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SYMBOLS

d minimum (Hamming) distance between code words in a code

E(x) error polynomial

e order of an element in GF(2 )

e. error value at location X. of received codeword
J J

G generator matrix of a code

GF(2m) Galois field of 2™ elements

g(x) generator polynomial of a cyclic code

H parity-check matrix of a code

k number of information symbols in a code

M(x) message polynomial

m a positive integer

m(x) minimum polynomial

n code length (total number of symbols in a code)

(n,k) linear block code with parameters n and k

p number of errors in received codeword

p(x) primitive polynomial

q a positive integer defines the numbers of element in the Galois field

R(x) received polynomial

r(x) remainder polynomial

S syndrome of a parity check

S. a syndrome component calculated by root substitution method

S.^ a syndrome component calculated by R(x)/g(x)

t error correcting capability of a code

V(x) transmitted polynomial
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X. error location at jth position of received codeword

a primitive element of GF(2 )

B error location number

a(x) error location polynomial
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A DECODING PROCEDURE FOR THE REED-SOLOMON CODES

Raymond S. Lira

Ames Research Center

SUMMARY

This paper describes a decoding procedure for the (n,k) t-error-
correcting Reed-Solomon (RS) code, and an implementation of the (31,15) RS
code for the I4-TENEX central system. This code can be used for error cor-
rection in large archival memory systems. The principal features of the
decoder are (1) a Galois field arithmetic unit implemented by microprogram-
ming a microprocessor, and (2) syndrome calculation by using the g(x)
encoding shift register. Complete decoding of the (31,15) code is expected
to take less than 500 ysec. The syndrome calculation is performed by hard-
ware using the encoding shift register and a modified Chien search. The
error location polynomial is computed by using Lin's table, which is an inter-
pretation of Berlekamp's iterative algorithm. The error location numbers are
calculated by using the Chien search. Finally, the error values are computed
by using Forney's method.

PROLOGUE

Historically, in the development of algebraic coding theory, the Reed-
Solomon (RS) codes were recognized as the most powerful and elegant, and also
the most complicated, block codes to decode. These codes were first described
by I. S. Reed and G. Solomon in 1960. A systematic decoding algorithm was not
discovered until 1968 by E. Berlekamp. Because of their complexity, the RS
codes are not widely used except when no other codes are suitable.

In 1968, a (63,53) RS code with code symbols from GF(26) was used to
salvage the IBM Photo-Digital Storage System. In 1975, a (4095,4001) RS code
with code symbols from GF(212) was used to make the magnetic tape archival
data storage system viable at the Bureau of the Census, Department of Com-
merce. In 1975-1976, a (31,15) RS code with code symbols from GF(25) was
designed by E. Berlekamp for use in a classified defense communication system.
Before proceeding with a description of decoding the RS codes, it is felt that
the following poems selected to amplify the coding spirit are appropriate.



In Galois Fields*

In Galois fields, full of flowers
primitive elements dance for hours
climbing sequentially through the trees
and shouting occasional parities

The syndromes like ghosts in the misty damp
feed the smoldering fires of the Berlekamp
and high-flying exponents sometimes are downed
on the jagged peaks of the Gilbert bound.

Message and Clarity

A message with content and clarity
Has gotten to be quite a rarity.
To combat the terror of serious error,
Use bits of appropriate parity.

INTRODUCTION

With present technology, very large memory systems (>1012 bits) designed
for the archival storage of digital data are critically dependent on elec-
tronic error correction systems (EECS) for ensuring system viability and
integrity (refs. 1, 2). In the IBM 3850 Mass Storage System, the EECS used
is an Extended Group Coded Recording capable of correcting up to 32 8-bit
bytes of data in a 208-byte data block. In the CDC 38500 Mass Memory System,
the EECS used is a modified Group Coded Recording similar to that used in the
IBM 2400 Series magnetic type systems.

The use of magnetic tape systems for archival storage of digital data
depended even more critically on EECS to make them viable. The EECS devised
by Brown and Sellers, which was used in the IBM 2400 series magnetic tape
system, is not adequate for long-term archival storage of data (refs. 3-5).

At the Institute for Advanced Computation (IAC), archival storage systems
such as the UNICON 690 (or UNICON 190), magnetic tape systems, and other mass
memory systems are no exceptions. The viability of these systems depends
critically on EECS. For the Institute, instead of designing a different EECS
tailored to each particular archival system, it is advantageous to design
just one EECS powerful enough to serve all systems within the Institute.

*By S. B. Weinstein of Bell Telephone Labs., IEEE, Trans, on Inf. Theory,
March 1971, p. 220.

^From Error Correcting Codes, H. B. Mann, Ed., Wiley, N.Y., 1968.



This paper describes the (n,k) t-error-correcting Reed-Solomon (RS) codes
and a decoding procedure suitable for implementation with the present technol-
ogy. In particular, a (31,15) RS code is chosen as the EECS for the IAC 14-
TENEX central system. This code is not a binary code, but a q-ary code with
code symbols from GF(25). It is believed that this code is powerful enough
to meet all anticipated IAC requirements. Because of the PDP-10, the PDP-11,
and the ILLIAC IV computers comprising the I4-TENEX system, this code is
planned to have two modes of operation: 36-bit mode and 16/8-bit mode. The
decoding of this code will be implemented by hardware and firmware, and con-
sists of four steps: (1) the syndrome calculation is performed by hardware
using the encoding shift register and a modified Chien search; (2) the error
location polynomial computation is performed by firmware by microprogramming
a 2900 series microprocessor to implement the Berlekamp iterative algorithm;
(3) the error location numbers calculation is performed by hardware using the
Chien search method; and (4) the error values computation is performed by
firmware using a method suggested by Forney. Finally, this (31,15) RS code
EECS is interfaced to the I4-TENEX system by means of a standard IAC 1011-
Interface, like the Q1011 (ref. 6). With this interface, this EECS is just
another processor in the I4-TENEX central system.

The author wishes to thank Professor Shu Lin of the University of Hawaii
for his initial consultation and for reading this paper. He also thanks his
colleagues D. K. Stevenson, G. F. Feierbach, and P. Hiss for reading and com-
menting on the work reported herein.



REED-SOLOMON CODES

The Reed-Solomon (RS) codes (refs. 7-9) are the most powerful of the
known classes of block codes capable of correcting random errors and multiple-
burst errors. The RS codes are nonbinary codes with code symbols from a
Galois field of q elements GF(q). From coding theory, if p is a prime
number and q is any power of p, there are codes with code symbols from a
q-symbol alphabet. These codes are called q-ary Bose-Chaudhuri-Hocquenghem
(BCH) codes.

For engineering applications at the present, only binary codes derived
from RS codes are of interest. For this reason, GF(q) will be restricted to
GF(2m), where m is a positive integer. The field GF(2m) is formed by a
primitive polynomial of degree m with a as the primitive element of the
field. In the algebra of a Galois field, a is also called the nth root of
unity in GF(2m) since an = 1 for n = 2m - 1. With q = 2m, the code symbols
of an RS code are a1, i = •», 0, 1, 2, . . . , 2m - 2, which are the 2m distinct
elements of GF(2m). The notation a00 = 0 is used here.

Let m0, d, s, and t be any positive integers, and a be an element of
GF(qs). There exists a q-ary BCH code of length n = qs - 1 symbols that
corrects any combination of t or fewer errors and requires no more than 2st
parity-check symbols. Let g(X) be a polynomial of lowest degree over GF(q)
and select q = 2m. The code generated by g(X) is a cyclic BCH code and has

am°, am°+1, . . ., a
m°+d"2 (1)

as roots. The special q-ary BCH code, for which s = mg = 1 and d = 2t + 1,
is called the RS code. The roots of the RS code are

a, a2, a3, . . .,a2t (2)

Since the minimum polynomial with root of a is simply (x+a ), the genera- -
tor polynomial g(X) of a t-error-correcting RS code of length 2m - 1 is

g(X) = (X+a) (X+a2) . . . (X+a2t) (3)

The codeword polynomials generated by g(X) consist of the multiples of
g(X) modulo Xn + 1, and have a, a2, a3, . . . , a2t as roots. Since g(X) has
degree 2t, and a is a primitive nth root of unity in GF(2m), the RS code
generated by g(X) is a t-error-correcting cyclic code with the following
parameters :

Code length (symbols): n = 2m - 1

Number of parity check symbols: n - k = 2t

Minimum distance: d = 2t + 1

Number of information symbols: k = 2 - 1 - 2t

Since a symbol in GF(2m) can be expressed as an m-tuple over GF(2), the
parameters of an RS code over GF(2) are:



n = m(2m-l) bits

n-k = 2mt bits

d = 2t + 1

k = m(2m-l -2t) bits

In coding theory, if g(X) is a polynomial of degree n-k and is a fac-
tor of Xn + 1, then g(X) generates an (n,k) cyclic code (ref. 7, theorem
4.3; ref. 8, theorem 8.1). One way to show that an RS code generated by g(X)
is cyclic is to describe the code in terms of its roots of g(X) in GF(2m).
The order e of a field element a1 is the least positive integer for which
(a1)6 = 1. Since (a1)11 = 1, e must be a factor of n = 2m - 1. If e
divides n, then (Xe + l) divides (Xn +1) . Furthermore, an element a^ of
order e must be a root of (Xe + l), then (X + a^O divides (Xe + l), and hence
it divides (Xn + l). Therefore, (Xn + l) has as roots all the n = 2m - 1
nonzero elements of GF(2m). Since g(X) has a1, a2, a3, . . .,a2t as roots,
g(X) is a factor of (Xn + l), and hence g(X) generates a cyclic code.

ERROR CORRECTING CAPABILITY

The RS codes over GF(2m) are very effective for correcting random and
burst errors. Since each code symbol is an m-tuple (or m-bit symbol) over
GF(2), a t-error-correcting RS code is capable of correcting any error pat-
tern that affects t or fewer m-bit symbols. For example, since a burst of
length 3m+l cannot affect more than four m-bit symbols, a four-symbols cor-
recting code can correct any single burst of length 3m+l or less. It can
also simultaneously correct any combination of two bursts of length m+1 or
less because each such burst can affect no more than two symbols. At the same
time, it can correct any combination of four or less random errors. In gen-
eral, the RS code with error correcting capability t can be used to correct
any of the following errors:

1. All single bursts of length bj, no matter where it starts, if
b: < m(t - 1) + 1

2. Two bursts of length no longer than b2 each, no matter where each
burst starts, if b2 ^ m([t/2] -1) + 1, or any p bursts of length
no longer than bp each, no matter where each burst starts, if
bp < m(tt/p] -1) + 1

From the above discussion, it follows that the RS code can be used to correct
random errors, single-burst errors, or multiple-burst errors.

CODE SELECTION

The RS codes offer the designer a wide range of code parameters. In
coding theory, a block code with parameters n and k is denoted as (n,k).
In table 1, a list of RS codes is tabulated for m equal to 4, 5, and 6 with
t ranging from 2 to 10. For the IAC I4-TENEX system consisting of computers



TABLE 1. - LIST OF REED-SOLOMON CODES

m

4

5

6

t

2
3
4
5
6

2
3
4
5
6
7
8
9

4
5
6
7
8
9
10

GF(2m)

(n,k)

(15,11)
(15,9)
(15,7)
(15,5)
(15,3)

(31,27)
(31,25)
(31,23)
(31,21)
(31,19)
(31,17)
(31,15)
(31,13)

(63,55)
(63,53)
(63,51)
(63,49)
(63,47)
(63,45)
(63,43)

r = n-k = 2t

4
6
8
10
12

4
6
8
10
12
14
16
18

8
10
12
14
16
18
20

GF(2)

n = m(2m-l)

60
60
60
60
60

155
155
155
155
155
155
155
155

378
378
378
378
378
378
378 l

k = n-r

44
36
28
20
12

135
125
115
1Q5
95
85
75
65

330
318
306
284
282
270
258

with word lengths of 16 bits (PDP-lls), 36 bits (PDP-lOs), and 32/64 bits
(ILLIAC IV), the best choice for fitting these word lengths is the (31,15)
code. The formats for the 36-bit and the 16/8-bit are shown in figure 1.

BIT

NOT
USED

1 2 36 37 38 39 73 74 75 76 154

ONE PDP-1 DWORD ONE PDP-10 WORD PARITY-CHECK BITS

(a) Fitting of two PDP-10 words into 75 bits.
Bit-0 is not used (always equal to zero).

o i 2

NOT USED

6 7 - 2 3 2 4 - 4 0 4 1 - 5 7 58 - 74 75 - 154

PARITY-CHECK BITS

(b) Fitting of four PDP-11 words into 75 bits.
B.(i=0, 1,2, and 3) is a 16-bit word plus parity.

Figure 1. - Data formats of the (31,15) RS code for 36-bit and 16/8-bit
modes. Unused leading bits .are always zero.



ENCODING

There are two methods for encoding linear cycle codes: the serial shift
register method and the parallel matrix method. Let M(X) be a message poly-
nomial with k symbols encoded into a code polynomial (codeword) V(X) with
n symbols. In the serial shift register method, encoding in systematic form
is accomplished by dividing Xn~k M(X) by g(X) and appending the remainder
r(X) to Xn~kM(X). That is

V(X) = r(X) + Xn~kM(X) = q(X)g(X) (4)

where q(X) is the quotient. This indicates that [r(X) +Xn~k M(X) ] is a mult-
iple of g(X) and, therefore, is a code polynomial generated by g(X). The
codeword generated is

-,_w_1 mOml • • • \_P

message
* bits "

parity check
bits

and the most significant symbol of the message, mk_i, is sent first.

In the parallel matrix method, the generator matrix G has the form

G- IPkx(n-k)' W
 (5)

where P is a k x (n-k) matrix generated by retaining the remainder of

n-k+i
(x) ,i = 0, 1,2, . . .,k - 1 (6)

and I is a kxk identity matrix. The encoding of the message vector M
to a code vector V is

V = MG (7)

The (31,15) RS code has n = 31, k = 15, m = 5, and t = 8. The primi-
tive polynomial p(X) = X5 + X2 + 1 can be used to generate the 31 nonzero
elements of GF(25), as shown in table 2. The generator polynomial g(X)
from equation (3) is

g(X) = (X+a)(X+a2) . . . (X+a15)(X+a16) (8)

Multiplying out the terms of g(X), the general form of g(X) is

15
g(X) = X16 + ]£ ct. X1 = X16 + a15 X

15 + alt| X
lk + . . . + HI X + a0 (9)

1=0 1

The evaluation of ct^ in equation (9) is straightforward but extremely tedi-
ous. In order to avoid errors, a computer program should be used in conjunc-
tion with table 2 for such evaluation.

The implementation of equation (9) for encoding using the parallel
matrix method is a matrix G as shown in figure 2. Each ai,j in the
matrix G is a field element in GF(25). The encoding, of M(X) into V(X) is



TABLE 2. - GALOIS FIELD OF 25.

0
1
a
ex2

a3

a"
a5

a6

a7

a8

a9

aio
a11

a12

a13

a1"

a"

= 0
= 0
= 0
= 0
= 0
= 1
= 0
= 0
= 1
= 0
= 1
= 1
= 0
= 0
= 1
= 1

a3

0
0
0
0
1
0
0
1
0
1
1
0
0
1
1
1

a2

0
0
0
1
0
0
1
0
1
1
0
0
1
1
1
1

a1

0
0
1
0
0
0
0
1
0
0
1
0
1
1
0
0

a°

0
1
0
0
0
0
1
0
0
1
0
1
1
0
0
1

a15 =
a16 =
a17 =
a18 =
a19 =
a20 =
a21 =
a22 =
ct23 =
a24 =
a25 =
a26 =
ct27 =
a28 =
a29 =
a30 =

a"

1
1
1
0
0
0
1
1
0
1
1
1
0
1
0
1

a3

1
1
0
0
0
1
1
0
1
1
1
0
1
0
1
0

a2

1
0
0
0
1
1
0
1
1
.1
0
1
0
1
0
0

a1

1
1
1
1
1
0
0
0
1
1
0
1
1
1
0
1

a°

1
1
1
1
0
0
0
1
1
0
1
1
1
0
1
0

Note: Elements generated by p(a) = a5 + a2 + 1.
For example, a7 = (10100) means a7 = a4 + a2.

0

1
2

3

4

5

6

7

8

9

10

11

12

13

14

"0,0 "0.1 °0.2

"1.0 "1.1 °1.2

°2.0 a2.1 "2.2

•

•

•

°12.0 "12,1 a!2.2
a!3.0 °13.1 °13.2

°14 n °U 1 a14 »

p

7 8 10 11 12 13 14 15 1617 18 ••• 2 8 2 9 3 0

. °0.13 °0.14 aO,15

Z.n a2.14 a2,15

1 0 0

0 0 1

a12.Ba12.14012.15|°
a13.13c'l3.14a13.15|0

aW,13a14.14%15l0

0 0 0

0 1 0 • • • 0 0 0

0 0 0

. . . 1 0 0

. . . 0 1 0

. . . 0 0 1

Figure 2. - Generator matrix G of (15,13) Reed-Solomon codes;
a. . is a field element from GF(25).



V(X) = (10)

where the message symbol ^-i is the most significant digit. From figure 2
and equation (10), the parallel matrix encoding method requires about
15 x 16 = 240 Galois field multipliers. Because of the logic complexity, this
method is generally not used except for very high-speed applications, or when
G is very simple. For example, consider a 32-bit memory system built by
using n words by 4-bit integrated-circuit, random-access memory (1C RAM)
chips. In such a memory system, a single chip failure will result in a 4-bit
error in the 32-bit word. A t = 1 (15,13) RS code with code symbols from
GF(24) can be used for error correction in such a memory system. The G
matrix of this code requires about 13 x 2 = 26 Galois field multipliers. Using
current technology, these multipliers can be implemented by table lookup using
read-only memory (ROM) chips.

There are two shift register methods for encoding linear cyclic codes.
One method uses a (n-k)-stage shift register, and the other uses a k-stage
shift register (ref. 7). In practice, the (n-k)-stage shift register is most
commonly used unless n-k is much greater than k. For encoding the (31,15)
RS code, a (n-k) = 16 stages shift register (fig. 3) can be used to implement
equation (4). The feedback multipliers a0, a\, . . ., 045 are field elements
of GF(2m). Each register stage is a 5-tuple shift register. The
operation of the encoder is as follows. With SI set for feedback and S2 set
to position 2, k information symbols are snifted into the encoder and simul-
taneously sent to the channel. Then SI is turned to disable the feedback and
S2 is turned to. position 1; the 16 parity-check symbols stored in the encoder
now are shifted out to the channel, clearing the shift registers.

"(X)
TO CHANNEL

Figure 3. - Encoder for (31,15) code; a± is a field element from
GF(25) and R.L is a 5-tuple shift register stage.



DECODING

In this section, an error correction procedure is described for the (n,k)
t-error-correcting RS codes, and a design implementation is shown for the
(31,15) t = 8 RS code. As described earlier in encoding, RS codes are non-
binary codes. Therefore, the decoding procedure involves finding not only
the error locations, but the error values as well. A t-error-correcting RS
code generated by g(X) is a cyclic code, and the codewords consist of all
multiples of g(X). The degree of g(X) is 2t and its roots are a, a2, . . .,
a . Since every codeword is some multiple of g(X), a, a2, . . ., a2t are
also roots of every codeword.

Let V(X) be the transmitted codeword, E(X) be the channel noise error
pattern, and R(X) be the received codeword represented as follows:

n-1
V(X) = v0 + vj x + v2 x

2 + . . . + v _ :

E(X) = e0 + ex x + e2x
2 + . . .+ em_1 x

11"1

R(X) = r0/+ rl x + r2x
2 + . . .+ r n-1

i Xn-1

where v^, e^, and rif i = 0, 1, 2, . . .,n-l, are elements of GF(2
m) . At the

decoder,

R(X) = V(X) + E(X) ' (11)

The error pattern E(X) can be described by a list of values and locations of
its nonzero components. For the decoding procedure to be described, the
error location will be given in terms of an error-location number, which is
simply aJ for the (n-j)th symbol. Let X. be the error location number
and ej be the error value. Then for each nonzero component of E(X), a
pair of field elements (xj, ej) is required to describe that error. If E(X)
has p errors, then p pairs (x̂ , e^) are required to describe the errors.
Any decoding procedure is a procedure for locating these p pairs of (x•, e^)
if p < t. J J

Assume that E(X) is an error pattern of p errors at locations jj,
J 2» • • • > J p • Then.

E(X) =64 XJ1 + 64 X^2 + . . . + 64 XJP (12)
J1 J 2 Jp

where p ^ t and 0 < J i < J 2 < . . . < J D ^ n-1. The first step in decoding is
to check whether V(X) is a codeword by calculating the syndrome. If the
syndrome is zero, then either V(X) actually has no errors or V(X) has an
undetectable error. In either case, V(X) is accepted as no error. A nonzero
syndrome indicates that an error has been detected; the error may or may not
be correctable. For the RS codes, the syndrome is defined as a vector S
with 2t components as follows (refs. 7, 8):

S. = R(ax) = r0 + TI a
1 + r2(a

i)2 +. . .+ r^j (a1)11"1 (13)

10



for i = 1, 2, 3, . . ., 2t. Combining equations (11) and (13) gives the result

S± = V(a
1) + E(aX)

Since V(a1) = 0,

S± =
£=1 *j£

Combining equations (12) and (15) gives the result

j i.+ ejp(aP)

(U)

(15)

(16)
t

for i = 1, 2, . . ., 2t. Expanding equation (16) gives the result

Si = aJP

(a
(17)

S2t = eji(a
jl)2t + eJ2(a

J2)2t +. . . + 6j (a
jP)2t

Equation (17) is a set of 2t nonlinear equations which relates the 2t
known quantities of S^ to 2p unknowns, consisting of p unknown locations
and p unknown error values. Any error correction procedure is a method of

solving this set of equations for the p pairs of (e^ , cr̂ ), £ = 1, 2, . . .,
• « • J X>

p. Once ajl, a"12, . . ., ajp are found, the powers ji, j2, . . ., jp will indi-
cate the error locations in E(X). In general, there might be many error pat-
terns that satisfy the 2t equations. If p ^ t, then the error pattern
with the smallest p is the actual error pattern.

For notational convenience, let

, £ = 1, 2, . . ., p (18)

be the error location numbers (refs. 7, 8). Now equation (17) can be written
as

S2 =

2t
2t + e. 2t + + P.

' '
2t

(19)

These 2t syndrome components are symmetric functions in g^, 82* • • •> 3p>
which are known as power-sum symmetric functions. Next, let the error loca
tion polynomial be defined as follows:

11



where

a(X) = (1 +Bi X)(1+B2X) . . . (1+Bp X)

= a0 + D! X + a2 X
2 + . . . + a Xp

OQ = 1

o-j = BI + B2 + • • • + 3p

02 = BI B2 + BI B3 + . . . -+

03 = BI 62 B3 + BI B2 Bs +

(20)

. p

•+ p_2

Op = BI B2B3 • • • B

o(X) are Bf1., g2~
2>

(21)

-1The roots of o(X) are Bf , 82 » • • •» Bp , which are the inverses of the
error location numbers. It can be seen from equations (19) and (21) that
the coefficients of o(X) are related to the syndrome components S^, 1 = 1 ,
2, . . ., 2t. The coefficients o^, 02, • • • » op are known as elementary sym-
metric functions of BI, B2, • • •» Bp. Therefore, if it is possible to find
a(X) from the syndrome components, the error location numbers can be found
and the error pattern E(X) can be determined. In the following, an effec-
tive decoding procedure is described and a design implementation for the
(31,15) RS code is given. This procedure consists of four major steps as
follows (refs. 7, 8).

1.

2.

3.

4.

Calculate the syndrome S = (Si, 82, . . ., S2t) from R(X)

Calculate the error location polynomial a(X) from S

Determine the error locations X by finding the roots of a(X)

Calculate the error value from X- and S

STEP 1. SYNDROME CALCULATION

There are two methods for calculating the syndrome (S): the standard
method, and the shift register method. -The standard method uses equation
(13) because this is the way the syndrome is defined. The shift register
method uses the g(X) encoding shift register.

is
In the standard method,, the syndrome calculation given in equation (13)

(22)

Si = r0 + r

S2 = r0 + r

S3 = r0 + r

2t = r0 + r

l a1 + r2 a
2 +

! a2 + r2 a
4 +

! a3 + r2 a
6 +

2t i+t
1 a + r2 a

n-1
. . . + r , a

n-1
2(n-l)

. . . + r . a
n-1

3 (n-1)
. . . + r .a

n-1

. , 2t(n-l)+ . . . + r , an— 1 ,
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In matrix form, equation (22) can be written as

S = RH = (r0 rj r2 • • • r _, i = 1, 2, 3, . . .,2t

j = 0, 1, 2, . . .,n-l

(23)

n *2t

where H1 is an rows by 2t columns matrix. For the (31,15) t = 8 RS
code, HT is a 31 x16 matrix shown in figure 4. An all-parallel syndrome
calculation would require about 480 multipliers and 16 31-input modulo-2 add-
ers in GF(25), which is indeed very expensive. One compromise is a serial-
parallel method using 16 circuits of the type shown in figure 5. These cir-
cuits required 31 clock cycles to calculate S, or about 1.55 usec at the
present STTL technology.

0

1
2

3

4

5

6

7

8

9

10

11

12

29

30

1

1

a

a2

a3

a*

a5

os

a'

a'

o'

a"

a11

a12

a"

a"

2

1

a*

a'

a'

a'

a10

a12

a1"

a"

o"

a"

a22

a2'

a"

a2'

15

1

16

1

a"

a

Figure 4. - Parity-check matrix for the (31,15) t = 8
Reed-Solomon code.
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Figure 5. - Circuit for calculating the syndrome component S..
Approximately six STLL MSI ICs are required.

For large t(t>4), the best way to calculate the syndrome is to use the
g(X) shift register. This will result in some saving in logic because this
shift register is already used for encoding. However, the S calculated by
g(X) is not the same as the S calculated by R(ai) of equation (13), but
they are related. This relationship is described below.

From equation (13), let

S = (Sj, 82, • • • >

be the syndrome calculated by R(a ) with

S = R(a )

for i = 1,2,. . ., 2t. Let

S* = (S*, S*, . . .,S2*)

(24)

(25)

(26)

be the remainder calculated by dividing R(X) by g(X). The remainder S*
is another form of the syndrome but S* * S. Using the Euclidean division
algorithm, the result of R(X)/g(X) is

R(X) = Q(X)g(X) + S*(X) (27)

where Q(X) is the quotient and

14



S*(X) = Sj* + S2* X + S3* X
2 + . . . + S2* X

2t 1 (28)

is the remainder. Substituting X by a in equation (27) gives the result

R(ai) = Q(cti) g(a1) + S*(ai)

= S*(a) (29)

since Q(ai) g(a1) = 0. From equations (25), (28), and (29)', the relationship
between S and S* is

S. = S*(a)

i ±2S2*(a) + S3*(a) S2*(a
±)2t~1 (30)

for i = 1, 2, . . ., 2t. The relationship of equation (30) can be implemented
by the circuit shown in figure 6. This circuit is very similar to the Chien
search circuit as described later in step 3. In figure 6, the 2t components
of S can be obtained from S* in 2t clock cycles.

SUM ( Z ) CIRCUIT

V Y S3*

d>
2t

Figure 6. - Modified Chien search circuit for obtaining S. from S .*

In the above discussions, two basic methods for syndrome calculations
were presented. For large t, it is concluded that the best way to calculate
the syndrome is to divide R(X) by g(X) to obtain S*(X), and then obtain
S-^ from Sj* by a modified Chien search circuit. If R(X) contains no error,
S*(X) = 0, and this calculation takes n clock cycles, which is the same
speed as the serial-parallel method of figure 5. If R(X) contains an error,
S^ is obtained from S.-*; then go to step 2, and so on. .One significant
point, which should be mentioned, is that this method of syndrome calculation
requires practically no additional logics because both the g(X) shift regis-
ter and the Chien search circuit already exist.

SK
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STEP 2. o(X) CALCULATION

A method for calculating the error location polynomial o(X) is given
below without proof. This method is the Lin's table (ref. 7), which is an
interpretation of Berlekamp's iterative algorithm (ref. 9). The same method
can also be found in reference 8 in a slightly different form.

To find a(X), start with the table

" (y) xy o (X) d £ y — £

- 1 1 1 0 - 1
0 1 S1 0 0
1
2

2t

and proceed to fill out the table. Assuming that the table has all rows
filled out up to and including the yth row, then fill out the (y+l)th row
as follows:

1. If d =0, then o(y+1)(X) = a(y)(X) and £ +J = £

2. If d * 0, find another row preceding the yth row, say the pth
row, such that the number p - £p in the last column of the table
has the largest value and d * 0. Then

and

- a(y)(X) + d d-lX
(y-p)a(X) (31)y p

= naxU , £ p+y-p] (32)

In either case,

A - Q. J. rr C J_ - „ c f~^dy+l ~ Sy+2 + °1 Sy+l + ' ' ' + a^ Sy+2-£ (33)

where the a y are the coefficients of a (X),

(X) - 1 + Ol X + a2 X2 + . . . + „ x (34)

If V(X) has exactly t errors, then the polynomial o ( X ) in the last
row is the required a(X). If V(X) has more than t errors, then o(2O
has degree greater than t, and generally it is not possible to locate the
errors. If V(X) has fewer than t errors, the table terminates into a mode
prior to step 2t where d = d +1 = 0 and
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The computation for o ( X ) and d combined, on the average, requires
about 2t additions and 2t multiplications for each step. Since there are
2t steps, the total is about 4t2 additions and 4t2 multiplications. For
the (31,15) t = 8 RS code, at most 16 iterative steps are required to obtain
a(X), and each step requires about 16 additions and 16 multiplications in
GF(25), plus inversions. At the present technology, an economic method for
performing these computations is to have a Galois field arithmetic unit imple-
mented by microprogramming a microprocessor like the 2900 series microproces-
sor family. With a few hardware augmentations for inversions and special
instruction controls, these Galois field arithmetic computations can be exe-
cuted at 100 nsec per instruction. At this rate and allowing a 300% program
overhead, the o(X) calculation would take about 100 Msec.

STEP 3. DETERMINATION OF ERROR LOCATIONS

The error location numbers are the reciprocals of the roots of a(X).
The roots of a(X) can be found simply by substituting 1, a, a2, . . .,an~^
into a(X). Since an = 1, then a~^ = an~^. Therefore, if a^ is a root of
a(X), an~^ is an error location number and the received digit r

n_£ is in

error. If n is large, this substitution method is not desirable because
the length of computation can be long.

If o^, i = 1, 2, . . ., p, and p < t are known from step 2, and using
the fact that RS codes are cyclic, a procedure credited to Chien known as the
Chien search (refs. 7-9) can be used to find the error location numbers. The
received codeword R(X) is tested on a digit-by-digit basis starting with the
high-order digit rn_} first. To decode rn_i> the decoder tests whether
an is an error location number. This is equivalent to testing whether a
is a root of a(X). If a is a root, then from equations (20) and (21), the
result is

aia + ooa2+...+ a a = 1 (35)
P

If equation (35) is satisfied, then an is an error location number and
the digit r ^ has an error; otherwise, rn_^ has no error. To decode
r
n-£> the decoder tests

Ol a
£ + 02 a2* + . . .+ a aP* = 1 (36)

If equation (36) is satisfied, then a^ is a root of a(X) and the digit
rn_£ has an error; otherwise, rn_£ has no error.

The error location numbers testing procedure of the Chien search can be
implemented in a straightforward manner by a circuit such as that shown in
figure 7. The t a-registers Rj, R2, . . ., Rt are initially stored with
QI, 02, . • •, crt calculated in step 2. It should be noted that if p < t, the
register stages Rp+i» Rp+2> • • •» ̂t are st°re(l with zero since
ap+i = op+2 = • • • = ofc = 0. To test rn_j, the circuit is pulsed once. The
multiplications are performed and Oj a, 02 a2, . . ., ap aP are stored in the
a-registers. The output of the SUM circuit is 1 if and only if the sum
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Figure 7. - Chien search cyclic error location circuit.

aia + a?a2+...+ a <r = 1
P

Otherwise, the output of SUM is 0 or a*. Having tested rn_i, the circuit is
pulsed again; Now c^ a2, 02 a4, . . ., apa

2p are stored in the o-registers.
The output of the SUM circuit is 1 if and only if the sum

Oi a2 + a? a4 + . . . + a a2 = 1
P

Otherwise, the output of SUM is 0 or a1. This process continues until all
n digits of R(X) are tested. The SUM output is shifted to an n-bit X^
register. For example, for n = 15 and if the pattern in the X-^-register is

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 1 0 0 1 0 0 0 0 0 1 0 0

then the digits numbered 12, 6, and 3 of R(X) are in errors.

For the (31,15) t = 8 RS code, eight 5-tuple register stages are
required. The multiplication circuits of a, a2, . . ., a8 can be implemented
by table lookup using ROMs. The function of the SUM circuit can best be per-
formed by the microprocessor since this function requires only eight XOR
operations and a testing for "1" operation.

STEP 4. CALCULATION OF ERROR VALUES

The error values ,
Aj

I = 1 , 2, . p, can be calculated from equation

(19) once the syndrome components Si, 82, • . ., S2t and the error locations
numbers g2» •
linear and one method of solving it for

p are known. The set of equations in equation (19) is

^
is credited to Forner (refs.
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7-9) . It should be noted that the error location number g,, is equal to

a £, and a ^ = an~^ = a~ , where a is a root of a (X) as described in
step 2. Once the p pairs (Xj?, e, ) for £. = 1, 2, . . ., p are known, E(X)

in equation (12) can be determined.

To find ej , let

Z(X) = 1 + (S! +oj)X + (S2

then

. ..+ap)XP (37)

ej£ = - - - (38)

n (i + ̂ e£
 l )

The computation of ej in equation (38) is relatively complex. For a

t-error-correcting RS code, and assuming E(X) has p ^ t digits in errors,
the computation of Z(X) requires p+p(p+l)/2 additions and p(p+l)/2
multiplications for each digit in error. Let D be the denominator of equa-
tion (38). The interpretation of D is that D should consist of P - 1
terms. The missing term in D is the term where 6-^ = B£. The computation
of D requires p - 1 additions and (p-1) + (p-2) multiplications for each
digit in error.

For the (31,15) t = 8 RS code, the computation of e^ in equation (38)

can be performed by the Galois field arithmetic unit implemented by micropro-
grams in the 2900 series microprocessor. Assuming a 100-nsec instruction
execution rate and a 100% program overhead, the computation for each error
value will require about 20 usec, or about 200 ysec for all eight error values.

CONCLUSION

A decoding procedure has been described for the (n,k) t-error-correcting
Reed-Solomon (RS) codes. The code parameters are chosen such that the codes
are cyclic so that encoding and some parts of decoding can be implemented by
shift registers. In particular, a logic implementation scheme has been pre-
sented for the (31,15) t = 8 RS code.' The principal features are (1) a
Galois field arithmetic unit implemented by microprogramming a 2900 series
microprocessor, and (2) syndrome calculation by using the g(X) encoding shift
register. This arithmetic unit is capable of executing instructions at a
100-nsec clock cycle rate. Encoding the (31,15) code would be implemented by
shift registers requiring 31 clock cycles (3.1 ysec). Decoding the (31,15)
code requires four steps of computation with a total decoding time of about
500 ysec. With present technology, it is felt that the microprogrammable
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microprocessor is the most feasible approach to decode this code except for
the case where n and t are small, for example, n < 15 and t < 2. For these
cases, an all-parallel method is probably more suitable.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, California 94035, March 8, 1978
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