10111101	189	BD
66.7969	276	10111110	190	BE
67.1484	277	10111111	191	BF

DELPA BETA MAN = 1.05469 DEGREES

* asterisk indicates only partial laser porer Ay AILABLE AT THIS ELEVATION
above data valid when:
LaSER LIMITED TO 10000.0 HERTZ MIRROR VELOCITY= 720.0 BPM BEAM KIDIG= 0.3750 INCHES

available elfvation degrees	ES	OCTAL	ADDR. BINARY	METORY DECimal	HEX
67.5000		300	11000000	192	co
67.8516		301	11000001	-193	$\simeq 1$
68.2031		302	11000010	194	C2
63.5547		303	11000011	195	c3
68.9063		304	11000100	196	C4
69.2578		305	11000101	197	こ5
69.6094		306	11000110	198	C6
69.9609		307	11000111	199	C7
70.3125		310	11001000	200	C8
70.6641		311	11001001	201	C9
71.0156		312	11001010	202	CA
71.3672		313	11001011	203	CB
71.7188	ORIGINAL PAGE IS	314	11001100	204	CC
72.0703	OF POOR QUALIAY	315	11001101	205	CD
72.4219		316	11001110	206	CE
72.7734		317	11001111	207	CF
73.1250		320	11010000	208	D0
73.4756		321	11010001	209	D1
73.8281		322	11010010	210	D2
74.1797		323	11010011	211	D3
74.5313		324	11010100	212	D4
74.8928		325	11010101	213	D5
$75.2344 *$		326	11010110	214	D6
75.5859 *		327	11010111	215	D7
75.9375 *		330	11011000	216	D8
76.2891 *		331	11011001	217	D9
75.6406 *		332	11011010	218	DA
76.9922 *		333	11011011	219	DB
77.3438 *		334	11011100	220	DC
77.6953 *		335	11011101	221	DD
78.0469 *		336	11011110	222	DE
78.3984%		337	11011111	223	LF

DELTA BETA MIN. $=1.05469$ DEGRRES

* asterisk midicates only partial laser poner available at this elevation
above data valid when:
LASER LIMITED TO 10000.0 HERTZ
MIRROR VELOCITY $=720.0$ RPM
BEAM WIDTH= 0.3750 INCHES

DELTA BETA AIN. $=1.05469$ DEGREES

* ASterisk indicates only partial laser poner availeble at this elevation

ABOVE DATA VALID WHEN:
LASER LIMITED PO 10000.0 HERTZ
MIRROR VELOCITY $=720.0 \mathrm{RPG}$
BEAM MIDTH $=0.3750$ INCHES
full 90° sweep, (Fig. 2.2.2). An 8-bit word in elevation memory exists for each possible elevation fire angle, β_{K}. To select a particular β_{K}, a " 1 " is stored in the most significant bit of β_{K} 's memory word. This is known as the fire bit, and will cause a shot at elevation β_{K} to be fired. The five least significant bits in β_{K} 's word should be programmed to contain a tag to identify β_{K}. This tag is the elevation shot number, which has a value between 0 and 31 encoded in five bits. This elevation shot number will be used to index a look-up table in the computer which will contain the actual value of $\beta_{K^{*}}$. Each elevation scan may contain up to 32 shots at various β_{K} 's. Table 2.2 .1 shows the set of possible β_{K} angles, and the address of the corresponding elevation memory word. Note that the same pattern of elevation shots is repeated at each azimuth data angle. An elevation angle can be added as a reference or offset angle by means of 8 -mini switches at the top of the elevation board (see layout Appendix B). These switches will normally be set once to compensate for mechanical misalignment and be left alone. Changing the settings will shift the pattern of shots through angles of elevation.

On the edge of the elevation board of the controller, eight L.E.D.'s indicate the last elevation of fire. Note that what is shown will actually be one greater than the angle asked for in elevation memory. This is explained in Part 3, and is compensated for by the offset angle switches. The number shown on the indicator can be converted from octal to degrees in using Table 2.2.1.

For test and alignment purposes, or to emulate the single laser system, the elevation durection of the controller can be run in the test mode. In this mode (which is selected by the "elevation mode select" switch) the laser will fire at just one elevation as defined with the 8 miniswitches called "test mode elevation angle". See Appendix A for card layouts

Fig. 2.2.2 - Mirror limitations on β angles IT CAN RE SHOWN:

$$
\begin{aligned}
\beta_{1} & =2\left\{\cos ^{-1}\left(.383 \frac{L-W}{L}\right)\right\}-135^{\circ} \\
\beta_{N} & =135^{\circ}-2\left\{\cos ^{-1}\left(.383 \frac{L+W}{L}\right)\right\}
\end{aligned}
$$

FOR $L=1.2426^{\prime \prime}$,

$$
\begin{aligned}
& \beta_{1}=2\left\{\cos ^{-1}(.383-.308 \mathrm{~W})\right\}-135^{\circ} \\
& \beta_{N}=135^{\circ}-2\left\{\cos ^{-1}(.383+.308 \mathrm{~W})\right\}
\end{aligned}
$$

to lacate specific switches and L.E.D.'s. In the test mode the data is tagged with elevation shot number set equal to zero.

2.3 Rate Buffer

As illustrated in Figure 2.3.1, when an elevation scan initiates at an azimuth θ_{K}, and is finished by $\theta_{\mathrm{K}}+\Delta \theta$, the rate buffer memory will in general still contain some information through an additional angle θ_{c}, or an additional time $\theta_{c} / \omega_{\theta}\left(\omega_{\theta}\right.$ in Deg./sec.). The rate buffer is a first in-first out memory which is 40 words deep. Data can be generated at a rate of 10 Khz (speed of the laser), but telemetry may only transmit data at a rate of 2.5 Khz (word rate). The controller will fill up the rate buffer memory as data is generated and the telemetry system will pull out words and transmit them as fast as it can. Presently the interface to telemetry is a simple one which makes the laser data have top priority, and only when the rate buffer is empty can vehicle data be sent. Vehicle data is then sent continuously until more laser data appears in the rate buffer. A future modification may allow for just one 16-word block of vehicle data to be transmitted after each elevatıon scan, and then all data suppressed until the next elevation scan. Other configurations are possible with modest hardware additions.

How soon the rate buffer empties will perhaps have an effect on how closely packed the azimuths can be placed, and this time is related to the scan speed, the telemetry rate, the number of elevation shots per azimuth, etc. In Figure 2.3.1, at azimuth $\theta_{K}+\Delta \theta+\theta_{c}$ the rate buffer memory is clear, all information from the scan initiated at θ_{K} having been transmitted. A calculation of θ_{c} under worst case condituons yields:

$$
\left.\theta_{c}=N_{E / A} \frac{\left(W_{\theta}\right.}{r_{T}}-\frac{\Delta \beta \min \Delta \theta}{90^{\circ}}\right)
$$

Fig. 2.3.1 -Azimuth angles And θ_{C}

$N_{E / A}$	ω_{θ}	r_{T}	$\Delta \beta_{\text {MIN }}$	$\Delta \theta$	θ_{C}
32	180	2500	1.05°	2°	1.557°
32	90	2500	1.05°	2°	0.405°
32	90	2500	0.70°	2°	0.654°
32	90	1500	0.70°	2°	1.422°

TABLE 2.3:1
"NATELBUFFER CLEAR' ANGLE θ_{c}

WHERE,

$$
\theta_{c}=N_{E / A}\left(\frac{W_{\theta}}{r_{T}}-\frac{\Delta \beta_{M I N} \Delta \theta}{90^{\circ}}\right)
$$

where:

$$
\begin{aligned}
N_{E / A} & =\text { number of elevatiom shots per azimuth } \\
r_{t} & =\text { rate of telemetry link (words/sec) } \\
W_{\theta} & =\text { speed of mast rotation (deg./sec.) } \\
\Delta \beta_{\text {min }} & =\text { min. separation in } \beta \text { of elevation shots (deg.) } \\
\Delta \theta & =34 \frac{\left(W_{\theta}\right.}{W_{m}}-\text { "slop" in azimuth (deg.) }
\end{aligned}
$$

Some values are shown in Figure 2.3.1.

2.4 Features

A ability to stand still in azimuth while scanning in elevation (use "azimuth override" switch)

B ability to completely disable laser trigger pulses (use "laser disable" switch)

C test mode - a single angle may be set with "fire aware test mode" switches in elevation and/or azimuth. It is also possible to have one axis in test mode, and the other in memory mode. (Use "elevation mode select" and "azimuth mode select" switches, and "fire angle test mode" switches (8) to specify angle).

D L.E.D.'s readout last address of fire in both axes.
E fire protection circuit - this final output stage of the controller protects the laser from being fired at too rapid a rate (due to hardware fanlure, noise, incorrectly programed memory, etc.). A 5 Khz or 10 Khz limit is switch selectable (use " $5 \mathrm{Khz} / 10 \mathrm{Khz}$ select" switch). A yellow L.E.D. warns that the $10 \mathrm{Khz} \mathrm{l}_{\text {imit }}$ is in effect.

F the system initializes itself with vehicle powerup.
G UV-Proms are used for memories, so that scanning patterns may be easily changed. (See Section 6.6).
\# memories are mounted on a physically separate board so that other memory types may be substituted (ram, Gaproms, etc.). All are compatible as long as access time $u 4 \mathrm{~ns}$.

I With only slight rewiring, the 32 azimuth with 32 elevation/azimuth scheme can be changed to a ' 16 with 64 " or "64 with 16" scheme. Connections for signals $S_{S A}$ and $S_{S E}$ exist to expedite, the changeover (see controller schematics, Appendix A).

3.

Introduction

Circuit operation is discussed in reference to the circuit diagrams in Appendix A. A block diagram representation in Figures A-9. and A-10 shows the various functional blocks of the ML/MD controller. The reader should refer often to the circuit diagrams and timing diagram in Appendix A while reading the following text.

3.1 Azimuth

The pulse output of the azimuth encoder (ASP) is counted in the 8bit azimuth counter (Chips D7 and D8). The zero reference pulse (AZR) is used to clear this counter. Accordingly, with system start-up the mast must be allowed to rotate once before that data will be valid. The azimuth counter's output is being constantly added (in chips D33 and D34) to the contents of an 8-bit latch (D28) which should contain the desured reference or center of scan angle for the azimuth axis. Bit C is a control bit which means that the command link register contains a center of scan angle. On the first pulse on ASP after C goes high, the bits Cl-C7 will be latched into D28. The "data hold time" is that time during which the command for a center of scan angle must remain in the command link UART to insure the controller will pick it up. The LSB of this angle will always be zero because of available capacity of the present command link (pin 18 of D28 is tied low). The output of chips D33 and D34 is then the sum of the actual mast position and the reference angle and is used to address the azamuth memory (AA -AA7); thus the memory is checked at each mast position to see if that position is one at which to fire. These same address lines are displayed with 8 L.E.D.S. The state of the lin es is latched (25) at the time of a laser fire and can
accordingly be thought of as "address of last laser fire". The same lines (AA -AA7) are constantly being compared (D10 and D11) with the 8-bit switch setting in case the "test mode" is selected, in which case if the present address matches the switch settings, the equivalence signal (ACMPE) goes high. The sigmal "AFIRE" is thus either the fire bit appearing as the memory is addressed, or the equivalence signal from the comparator if test mode is selected. With the occurrence of the next pulse on ESP, AFIRE is latched and AFIREL will remain high until the latch is re-enabled (pin \#1 on D29). The circuit that determines when AFIREL is allowed to be cleared consists mainity of chips D21, D22, and D5, D21 and D22 from an 8-bit counter ($\Delta \theta$ CNTR), and D5 simply detects a full count of 255 . The purpose of the circuit is to hold AFIREL until 256 pulses from ESP have been counted, thus assuring that all possible elevation angles have been checked as potential fire angles at that azimuth. Note that as soon as a fire azimuth is reached, the system will fire at the next desired elevation which appears. It does not wait for the start of a mirror face and then fire shots in a "top to bottom" order, as doing so would dictate twice the laser speed for the same scan rates. AFIREL acts as an enable for chips D21 and D22 by pulling the clear inputs high. When the counter reaches 255 the output of D5 goes high and D29 is allowed to be cleared (see timing diagram, Appendix A). Before AFIREL leaves the azimuth section of the circuit it may be overridden (set always high) with the "over ride azimuth" switch. This allows the system to work without regard to position in azimuth.

3.2 Elevation

D32 acts as a pulse stretcher to lengthen the elevation encoder's pulse output (ESP) and the zero reference pulse (EZR) from $1.5 \mu \mathrm{~s}$ to 5 ks. Due to the nature of the circuitry the memories must be capable of access
within the width of ESP. The pulses were widened to allow system capability with all manner of memories (from slow Aproms to fast Rams). The controller was designed such that only the leading edges of the encoder output signal are used for critical timing, as they are the most accurate edges. The circuit formed by D6 plus an AND gate and an OR gate generates the elevation counter load signal (ECLOAD). Addition of the reference angle is accomplished by presetting the elvation counter (ECOUNTR), which is formed by D19 and D20. The ECLOAD circuit can be thought of as a black box with inputs EZR, ESP and OUTPUT ECLOAD. With ECLOAD being generated as shown in Fig. 3.2.1. The counter is loaded when ESP rises with ECLOAD low. The OUTPUTS of ECOUNTR address the elevation memories, and are also monitored by comparators (D8 and D9) and compared with the test mode elevation angle switches. The output of the counter is also, as in the azimuth axis, displayed via 8 L.E.D.S., whose states are latched in D26. This dasplays the last elevation angle of fire. Note that this address is always one greater than the specified fire address. D12 and D13 form a 2-to-1 selector to choose between memory and test mode. The selected signal EFIRE) becomes EFIREL when latched in D27 by the falling edge of ESP. EFIREL is ANDed with AFIREL and with ESP to produce the unprotected fire signal (FIREUN). Note that the system was designed to fire with the pulse on ESP following the one for which a desired fire angle was found, in order to make the system less dependent on the type of memories used. This operation is most clearly seen and understood in the system timing diagram (Appendix A).

3.3 Fire Protection Circuit

The circuit consists simply of 2 monostables with different pulse widths (D21) and a selector (D16). A 5 Khz or 10 Khz limit may be selected, or the laser may be completely disabled. The pulse widths used are simply the reciprocals of 5 Khz and 10 Khz (i.e. $200 \mu \mathrm{~s}$ and $100 \mu \mathrm{~s}$). Therefore,

FIG.3.2.1 ECLOAD CIRCUIT
rising edges can't occur at a rate faster than the limit selected. This will protect the laser from incorrectly programmed proms, hardware failures, etc.

3.4 System Initialization

D30 generates a short pulse (SYSINIT) when the vehicle is powered up. It is used to clear various counters and latches thraughout the system. It uses the "power up reset" signal which is generated elsewhere on the vehicle.

3.5 Rate Buffer

Input Side
Data loaded into the first in-first out memory (FIFO) consists of the Iaser shot number (LSN) from latches (R4 and R5), the EOS bit from the azimuth board, and the 10-bit address from the receiver. The FIFO is laaded when the controller receives the "receiver data ready" pulse from. the detector. If the FIFO is full the data is simply lost. Care must be taken when programming the proms to consider scan speeds, etc., as explained in Sec. 2.3 so that the FTFO's capacity will not be exceeded. See Appendix B for manufacturer's data on the rate buffer chips.

Output Side

The output ready signals (ORI, OR2, OR3) from the 3 FIFO memory chips (RI, R2, R3) are ANDed to form the input to the "System Select" circuitry of the telemetry control system. When the FIFO has data to be sent it will force telemetry (presently given highest priority) to select laser data on the next output word. The shift data out signals (SO1, SO2, SO3) are generated simply by NANDing the "laser system selected" signal with
the "word rate" signal from the telemetry system.

Abstract

3.6 Memory

The memory is located on a physically separate card to facilitate changes in the future. Because of availability of the chips and the programmer 1024 word UVPROMS are used. Accordingly, address lines A8 and A9 (most significant bits) are tied low, so we use only the first 256 words. Pins 18 and 20 are held low to place the chip in "read" mode. Care must be taken that the -5 volt supply be the first supply switched on and the last switched off. A circuit for this power-up, power-down arrangement is on the memory board.

3.7 Diagnostic Procedures

As a starting point, always check power to all the cards in question, as this has proved to be a frequent cause of problems in the past. If trouble appears in the elevation section, check operation of the input circuit to see if it agrees with Figure 3.2.1. If it is working check EFIRE In test mode you should see one pulse here for 256 on ESP. If the circuit appears to be working but the laser is firing randomly, check coupling of encoder to mirror for slippage. If no fire laser pulses are appearing, check what is disabling them -- FIREUN, AFTREL or ESP. In azimuth a frequency counter comparing AFIRE (in test mode) with ASP should show a ratio of 256 -- that is a quick way of finding a fundamental problem. The rate buffer is best checked as an integral part of the telemetry since stand alone testing would require additional test circuitry to emulate the telemetry control signals. Naturally check the obvious signals if trouble occurs (i.e., receiver data ready signal, FIREUN switch latches data, shift in, input ready, shift out, etc.).

Other problems must be dealt with as they arise, and an understanding of the circuit operation and reference to the schematics are the best guides for the trouble-shooter.

4.1 Inputs

All imputs are standard TrL level signals.

1. ESP - the pulse output of the elevation or mirror encoder.
2. EZR - the zero reference pulse of the elevation or mirror encoder.
3. ASP - the pulse output of the azimuth or mast encoder.
4. AZR - the zero reference pulse of the azimuth or mast encoder.
5. C1 thru C7 - the 7 most significant bits from the command link's UART. Used for azimuth reference angle.
6. CO - the 8th bit from the command link's UART. Will signify that an azimuth reference angle has been received.
7. POWER UP RESET - Generated in the existing electronics on the vehicle. Used to initialize the system.
8. RECEIVER DATA READY - Generated by the receiver signifying that the receiver's output ($0-9$) is valid.
9. 0 thru 9 - information from the receiver.
10. WORD RATE - Signal from present telemetry system.
11. LASER = 1 - Signal from present telemetry system. Used with "word rate" to request data from the FIFO rate buffer.

4.2 Outputs

All outputs are standard TIL level signals.

1. FIRE LASER - Signal to fire laser on leading edge and used by receiver for time gating.
2. EOS' - End of scan signal (last elevation shot at last azimuth), rate buffered.
3. EOES' - End of elevation scan (last elevation shot at ith azimuth), rate buffered.
4. 0^{\prime} thru 9^{\prime} - Information from receiver, rate buffered.
5. LASER DATA HERE - Signal to inform telemetry that data is waiting in FIFO. Will force telemetry to take laser data for next telemetry word.
6. SO' thru S9' - laser shot number, rate buffered.
4.3 Notes on I/O

Information on lines CO-C7 from the command link must remain in UART for a long enough time for the controller to latch it. Latching occurs when a pulse on ASP coincides with CO being high. Thus data hold time is equal to $\left(256 W_{\theta}\right)^{-1}$ seconds, where W_{θ} is in revolutzons per second.

The receiver data ready signals should be normally low and should go high only when the α_{i} data is valid, and the α_{i} data must remain valid $30 \mu s$ after receiver data ready goes high. Suggested is that the α_{i} be always valid when receiver data ready signal is high, and this signal should be $30 \mu \mathrm{~s}$ long.

Only the leading edge of the fire laser signal should be used by the laser and receiver.

All rate buffered data should be connected to the auxillary inputs of the telemetry system according to the format in Section 6.3.
5. ALIGNMENT, CALIBRATION, TEST PROCEDURES

5.1 Alignment in Elevation

With the mast vertical, and the vehicle on a flat surface, set
"azimuth override" switch to off, which will cause it's L.E.D. indicator to go off. In this mode azimuth position is ignored, and the azimuth motor should be disabled so that the mast is stationary in azimuth. The laser must be adjusted with respect to the mirror (may be slid in or out). Refer to Section 6.2 for desired location of laser. Set the test mode select switch, and the elevation angle test mode swatches so that the system should fire a single shot at 45°. Use Table 3 to find the switch settings which correspond to 45°. Remember that the switch's value is " 1 " if it is set to "off". By simple geometry mark the point on the ground where the spot should appear. Use the T.V. camera-monitor to find the spot's actual location. The encoder's case can be loosened with 3 bolts and rotated with respect to it's axis about 15°. This should be set to bring the spot to the desired location. Thus the system is basically electrically aligned using the reference angle switches. Once their proper setting has been experimentally so determined they should be left alone. The same settings will be used in memory mode so that the shots will appear as expected in locations corresponding to the listing of Table 2.2.1. The laser lensing system should be adjusted for minimum spot size on the terrain. As there is not a receiver at the time of this writing, its alignment won't be discussed here.

5.2 Alignment in Azymuth

In this axis the accuracy is not as critical and the aligament procedure is a mechanical one. Set controller to test mode in both axes. Select any reasonable G angle (30° perhaps), and set the azimuth data angle to -90° (see Table 2.1.1). With power up the reference angle latch should be cleared which corresponds to a center of scan angle of 90° (see Table 2.1.2). The
result of this setting is that the laser spot should appear at $\theta=0^{\circ}$, $\pm(4 / 2)$, or directly in front of the vehicle. If it does not, the encoder must be mechanically adjusted. It is rotatable through about 15° degrees in azimuth, if this is not sufficient, the shaft will have to be moved with respect to the drive gear by readjusting that coupling, Reference 1.

A second and perhaps easier method of azimuth alignment is to monitor the zero reference pulse (AZR) from the azimuth encoder. If the mast is at the"zero" location this signal should be at a high level. This should happen when the mast is pointing at $\theta=180^{\circ}$ or straight backwards. The mast should be set pointing backwards, and the encoder rotated until the sigaal AZR goes high.

5.3 System Calibration

Once aligned, the system will be calibrated according to the information in Tables 2.1.1 and 2.2.1. Table 2.1 .2 shows how the desired center of scan angle should be sent by the computer.

5.4 Test Procedures

Using the test mode for a few various angles, check the results geometrically for a quick test of the system. Accuracy of the pointing angle in elevation can be measured by rotating the mirror slowly with the mast stationary in azimuth. The amount of wobble of the spot can be measured and related geometrically to a variation in pointing angle. This should be less than 0.1°. This is not as easy in azimuth since data in this axis is only expected to be known $\pm \Lambda / 2 / 2$. Sufficient testing will show if all shots are always within the $\Delta \theta$ zone. For some notes on electrical troubleshooting and testing see Section 3.7.

6.1 Mirror and Mast Speed Control

Introduction

Since the speed of scanning will be an important factor in how fast the vehicle can travel, it is certainly desirable to be able to choose the mast speed (i.e. scan speed) and once set, have it be controlled accurately so that the overall integrity of the system is maintained.

The quantity $\Delta \theta$ (units of degrees) is that amount in θ which the mast moves during a complete elevation scan, and is obviously related to the ratio of mast speed (W_{θ}) and mirror speed (W_{m}), in fact: $\Delta \mathrm{e}=360\left(\mathrm{~W}_{\mathrm{g}} / 8 \mathrm{~W}_{\mathrm{m}}\right)$ $=45\left(\mathrm{~W}_{g} / \mathrm{W}_{\mathrm{m}}\right)$ degrees. Thus the Θ angle of any shot is always known to be $\theta_{k} \pm \Delta \theta / 2$, and for this reason, the speed of the mirror relative to the speed of the mast must be controlled accurately so that the value of $\Delta \theta$ is accurately known. Note that encoder supplied position information is always used to determine when a fire angle is reached, and is thus independent of motor speed, that is, no timing of motor speed is relied on. However, as mentioned above, exact placement of the shots in the azimuth (Θ) direction will depend on the ratio of the two motor's speeds, sunce any elevation scan will initiate at the proper azimuth location (independent of motor speeds), but will be spread over $\Delta \theta$ (dependent on ratio of motor speeds).

6.1.1 Control Circuit

A phase locked loop motor control scheme was chosen to control the speed of both axes since encoder outputs were available because their use was dictated by other system performance criteria, and also since with this type of arrangement the ratio of the two speeds can be set quite exactly by using a master clock and a divide-by circunt. Overall scamning speed may be adjusted with the master clock frequency, and $\Delta \theta$ may be set by adjusting the divide by circuit. In a future system, the scan speed and ΔE could easily
be sent by the computer because of the digital nature of this type of control scheme. Also, the set-up contains very little analog circuitry which can drift and become misaligned. Figure 6.1.1.1 shows a block diagram of the speed control system. The loop filter is basically an integrator, in this case approximated by an active low pass filter. The amplifier is just a motor driver circuit or D.C. amplifier. Presently the mirror motor's amplifier has a voltage gain of 10 , and the mast motor's amplifier has a voltage gain of 20 . The gain may be adjusted by altering the ratio of R_{C} to R_{E} in the amplifier circuit (see Figure 6.1.1.1). The first stage of the amplifier supplies voltage gain, the second two stages are a follower circuit with voltage gain near unity but with significant current gain. Both amplifiers have the same design except for resistance values which vary because the supply voltages are different. The loop filter uses a Darlington pair amplifier which is on the PLI Chip (to be used for just this purpose) . - . . Note that the filter's transfer function may be written as: $F(s)=R_{2} / R_{1}+1 / R_{1} C S$, therefore it has a low pass characteristic, but represents a fixed gain of R_{2} / R_{1} to frequencies beyong the passband. For this reason, the ratio of R_{2} / R_{1} should be small, and 1/10 was used here. It was found during bench testing that performance wasn't affected much by varying the capacitor in the filter (i.e. moving the filter's zero) as long as the low pass characteristics was present. Also varying the gain in the amplifuers didn't change things much. Apparently, due to the relatively large inertias being driven by relatively small motors, both systems have long mechanical time constants, or on the root locus, a "slow" pole NGAR the origin, so that the location of the filter's zero isn't critica; or in other words, the motor-load systems are in fact too "slow" to react to any high frequency components of the drive signal so the filters break frequency is not critical, only its integrating action is needed. However our motors have small high speed armatures driving gearboxes, and if
6.1.1.1 Mast \& Mirror Speed Control Block Diagram

here is any play in the gears at the input side of the gearbox (which there always is), the armature will be free to move back and forth a bit without driving the load inertia. In this situation the mechanical time constant of the motor's armature must be considered, and corresponding high frequencies of the drive signal removed to prevent the armature from rattling around in the gearbox, a situation which is presumably not good for the motor and gears. It should be stressed that although the system works as good as need be for our use, it could be optimized. In fact, much is to be learned here. I made a quantitative study, as is done in References 5 and 7 and found, according to my model, that this system which works on the bench should be completely unstable. Obviously, the model isn't accurate. I'm sure the problem is in the loop fillter, as the loop's performance is quite sensitive to changes here, and the present realization of the filter probably doesn't exhibit the "ideal" transfer function which was used in my analysis. Some suggestions: Build the filter using an $O P-A m p$ and be sure of the transfer function you're getting. Also to this end, a non-inverting buffer stage between filter output and DC amp input would reduce loading effects which may be responsible for some problems. Actually the use of PLL's in phase-locked DC motor servos is a new area in which quite a lot of work could be done -. few people understand them.

6.1.2 Motor Selection

1. Mirror Motor

The motor chosen was the Micro Mo $\$ 330 / 09$ (see Appendix B).
Figure 6.1.2.1 shows schematically the mechanical system driven by the mirror motor. The GSAR reduction ratio is $N=1 / 5.4$, which leads to the following equation for the total system inertia as seen by the armature:

$$
J_{\text {tot }}=J_{\text {mot }}+N^{2}\left(J_{\operatorname{mir}}+J_{\text {enc }}\right)
$$

ORIGINAL PAGE IS OF'POOR QUALITY]

FIG. 6.I.2.1 SYSTEM INERTIA
where:

$$
\begin{aligned}
& J_{\operatorname{mot}}=0.208 \times 10^{-4} 0 \mathrm{z} \cdot \text { in. sec. }{ }^{2} \\
& J_{\operatorname{mir}}=0.0311 \mathrm{oz} . \text { in.sec. } .^{2} \\
& J_{\text {enc }}=4.0 \times 10^{-5} 0 z . \text { in.sec. } .^{2}
\end{aligned}
$$

The inertias for the armature ($J_{\text {mot }}$) and for the encoder ($J_{\text {enc }}$) were given by the manufacturer, and the mirror's inertia ($J_{\text {mir }}$) was estimated by Dave Knaub of the Mechanical group. The calculation yields a value of $J_{\text {tot }}$ equal to $1.088 \times 10^{-3} \mathrm{Oz}$.in.sec. ${ }^{2}$ To develop a mechanical time constant of the system, the armature inductance (L_{A}) was considered small and the damping was assumed small. Then:

$$
\tau_{M_{T o t}}=\frac{R_{A} J_{\text {tot }}}{K_{E} K_{T}}=808.84 \mathrm{~ms}
$$

where $\quad R_{A}=$ armature resistance $=21$

$$
\begin{aligned}
& K_{E}=\text { back em.f. constant }=0.014133 \frac{\mathrm{v.sec} .}{\mathrm{rad}} \\
& K_{T}=\text { torque constant }=2 \text { in.oz./amp } \\
& \tau \text { mtot }=\text { total mechanical time constant }=808.84 \mathrm{~ms} .
\end{aligned}
$$

since the electrical time constant of the motor is LA/RA $=.031 \mathrm{~ms}$, it can certainly be neglected. Then a model of the electro-mechanical system is:

$$
\begin{aligned}
M_{1}(s) & =\frac{(s)}{\nabla_{1}(s)}=\frac{1 / \mathbb{K}_{E}}{s\left(\text { mtot }^{s}+1\right)}=\frac{70.756}{s(.8088 s+1)} \\
\text { or } \quad M(s) & =\frac{87.479}{s(s+1.236)}
\end{aligned}
$$

The system should come up to speed in about $4 \tau_{\text {mtot }}$ seconds or 3.235 seconds, which is quite acceptable.

2. Mast Motor

The motor chosen is the Globe 168A229-2 (see Appendix B).

Figure 6.1.2.2 shows schematically the electro mechanical system of the motor-mast pair. The gear ratio is $N=1 / 192$ which leads to the following equation for system inertia as seen by the armature:

$$
J_{\text {tot }}=J_{\text {mot }}+N^{2}\left(J_{\text {mast }}\right)
$$

where $J_{\text {mot }}=$ armature and gear box inertia $=0.00135 \mathrm{oz}$. in. sec. ${ }^{2}$
$J_{\text {mast }}=$ estimate of mast slip ring, encoder inertia $=0.986 \mathrm{oz} . \operatorname{in} . \mathrm{sec}^{2}$ which yields $J_{\text {tot }}=1.3767 \times 10^{-3}$ oz.in.sec. ${ }^{2}$ Note this is just an approximation, derived by Dave Knaub before the mast was constructed. Then assuming a low inductance and damping in the system
where $R_{A}=$ armature resistance $=36.3$

$$
\begin{aligned}
& K_{e}=\text { back E.M.F. constant }=0.0127 \frac{\mathrm{~V} . \mathrm{sec}}{\mathrm{rad}} \\
& \mathrm{~K}_{T}=\text { torque constant }=1.8 \mathrm{oz} . \mathrm{in} . / \mathrm{amp} . \\
& \tau_{\text {mtot }}=\text { mech. time constant }=2.19 \text { seconds }
\end{aligned}
$$

The system transfer function is approximately:

$$
\begin{aligned}
M_{2}(s) & \left.=\frac{\theta(s)}{\nabla_{2}(s)}=\frac{1 / \bar{K}_{e}}{s\left(\tau_{\text {mtot }}\right.} s+1\right) \\
\text { or } \quad 1 \quad M_{2}(s) & =\frac{35.96}{s(s+0.457)}
\end{aligned}
$$

The system will come up to speed in $4 \tau_{\text {mtot }}$ or about 8.76 seconds. This in itself is acceptable, however the system maynnot be fast enough to adjust quickly to changing disturbance torques. There is still some question as to whether the motor is adequate and depends on the friction inherent in the gears, bearings, etc. Future experimentation will indicate whether a more powerful motor should be used.

ORIGINAL PAGE IS OF POOR ${ }^{-}$QUALITY

FIG. 6.1.2.2 SYSTEM INERTIA

6.1.3 Test Results

Because of varying friction as the motors turn, and because the time constants of the rotating systems are too long to allow fast corrections by the control circuitry, neither axis locks in phase completely. Observing the waveforms on a dual trace scope shows that they nearly lock but friction and disturbance torques cause the signals to slide out of lock periodically. Averaged over 1 second, the mirror motor's speed matches the reference clock within $\pm 0.2 \%$, and averaged over 10 seconds, it is within $\pm 0.01 \%$. This performance is certainly better than needed, so not being always locked in phase is not a problem. The mast motor seems to have to battle the friction and should perhaps be replaced with a larger motor. If the gears are freshly oiled and aligned, its speed averaged over 1 second is within $\pm 1 \%$ of the reference, but normally only $\pm 5 \%$ regulation can be expected. The accuracy of these motor speeds dictates how precisely $\Delta \theta$ is known, so $\pm 5 \%$ may be acceptable, but the uncertainty should not be much more than this. Presently on the bench the motors are running in a ratio of 24 , thus the $\Delta \hat{O}$ is 1.875°, and the ratio holds within 5% so the "guaranteed" $\Delta \theta$ is about 1.9°. To insure that AE stays within the 2° which is hoped for, the motor speed should be checked periodically to insure that the ratio of 24 is held within 5%. Presently the overall scan speed can be set with a pot to any value from 1 scan per 3.80 seconds to 1 scan per 1.35 seconds. Moving outside this is possible but would require some minor modification to the clock circuit.

6.2 Mirror

Introduction

The following page shows the development of equation (8) which demonstrates that the frequency the laser must be able to fire is inversely proportional to the number of mirror faces (N). However, N is limited because the

$$
\uparrow^{\theta_{k}} \Delta t_{\theta} \uparrow=\Delta \theta=\Delta t_{\theta} \omega_{\theta}, \begin{align*}
& \Delta \theta \tag{1}\\
& \Delta t_{\theta}=\frac{2 \pi}{N} \frac{1}{\omega_{m}} \tag{2}\\
& \omega_{m}=\frac{2 \pi}{N \Delta \theta} \omega_{\theta} \tag{3}
\end{align*}
$$

DEVELOPMENT OF ω_{m} as FUNCTION OF ω_{θ}

or, $\quad f_{L}=\frac{4 \pi \omega_{\theta}}{N \Delta \theta \Delta \beta}$

$$
\begin{gather*}
\Delta \beta=\Delta t_{\beta} \omega_{\beta} \quad(4) \tag{4}\\
\omega_{\beta}=2 \omega_{m} \quad(5) \\
\Delta \beta=2 \Delta t_{\beta} \omega_{m}(6) \tag{6}\\
f_{L}=\frac{1}{\Delta t_{\beta}}=\frac{2 \omega_{m}}{\Delta \beta} \tag{8}
\end{gather*}
$$

$\Delta \theta=$ CHANGE in θ DURING ELEVATION SCAN. (RAD.)
$\Delta t_{\theta}=$ DURATION OF ELEVATION SCAN
$\omega_{\theta}=$ SPEED OF MAST ROTATION (RAD/SEC.)
$N=$ NUMBER OF MIRROR FACES
$W_{M}=$ SPEED OF MIRROR ROTATION (RTD/SEC.)
$f_{L}=$ REPITITION RATE OF LASER (SEC ${ }^{-1}$)
$\omega_{\beta}=$ SPEED OF β ANGLE CHANGE (RAD/SES.)
total angular scan available off a polygonal mirror is also inversely proportional to N. A good compromise is to choose $\mathbb{N}=8$, so that $\beta_{\text {tot }}$ is 90°, and the frequency of the laser (F_{L}) is also reasonable.

6.2.1 Mirror Description

An 8-sided mirror was located and purchased from Lincoln Laser Company, 625 South 5th Street, Phoenix, Arizona 85004, (602) 257-0407. The mirror is a stock item $\#$ PO-8-300-087 with high reflectivity coating. Some data sheets supplied by Lincoln Laser are in Appendix B. The mirror is $0.941^{\text {" }}$ wide and each face has a length of $1.2426^{\prime \prime}$. The mirror is solid aluminum coated with nickel, coated with a reflecting coating. See data sheets for other information.

6.2.2 Clea ning

A. If dirty with gritty type dirt brush off lightly with camel hair brush.
B. Wipe mirror gently with surgical cotton wetted with acetone or isopropyl alcohol.
C. If still dirty, wipe with cotton wetted with water containing a mild detergent, then wipe with water to remove detergent, then wipe with acetone (or asopropyl) and let this coating evaporate off.
D. Other questions call: Randy Sherman at (602) 257-0407.

6.2.3 Notes

Figure 6.2.3.1 shows the relative placement of laser and mirror if it is desired to sweep through angles in β of 0° to 90°. The offset between the center of the laser's beam and the mirror's axis of rotation should be half the length of a mirror face. During the conceptual phase of developing the elevation scanaing system, much thought was given to error arising from imperfect mirrors (non-flat faces, low accuracy angles between adjacent faces, etc.), but having found this precision marror these considerations are no longer necessary, and have not been included.

FIG. 6.2.3.1 LASER BEAM/MIRROR AXIS OFFSET

New Telemetry Data Format

The laser triangulation data generated by the elevation scanning/ multi-detector system will be of quite different form as compared with the single elevation system. The following is a suggested format of the telemetry word's 26 bits, and how the DMA address is extracted from these bits. Each telemetry word contains 26 data bits (DBB1-DBB26). These bits are all loaded into the interface located in the expansion chassis of the Varian $620 i$ Computer. The interface uses some of the bits to generate the address at which to load the data bits which are also some subset of the 26 telemetry data bits. The interface is wired to always load bits DBB6-DBB21 inclusive as DMA data. The address is formed as shown in Figure 6.3.2. The bits S_{1} through S_{7} are the outputs of latches which are loaded (via software) with the 7 most significant bits of the address of the beginning of the DMA data block. The figures and discussion here assume octal 1000 is loaded for the DMA block address. (That is $S_{1} \rightarrow S_{7}=X X 00000, S_{1}$ and S_{2} are don't cares). S_{1} 'Is always assumed high, and S_{2} is always assumed lows they are "don't cares", and therefore starting addresses are limited to: $001000,005000,011000,015000$, etc. Figure 6.3 .2 shows the logical function which should be realized for each of the E-bus lines during DMA address phase. This entails slight rewiring of the finterface. Figure 6.3.1 shows the format of the telemetry word for vehicle state data and laser data. The A_{i} tag the vehicle words with an identifier. For vehicle words the bits N_{6} through N_{10} will indicate the last azimath number. In the data fleld, 14 bits are shown for α_{i}, but probably only 10 will be used, Reference 1 . The EOS bit will be high if the laser word containing it is the last in the scan pattern. Alternatively, this bit may be connected in the controller to be the end of elevation scan bit (EOES) in case an interrupt at each azimuth is desired. Figure 6.3 .2 shows the logic which initiates an

BIT \# VEHICLE WORD 0^{1}	A_{1}	A_{2}	A_{3}	A_{4}	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	D_{8}	D_{9}	D_{10}	D_{11}	D_{12}	D_{13}	D_{14}	D_{15}	D_{16}	N_{10}	N_{9}	N_{8}	N_{7}	N_{6}	
LASER WORD	1	N_{1}	N_{2}	N_{3}	N_{4}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}	α_{8}	α_{9}	α_{10}	α_{11}	α_{12}	α_{13}	α_{14}	0	0	N_{10}	N_{9}	N_{8}	N_{7}	N_{6}
N_{5}																										

$A_{L}=$ SENSOR ADDRESS
$N_{i}=$ LASER SHOT NUMBER
$D_{i}=$ VEHICLE WORD DATA BITS
$\alpha_{i}=$ LASER DETECTOR OUTPUT
EOS $=$ END OF SCAN BIT
FIG 6.3.1 NEW TELEMETRY DATA FORMAT

$E-B U S$	FUNCTION
$E B 15$	S_{7}
$E B 14$	S_{6}
$E B 13$	S_{5}
$E B 12$	S_{4}
$E B 11$	S_{3}
$E B 10$	$D B B 1$
$E B 09$	$D B B 1 \cdot D B B 21+\overline{D B B 1}$
$E B 08$	$D B B 22$
$E B 07$	$D B B 23$
$E B 06$	$D B B 24$
$E B 05$	$D B B 25$
$E B O 4$	$D B B 26$
$E B 03$	$D B B 5$
$E B O 2$	$D B B 4$
$E B 01$	$D B B 3$
$E B 00$	$D B B 2$

SEE TEXT FOR EXPLANATION OF SYMBOLS.

EOS INTERRUPT INITIATE: DBBI.DBE2O

FIG. 6.3.2 DMA ADDRESS FORMATION
interrupt request in the interface. Figures 6.3.3 and 6.3.4 show how the data will he placed in core.

6.4 Handshake Capability

Whenever a computer generated command is sent to the vehicle, a feedback path should exist to verify that the vehicle indeed received the command. Presently, if a steering command is sent, for example, the steering angle sent back (one of 16 vehicle words) can be monitored to see if it is in fact carrying out the desired command. Likewise with speed comands, since Tach readings are set back via telemetry. To provide another feedback path and one which is general for any comand, a capability has been added which echos the commands received over the command link back to the computer via the telemetry link (see Figure 6.4.1). This capability shouid improve system integrity and help in diagnosing problems in the comand and telemetry links. The new telemetry display box built by T. Comins and J. Turner will be able to indicate the last comand received at the vehicle, and will provide a quick check of the command link. Indeed there may be instructions sent by the computer for which there is no other feedback path to tell whether the vehicle ever accepted the command, for example, when sending the desired center of scan angle in azimuth one certainly needs to know if the command was received as it changes the maning of all the laser shot numbers tagging the laser data.

The echoed command appears in the lower half of the first vehicle stare word, called the "Latch Data" word. The new format for this word is shown in Figure 6.4.2. It is placed such that the lower 3 seven-segment readouts on the telemetry display box will indicate the instruction in octal. The software group is presently developing a subroutine to check the echoed command against the one sent as a standard part of the output routine.

ADDRESS	MEANING
2000_{8}	AZIMUTH \# 0 ELEVATION \# 0
20018	AZIMUTH \# O ELEVATION \# 1
20028	AZIMUTH \# O ELEVATION \# 2
-	:
20378	AZIMUTH \#O ELEVATION\#31
2040_{8}	AzIMVTH \# 1 ELEVATION \# 0
20418	AZIMUTH \# 1 ELEVATION\#1
-	
-	-
-	-
.	-
-	- -
-	-
37768	AzIMUTH \# 31 ELEVATION\#30
37778	Az/MUTH \#31 ELEVATION\#31

FIG. 6.3.3 LASER DATA CORE LOCATION

FIG. 6.3.4 VEHICLE DATA CORE LOCATION

\(\left.\begin{array}{|l|l}\hline D_{1} \& RIGHT FRONT HEAT

\hline D_{2} \& LEFT FRONT HEAT

\hline D_{3} \& RIGHT REAR LATCH

\hline D_{4} \& LEFT REAR LATCH

\hline D_{5} \& 24 VOLT LOW

\hline D_{6} \& 12 VOLT LOW

\hline D_{7} \& SIGNAL LOSS

\hline D_{8} \& O

\hline D_{9} \& C_{8} \quad (MSS)

\hline D_{10} \& C_{7}

\hline D_{11} \& C_{6}

\hline D_{12} \& C_{5}

\hline D_{13} \& C_{4}

\hline D_{14} \& C_{3}

\hline D_{15} \& C_{2}

\hline D_{16} \& C_{1} (LSD)

\hline\end{array}\right\}\)| LAST |
| :---: |
| COMMAND |
| RECEIVED |

FIG 6.4.2 FORMAT, OF "LATCH DATA" WORD

6.5 Encoders
 Elevation Encoder Selection

It was desired to have a resolution of 2048 pulses for revolution which corresponds to a pointing angle resolution of 0.35°. Note that the angle through which the beam moves when a mirror is rotated is twice the amount of the mirror's angular rotation. Therefore the 2048 pulses per revoIution were needed, not 1024 for 0.35° resolution. The 2048 pulses when counted and presented in parallel fashion appear as an 11-bit address. The top 3 bits are actually the face number ($0-7$) and the lower 8 bits are the 256 possible fire locations. Accordingly only an 8 -bit counter is used in the controller, as all 8 sides of the mirror are assumed equivalent. The elevation encoder had to be selected for small size and weight since it is placed at the vertical top of the mast. The Teledyne Gurley 8602-69-1024-022 was selected for performance, size, weight, and proximity of the manufacturer. It includes a second piece of hardware called the "Signal Conditioner" which is mounted on the mast just above the upper mast bearing. Its output is a TTL level pulse train which goes directly into the controller. There is also an index pulse. See Appendix B for information from the manufacturer.

Azimuth Encoder Selection

An encoder was chosen with 256 pulses per revolution as an output, plus a zero reference. This corresponds to a resolution of 1.4° in azimuth. This is deemed sufficient since the data density in this direction is expected to be much less than in elevation (i.e. adjacent azimuth angles will probably be 10° apart, whereas adjacent elevation angles will be perhaps 1° apart). The size and weight of this encoder was not so crucial and it is physically larger and has the signal conditioner section actually built right in. It
outputs standard TTL level pulses. The Teledyne-Gurley 8635-128-022 was selected. See Appendix B for manufacturer's specifications.
6.6 Proms

Prom Selection

Since it is desirable to be able to change the scan pattern occasionally, an erasable prom was chosen. Due to the availability of a compatible programming machine in the building, ultra-violet erasable proms of 1024×8 organization were used. We presently use 2708's manufactured by Intel.

Programming

Professor Das of the E.S.E. Department at R.P.I. has a programming system called "BYTESAVER". It is presently located in Room 6114 in the Engineering Center and operated by Greg White, a student. Desired addresses and desired data should be supplied to the operator of the programming machine in hexadecimal representation. This representation appears for this purpose in Tables 2.1 .1 and 2.2.1 since words 256 through 1023 are never addressed, their contents do not need to be programed. A data sheet appears in Appendix B.

Power Supplies

The memories require $-5,+5$, and +12 volts. Also, the $-5 v$ supply should be the first switched on and the last switched off. A circuit to accomplish this has been built on the memory board of the controller.
6.7 Programs for Angle Listings

The listings in Tables 2.1.1, 2.1.2, and 2.2.1 were all generated by a block of programs written by Bill Kennedy (Spein '78) in order to facilitate the selection of fire angles. It may quickly be seen which angles are available, and from this set, a set of desired fire locations can be chosen.

Since some portions of the output depend on supplying inputs such as Δe, scan speed, laser beam width, etc., the programs should be rerun as needed. The following summarizes the inputs and outputs for each of the programs. The program lists themselves appear in Appendix C.

File - AZIMANG
Descrip.- FORTRAN program to compute available azimuth data angles, their initiate angles, and addresses in memory.

Inputs - Mast velocity, and mirror velocity, in radians per second. To change values, replace the respective assignment in the initialization block of the program
Output - 1) list of azimuth data angles, their initiate angles (degrees), and addresses in memory in octal, binary and decimal formats.
2) mast velocity (rad/sec, and rpm)
3) mirror velocity ($\mathrm{rad} / \mathrm{sec}$, and rpm)
4) data hold time (seconds)
5) $\Delta \theta$ (degrees)
6) number of scans per second

File - ELEVANG
Descrip.- FORTRAN program to compute available elevation angles

Inputs - 1) IMIR, the length of one mirror face (inches)
2) WBEAM, the width in inches of the laser beam at the mirror's surface
3) LASLIM, the limiting frequency for continuous laser operation (hertz)
4) RPMIR, the angular velocity of the mirror (rpu)

These value s, may be changed by replacing the corresponding assignment in the initialization block.

Output - 1) list of available elevation angles, and their corresponding address in memory (octal, binary, and decimal). Asterisks are placed at angles where only partial power is available from the laser.
2) $\Delta \beta_{\min }$ (degrees) - an integral multiple of the encoder resolution.
3) Laser Iimiting frequency (hz)
4) Mirror velocity (rpm)
5) Beam width (inches

```
    File - COSANG
Descrip.- FORIRAN program to compute available center of
        scan angles for azimuth scamning.
Inputs - None
Outputs- 1) list of available center of scan angles
        (degrees), their reference angles in the
        controller (actal, and binary) and the
        corresponding computer command word (octal,
        and binary).
```

CONCLUSTON
Early testing of the laser-mirror-encoder-controller laser beam pointing system shows that pointing accuracy well with 0.1° has been achieved in the elevation axis. Due to an as yet unreceived azimuth encoder, that axis has not yet been tested as of this writing. The system can fire up to 32 elevation shots at each of 32 azimuths, elevation shots may occur as close as 0.35° apart as long as the maximum fire rate of the laser is not exceeded. In azimuth the system can fire adjacent shots as close as 1.4° or 2.8° (depending on scan speeds, ω_{E}) in azimuth. The scanning speed and $\Delta \theta$ can be accurately adjusted for any configuration. The UVPROMS make it easy to change the scanning patterns to try any new concepts suggested by the group.

We feel we have developed a reliable, flexible system which with little or no modifications can be employed to fmplement many different scanning schemes. The ML/MD scanning shstem developed in the 1977/78 academic year will form the cornerstone of the R.P.I. Mars Roving Research Vehicle for years to come.

During the course of the MI/MD system development many ideas were suggested by various group members which couldn't be implemented this year.

A key to building a powerful autonomous system is to increase the bit rate capability of the command link. If it had the capacity of the present telemetry link, many new features could be considered. Rams could replace the controller's UVPROMS and the computer could, in real time, write in the desired fire angles, so that the scanning pattern can be dynamically changed as called for by local terrain (i.e. the rover may wish to focus all its shots into one sector of interest). Likewise the mirror and mast motor speeds could be sent in real time so the computer has continuous
control of the scanning speed and ΔE. A very useful addition would be a self calibrating routine, so once placed on flat ground the rover could automatically calibrate the entire mast system by itself. (Fire shot at known angle - see if it returns on proper detector given the terrain is flat, and so on). Many visual aids could be made to show the information returned by the detectors in some sort of graphic display.

A microprocessor on board to run a four wheel speed control algorithm would be a worthwhile investment. It could also take over some other functions. Digitizing the steering system (use an encoder instead of a pot with A / D) and the wheel speed system (encoders instead of tachs) would be a useful project. Presently the analog circuits drift, are unreliable, and usually are out of calibration.

The real challenge in the upcoming years will be in the software area, to find the best ways to use all the information which the elevation scanning/multi-detector system can return.

1. Meshach, William "Elevation Laser Scanning/Multi-Detector Hazard Detection System: Pulsed Laser and Photodetector Components, Rensselaer Polytechnic Institute, Troy, N.Y. August 1978.
2. Knaub, Dave, "Elevation of the Propulsion Control System for a Planetary Rover and Design of an Elevation Laser Scanning Mast," Rensselaer Polytechnic Institute, Troy, N.Y., May 1978.
3. Texas Instrument, Inc., The TrL Data Book, Texas Instruments, Inc., 1973.
4. Fairchild Corp., MOS/CCD Data Book, Fairchild Components Group.
5. Moore, A.W., "Phase-Locked Loops for Motor Speed Contral," IEEE Spectrum, April 1973.
6. Smithgall, D.H., "A Phase-Locked Loop Motor Control System," IEEE Transactions on I.E.C.I., Vol. 22, No. 4, November 1975.
7. Tal, Jacob,"Speed Control by Phase-Locked Servo Systems New Possibilities and Limitations," IEEE Transactions on I.E.C.I., Vol. 24, No. I, February 1977.

FIG A. 3 RATE BUFFER BOARD CHIP LAYOUT

FIG i 5 contmolleor timing diagram

Fig. A. 10 Controller Block Diagram (2 of 2)

APPENDIX B

Encoder Data Sheets
First-In, First-Out Memory Data Sheets
8-Sided Mirror Data Sheets
Mirror Motor Data Sheets
UV-Erasable Prom Data Sheets

ENCODER DATA SHEETS

Specifications

NOTE These specifications are applicable under all variations of recommended supply voltage, speed, temperature and direction of travel. Im proved performance is avallable under special conditions, please consult factory

- MECHANICAL

Materials Alummum housing with stamless steel shaft	
Weight	175 oz. max
Size	
Encoder	See Figure 3
Wire	30 AWG, polyalkene insulation, 6 inch lengths
Torque	
Starting	$015 \mathrm{in} \mathrm{oz}$.
Running	$005 \mathrm{in} \mathrm{oz}$.
Moment of Inertia	$40 \times 10^{-5} \mathrm{in} \mathrm{oz} \mathrm{sec}^{2}$
Angular Acceleration	$75 \times 105 \mathrm{rad} / \mathrm{sec}^{2}$
Shaft Speed (non-operating)	10,000 RPM
Shaft Load	
Radial	05 lbs. max
Axial	05 lbs max
End Play	$00005^{\prime \prime}$ max
Radial Play	$00005^{\prime \prime}$ max
Bearing Life (at light load)	10^{9} revolutions

NOTE Bearing complement consısts of two ABEC Class 7 Stainless Steel bearings, spaced approximately 75 inches apart.
Note Bearing spaced approximately 75 inches apars 7 Stainless

- ENVIRONMENTAL

- Temperature

Humıdity
Shock
Vibration
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
98% rh non condenstng
$50 \mathrm{~g}, 11$ mullisec
$2 \mathrm{~g}, 02000 \mathrm{~Hz}$

- ELECTRICAL

Power +50 VDC ± 02 VDC @ 65 mA max - single channel
@ 130 mA max - dual channels
@ 195 mA max - dual channels
with zero index

Frequency Response

25 KHz standard
(Up to 50 KHz optional, depending on amplifier design and specific application)

Output Circust
Output waveforms
Interchannel Phasing

Phototransistors standard Photocells, optional.

See Figure 1
$90^{\circ} \pm 22.5^{\circ}$

- WITH MODEL SG-602

EXTERNAL SIGNAL CONDITIONER

See separate Signal Conditioner Data Sheet for physical size and electrical connections

- ELECTRICAL

Power

$+50 \mathrm{VDC} \pm 02 \mathrm{VDC}$, with 05VDC longterm regulation and low ripple (5% peak-to peak), 300 mA max
Output Waveforms
See Figure 2
Output Characteristics-Square Waves and Pulses
All outputs are DTL/TTL compatıble (driver type 7404)
TTL fanout $=10\left(I_{\text {SINK }}=16 \mathrm{~mA}, \mathrm{I}_{\text {SOURCE }}=400 \mu \mathrm{~A}\right)$
$\mathrm{V}_{\mathrm{OH}}=37 \mathrm{~V} \pm 1.3 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}} \leq 400 \mu \mathrm{~A}$
$V_{\mathrm{OL}}=+02 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}} \leq-16 \mathrm{~mA}$
$1 X, 2 X$ and $4 X$ pulse outputs are complemented ($R Z$ and NRZ) and direction-sensed
Square wave outputs are uncomplemented
Power Buffer Option (Square waves only)
Open collector drıver type 75451 or type $75452, \mathrm{~V}_{\mathrm{cc}} \leq 30 \mathrm{~V}$, $\mathrm{t}_{\mathrm{c}} \leq 200 \mathrm{~mA}$
Line Driver Option (Square waves only) Balanced differential line drıver type DM8830

- PERFORMANGE

Frequency Response
To 25 KHz at disc data rate
To 100 KHz with 4 X count multiplication option
Frequency response can be doubled under special conditions - consult factory

ACCURACY RATINGS (1) arc minutes		
Error Source	Incremental (adjacent Lines)	Absolute (line to any other line)
Disc Pattern	± 008	± 015
Disc eccentricity	None	± 083
Uncompensated signal offset ${ }^{(2)}$	$\pm 1080 / \mathrm{N}$	$\pm 1080 / \mathrm{N}$
Quadrature phasing ${ }^{(3)}$	$\pm 670 / \mathrm{N}$	$\pm 670 / \mathrm{N}$
Typıcal R S S value ($N=750$)	± 170	± 189

$\mathrm{N}=$ line pars/dise
(1) Ratings are based on $750<N \leqslant 1270$ Accuracy improves at lower line counts improved accuracy also available at higher ine counts under special conditions, please consult factory
(2) For adjacent zero crossings or at any odd interval (1/2N, 3/2N, $5 / 2 \mathrm{~N}-$ - apart). error is $2160 / \mathrm{N}$ For zero crossings at any even mever any small segment of disc rotation
(3) If quadrature signals are used for determining direction only, or not at all, quadrature phasing error can be deducted

Definition of Parameters

1. ACCURACY

FUNDAMENTAL accuracy applies to data taken at positive (or negative) going transitions on the sine (or cosine) output it corresponds to data taken at the leading (or trailing) edges of the disc pattern lines, as in ix count multiplication.
INTERPOLATION accuracy applies to data taken at points within a given square wave cycle For example, data taken at both positive and negative going transitions of a sine or cosine square wave ($2 x$ count multiplication) or data taken at positive and negative going transitions of both the sine and cosine square waves (4 x count multiplication) are interpolated data Usually interpolated data is lower in accuracy than fundamental data due to the imperfect duty cycle of the square waves and the imperfect quadrature phasing between the sine and cosine square waves Refer to Ftg 2
INCREMENTAL accuracy, or adjacent puise accuracy, is measured from one pulse to the next Normally the incremental accuracy is valid over shaft rotations of approximately 15° (mechanical) Incremental accuracy is primarily determined by interpolation accuracy.
ABSOLUTE (CUMULATIVE) accuracy is measured from one pulse to any other pulse Normally the greatest error occurs between pulses that are separated by approximately one-half revolution of the encoder shaft Absolute accuracy is the sum of fundamental accuracy and interpolation accuracy.
2. COUNT MULTIPLICATION

An electronic technıque for increasing the encoder's output resolution beyond the number of line pars
contained on the disc. Standard techniques allow for $1 x, 2 x$ or $4 x$ multiplication of the fundamental disc resolution $4 x$ multiplication requires that two quadrature square waves (sine and cosine), be generated electro-optically as in Fig 2 Transition detectors, "single shots," then form pulses at every 0 to 1 or 1 to 0 transition on both waveforms. This resuits in four pulses for every line pair on the disc, as shown in Fig 2 For $2 x$ multiplication, pulses are formed at 0 to 1 and 1 to 0 transitions on one square wave output only. For $1 x$ multiplication, pulses are formed at 0 to 1 (or 1 to 0) transitions on one square wave output only.

3 FREQUENCY RESPONSE

This is defined as the maximum frequency of fundamental data (number of disc lines per revolution x revolutions/second) For encoders with $2 x$ or $4 x$ count multıplication the output rate is 2 or, 4 times the fundamental data frequency

4 RESOLUTION

The number of output data pulses per revolution For square wave outputs, resolution corresponds to the number of line parrs on the disc. A line pair consists of the opaque line and the clear space next to It Normally the term "Ine pair" and "line" are used interchangeably; they both correspond to one cycle, of square wave output signal. For units with $1 x$, $2 x$ or $4 \times$ count multiplication, resolution corresponds to 1,2 , or 4 times the number of line pairs on the disc Note that increasing resolution by the use of count multiplication logic usually results in a decreased cumulative accuracy, but does not affect fundamental accuracy.

Figure 2-Quadrature and Pulse Output Waveforms available with Signal Conditioner option

NOTE Sine and cosine relatronships are defined
for clockwise rotation of the encoder viewed
from shaft end, Channel B signal leads Channel
A signal by 90 index is normally aligned with
cosine signal Puiseamplitudes are typical value

CONNECTIONS	
Orange	Cosine
Brown	Signal return
Yellow*	Sine
Green *	Signal return
Blue**	Index
White**	Signal return
Red	+5 V
Black	Lamp return
Grey	Case ground

* Two Channel versions only

Figure 3

ORDERING INFORMATION

When ordering, please include maximum speed of shaft rotation, both operating and non operating Also, in untdirectional applications, please specify direction of rotation

OPTION CODES		
Output Waveform	$\begin{aligned} & \text { With } \\ & \text { Zero Index } \end{aligned}$	Without Zero Index
PhototransistorOne Channel	001	101
PhototransistorTwo Channels	002	102
Square Waves- * One Channel	031	131
Square Waves- *Two Channels	032	132
Square Waves with * Line Driver	052	152
Square Waves with * Power Buffer	062	162
* Ix Pulses	012	112
*2x Pulses	022	122
* $4 x$ Pulses	042	142

* External Signal Conditioner required

TELEDYNE GURLEY CAPABILITY

in addition to its line of standard rotary and linear encoders, Teledyne Guriey has designed and customized encoders for applications involving military specifications, extreme environmental operating conditions, and high reliability performance, as weil as low cost, fimited performance requirements

Accuracies better than one arc second have been attained with our rotary encoders, and we have supplied innear encoders with a resolution of one micron

Teledyne Gurley will be pleased to discuss your require ments for customized encoders

WARRANTY

Teledyne Gurley warrants its products aganst defects in material and workmanship under normal and proper use for a period of one year from the date of shipment

Teledyne Gurley's obligation under this warranty is limited, at Teledyne Gurley's option, to replacement or repair, without charge, FOB Troy, NY of any defective part

The foregoing warranty is exclusive and in lieu of all other warranties, and is not valid for any product which has been operated in excess of its electrical, mechantcal or environmental ratings, or which has been subjected to abuse, or in which the housing has been opened, altered or tampered with

REPRESENTED BY

MODEL SC SERIES EXTERNAL

 SIGNAL CONDITIONERS

ORIGINAL PAGE IS OF POOR QUALITY

Featuring:

```
- DTL, TTL, HTL or C-MOS compatibility
- output options which include
    1X, 2X or 4X count multiplication
    differential line drivers
    power buffers
- rugged cast aluminum housing
- excellent electrical noise immunity
- plug-in PC boards
```


DESCRIPTION

The Model SC Series of external signal conditioners are designed for use with Teledyne Gurley's miniature optical, incremental encoders to provide those electrical output options not available in the encoder itself.

Specific signal conditioner models are available for each Teledyne Gurley miniature encoder, i.e., SC 602 series for Model 8602-69 encoders, SC 610 series for Model 8610 encoders and SC 708 series for Model 8708 encoders.

The signal conditioners offer differential line driver options and open collector power buffers. This provides interfacing compatibility with DTL, HTL, TTL or C-MOS equipment. In addition, higher electrical noise immunity is achieved and sufficient power is generated to drive signals over long lengths of coaxial cable, strip-line or twisted pair leads. The current drive capability is 200 mA maximum and the voltage driver is 30 volts maximum. The lines being driven should have characteristic impedances of 50 to 500 ohms.

The signal conditioners are housed in a cast aluminum enclosure which can be opened to

provide access to the two plug-in circuit boards in the unlikely event that manntenance is required. This feature also accommodates future changes in circuitry, if desired

APPLICATION

The SC Series of signal conditioners can extend the electrical options of the Models 8602-69, 8610 and 8708 encoders to square waves or TTL pulses which include $1 X, 2 X$ or $4 X$ count multiplication of the line pairs on the encoder disc or scale. This increases the resolution of the encoder and the scope of applications. These signal conditioners are versatile. A unit which originally generated square waves can later be modified to produce TTL puises by simply changrng the plug-in PC boards.

By remotely locating the electronics, unparalleled space effictency is realized in the encoder system.

The signal conditioners will transmit encoder information to drive optical couplers such as LED's, memory units, counter/displays, control circuits and relays or lamps.

General Specifications

$*$-MECHANICAL	
Materials	cast aluminum housing
Weight	20 oz. max.
Size	See Figure 3

(Consult drawings [Figure 3] for mounting provisions) Mating Connector

Cannon DA 155 (furnished)

- ENVIRONMENTAL

Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Humidsty	$98 \% \mathrm{rh}$, non-condensing
Shock	$50 \mathrm{~g}, 11 \mathrm{millisec}$
Vibration	$10 \mathrm{~g}, 0.2000 \mathrm{~Hz}$

- ELECTRICAL

Output Circuit
Output Waveforms
See Figure 1
See Figure 2

Pulse output characteristics
All outputs as DTL/TTL compatible \{driver type 7404).

TTL fan out $=10\left(I_{\text {SINK }}=16 \mathrm{~mA}\right.$, I $\left._{\text {SOURCE }}=400 \mu \mathrm{~A}\right)$
$\mathrm{V}_{\mathrm{OH}}=+3.7+1.3 \mathrm{~V}, \mathrm{l}_{\mathrm{OH}}=400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=50 \mathrm{~V}$
$\mathrm{V}_{\mathrm{OL}}=+0.2 \mathrm{~V}+02 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=-1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$1 \mathrm{X}, 2 \mathrm{X}, 4 \mathrm{X}$ outputs complemented ($R Z$ and NPZ)
Index output complemented (RZ and NRZ)
Balanced differentral line driver type DM 8830 (square waves only).

Power buffer, open collector driver type 75451 or type 75452 , complemented or non-complemented, $\mathrm{V}_{\mathrm{Cc}}=30 \mathrm{~V}$, $\mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}$ (square waves only).

System Specifications

- MODEL SC-602 SERIES
(Used with a Mode! 8602-69 Rotary Encoder)
Power
$+50 \mathrm{~V} \pm 02 \mathrm{~V}$ @ 300 mA , max.
Frequency Resopnse
(defined as number of line pairs X
revolutions per second of the disc)
To 50 KHz at disc data rate (100 KHz optional)
To 200 KHz with 4 X count multiplication
Accuracy
(400 KHz optional)
As specified in the Model 8602-69 Rotary Encoder Bulletin.
- MODEL SC-6TO SERIES
(Used with a Model 8610 Rotary Encoder)
Power
$+5.0 \vee \pm 0.2 \mathrm{~V} @ 250 \mathrm{~mA}$, max.
Frequency Response
(defined as number of hine pars X
revolutions per second of the disc)
To 50 KHz at disc data rate
To 200 KHz with $4 X$ count multuplication

Accuracy

As specified in the Model 8610 Rotary Encoder Bulletin.

- MODEL SC-708 SERIES

(Used with a Model 8708 Modular Encoder)
Power
$+5.0 \mathrm{~V} \pm 0.2 \mathrm{~V}$ @ 300 mA , max.
Frequency Response
(defined as number of line pars X
revolutions per second of the disc)
To 50 KHz at disc data rate (100 KHz optional)
To 200 KHz with $4 X$ count multiplication
Accuracy
(400 KHz optional)
As specified in the Model 8708 Modular Encoder Bulletin.

Definition of Parameters

1. ACCURACY

ABSOLUTE (CUMULATIVE) accuracy is measured from one pulse to any other, arbitrary pulse. Normally the greatest error occurs between pulses that are separated by approximately one-half revolution of the encoder shaft. Absolute accuracy is the sum of fundamental accuracy and interpolation accuracy.
FUNDAMENTAL accuracy applies to data taken at positive for negative) going transitions on the sine or cosine square wave outputs. It corresponds to data taken at the leading (or trailing) edges of the disc pattern hnes ($1 x$ count multiplication).
INCREMENTAL accuracy, or adjacent pulse accuracy is measured from one pulse to the next. Normally the meremental accuracy is valid over shaft rotations of approximately 15° (mechnical). Incremental accuracy is primarily determined by interpolation accuracy.
INTERPOLATION accuracy applies to data taken at points within a given square wave cycle. For example, data taken at both positive and negative going transitions of a sine or cosine square wave ($2 x$ count multiplication) or data taken at positive and negative going transitions of both the sine and, cosine square waves ($4 x$ count multiplication) are interpolated data. Usually interpolated data is lower in accuracy than fundamental data due to the imperfect duty cycle of the square waves and the imperfect quadrature phasing between the sine and cosine square waves. Refer to Fig. 2

2. COUNT MULTIPLICATION

An electronic technique for increasing the encoder's output resolution beyond the number of line pairs contaned on
the disc. Standard techniques allow for $1 x, 2 x$ or $4 x$ multiplication of the fundamental disc resolution $4 x$ multiplication requires that two quadrature square waves (sine and cosine), be generated electro-optically as in Fig 2. Transition detectors, "single shots" then form pulses at every 0 to 1 or 1 to 0 transition on both waveforms. This results in four pulses for every line pair on the dise as shown in Fig. 2. For $2 x$ multiplication, pulses are formed at 0 to 1 and 1 to 0 transitions on one square wave output only. For $1 x$ multiplication, pulses are formed at 0 to 1 (or 1 to 0$)$ transitions on one square wave output only.

3 FREQUENCY RESPONSE

This is defined as the maximum frequency of fundamental data (number of disc lines per revolution x revolutions/ second). For encoders with $2 x$ or $4 x$ count multiplication the output rate ss 2 to 4 times the fundamental data frequency.

4 RESOLUTION

The number of output data pulses per revolution. For square wave outputs, resolution corresponds to the number of line pairs on the disc A line pair consists of the opaque

- line and the clear space next to it. Normally the term "fine par" and "line" are used interchangeably; they both correspond to one cycle of square wave output signal. For units with $1 x, 2 x$ or $4 x$ count multiplication, resolution corresponds to 1,2 , or 4 times the number of line pairs on the disc. Note that increasing resolution by the use of count multiplication logic usually results in a decreased cumulative accuracy, but does not affect fundamental accuracy.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 1 - Phototransistor
Current Waveforms

Typical Cusiomer Circuis

CUSTOMER CKT

Figure 2 - Quadrature and Puise
Figure 2 - Quadrature and Pulse
Output Waveforms

GATED INDEX T PULSE OUTPUTS AAE PROVIDED

NOTE SINE AND COSINE RELATIONSHIPS ARE DEFINED FOR LEFT TO RIGHT MIOTION AS OESERVED FROM THE FHOTOTRANSISTOR OESERVED FROM THE FHOTOTAANSISTOR
SIDE THE SCALE BEING FIXED WITH THE CHROME SIOE FACING THE VIEWER AND THE CHROME SIOE FACING THE VIEWER AND THE
OATA TRACK UPYARDS IF ROTARY RELADATA TRACK UPYIARDS IF ROTARY RELA-
TIONSHIP DEFINED FOR CLOCKWISE RDTA TIONSHIP DEFINED FOR CLOCKWISE ROTA
THON OF THE ENCODER VIEWED FROM THE THON OF THE ENCDDER VIEWED FFOM THE
SHAFT END CHANNEL g SIGNAL LEADS CHANT END CRANNEL 90° SIGNAL LEALSE AMPLI TUDES ARE TYPICAL VALUES

，\＃XAinipLE The ordering number for an External Signal Con－ ettroner to be used in conjunction with a Model 8610 Rotary Encoder that generates 500 cycles／rev，no zero index，two channels in quadrature and incorporates LED＇s，the Signal Conditioner to have four count logic puises output is SC 610－500－1－4－2－0

TELEDYNE GURLEY CAPABILITY

In addition to its lines of standard rotary and linear encoders，Teledyne Gurley has designed and customized encoders for applications involving military specifications， extreme environmental operating conditions，and high reliability performance．

Accuracies of one arc－second have been attained with our rotary encoders and we have delivered linear encoders with a resolution of one micron．
4 Teledyne Gurley＇will be pleased to discuss your require－ ments for customized encoders．

WARRANTY

Teledyne Gurley warrants it products against defects in material and workmanship under normal and proper use for a period of one year from the date of shipment．

This warranty is not valid for any product which has been operated in excess of its electrical or mechanical ratings or which has been subjected to abuse．

Teledyne Gurley＇s obligation under this warranty is limited at Teledyne Gurley＇s option，to replacement or repair，without charge，F．O．B．Troy，N．Y．of any defective part．

The foregoing warranty is exclusive and in lieu of all other warranties．
＂ENCODER SAVVY AND THEN SOME＂
TRELEDME GURLEY
514 FULTON ST．，TROY，N．Y． 12181
（518）272－6300／TWX：（710）443－8156

Featuring:

- single voltage, integral electronics
- plug-ın PC boards for easy field maintenance
- up to 21,600 counts/revolution with zero index
- power buffers and differential line drivers available
- optional ± 20 arc-seconds accuracy via dual reading heads

DESCRIPTION

The Teledyne Gurley Model 8635 rotary incremental encoder utilizes advanced electro-optical. signal generation techniques to provide high resolutions together with good reliability. Dual reading heads yielding ± 20 arc-seconds accuracy are available.

The single voltage electronics are integral components of the encoder, resulting in excellent norse immunity. With square-wave output, the use of optional differential line drivers or power buffer can provide greater notse immunity or C-MOS compatability
All of the electronics are mounted on two plug-in PC boards for simplified maintenance.

APPLICATION

The Model 8635 is especially suited for high resolution applications at a moderate cost. It can be used to control motion by generating signals for position feedback in a servo system, or it can be combined with our Model 8900 Counter/Display as a complete digital readout system. The Model 8635 has been used to measure or control position on machine tools, or rotational speed of paper machine rolls, computer tape transports and computer drums it can be used on lead screws of jig borers, comparators, milling machines, drafting machines and similar apparatus.

Specifications

- MECHANICAL

Materials Anodized aluminum housing with stanless
Werght
17 oz. max
Sıze
34 synchro-See Figure 3 for dimensions and mounting provisions

Torque
Starting 04 mm oz . typical
Running
Moment of Inertia
Angular Acceleration
Shaft Speed (non-operating)
Shaft Load
End Play (8 oz reversing load)
Radial Play (8 oz. reversing load)

NOTE: These specifications are applicable under all variations of recommended supply voltage, speed, temperature and direction of travel improved performance is available under special conditions, please consult factory

- ELECTRICAL

Power
$+50 \mathrm{VDC} \pm 02 \mathrm{VDC}$, with 05VDC long term regulation and low ripple (5% peak-to-peak)
With electronics, 375 mA max. Without electronics, 250 mA max
Output Waveforms
See Figs 1 and 2
Output Characteristics - Square Waves and Pulses
All outputs are DTL/TTL compatible (driver type 7404)
TTL fanout $=10\left(I_{\text {SINK }}=16 \mathrm{~mA}, I_{\text {SOURCE }}=400 \mu \mathrm{~A}\right)$
$V_{\mathrm{OH}}=37 \mathrm{~V} \pm 13 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}} \leq 400 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{OL}}=+0.2 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}} \leq-16 \mathrm{~mA}$
IX, 2X and 4 X pulse outputs are complemented (RZ and NRZ) and direction sensed
Square wave outputs are uncomplemented
Power Buffer Option (Square waves only) Open collector driver type 75451 or type $75452, V_{\mathrm{Cc}} \leq 30 \mathrm{~V}$, $l_{C} \leq 200 \mathrm{~mA}$

Line Driver Option (Square waves only)
Balanced differential line driver type DM8830

- PERFORMANCE

Frequency Resporse
To 50 KHz at disc data rate
To 200 KHz with 4 X count multiphcation option
Frequency response can be doubled under special conditions
Accuracy, see Table 2
Higher accuracy (to ± 20 arc seconds) available utilizing dual reading heads.

TABLE 1

BEARING LIFE RATINGS, hours				
SPEED rpm	LOAD, pounds			
	2	5	10	15
100	750,000	230,000	30,000	9,000
200	375,000	115,000	15,000	4,500
500	150,000	46,000	6,000	1,800
1,000	75,000	23,000	3,000	900
2,000	37,500	11,500	1,500	450
5,000	15,000	4,600	600	180
10,000	7,500	2,300	300	90

NOTE Life ratings are based on fatıgue fature criteria in many long duration applications, lubricant retention becomes the limiting factor
Higher shaft loads will degrade encoder accuracy Maximurn recommended radial load (1 inch from encoder housing) is 1 is in high resolution models, 2 los in low resolution models. Maximum thrust load, 2 lbs

TABLE 2

ACCURACY RATINGS ${ }^{(1)}$ Arc minutes			
OUTPUT	INCREMENTAL	ABSOLUTE	
		Worst case	RS S $(\mathbb{N}=3000)$
Square waves	<1	$\pm .5 \pm 1080 / \mathrm{N}$	± 6
1X pulses	<1	$\pm 5 \pm 1080 / \mathrm{N}$	$\pm .6$
2 X pulses ${ }^{(2)}$	$\pm 1080 / \mathrm{N}$	$\pm 5 \pm 1080 / \mathrm{N}$	± 6
4X pulses	$\pm 1750 / \mathrm{N}$	$\pm 5 \pm 1750 / \mathrm{N}$	± 77

$N=$ line pars/disc

(1) Ratings are based on $2500<\mathrm{N}<5400$ Accuracy improves at tower line counts Improved accuracy also avatable at higher line counts under special conditions, please consult factory
(2) For adjacent zero crossings or at any odd interval $(1 / 2 \mathrm{~N}, 3 / 2 \mathrm{~N}$, $5 / 2 \mathrm{~N}, \cdots$ adart), error is $2160 / \mathrm{N}$ For zero crossings at any even interval (2/2N, $4 / 2 \mathrm{~N}, 6 / 2 \mathrm{~N}, \cdots$ apart), error is essentratly zero over any smail segment of disc rotation

Definition of Parameters

1. ACCURACY

FUNDAMENTAL accuracy applies to data taken at positive (or negative) going transitions on the sine (or cosine) output. It corresponds to data taken at the leading (or trailing) edges of the disc pattern lines, as in $1 x$ count multiplication.
INTERPOLATION accuracy applies to data taken at points within a given square wave cycle For example, data taken at both positive and negative going transitions of a sine or cosine square wave ($2 x$ count multiplication) or data taken at positive and negative going transitions of both the sine and cosine square waves ($4 x$ count multıplication) are interpolated data Usually interpolated data is lower in accuracy than fundamental data due to the imperfect duty cycle of the square waves and the imperfect quadrature phasing between the sine and cosine square waves Refer to Fig 2.
INCREMENTAL accuracy, or adjacent pulse accuracy, is measured from one pulse to the next. Normally the incremental accuracy is valid over shaft rotations of approximately 15° (mechanical) incremental accuracy is primarily determined by interpolation accuracy.
ABSOLUTE (CUMULATIVE) accuracy is measured from one pulse to any other pulse Normally the greatest error occurs between pulses that are separated by approximately one-half revolution of the encoder shaft Absolute accuracy is the sum of fundamental accuracy and interpolation accuracy

2. COUNT MULTIPLICATION

An electronic technique for increasing the encoder's output resolution beyond the number of line pairs
contained on the disc. Standard techniques allow for $1 x, 2 x$ or $4 x$ multiplication of the fundamental disc resolution. $4 x$ multiplication requires that two quadrature square waves (sine and cosine), be generated electro-optically as in Fig. 2. Transition detectors, "single shots," then form pulses at every 0 to 1 or 1 to 0 transition on both waveforms. This results in four pulses for every line pair on the disc, as shown in Fig 2 For $2 x$ multiplication, pulses are formed at 0 to 1 and 1 to 0 transitions on one square wave output only. For $1 x$ multiplication, pulses are formed at 0 to 1 (or 1 to 0) transitions on one square wave output only.

3. FREQUENCY RESPONSE

This is defined as the maximum frequency of fundamental data (number of disc lines per revolution x revolutions/second) For encoders with $2 x$ or $4 x$ count multiplication the output rate is 2 or 4 times the fundamental data frequency

4. RESOLUTION

The number of output data pulses per revolution For square wave outputs, resolution corresponds to the number of line pairs on the disc. A line pair consists of the opaque line and the clear space next to it. Normally the term "line parr" and "line" are used interchangeably, they both correspond to one cycle of square wave output signal For units with $1 x, 2 x$ or $4 x$ count multiplication, resolution corresponds to 1,2 , or 4 times the number of line parrs on the disc. Note that increasing resolution by the use of count multiplication logic usually results in a decreased cumulative accuracy, but does not affect fundamental accuracy.

Figure 1-Phototransistor Output Option Current Waveforms

Figure 2-Square-wave and Pulse Output Waveforms

ORDERING INFORMATION

When ordering, please include maxımum speed of shaft rotation, both operating and nonoperating Also, in unidirectional applications, please specify direction of rotation

TELEDYNE GURLEY CAPABILITY

In addition to its line of standard rotary and linear encoders, Teledyne Gurley has destgned and customized encoders for applications involving military specifications, extreme environmental operating conditions, and high reliability performance, as well as low cost, limsted performance requirements
Accuracies better than one arc second have been attamed with our rotary encoders, and we have supplied linear encoders with a resolution of one micron
Teledyne Gurley will be pleased to discuss your requirements for customized encoders

WARRANTY

Teledyne Gurley warrants its products agamst defects in material and workmanship under normal and proper use for a period of one year from the date of shipment.
Teledyne Gurley's obligation under this warranty is limited, at Teledyne Gurley's option, to replacement or repair, without charge, FOB Troy, NY of any defective part
The foregoing warranty is exclusive and in lien of all other warranties, and is not valid for any product which has been operated in excess of its electrical, mechanical or environmental ratings, or which has been subjected to abuse, or in which the housing has been opened, altered or tampered with

514 FULTON ST., TROY, N. Y. 12181
(518) 272-6300 / TWX: (710) 443-8156

FIRST-IN FIRST-OUT MEMORI

DATA SHEETS (used as rate buffer)

3351
 40×9 FIRST-IN FIRST-OUT MEMORY

FUNCTION
position in 1 indicates a indicates a
fip fiops T fip flops Y register n propaçata b

ORIGINAL PAGE IS OF POOR QUALITY

GENERAL DESCRIPTION -. The 3351 is a First in First Out (FIFO) Memory used in data rate buffering applications The 3351 has a capaciry of 40 nune-bit words The words are accepted at the input automatically shifted toward the output and removed at any rate in the same sequance in which they were entered

The 3351 has status indicators on both the input and output $\mathbf{t o}$ signal an avalable empty input or a valid data word at the output it also has separate input and output enable ines in addition to a master reset line A unique mput stage interfaces to TTL without external components The 3351 is manufactured using the p-channei Isoplanar silicon gate process with ion implantation

- $2 \mathrm{MHz}(3351-1)$ AND 1 MHz (3351-2) DATA RATES
- INDEPENDENT ASYNCHRONOUS INPUTS AND OUTPUTS
- FUllytTl compatigle
- 3-STATE OUTPUTS
- INPUT AND OUTPUT ENABLES
- EXPANDABLE IN EITHER DIRECTION
- STATUS INDICATORS ON INPUT AND OUTPUT
- 2B-PIN CERAMIC DUAL IN LINE PACKAGE

PIN NAMES

Q_{n}	Outputs	IR	Input Ready
D_{n}	Data Inputs	OR	Output Ready
$\overline{M R}$	Master Reset	$\overline{E E}$	Input Enable
SI	Shift In	$\overline{O E}$	Output Enable
SO	Shaft Out		

ABSOLUTE MAXIMUM RATINGS	
VGG and faputs $^{\text {VDD and Outputs }}$	-20 V to +03 V
Output Sink Current	-70 V to +03 V
Storage Temperaturs	50 mA
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

NOTE All Volteges with respect to $V_{S S}$

The 3351 t toward the towards the A Master R

SHIFT IN enabled pe register ts \mathfrak{l}. data regıste
The HIGH FIFO unde When the f 0 ripples

INPUT EA
networxs 6
SHIFT OL
register an
position ts
circuitry :
the ne' ida
When the control res

OUTPUT 1
disables th their norm
MASTER and OR w

FUNCTIONAL DESCRIPTION - The 40 by 9 memory array is under the constant control of a control logic network (See Fig 1) Each word postion in the array is clocked by a control register which also stores a marker bit a 1 signifies that that position s data is filled and a 0 indicates a vacancy at that location Each control register clocks data from the preceding nine data flip flops to ats own set of nine data fhip-flops The register logic detects the status of the preceding and succeeding registers marker bits to determine when to clock its data flip flops. When data has been transferred from location n to location $n+1^{\circ}$ the $n+1$ control circuitry changes the marker bit at control register n from a 1^{\prime} to a $0^{\prime \prime \prime}$, indicating that the data at location in has been transferred elsewhere in the array This 0 will then propagate back to the first control register signifying that the FIFO is capable of accepting more data

The 3357 buffers the first and last control registers and uses them as input/output status indicators Since all status marker 0 s propagate toward the first control register a 0 at the first register indicates the FIFO is ready to clock in more data Likewise all 1 's propagate towards the last control register and a 1 here means that data is valid at the outputs
A Master Reset control is provided to set all the control registers' status markers to 0 Note that the data registers are not reset by $\overline{\mathrm{MR}}$
SHIFT IN (SI) INPUT REAOY (IR) - A LOW to HIGH transition of the Shift In command does two things 1$\}$ the first control register is enabled permiting input data to be toaded into the first set of data registers and setting the first marker bit to a 1 and 2 f the second control register is tocked out by means of an inverted SI command At this point data from the first data register cannot be transferred to the second data register The Input Ready signal indicates the status of the first marker bit and accordingly goes LOW(not ready)

The HIGH to LOW transition of the Sl locks out the first control register and causes data from the first data registers to propagate down the FIFO under the control of the control logic This action sets the first marker bit to a 0 and the input Ready returns HIGH linput ready When the FIFO becomes full the IR will stay LOW after SI returns LOW and any further SI commands will be ignored by the circuit When a 0° ripples back from the last to the first control register the Input Ready (IR) will return to HIGH (if SI is LOW)

Fig 2

INPUT ENABLE ($\overline{\mathrm{E}}$) - A HIGH on the Input Enable disables the SI input and the current-sourcing capability of the special TTL pull up networks of the data inputs and the SJ A LOW enables these inputs

SHIFT OUT (SO) OUTPUT READY (OR) - The HIGH to LOW transition of Shift Cut command disables the clocking line of the last contral register and changes the 40th bit marker to a 0 The Output Ready is then forced LOW Note that data is not transferred from the $39 t h$ position to the 40th position on this edge When SO makes the LOW to HIGH transition the FiFO is again under control of its control logic circuitry new data is transferred to the 40ih location and the 40 th marker bit is reser to a 1 The Output Ready returns to High signtifing the new data at the output leads is now valid
When the FIFO is empty the OR remains LOW after SO goes HIGH SO commands will be ignored until a 1 'marker ripples down to the last control register after which the OR goes HIGH \{if SO is HIGH\}

Fig 3
OUTPUT ENABLE $(\overrightarrow{D E})$ - A HIGH on Oufpur Enable forces the nine outputs to a high impedance state, disables the shift out command and disables the current-sourcing capability of the special TTL pull up network of SO A LOW again enabies SO and the outputs revert back to their nomal TTL states

MASTER RESET ($\overline{M R})$ - A LOW on Master Reset sets alt the control logic marker bits to 0 Consequently IR will go HIGH (if SI is LOW) and OR will go LOW, indicating that the FIFO is now empty

SYMBOL	PARAMETER	33511 LIMATTS		33512 LIMITS		UNITS	CONOITIONS
		MIN	MAX	MIN	MAX		
$V_{1 H}$	Input HIGH Voltage	$V_{S S}-10$	$\mathrm{V}_{\text {SS }}+03$	VSS^{-10}	$v_{S S}+0.3$	V	Note 1
$V_{\text {IL }}$	Inpur Low Voltage	$V_{G G}$	08	VGG	08	V	Note 1

DC CHARACTERISTICS $V_{S S}=50 \mathrm{~V} \pm 5 \% V_{D D}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \% \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	33511 LIMITS		33512 LIMITS		UNITS	CONDITIONS
		MiN	MAX	MIN	MAX		
VOHI	Output HIGH Voltage	$\mathrm{V}_{\text {SS }}-05$		$\mathrm{V}_{\text {SS }}-0.5$		V	$\mathrm{IOH}^{\prime}=50 \mu \mathrm{~A}$
$\mathrm{VOH2}$	Output HIGH Voltage	24		24		V	${ }^{1} \mathrm{OH}=-0.2 \mathrm{~mA}$
VOL	Output LOW Voltage		04		04	V	$1 \mathrm{OL}=16 \mathrm{~mA}$
V_{11}	Puli Up initation Voltage		22		2.2	\checkmark	$\begin{aligned} & \text { Fig } 2, \text { Note } 1 \\ & S_{\mathrm{IN}}=-012 \mathrm{~mA} \end{aligned}$
$V_{\text {IP }}$	Peak Current Voltage		$\mathrm{V}_{\text {SS }}-15$		$V_{S S}-15$	V	Fig 6 Note 1
1 P	Peak Current		16		16	mA	Fig 6 Nore 1
IH	Input HIGH Current	022		022		mA	$F_{1 g}$ 6, Note 1 $V_{I N}=V_{S S}-10 \mathrm{~V}$
${ }_{1} 12$	Input Low Current		50		50	$\mu \mathrm{A}$	Fig 6 Note 1 $V_{\text {IN }}=04 \mathrm{~V}$
1 DD	Vod Current		65		50	$m A$	
IGG	$\mathrm{V}_{\text {GG }}$ Current		10		80	mA	
$\overline{P_{D}}$	Power Dissipation		520		420	mA	

AC REQUIREMENTS $V_{S S}=50 \mathrm{~V} \pm 5 \% V_{D D}=0 \mathrm{~V} \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \cdot 5 \% \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ 20 $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	33511 LIMITS		33512 LIMITS		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX		
IDS	IE Disable Set Up Time	20		20		n5	Fig 6
tion	IE Disable Hold Tıme	20		20		ns	Fig. 6
tes	TE Enable Set Up Time	0		0		ns	Fig. 6
${ }_{\text {\% }}$	TE Enable Hold Time	0		0		ns	Fig 6
tos	Input Data Set Up Time	0		0		ns	Fig. 6
${ }^{\text {toh }}$	input Data Hold Tume	220		440		n	Fig. 6
${ }^{\text {t }}$ StiH	SI HIGH Time	220		440		ns	Fig. 6
${ }^{\text {tSIL }}$	St LOW Time	280		560		n	Fig. 6
TODS	$\overline{O E}$ Disable Set Up Time	20		20		ns	Fig 8
TODH	$\overline{O E}$ Disable Hold Time	20		20		ns	Fig 8
toes	OE Enable Set Up Time	0		0		ns.	Fig 8
tosh	OE Enable Hold Tıme	0		0		ns	Fig 8
${ }^{\text {T }}$	SO LOW Time	200		400		ns	Fig 8
${ }^{\text {s }}$	SO HIGH Time	300		600		ns	Fig 8
${ }^{\text {thPW }}$	MR Pulse Width	100		200		ns	Fig. 8
$\mathrm{t}_{\text {RS }}$	$\overline{M R}$ to Si Set Up Time	0		0		ns	Fig. 8

AC CHARACTERISTICS $V_{S S}=50 \mathrm{~V} \pm 5 \% \quad \mathrm{~V}_{\mathrm{OD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V} \pm 5 \circ^{\circ} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBAL	PARAMETER	33511 LIMITS		33512 LIMITS		UNITS	CONDITIONS
		MIN	MAX	MIN	MAX		
${ }^{\text {2 }}$ SI-IRHL	St to IR Delay Time		220		440	ns	Fig 6 Note 2
${ }^{\text {T S }}$-I-IRLH	St to If Delay Time		280		560	ns	Fig. 6 Note 2
${ }^{\text {TSO-ORLL }}$	So to OR Delay Time		200		400	ns	Fig. 7 Note 2
tSO-ORHH	SO to OR Delay Time		300		600	ns	Frg. 7 Note 2
$\mathrm{T}_{\text {MR-IR }}$	MR to IR Delay Time.		300		480	ns	Fig 8
${ }^{\text {T MR-OR }}$	MR to OR Delay Time		240		480	ns	Fig 8
${ }^{18}$	Bubble Through Time		90		15	$\mu \mathrm{s}$	Fig 7, Note 3
${ }^{\text {i }}$ E	Output Enable Time		300		600	ns	Fig 7
tD	Output Disable Time		300		600	ns	Fig. 7

NOTES 1 Inciudes all Data induts $\overline{I E} \overline{O E}$ SI SO and $\overline{M R}$ (Seo Feedback Resistor Figure 2)
2 HL means positive-going edge of first signal to negative gorng edge of second signal ate 3 Forward and roverse

FAIRCHILD MOS INTEGRATED CIRCUIT • 3351

FAIRCHILD MOS INTEGRATED CIRCUIT • 3351

FIg 9 SIMPLE WORD EXPANSION

Fig 10 HIGH SPEED WORD EXPANSION

NOTES
A All input t_{r} and $t_{f} 10 \mathrm{~ns}$
B All umes measurements referenced to $: 5$ lovel
Fig it output loading

MOTOR SPECIFICATIONS

- Measured at $25^{\circ} \mathrm{C}\left(77^{\circ}\right.$ 个
- Operational temperature range $-50^{\circ} \mathrm{C}\left(-58^{\circ} \mathrm{F}\right)$ to $+75^{\circ} \mathrm{C}\left(+167^{\circ} \mathrm{F}\right)$
- Maximum rotor temperature $+75^{\circ} \mathrm{C}\left\{167^{\circ} \mathrm{F}\right)$, special models up to $+125^{\circ} \mathrm{C}\left(+258^{\circ} \mathrm{G}\right.$

$1 \cdot$	2	3		$4{ }^{4}$	5	16	7	8	9				11	12	13	14
$\begin{aligned} & \text { Motor } \\ & \text { Tyno } \end{aligned}$	Oytgent Powe (max.)	Stall Torque		Max Efticenty	$\begin{gathered} \text { Test } \\ \text { Yoltaze } \end{gathered}$	Holoxd Spetd $=15 \%$	Spacifie spete Per Vols ± 153	$\begin{gathered} \text { Yoits } \\ \text { Pet } \\ 1000 \text { gnit } \\ =15 \% \\ \hline 10 \end{gathered}$	Speetfic Torque $\pm 15 \%_{0}$		Finction forque (max)		$\begin{aligned} & \text { Aemparst } \\ & \text { Resis } \\ & \text { tancs } \\ & E 10 \% \end{aligned}$	Armature Induc: ance	Iypicat Yoltaxis	$\begin{gathered} \text { Angulx } \\ \begin{array}{c} \text { actimption } \\ (\operatorname{man}) \end{array} \end{gathered}$
1 'nit	Wats	$\underline{0 m}$	02 in.	4	Volts	50m	tpra/r	Yolts	$1 \mathrm{~cm} / \mathrm{A}$	O2 $10 / \mathrm{A}$	$\underline{8 t m}$	020	0 tm	H8	my	$\left(\mathrm{Rad} / \mathrm{s}^{2}\right)^{-10}$
12122012	0.54	534	074	50	120	44000	3700	0.27	298	41	0.20	003	670	1549	130	53
12126009	0.57	69	096	50	90	39500	4400	023	251	35	0.20	. 033	330	1050	223	69
12125005	0.50	65	092	50	60	33600	5900	0.17	18.7	25	0.20	003	170	590	300	66
0501005	0.50	37	05	60	45	25200	5900	017	16.5	. 23	0.20	003	190	590	300	30
Ceor 008	0.20	2.5	035	52	2.0	25590	13800	007	71	10	0.20	003	5.3	180	000	-
Type 050																
-050104	033	60	023	59	120	19200	1690	059	578	80	0.35	005	1090	1200	250	28.5
0501055	028	56	078	59	60	18803	3320	030	294	41	0.33	005	300	250	220	25.0
050108	0.25	80	110	65	40	16500	4280	0.23	228	32	030	004	110	230	95	380
050/_010	0.24	5.7	079	61	20	16300	8570	012	114	.16	0.30	004	38	40	70	29.5
050/_013	0.30	7.5	100	65	15	15100	10450	010	93	13	030	004	18	25	25	35.0
050/015	0.40	98	130	68	15	1850	11350	009	86	12	0.30	004	13	20	30	42.0
Type 1616																
16165012	-	92	128	68	120	17200	1485	0.67	65.5	91	0.30	004	830	\rightarrow	-	\cdots
$1615 \mathrm{EOC4}$	-	125	175	72	40	17100	4388	023	222	31	030	004	69	-	-	
Fype 250																
250% 055	0.65	175	244	72	120	14700	1250	080	780	108	0.44	008	520	850	230	440
250/.07	043	1-0	195	72	60	1190	2030	049	480	67	0.35	cos	200	350	130	39.7

Typer 1624

$1624 E 012$	-	395	550	81	120	14500	1278	082	79.9	111	0.40	005	240	850	360	820
$1624 E 006$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\rightarrow
16245003	-	470	65	81	30	11500	3975	025	25.2	35	050	007	16	230	350	700

Type 030

0301.05	035	102	142	58	120	14100	1250	080	780	108	063	009	850	1000	-	140
030\%.055	035	90	125	56	90	14000	1660	060	590	818	063	009	550	600	-	16.1
030\%. 08	041	137	190	64	60	13000	2270	0.44	430	597	0.59	008	180	300	-	16.4
030/010	043	94	131	55	30	16300	5830	017	170	236	0.65	009	50	60	-	20.4
0301.015	0.55	126	175	61	20	16400	8610	012	114	158	066	009	17	30	-	16.7
030/..020	061	179	. 248	67	15	14300	9850	010	99	131	0.63	009	08	18	-	16.5

type 230

2301.05	053.	242	333	69	12.0	8200	700	143	1390	192	0.71	\% 210	670	1300	180	250
2301.017	110	471	652	77	30	8200	2780	036	350	0.49	071	010	22	65	30	335
$230 / 020$	0.77	342	475	77	2.0	6700	3420	029	280	039	0.65	009	13	50	25	27.5

Type 235

235105	053	273	380	71	120	7300	620	161	156.0	217	067	009	570	1300	180	25.0
235/.. 10	075	393	547	76	6.0	7200	1120	082	800	113	066	009	120	350	93	341
235/n 15	075	408	293	77	30	7000	2350	0.43	410	570	065	009	30	85	40	323

Type 2232

$\begin{aligned} & 2232 H 012 \\ & 2232 H 003 \end{aligned}$	-	1160 1300	161 189	82	120 3.0	11000 10500	924 3560	108 0.28	1050 274	146 38	10	014	108 05	-	-	-

Tyor 330

330\%. 05	23	940	1.31	81	480	9360	200	5.00	4940	635	100	0014	2500	4800	250	540
330/. 055	19	798	111	81	30.0	10250	345	290	2820	392	0.80	0011	1050	2200	193	73.6
$330 / 07$	26	1004	144	84	240	9640	405	245	2400	333	0.80	0011	570	1800	110	750
330\%.09 \times	23	816	118	85	180	8050	510	196	1910	265	0.68	0.009	250	600	93	700
330109	15	1367	390	83	120	9130	675	148	1440	200	080	0011	210	550	85	520
33 F .12	2.45	1474	205	84	12.0	9670	810	123	1200	167	102	0.014	97	400	50	600
330/-17	310	1428	1.98	86	60	9000	1510	0.66	850	95	0.77	0011	29	130	22	70 J
330/ 72	340	1722	240	87	45	8730	1950	051	500	69	0.80	0011	13	70	15	615

- : For mosel mumbers contaming a "sishn" renace be digil

$8=$ Straph shat -250
$8=$ Straght shath - se motor damiss
$0=$ Ppecian shins

 for modet numb
Cormend oftict tos rot contarning a slash contact the Creyeland oflice tof prober desization.
*2 * 3 -4 - 6 dt vortaze spreefied in coluinn 5.
- Is Rotor to case theinal resslance compuled with rotor at zero
-15. Yelocity shatt bad rabng at 3060 RP4
-23 Weathts in paftiliesis ate for motor with gexbor (same case).

MAST MOTOR DATA SHEETS

Globe 168A229-2 gearmaton. (27 volts)

192:- gran reduction, -93 tonque multiplication

$$
\begin{aligned}
& N_{0} L_{\text {ooin }} \text { Speed }=(13,000-16,000) \angle 142=68-83 \mathrm{rpm} \\
& \text { Stall Torque }=(1.50 \text { ogin })(93)=140 \text { oyin. } \\
& \text { Roted Torque }=(22)(93)=20 \text { oyin } \\
& R_{A}=36,3 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& K_{T}=1.8 \frac{\mathrm{oy} \mathrm{~m}}{0 \mathrm{mp}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{16 \sigma z}{10}\right)=.00106 \text { oy-in-sic }{ }^{2} \\
& J_{G \text { earabx }}=\left(.5 \mathrm{gmcm} \mathrm{~cm}^{2}\right)=.00029 \mathrm{sex} \sin -22_{c}^{2} \\
& L_{\Lambda}=8.8 \text { míli havies }
\end{aligned}
$$

at $\operatorname{loa} 0$ ofat, $\dot{\omega}=$
where $T_{-1}=$ motor torque $=1.50$ oy im
$\frac{t}{n}=$ grean reduction $=192$
$\frac{y}{n y}=$ forque multuplier $=93$
$I_{L}=\frac{1.6 \text { oyin }+104 \mathrm{Tm}(n y) \quad \text { (note: 2nd term due to }}{1.1 \text { mast gears) }}$
$J_{L} J_{G}=$ sum of motor and gearbox inertias $=.00135$ oyinsec
$J_{L}=$ load inemia $=.986$ ori in ze^{2}

$\operatorname{tin}=\frac{\omega}{\omega}=\frac{30 \pi p h}{2.6 \frac{\operatorname{mat}}{2 c^{2}}}\left(\frac{2 \pi \operatorname{cod} \theta}{60 \frac{\pi c}{n}}\right)=1,2$ 2ec to come
upter spese.

1024×8 ERASABLE PROM

The MCM2708/27A08 is a 8192-bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requirng non volatile memory that could be reprogrammed periodically The transparent lid on the package allows the memory content to be erased with ultraviolet light Pin-for-pin mask-programmable ROMs are avalable for large volume production runs of systems initially using the MCM2708/27A08

- Organized as 1024 Bytes of 8 Bits
- Static Operation
- Standard Power Supplies of $+12 \mathrm{~V},+5 \mathrm{~V}$ and -5 V
- Maximum Access Time $=300 \mathrm{~ns}-$ MCM27A08L 450 ns - MCM2708L
- Low Power Dissipation
- Chip-Select Input for Memory Expansion
- TTL Compatible
- Three-State Outputs
- Pin Equivalent to the 2708
- Pin-for-Pin Compatible to MCM65308, MCM68308 or 2308 Mask-Programmable ROMs

PIN CONNECTION DURING READ OR PROGRAM

Mode	PIn Number							
	$9-11,13-17$	12	18	19	20	21	24	
Read	Dout	$V_{S S}$	$V_{S S}$	$V_{D D}$	$V_{I L}$	V_{BB}	V_{CC}	
Program	Din	V_{SS}	Pulsed $V_{I H P}$	$\mathrm{~V}_{\mathrm{DD}}$	$\mathrm{V}_{\text {IHW }}$	V_{BB}	V_{CC}	

mOS

(N-CHANNEL, SILICON GATE)

1024×8-BIT UV ERASABLE PROM

ABSOLUTE MAXIMUM RATINGS (1)

Ratung	Value	Unit
Operating Temperature	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65 to +125	${ }^{\circ} \mathrm{C}$
$V_{D D}$ with Respect to $V_{B B}$	+20 to -03	Vde
$\mathrm{V}_{C C}$ and $\mathrm{V}_{\text {SS }}$ with Respect to $\mathrm{V}_{\text {B }}$	+15 to -03	Vdc
All Input or Output Voltages with Respect to V_{BB} during Read	+15 to -0 3	Vdc.
$\overline{\mathrm{CS}}$ /WE Input with Respect to $V_{\text {BB }}$ during Programming	+20 to -03	Vde
Program Input with Respect to $V_{\text {BB }}$	+35 to -03	Vde
Power Dissipation	18	Watts

Note 1
Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded Functional operation should be restricted to RECOMMENDED OP. ERAIING CONDITIONS Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

DC READ OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED DC READ OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$\mathrm{V}_{\text {cc }}$	475	50	525	Vde
	Vod	114	12	126	Vde
	$V_{B B}$	-5 25	-50	-475	Vde
Input High Voitage	V_{1}	30	-	$\mathrm{V}_{C C}+10$	Vdc
Input Low Voltage	V_{12}	$\mathrm{V}_{\text {SS }}$:	-	065^{-}	Vdc

READ OPERATION DC CHARACTERISTICS

Charatterstic	Condition	Symbol	Mın	Typ	Max	Unit
Address and CS Input Sink Current	$\mathrm{V}_{10}=5.25 \mathrm{~V}$ or $\mathrm{V}_{1 \mathrm{n}}=\mathrm{V}_{1 L}$	1 in	-	1	10	$\mu \mathrm{A}$
Output Leakage Current	$\mathrm{V}_{\text {Out }}=5.25 \mathrm{~V}, \overline{\mathrm{CS}} / \mathrm{WE}=5 \mathrm{~V}$	ILO	-	1	10	$\mu \mathrm{A}$
VDD Supply Current	Worst-Case Supply Currents All Inputs High $\overline{C S} / W E=50 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	100	-	50	65	$m A$
$V_{\text {VCC Supply Current }}$ (Note 2)		ICC	-	6	10	mA
$V_{\text {B8 }}$ Supply Current		${ }^{\text {B }}$ B	-	30	45	mA
Output Low Voltage	$1 \mathrm{OLL}^{\prime}=16 \mathrm{~mA}$	V_{OL}	-	-	045	V
Output High Voltage	$1 \mathrm{OH}^{\prime}=-100 \mu \mathrm{~A}$	VOH^{1}	37	-	-	V
Output High Voltage	$1 \mathrm{OH}=-10 \mathrm{~mA}$	VOH^{2}	24	-	-	V
Power Dissipation \quad (Note 2)	$\mathrm{T}^{\prime}=70^{\circ} \mathrm{C}$	$P_{\text {D }}$	-	-	800	mW

Note 2

The total power dissipation is specified at 800 mW it is not calculable by summing the various current (lDD, lcC, and lBB) multiplied by their respective voltages, since current paths exist between the various power supplies and $V_{S S}$ The IDD. ICC, and IBB currents should be used to determine power supply capacity only
$V_{B B}$ must be applied prior to $V_{C C}$ and $V_{D D} V_{B B}$ must also be the last power supply switched off

AC READ OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.) (All timing with $t_{r}=t_{f}=20 \mathrm{~ns}$, Load per Note 3)

Characteristle	Symbol	MCM27A08			MCM2708			Unit
		Mim	Typ	Máx	Min	Typ	Max	
Address to Output Delay	taO	-	220	300	-	'280	450	ns
Chip Select to Output Delay	${ }^{\text {t }} \mathrm{CO}$	-	60	120	-	60	120	ns
Data Hold from Address	toHA	0	-	-	0	-	-	ns
Data Hold from Deselection	toHD	0	-	120	0	-	120	ns

CAPACITANCE (periodically sampled rather than 100% tested)

Characteristic	Condition	Symbal	Typ	Max	Unit ${ }^{\prime}$ -
Input Capaertance $(f=10 \mathrm{MHz})$	$V_{\text {in }}=0 \mathrm{~V}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	C_{1}	40	60	PF
Output Capacitance $(\mathrm{f}=10 \mathrm{MHz})$	$V_{\text {out }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$C_{\text {out }}$	80	12	, ${ }^{\circ} \mathrm{pF}$

Note 3
Output Load $=1 \mathrm{TrL}$ Gate and $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (tncludes Jig Capacitance)
Timing Measurement Reference Levels Inputs 08 V and 28 V Outputs $08, \mathrm{~V}$ and 24 V

ORIGINAL PAGE IS OF POOR QUALITTY

READ OPERATION TIMING DIAGRAM

DC PROGRAMMING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED PROGRAMMING OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	$V_{\text {CC }}$	475	50		Vac
	$V_{\text {DD }}$	114	12	126	Vdc
	$V_{B E}$	-525	-50	-475	Vde
Input High Voltage for All Addresses and Data	$\mathrm{V}_{\text {IH }}$	30	-	$\mathrm{V}_{\mathrm{Cc}}+10$	Vdc
Input Low Voltage (except Program)	$\mathrm{V}_{1 L}$	$\mathrm{V}_{\text {SS }}$	-	065	Vdc
$\overline{\mathrm{CS}} / \mathrm{WE}$ Input High Voltage (Note 4)	$\mathrm{V}_{\text {IHW }}$	114	12	126	Vde
Program Pulse input High Vottage (Note 4)	$V_{1 H P}$	25	-	27	Vde
Program Pulse Input Low Voltage (Note 5)	$V_{\text {ILP }}$	$\mathrm{V}_{\text {SS }}$	-	10	Vdc

Note 4 Referenced to $V_{S S}$
Note 5. $V_{1 H P}-V_{1 L P}=25 \mathrm{Vmin}$

PROGRAMMING OPERATION DC CHARACTERISTICS

Characteristuc	Condition	Symbol	Min	Tур	Max	Unit
Address and CS/WE Input Sink Current	$\mathrm{V}_{\text {In }}=525 \mathrm{~V}$	1 LI	-	-	10	HAdc
Program Pulse Source Current		${ }_{\text {IPL }}$	-	-	30	mAdc
Program Pulse Sink Current		1 PH	-	-	20	made
$\mathrm{V}_{\text {DD }}$ Supply Current	Worst-Case Supply Currents All Inputs High$\overline{C S} / W E=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	IDD	-	50	65	mAdc
$V_{\text {CC }}$ Supply Current		ICC	-	6	10	mAdc
$V_{B B}$ Supply current		IBB	-	30	45	mAdc

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature unless otherwise noted)

Characteristic	Symbal	Min	Max	Unit
Address Serup Time	tas	10	-	$\mu \mathrm{s}$
CS/WE Setup Time	${ }^{\text {t }}$ CSS	10	-	$\mu \mathrm{s}$
Data Setup Time	${ }^{\text {t }}$ DS	10	-	$\mu \mathrm{s}$
Address Hold Time	${ }_{\text {t }}$	10	-	$\mu \mathrm{s}$
$\overline{\text { CS/WE Hold Time }}$	${ }^{\text {t }} \mathrm{CH}$	05	-	$\mu \mathrm{s}$
Data Hold Time	${ }^{\text {t }} \mathrm{DH}$	10	\rightarrow	$\mu \mathrm{s}$
Chip Deselect to Output Float Delay	TDF	0	120	ns
Program to Read Delay	tDPR	-	10	$\mu \mathrm{s}$
Program Pulse Width	tPW	01	10	ms
Program Puilse Rise Time	$t_{\text {PR }}$	05	20	$\mu \mathrm{s}$
Program Puise Fall Time	${ }^{\text {t P P }}$	05	20	$\mu 5$

Note 6. The $\bar{C} S / W E$ transition must occur after the Program Pulse transition and before the Address Transition

PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the " 1 " state (represented by Output High) Data are entered by programming zeros (Output Low) into the required bits The words are addressed the same way as in the READ operation A programmed " 0 " can only be changed to a " 1 " by ultraviolet light erasure.
To set the memory up for programming mode, the $\overline{\mathrm{CS}} / W E$ input $(\mathrm{Pin} 20$) should be raised to +12 V Programming data is entered in 8 -bit words through the data output terminals (D0 to D7)

Logic levels for the data lines and addresses and the supply voltages ($V_{C C}, V_{D D}, V_{B B}$) are the same as for the READ operation

After address and data setup one program pulse per address is applied to the program input (P in 18) A program loop is a full pass through all addresses Total programming time, $T_{\text {Ptotal }}=N \times t_{\text {PW }} \geqslant 100 \mathrm{~ms}$ The required number of program loops (N) is a function of the program pulse width (tPW), where $01 \mathrm{~ms} \leqslant \mathrm{t}_{\mathrm{PW}} \leqslant$ 10 ms , correspondingly N is $100 \leqslant \mathrm{~N} \leqslant 1000$ There must be N successive loops through all 1024 addresses it is not permitted to apply more than one program pulse in succession to the same address (te., N program pulses to an address and then change to the next address to be programmed). At the end of a program sequence the $\overline{C S} / W E$ falling edge transition must occur before the first address transition, when changing from a PROGRAM to a READ cycle The program pin ($\operatorname{Pin} 18$) should be pulled down to $V_{\text {ILP }}$ with an active device, because this pin sources a small amount of current (IIPL) when $\overline{C S} W E$ is at $V_{\text {IHW }}$ $(12 \mathrm{~V})$ and the program pulse is at $\mathrm{V}_{\text {ILP }}$

EXAMPLES FOR PROGRAMMING
 Always use the $T_{P_{\text {total }}}=N \times t_{p W} \geqslant 100 \mathrm{~ms}$ relationship

1 All 8192 bits should be programmed with a 02 ms program puise width

The minimum number of program loops:

$$
N=\frac{T_{\text {Ptotal }}}{t_{P W}}=\frac{100 \mathrm{~ms}}{0.2 \mathrm{~ms}}=500 \quad \text { One program loop }
$$

consists of words 0 to 1023
2. Words 0 to 200 and 300 to 700 are to be programmed. All other bits are "don't care". The program puise width is 05 ms . The minmum number of program loops, $N=\frac{100}{05}=200$ One program loop consists of words 0 to 1023. The data entered into the "don't care" bits should be all is
3. Same requirements as example 2, but the EPROM is now to be updated to include data for words 850 to 880 The minimum number of program loops is the same as in the previous example, $N=200$ One program loop consists of words 0 to 1023 The data entered into the "don't care" bits should be all is Addresses 0 to 200 and 300 to 700 must be reprogrammed with their original data pattern

ERASING INSTRUCTIONS

The MCM2708/27A08 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of $2537 \AA$ The recommended integrated dose (1 e , UV-Intensity x exposure tume) is $125 \mathrm{Ws} / \mathrm{cm}^{2}$ As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CAg4043) the ERASE time is 30 minutes The lamps should be used without shortwave filters and the MCM2708/27A08 should be positioned about one inch away from the UV-tubes

OUTLINE DIMENSIONS

NOTE
1 LEADS TRUE POSITIONED WITHIN O25mm (0010) DIA (AT SEATING PLANE] AT MAXIMUM MATERIAL CONDITION

	MLLLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	29977	3099	1180	1220
B	1486	1562	0585	0.615
C	330	495	0130	0195
D	038	053	0015	0021
F	076	140	0030	0055
G	254 BSC	00100 BSC		
H	076	178	0030	0070
J	020	030	0008	0012
K	254	419	0100	0165
M	-	10^{2}	-	100
N	051	152	0020	0060

716-03

APPENDIX C

Computer Program for the calculation of Azimuth Initiate Angles, Elevation Fire Angles and Center of Scan Angles.

こ PROGRAM TO COMPOTE AVAILABLE AZIMUTH DATA ANGLES JNTRGER JCT（3），BIN（8）
C IVITIALIGAIION ELOCK
C
C NMAST＝MAST VELOCITY（RAD／SEC）
C MMIR＝MIRROR VELOCITY（RAD／SEC）ORIGINAL PAGE IS
C rincraencoder resolution（degrees） OF POOR QUALITY
$A N G=-180$.
WMAST $=3.141592$
HMIR=WMAST*24.
DTEETA=WMAST/RMIR*45.
RINCR $=360 . / 256$.
RPMAST $=$ WifAST*9. 549298
RPMIR $=$ HMIR * 9.549298
DHOLD=2.0E3*3.141592/(250.*MMAST)
SCANS=RPMAST/60.
c
DO $20 \quad 12=1,254,32$
$I 3=12+31$
$\operatorname{GRITE}(6,100)$
VRITE (6.101)
DO $10 \mathrm{I}=\mathrm{I} 2, \mathrm{I} 3$
IBIN=I-1
C CONVERT IRIN TO ITS OCTAL AND BINARY REPGESENTATICNS
CAIL OCTBIN (OCT, BIN, IBIN)
IRIN=I-1
ANG2=ANG+DPHETA/2.
HRITF (6, 102) ANG2,ANG, (OCT(J), J=1, 3), (BIN(J), J=1, 8), IBIN, IBIN
$A N G=A N G+R I N C R$
10 CONTINUS
4RITE (6.104)
RRITE (6,103) WMAST,RPYAST, WMIR,RPMIR,DHCLD,DTHETA,SCANS
20 COMTINUE
MRITP $(6,100)$
こ
100 FORMAT(17)
101 FORFAT ('O', 2 X, 'AZIMOPH DATA $\operatorname{ANGLES} \quad$ ' 4 X ,
-'InITIATE ANGLE ADDR. IN MDMORY'/' ', 6X,
-'DEGREES', 20X,'DEGREES', 6X,'OCTAL BINARY DECIMAL',
-1 HEX ${ }^{\text {I }}$

103 FORMAT ('-', MAST VELOCITY= , F7.3,' RAD/SEC = ', F7. 1,

-'SCANS PER SECOMD= ',F7.3)
104 FCRMAT($\left.0^{\prime}\right)$
STGP
END
こ
C SUBZOUTINE CONVERTS IBIN TO ITS OCTAL AND BINARY BEPRESENTATION
SUBROUTINE OCTEIN (OCT, BIN, IBIN)
INTEGER JCT(3), BIN(8), PAR
IBIMT=IBIN
C
OCI (1) $=I B I N / 64$

ISIV=MOD (IBIN, 64) OCT (2) $=$ IBIN $/ 8$
OCT (3) $=\operatorname{IOD}$ (IBIN, 8)
$I B I N=I B I N 1$
DO $10 \quad \mathrm{I}=1,7$
$\mathrm{PWR}=2 \div(8-\mathrm{I})$
$B I N(I)=I B I N / P N R$
$\operatorname{IBIN}=\mathrm{MOD}(I B I N, P W R)$
10 CONTINUE
$\operatorname{BIN}(8)=T B I N$
RETURN
END
/ExECOte
／COMPILE
C projram ro compute avatlable azimuth center of scan angles
INTEGER JCT（3），BIN（8），OCT2（3），BIN2（8）
こ Initialtzation
C RIVCK＝ENCODER RESOLOTION
$A N G=-180$ ．
$\mathrm{RINCR}=360 . / 128$ ．
c
WRITE $(6,100)$
जRIFE（6，101）
DO $10 \quad \mathrm{I}=2,130,2$
C
C TBIY＝2EFBRENCE INGLP
C IBIY2＝COMPUTER COMMAND WORD

$$
\begin{aligned}
& \text { IBIN }=128+2-I \\
& \text { IBIN } 2=\text { IBIN } / 2+128
\end{aligned}
$$

CALL OCTBIN (OCT, BIN,IBIN)
CAIL OCTBIN (OCT2, BIN2, IBIN2)

$$
\text { WRITE }(6,102) \text { ANG, }(O C T(J), J=1,3),(\operatorname{BIN}(J), J=1,8), I B I N,
$$ $-(O C T 2(J), J=1,3),(\operatorname{BIN} 2(J), J=1,8)$

Ais $G=A N G+R I N C R$
10 CONSINUE
C

$$
\text { DO } 20 I=2,126,2
$$

$I B I N=256-I$
IBIN $2=I B I N / 2+128$
CALL OCTBIN（OCT，BIN，IBIN）
CAIL OCTBIN（OCT2，BIN2，IBIN2）
VRITE $(6,102)$ ANG，（OこT（J），J＝1，3），（BI Y（J），J＝1，8），IBIN，
$-(\operatorname{OCT} 2(J), J=1,3),(\operatorname{EIN} 2(J), J=1,8)$
ANG＝ANG＋RIVCR
20 CONTINUE
C
100 FORMAT（1＇）
101 FORMAT（＇＇21X，＇AVATLABLE AZIMUTH CENTER OF SCAN ANGLES＇／／＇： 3 ：
 －7X，＇ANGLE＇，15X，＇OCTAL BINARY HEX＇，11X，＇CCTAL EINARY＇）
， 102 FOR：AT：＇ $6 \mathrm{X}, \mathrm{P9} .4,13 \mathrm{X}, 3 \mathrm{I} 1,2 \mathrm{X}, 8 \mathrm{I} 1,2 \mathrm{X}, \mathrm{Z} 2,11 \mathrm{X}, 3 \mathrm{I} 1,4 \mathrm{X}, 8 \mathrm{E} 1$ ） WRITE（ 0 ：100）
stoe
END
C SUBROUTINE FOR DECIMAL TO OCTAL AND BINARY CONVERSION
SUEROUINNE CCTEIN（OCT，BIN，IBIN）
C NUMEER TO BE CONVERTRD IS PASSED THROUGH IBIN
C OCPAL AND BINASY REPRESENTATIONS ARE RETURNED IN
C ARZAYS OCT AND BIN RESPECTIVELY
C THE ARRAY ELEMENTS REPRESENP SINGLE DIGITS WITH
C OCT（1）AND BIN（1）BEING THE HOST SIGNIFICANT EITS INTEGER OCT（3），BIN（8），PNR
IBIN $1=I B I N$
こ
OCT（1）＝IBIN／64
IBIN＝MOD（IBIV，64）
OCT（2）＝IBIA $/ 8$
$O C T(3)=\operatorname{MOD}(\operatorname{IBIN}, 8)$
C
IBLN＝IBIN 1
DO $10 \mathrm{I}=1.7$
$\mathrm{PNR}=2 * *(8-\mathrm{I})$
BIN $(J)=[B I N / P Q R$
THTV=MCD (IBTN, PNR)

1) CONTINUE

BIN $(8)=I E I N$
IBIN=IBIV 1
こ
RETURN
END
/EXECOTE

C erogram to compure availabic elevation anglrs
INTEAER OCF (3), EIN (8)
REAL LMIR,LASLIM

ORIGINAL PAGE IS
 OF POOR QUALITY

```
こ INITIILIZATION BLOCK
\approx LMIR=LEVGTH OF FACE ON OCTOGONAL MIRROR (IVCHES)
C FBE4U=NIDTH OF BEAM AT MIRROR SURFACE (INCHES)
\approx LASLTM=EREQUENCY LASER IS LIMITED TO FOR CONTIN. ORERATION (EZ)
C SPMIR=AVGULAS VELOCITY OF MIRROR (RPM)
C RINCR=ENCODER RESOLUTIOV (DEGREES)
~ B1=ANGLE FROM HORIZONTAL WHERE BRAM IS AT FULI PONER (DEGREES)
C BN=ANGLE FRON YERTICAL WHERE BEAM IS AT FULL ROFER (DEGREES)
    C DBETA=MINIMUM ANGEE BETWEEN ELEVATION SHOTS
    LMIR=1.2426
    NBEAB=.375
    RINCR=90./256.
    B1=2.*(180./3.141592)*ARCOS(.383*(LMIR-TABEAM)/LMIR)-135.
    BN=-2.*(180./3.141592)*ARCOS(. 383*(LMIR+WBEAE)/LMIR)+135.
    |NG=0.
    LASLTM=10000.
    RP@IR=720.
    DBETA=12.*RDMIR/LASLIM
    C DBETA MUST BE AN INTEGRAL MULTIPLE OF RINCR, CONVERT IF NEC.
    DBETA= DBETA/RINCR
    IF(DBETA-FLOAT(IFIY(DBETA)).VE.0.)DBETA=DEETA+1.
    DBETA= RINCR*ELOAM(IFIX (EBETA))
    C
    C
            DO 20 x2=1,254,32
            I3=I2+31
            WRITE(6,100)
            NRITE(6,101)
            DO 10 I=I2,I3
            IBIN=T-1
            CALE OCIBIN(OCT,BIV,IBIN)
            IBIN=I-1
            HRITE(6,102) ANG, (OCT(J),J=1,3),(BIN(J),J=1,8),IRIN,IBIM
    - IF AHGLE IS NOY WITHIN FULL POWER RANGE FLAG FITH ASTERISK
            IF((ANG.LT.B1).OR.((90.-ANG).LT.BN)) KRITE(6,103)
            ANG=ANG+RINCP
            10 CONTINUE
            WRITE(6,104)DBEPA,LASLIM, RPMIR,HEEAN
            20 CONTINUE
            #RITB(6,100)
    c
        100 FORMAT ('1')
        101 FORNAT('O', 2X, 'AVAILABLE ELCVATION ANGLES',20X,
            -1 ADDP. IN MEMORI'/' ',11X,
            -'DEGREES', 20X,6X,'OこTAL BINARY DECIMAI',
            -' HEX')
        102 FORMAT(' ',10X,F9.4,18X,8X,3I1,2X,8I1,4X,I3,6X,22)
        103 FORMAT ('+*,20X, *')
        104 FORMAT('-'/'-', 2K,'DELTA BETA MIM_= ',F7.5,' DEGREES'/*O',
        -2X, '% ASTERISK'INEICATES ONLY PARTIAAL LASER PONER'/''*,
        -2X,* AVAILABLE AT PHIS ELZVAIION'/'0',
        -2X,' ABOVE LATA VALTD WHLN:'/'0',4X, 'LASCE ITMITED TO',
        -F7.1,' HERTZ'/', 4X,'MIRROR VELOCTTY= 'FG.1.' BRM'/'**
        -4X,'BEAM NIDTH= ,F7.4,' INCHES')
        STOP
```

C SUbROUTINE FOR CONVRRTING IBIN TO OCTAL AMD RINARY

37
SUBROUPINE OCTBIN (OCT, BIN, IBIN)
IN ing ea jet (3) , BTM (8), PAR
IBIN1=IBIN
c
OCT (1)=IBIN/64
IBIN $=$ MOD (IBIN, 64)
OCT (2) $=$ IBIN $/ 8$
$\operatorname{OCT}(3)=\mathrm{MOD}(I B I N, 8)$
c
IBIN=IBIN 1
DO $10 \quad I=1,7$
P腮 $=2 * *(8-I)$
$B I N(I)=I B I N / P A R$
IBIN $=$ MOD (IBIN. PHR)
10 contruue
$B I N(8)=I E I N$
こ
RETURN
EVD
/eyecute

[^0]: MAST VELOCITY $=3.142 \mathrm{RAD} / \mathrm{SEC}=30.0$ RPM MIRROR VELOCITY $=75.398 \mathrm{RAD} / \mathrm{SEC}=720.0 \mathrm{RPM}$

 DATA HOLD IIME= 7.812 MSEC
 DELTA THERA= 1.8750 DEGREES
 SCANS PER SECCND= 0.500

