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INTRODUCTION 

The advanced vehicle studies that have been conducted for NASA indicate the advan- 

tags6 of a high-pressure oxysenlhydrocarbon engine. Single-s tage-to-orbit vehicle 

studies also show the potential for engines that operate in dual mode with raequen- 

tial burn of oxygen/hydrocarbon and oxygenlhydro~en. Feasibility of an sngine to 

operate in dual mode must be determined before committing to a dual-mode vehicle 

concept . 
The Space Shuttle Main Engine (SSHE) is a high-pressure oxygenlhydrogen engine 

that potentially could be modified for a dual-mode operation. Such a modification 

vould minimize development cost of a dual-mode engine by maximizing utilization 

of existing hardware. 

The objectives of this study program are to: (1) investigate the feasibility of 

a tripropellant engine operating at high chamber pressure; (2) identify the poten- 

tial applicability of SSME components i3 the duel-mode engine; (3) define engine 

performance and engine concepts for both gas generator m d  staged combustion power 

cycles; and (4) provide plans for experimental demonstration of the performance, 

cooling, and preburner or gas generator operation. 

The approach taken in this study was to investigate various high P engine con- c 
figurations derived from t l ~ e  SSME that will allow sequential burnins of LOX/hydro- 

carbon and LOX/hydrogen. Both staged combustion and gas generator pump power 

cycles were ccnsidered. Engine cycle concepts are formulated for LOX/Ki'-1, LOXI 

CH4, and LOX/C H propellants. Each svstem elsc must be capable of operating 
3 8 

sequentially with LoX/II Flowrates and operating conditii~ns were established 
2 ' 

for this set of engine systems and the adaptability of the major components of 

the SSME were investigated . 

Control systems for dual-mode operation werc established and SSME control system 

components were evaluated for their applicability. The f inul objective was to 

identify high chamber pressure engine system concepts that make maximum use of 

SSME hardware end best satisfy the dual-mode boc~ster pny,ft~e system application. 

1::; ... . ,. 
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Based on the results of the engine eyetem concepte and SSME component adaptability 

rtudiee, recommendatiorrs ware made for additional teeting to complement the already 

planned experimental program using the existing test  f a c i l i t y  and 4OK t e s t  hardware. 



SUMMARY 

The r e s u l t s  of these  s t u d i e s  have shown t h a t  t h e  convers ion of a n  SSME e c  #.ne t o  

a high chamber pressure ,  dual-mode f u e l  engine w i l l  r e q u i r e  major modi f i ca t ions  

t o  the  hardware and/or t h e  a d d i t i o n  of a  s i g n i f i c a n t  number of new engine  cow- 

ponents. However, t h e  s tudy  has  shown numerous p o s s i b i l i t i e s  f o r  the  use of SSME 

hardware d e r i v a t i v e s  i n  a single-mode LOX/hydrocaxbon engines.  I t  was a l s o  

shown t h a t  a  reduced chamber p ressure  ve r s ion  of a s taged combustion SSME is 

o p e r a t i o n a l l y  f e a s i b l e  us ing the  e x i s t i n g  f u e l - r i c h  preburners  and main chamber 

i n j e c t o r s ,  Cer ta in  turbomachinery modi f i ca t ions  o r  a d d i t i o n s  a r e  required f o r  

a  t o t a l  low chamber p ressure  ( 2300 p s i a )  engine system. This s tudy a l s o  has  

shorrn t h a t  t h e  engine system concepts a p p l i c a b l e  t o  t h e  dual-mode systems a r e  

somewhat narrowed s i n c e  t h e  o p e r a t i o n a l  c o n s t r a i n t s  of two systems must be 

considered.  

Some genera l  conclus ions  were e s t a b l i s h e d  t h a t  would be u s e f u l  i n  f u t u r e  s i n g l e -  

f u e l  o r  dual - fuel  LOX/hydrocarbon engine s y s  tems : 

1. There is i n s u f f i c i e n t  energy ( f u e l )  a v a i l a b l e  t o  o b t a i n  a  s taged com- 

bus t ion  power balance wi th  a l l  preburners  f u e l  r i c h  a t  a  chamber pres-  

s u r e  of 3230 p s i a  and a  tu rb ine  i n l e t  temperature of 2000 R. Staged 

combustion power balances can be achieved f o r  a l l  fue: r i c h  preburners  

st e i t h e r  reduced chamber p ressure  o r  increased t u r b i n e  i n l e t  

temperatures.  

2. A LOX/hydrocarbon s taged combustion power balance is achievable  wi th  

both preburners  LOX r i c h  o r  LOX-rich 1.5X tu rb ine  and f u e l - r i c h  f u e l  

turbine .  

3, There is i n s u f f i c i e n t  energy (LOX) a v a i l a b l e  t o  o b t a i n  s taged combustion 

power balance wi th  a l l  preburners  LOX r i c h  f o r  LOX/H2 mode 2 opera t ion .  



4. Gas generator  c y c l e s  are no t  power l imi ted .  I f  H2 is employed t o  coo l  

e i t h e r  t h e  chamber o r  nozzle,  t h e  required f low l a  g e n e r a l l y  adequate 

f o r  f u e l  f low t o  t h e  g a s  genera tor .  This  a l s o  provides  minimum t u r b i n e  

d r i v e  performance l o s e .  

5. Higher chamber p ressures  a r e  achievable  wi th  g a s  genera to r  c y c l e s  than 

wi th  ataged combustion c y c l e s  w i t h  equal  pump d i scharge  p ressures .  

6. Regenerative cool ing w i t h  RP-1 l i m i t s  maximum chamber p r e s s u r e  t o  2000 

p s i a .  

7. LHZ regenera t ive  cool ing g i v e s  minimum coo lan t  f lowra te ,  AP, and does 

not  r e q u i r e  switching c o o l a n t s  from mode 1 t o  mode 2. 

8. LOX regenera t ive  cool ing l i m i t s  LOX/H2 mode 2 o p e r a t i o n  t o  a maximum 

chamber p ressure  of 2000 t o  2500 p s i a  due t o  h igh p r e s s u r e  drop. 

I 
9. CH4 was found t o  be the  b e s t  hydrocarbon evaluated f o r  a r e g e n e r a t i v e  

coolant  . 

f ie  above-stated conclus ions  a r e  some of  t h e  more s i g n i f i c a n t  r e s u l t s  of t h i s  

study.  A genera l  comparison of t h e  important  f e a t u r e s  of  t h e  engine  c y c l e s  and 

p r o p e l l a n t  combinations and t h e i r  impact on the  major engine components and 

systems a r e  shown i n  Table 1. 

I n i t i a l l y ,  the  o b j e c t i v e  of the  t e s t  planning t a sk  of t h i s  s tudy was t o  i d e n t i f y  

c r i t i c a l  a r g a s  f o r  experimental  v e r i f i c a t i o n  of t h e  a d a p t a b i l i t y  of SSME engine 

components t o  the  dual- fuel  engines .  Since t h e  study r e s u l t s  ind ica ted  l imi ted  

use  of SSME engine components i n  a dua l - fue l  engine,  a rev i sed  o b j e c t i v e  was 

established t o  i d e n t i f y  genera l  technology i tems t h a t  a r o s e  dur ing  t h e  etudy and 

t h a t  r e q u i r e  e i t h e r  technology demonstrat ion o r  development. The r e s u l t s  of the  

proposed test p lans  w i l l  provide informat ion important t o  a11 new dual-mode tri- 

p r o p e l l a n t  o r  single-mode LOXIhydrocarbon booster  engines .  
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TASK I - PERFORHANCE DETERMINATION 

The purpose of t h i s  t a sk  was t o  generate  p rope l lan t  performance d a t a ,  combustion 

gas  thermodynamic p r o p e r t i e s ,  and t u r b i n e  d r i v e  qas  parameters a s  required t o  

support  t h e  o ther  t a sks .  Xain chamber t h e o r e t i c l  performance p r e d i c t i o n s  f o r  

t h e  va r ious  mode 1 prope l lan t  combinations were predic ted based on t h e  JANNAF ODE 

program which y i e l d s  t h e o r e t i c a l  I and c*. Delivered performance is c a l c u l a t e d  s 
based on assumed e f f i c i e n c i e s  of nc, = G.98 and nCF = 0.9859 app l ied  t o  t h e o r e t i -  

c a l  performance f o r  t h e  LOX/?~*~rocarbon combinations and rlc, = 0.9975 and nCp = 

0.9859 f o r  LOX/H2. Parametric curves  o f  t h e o r e t i c a l  s e a  l e v e l  and vacuum s p e c i f i c  
ii 
t 
; 

impulse as a funct ion of mixture r a t i o ,  chamber p ressure ,  and a r e a  r a t i o  ate shawn t f 
i n  Fig. 1 through 6 f o r  t h e  t h r e e  mode 1 p r o p e l l a n t  combinations. A t a b l e  of t h e  ? 

z 

:I predic ted t h e o r e t i c a l  performance f o r  s e a  l e v e l  and vacuum opera t ion  is presented 

i n  Table 2 f o r  t h e  f o u r  p rope l lan t  combinations o f  i n t e r e s t .  The mixture  r a t i o  i 
i was s e l e c t e d  based on peak Is. Fuel d e n s i t i e s  a r e  a l s o  presented as a n  i n d i c a t o r  

of r e l a t i v e  system volumes. 

A pr-l iminary s tudy was conducted t o  v e r i f y  t h e  v a l i d i t y  of mass averaging t h e  

s p e c i f i c  impulse when H is  i n j e c t e d  i n t o  the  main chamber along wi th  t h e  LOX/ 
2 

1 hydrocarbon. Both vacuum and s e a  l e v e l  s p e c i f i c  impulse va lues  were consldered.  
i 
? I values  computed by mass flow averaging were compared wi th  t h e o r e t i c a l  (ODE) 
Y s 
L 
a r e s u l t s  f o r  the  02/RP/H prope l lan t  system. Figure 7 p r e s e r t s  t h e  r e s u l t s  of 
i 2 

t h i s  comparison. 

Sea l e v e l  I values camputed by mass averaging a r e  g e n e r a l l y  q u i t e  c l o s e  t o  t h e  
S 

t h e o r e t i c a l  values ,  usua l ly  wi th in  1 .5  seconds. ilacuum r e s u l t s  have a someihat 

g r e a t e r  spread.  
I 

'1 I n  general ,  t h e  mass-averaged Is va lues  a r e  s u f f i c i e n t l y  c l o s e  t o  t h e  t h e o r e t i c a l  
1,' 

I 
I 
! 

values  t o  permit t h e i r  use i n  system d e f i n i t i o n  s t u d i e s .  . I I ;; 

t 
Several  mechanisms have been suggested t o  zxpla in  t h e  d i f f e r e n c e  i n  IS computed 

- : I  
I i 

by mass averaging and t h e o r e t i c a l  values .  Mass averaged I va lues  a r e  lower than - s 1 

t h e o r e t i c a l .  This may be due t o  exothermic r e a c t i o n s  t h a t  occur i n  tire combustion 
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Figure 1. Thevrerical Vacut~rn Performance for Oxygrtr/RI'-1 
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Figure 2. Theoretical Sea Level Performance for OxygenIRP-1 
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Figure 3. '~neorecical  Vacuum Performance for 0 /Hethan. (OZ/iH1) 
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Figure 5. Theoretical Vacuum Performance for OxygenIPropane (02/C3H8) 
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chamber between propellant components that are not modeled by the assumptions 

implicit in maee averaging. ?heae reaction6 arise because the compoeition of 

the combined constituents in the chamber is not the same as the mass-averaged 

compoeition. 

In performing the mass-average calculations, specific impulse values are selected 

for the two bipropellant pairs (02/H2,02/RP) at one specific area ratio (E).  The 

values are then used to predict the performance of the combined system. However, 

each propellant combination results in different gas properties (e.g., y) which 

result in different exit pressures at fixed E. This pressure mismatch is ignored 

in mass-averaging I values, and may explain some of the difference between these s 
values and theoretical ones. If the gases of the two different combustion systems 

were expanded to the same pressure racio (e.g., the tripropellant system pressure 

ratio), the difference between the theoretically calculated specific impulse and 

the mass-averaged value will be approximately the same for vacuum and sea level 

operat ion. 

Finally, it should be noted that th* 02/H2 and o~/RP specific impulse values osed 

to predict 0 /RP/H~ performance are each based on a specific mixture ratio (o/f). 2 
In theoretical computations of tripropellant performance, the actual proportions 

of O2 to H and RP are fixed by the chemistry in the combustion chamber. These 2 
proportions may differ from those assumed, resulting in differing performance 

values computed. 

This comparison and the proposed explanations represent only a cursory analysis 

and a much more thorough investigation would be required to reach a more compre- 

hensive conclusion. However, the mass-averaging method gives a conservative 

estimate of the predicted performance and is ccbrtainly adequate for these pre- 

liminary system requirements and comparison studies. 

In the gas generator turbine power cycles, the turbine exha~.;t gases were assumed 

to be directed into the main nozzle at an area ratio compatible with the turbjne 

exhaust pr !,sure and expanded to the nozzle area ratio. The resulting Is values 

for the secondary flow are presented in Table 3. 



Turbine drive gar characteristics for oxidizer-rich and fuel-rich conditions are 

presented in Table 4. The function of y and preaeure ratio is specifically 

1 - (~/PR)~-"~ and is a measure of the energy available as the gas expands in 
the turbine. High values of Cp and f(y, PR) tend to minimize turbine flow for 

a given horsepower requirement. 

TABLE 3. GAS GENERATOR CYCLE SECONDARY FLOW SPECIFIC IMPULSE 

I s  (sea level), I s  (vacuum), 

Propellants seconds seconds 

O2lH2 
248.2 282.7 

021C3"8 122.2 142.7 

O2/CH4 121.5 141.6 

1 

TABLE 4. TURBINE DRIVE GAS CHARACTERISTICS 

. 
Turbine Pressure Ratio 
(PR) = 1.6:1 Temperature - 2000 R 

LOX Rich Fuel Rich 

MR Y 'P ~ ( Y , P R ) ? ~  M R  Y P f (Y,PR)* 

O2lH2 86 1.293 0.296 0.1 1.14 1.345 1.78 0.113 

02/RP-I 33 1.31 0.294 0.105 0.41 1.135 0.66 0.054 

'2'"4 37.5 1.289 0.284 0.1 0.43 1.16 '3.875 0.0627 

O2/CJH8 34 1.288 0.283 0.099 0.44 1.147 0.691 0.584 

:V(~,PR) = I - (I/RP)Y-I/Y 



TASK 11 - THRUST CHAMBER THERMAL ANALYSIS 
The objective of this task was to provide the heat transfer and cooling analysis 

support for the selected engine systems to be studied. 

The initial effort was devoted to establishing the feasibility of cooling the 

SSME chamber and nozzle with the candidate hydrocarbon fuels or hydrogen, Further 

studies evaluated LOX cooling, H2 cooling of an extendible nozzle, and any cooling 

variations that might offer some improvements to the engine systems being studied. 

H9 Cooling With LOX/Hydrocarbon Combustion . . 
,,-. 
1 .: 

The current SSME chamber and 35:l development nozzle design were analyzed to deter- :: 4 
mine the coolant bulk temperature rise, coolant pressure drop, and wall temperatures 

I 

I 
as a function of H2 roolant flowrate for LOX/RP-l combustion. I ' 

1 , "  I 
Two coolant circuits were analyzed. Both use hydrogen as the coolant. The first 

is an uppass circuit where the nozzle and chamber are cooled in parallel. The 

second circuit is a downpass series circuit. Changes in the chamber coolant 

channel and nozzle tube geometry have not been considered. 

The following conditions have been used for the 0 /RP-1 propellants: 2 

Po = 3237 psia 

The heat transfer coefficient profile Eor the OZ/RP-1 propellant  omb bin at ion is 

obtained by correcting the SSME 02/H2 heat transfer coefficient profile uniformly 

by the flowrate and property ratios as given in the following equation: 



Thir ir the normally accepted ratioing technique baaed on Nurselt number correla- 

e -- tionr. Urin8 thia ratio. the 02/RP-1 heat trmafer coefficient is 58% of the 

02/5 heat t m s f e r  coefficient. The major factor in the reduction in the heat 

trurrfer rate is the lower thermal conductivity (k) of the 02/RP-1 propellant 

combination. The U2/li2 and 02/RP-1 heat transfer coefficient profiles for :'?e 

-In chamber are rhown in Fig. 8. The analogous profiles for the 35:l: . .  .- are 
shown in Fig. 9. The effect of burning the hydrogen coolant with the O2 . 1. RP-1 

in the chamber has not been considered in determining these profiles. 

The possibility of a carbon layer buildup on the chamber and nozzle wall could 

slgnificurtly reduce the heat flux to the coolant but, because of the uncertainty 

of its ~ustained existence, the conservative approach is taken and the carbon 

layer will not be assumed for the engine bslance analysis. The effect of the 

carbon layer on the coolant requirement is presented here to show the mamitude 

of its effect. 

For cases where a carbon layer is assumed, the following equation (Ref. 1) is 

used to calculate the carbon layer resistance: 

Coolant bulk temperature rise and pressure drop are calculated using Regenerative 

Cooling DesignfAnalysis computer program models that have previously been set up 

for SSME analyses. The pressure drops computed using these models are increased 

by 10% to account for parasitic losses (inlet manifold, exit manifold, etc.). 

Using the data generated by these models, two-dimensional wall temperatures for 

the chamber and nozzle are calculated using models that are set up on the time- 

sharing computer system. 
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For the uppase circuit with the chamber and nozzle cooled in parallel, the hot-gas 

wall temperature as a function of flowrate is shown in Fig. 10a. Assuming no 

carbon coating, the nozzle wuld require a coolant flowrate of 18.5 lbmlsec to 

maintain the same maximum temperature as for the 02/H2 SSME flight nozzle. When 

assuming a carbon coatiilg, the required nozzle flowrate is only 1.5 lbmlsec. 

When assuming no carbon coating, the temperature -limiting location for the 02/RP-1 

chamber occurs in the combustion zone. To cool tl~is region to the same temperature 

as in the combustion zone of the 02/H2 SSME requires a coolant flowrate of 15.3 

lLm/sec. When assuming a carbon coating , the tmperature-limiting location is in 

I - the throat (-1") and requires a coolant flowrate of 10.7 lbmlsec to cool the chamber 

to the same temperature as the 0 /U SSME. 2 2 

For the downpass circuit with tte chamber and nozzle cooled in series, the hot-gas 

wall temperature as a function of coolant flowrate is shown in Fig. lla. Since it 

is a series circuit, the minimum required flowrate is controlled by the wall tem- 

perature in the throat region of the chamber. Assuming no carbon coating, a 

coolant f lowrate of 19 lbmlsec is required to maintain the same temperature in 

this region as for the 02/H2 SSME. The cooling in the throat region is hampered 

by the fact that the benefits of curvature enhancement to the coolant coefficient 

are not realized in the dobnpass circuit. The maximum nozzle temperature occurs 

near the maximum expansion raris (94") instead of near the nozzle-to-chamber 

attach point because 01 the large bulk temperature rise. When assuming a carbon 

coating, the required coolant flowrate for the downpass circuit is 14.6 lbm/sec. 

The coolant bulk temperature rise for the chamber and nozzle is given in Fig. lob. 

The coolant pressure drop is given in Fig. 10c. The pressure drop is shown for 

inlet pressures of 5000, 6000, and 7000 psia for both the nozzle and cham~er. When 

assuming a carbon coating, the nozzle pressure drop is extremely low (-2 psi) 

because of the low required coolant flowrate. 

The coolant bulk temperature rise is s\own in Fig. llb. The codlant pressure drop 

(chamber plus nozzle) is shown in Fig. llc for three inlet pressures. When assuming 

no carbon resting, the inlet pressure should be maintained to at least near 4000 

'i 
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Figure 11. Hot-Gas Wall Temperature, Coolant Temperxture Rise, and 
Coolant Pressure Drop as Functions of Coolant Flowrate for 
Downpass Series Coolant Circuits for the SSME Main Combustion 
Chamber and 35:l Nozzle 02/Hydrocarbon Combustion 



p6ia t o  avoid choking i n  t h e  coolant channels of the  chamber. Additionally,  i t  

is des i r ab le  t o  keep the coolant pressure grea te r  than t h e  hot-gas pressure i n  

case of a l eak  through the  hot-gas w a l l  of a coolant channel. 

The coolant f lowrate requirements a r e  surmgrized helew, 

5  coo^ hhD 02/RP-1, 02 /C~A.  04 OZ/CjHg COMBUSTION 

~--,-- 

Fract ion of 

Nozz 1 e 
lots l 02' SSME 

Chamber Flawrate, 
2, ltnnlsec $, I Wsec ltnnlsec $, lbmlsec c - 

No Coating 18.5 15.3 33.8 0.44 
Uppass 
Paral l e l  

Coating 1.5 10.7 12.2 0.16 
I 

No Coating 19.0 19.0 19.0 0.25 
Downpass 
Series  

Coating 14.6 14.6 14.6 0.19 

The uppass p a r a l l e l  cooling c i r c u i t  was se lec ted  f o r  the candidate engine system 

and these r e s u l t s  were ass-umed t o  be v a l i d  f o r  0 I C  H and 0 /CHl combustion cases 
2 3 8  2 

with H coolant. This assumption i s  reasonable s ince ,  a t  comparable chamber 
2 

pressures,  the combustion gas flowrates and proper t ies  combine t o  give similar 

heat  f l ux  p ro f i l e s .  Hence, the coolant parameters would not change. 

Hydrocarbon Fuel Cooling With LOX/Hydrocarbon Combustor 

1 Previous s tud ie s  (Ref. 2 and 3 ) have shown tha t  the  use of RP-1 a s  a coolant is  

l imited t o  approximately 2000 pr,ia chamber pressure because of bulk temperature - 
r i s e  l imi ta t ions  and the r e su l t an t  coking of the  f u e l  which occurs a t  600 F. 

Based on t l ~ e s c  r e s u l t s ,  i t  was decLued tha t  only CH and C H would be considered 4 3 8 
a.s a coolant. Studies i den t i ca l  t o  t h a t  previously described f c r  the H2 coolant 

were then conducted f o r  these two systems. The r e s u l t s  a r e  presented In Fig, 12 



through 15 f o r  the  3237 ps ia  chamber pressure conditions.  This ana lys i s  has a l s o  

been conducted f o r  a 4900 ps i a  chamber pressure f o r  t he  L o X / C H ~  propel lant  combina- 

t ion.  These r e s u l t s  a r e  shown i n  Fig. 16 and 17. 

Oxygen Cooling With 02/Hydrocarbon Combustion 

The oxygen cooling requirements have been determined f o r  02/hydrocarbon combustion 

i n  the SSME main chamber and the  35: l  nozzle. A chamber pressure of 3237 ps ia  

and the  current  SSME combustion chamber and coolant channel geometry with a 

p a r a l l e l  uppass c i r c u i t  were assumed. The r e s u l t s  of t h i s  ana lys i s  a r e  presented 

i n  Fig. 18  and 19. To maintain a maximum hot-gas wal l  temperature of 1050 F 

( typ ica l  of SSME condi t ions)  requi res  a coolant f lowrate  of 220 and 275 lb / sec  i n  

t h e  chamber and nozzle, respect ively.  A t  these f lowrates ,  a coolant temperature 

rise and AP of 450 F and 4500 p s i ,  respect ively,  occur i n  t he  chamber and 625 F and 

500 ps ia ,  respect ively,  i n  the  nozzle. These values a r e  based on a 8500 ps i a  i n l e t  

pressure.  Engine balance r e s u l t s  ind ica te  t ha t  an i n l e t  pressure of approximately 

8600 ps ia  is required t o  achieve a chamber pressure of 3237 ps ia ,  (concepts No. 10 

and 11). I f  the  i n l e t  pressure drops much below t h a t  value,  there  is the danger 

of the flow choking i n  t he  cooling jacket.  I t  was found i n  the ana lys i s  t h a t  a t  

8000 ps ia  i n l e t  pressure,  choking would occur a t  a f lowrate  of 210 lb / sec  o r  

g rea te r .  Because of the  very high i n l e t  pressure and pressure drop requirements 

t h a t  r e s u l t  f o r  the  chamber due t o  t he  SSME channel geometry cons t r a in t ,  i t  was 

decided t o  conduct an addi t iona l  ana lys i s  t o  determine how much the  i n l e t  pressure 

and pressure drop requirement could be reduced by adopting a more near ly  optimum 

channel configurat ion f o r  the  combustion chamber. A chamber was configured using 

a narrower channel and thinner  hot-gas wal l  and the cooling ana lys i s  was repeated. 

The r e s u l t s ,  presented i n  Fig. 20 fo r  an i n l e t  pressure of 7000 ps i a ,  show t h a t  the 

combusti03 chamber coolant f lowrate  can be reduced t o  150 l b l s e c  with a r e su l t i ng  

pressure drop of 2100 psia .  The pressure drop could be reduced fu r the r  by in- 

creasing the  channel height to  increase the coolant f lowrate  f o r  a given mass 

ve loc i ty .  This w i l l  reduce the coolant temperature r i s e  and the r e s u l t ~ n t  pres- 

sure  drop. Since the chamber coolant i n l e t  pressure and pressure drop dr ive  the 

pump discharge pressure requirement, there  is no incent ive  t o  redesign the nozzle 

channel geometry. 



Figure 12. Wall Temperature, Coolant Temperature Rise, 
and Coolant Pressure Drop for an O2/Propane 
Combustor (PC = 3230 psia) Uppass Propane Cooled 
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Figure 13. Wall Temperature, Coolant Temperature Rise, and Coolant 
Pressure Drop for an 02/Propane 35:l Nozzle (PC = 3230 psia) 
Uppass Propane Cooled 
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Figure 14. Wall Temperature, Coolant Temperature Rise, 
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Figure 15. Wall Temperature, Coolant Temperature Rise, 
and Coolant Pressure Drop for a P ~ 3 2 3 0  psia 
02/CH4 CH4- Cooled Uppass 35 : 1 ~ o E r l e  



I400 r 

1200 - 

1000 - 

800 
80 90 100 110 120 1 30 

METHANE COOLANT FLOWRATE (LBH/SEC) 

I I I I 1000 1 
80 90 100 110 120 130 

METHANE COOLANT FLOWRATE (LBM/SEC ) 
(c 

Figure 16. Wall Temperature, Coolant Temperature Rise, 
and Coolant Pressure Drop for a PC - 4000 psia 
02/cH4 CH4-Cooled Uppass Chamber 
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07 Cooling With O2/H7 Combustion 
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The main incentive in considering a LOX-cooled chamber is that it would not be 

11 neceajary to switch coolants between mode 1 and mode 2 operation. A brief study 

was conducted to determine if LOX cooling would be applicable for the SSME opera- 

tion in mode 2 (02/H2 combustion). 02/H, ireat transfer rates are 60 to 70% higher 
A 

than O,/hydrocarbon rates at the same chamber pressure. It was found that with 
L 

the current coolant channel geometry, the maximum chamber pressure would be limited 

to less than 2000 psia. If the channel height were doubled in the c!lamber to 

permit an increase in coolant flowrate, the maximum chamber pressure would be 

2500 psia with a flowrate of 700 lb/sec and a AP of 5400 psi. A chamber pressure 

of 3237 psia could be achieved only with a complete redesign of the chamber cool- 

ig geometry and would still require an excessively high coolant pressure drop. 

With these results, it is apgarent chat LOX cooling is not a feasible candidate 

- for a dual-fuel engine using LOX/hydrocarbon in mode 1 and LOX/H2 in mode 2 since 
- 

the mode 2 operation is greatly limited. 

- H2 Cooling of an Extendible Nozzle 

The extendible nozzle contour used in this analysis along with the SSME develop- 

ment nozzle contour is shown in Fig. 21. For this analysis, no effort was made 

to optimize the extendible nozzle contour. The chamber throat radius is 5.15 

inches (SSME main chamber). 

The hot-gas heat transfer coefficient as a function of the nozzle expansion ratio 

is shown in Fig. 22. From E = 77.5:l the heat transfer coefficient is for the 

SSME flight nozzle at FPL (i)c = 3237 psia). From E = 77.5:l to E = 150:1, the 

heat transfer coefficient is obtained by extrapolation of the curve from & = 5:l 

to E = 77.5:l. 

For this anslysis, a constant-diameter tube is assumed. The number of tubes 

was varied to minimize the coolant flowrate while maintainlng a reasonable size 

tube. The geometry selected consists of 2520 (7 x 360) tubes with an unformed 

diaaeter of 0.16 inch. A tube-wall thickness of 0.009 inch was assumed. The tube 

material is A-286 (same as the SSME nozzles). 
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A downpa80 coolant c i r c u i t  has been se lec ted  f o r  t h i s  design. This provides the 

low-temperature coolant i n  the maximum heat f l ux  region (minimum expansion ra t io) .  

A coolant i n l e t  pressure of 7000 ps ia  and an i n l e t  temperature of -360 F a r e  

assumed. 

The maximum hot-gas wall tenperature a s  a function of the coolant flowrate is 
s h w n  i n  Fig. 23. To keep the maximum wall temperature a t  1000 F would require  

a coolant flowrate of 18.5 Ibmlsec. The maximum coolant mass ve loc i ty  is 0.7 
2 

lbm/in. -Be=. The maxirn heat f l ux  is 3.2 ~ t u l i n .  '-sec and t h e  nozzle heat load 

is 58,500 ~ t u / s e c .  For a coolant flowrate of 18.5 lbm/sec, the coolant tempera- 

t u re  r i s e  is 840 F and the pressure drop is  only 7 p s i ,  This ana lys is  is pre- 

liminary and is only intended t o  show the  f e a s l b i l i t y  of H;! cooling of an ex- 

~ e n d i b l e  nozzle and the impact on the  system. Considerable fu r the r  ana lys is  is 

required before a recolamended design could be establ ished.  

Summary of Results 

A srmanary of the  mode 1 regenerative cooling system design points  is shown in 
I Table 5. The heat t ransfer /cool ing ana lys is  was conducted assuming the cur ren t  

I 
SSME chamber and cooling channel geometry except i n  t he  one LOX cooled case where 

I 
! the  channel dimensions were increased t o  reduce the AP. These design points  were 
i i used i n  the mode 1 engine system mass/pressure balances. 

i 

: TASK I11 - CYCLE AND POWER BALANCE 

The object ives  of t h i s  task were t o  def ine the  candidate engine system cycles and 

perform cycle  power balances to  determine the requited component flowrates,  

turbine i n l e t  temperatures, and pump discharge pressures based on the pressure 

lossess  of the  various components. Power cycles examined included staged com- 

bustion and gas generator. 

:/1 Select ion of Engine System Candidates 

a Previous NASA funded s tudiec  (Ref. 4 )  ind ica te  some possible  advantage i n  

operating a t r i p rope l l an t  engine in  e i t h e r  a s e r i e s  burn o r  p a r a l l e l  burn 

! 

4 
. I 

' I .  
I 

" 8  



1 I I I I 

1 6  18 20 2 2 24 
HYDROGEN COOLANT FLOWRATE (LBM/SEC) 

1 4  16 18 2 0 2 2 24 
HYDROGEN COOLANT FLOhRATE (LBM/SEC) 

4 C ..... 1 I I .  1 

1 4  16 18 2 0 2 2 24 
HYDROGEN COOLANT FLOWR4TE (LBM/SEC) 

Figure 23. Wall Temperature, Coolant Temperature Rise and 
Coolant Pressure Drop for a P = 3237 psia 02/H2 
Hydrogen-Cooled Downpass ~xteEdible Nozzle 
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conf igura t ion ,  as i l l u s t r a t e d  i n  Fig,  24. The s e r i e s  burn engine r e q u i r e s  t h e  

s e q u e n t i a l  burning of a hydrocarbon f u e l  (mode 1 )  followed by HZ i n  mode 2 ,  and 

t h i s  is t h e  engine c l a s s i f i c a t i o n  of primary i n t e r e s t  t o  t h i s  study. The tri- 

p rope l lan t  engine used i n  t h e  p a r a l l e l  burn conf igura t ion  does n o t  r e q u i r e  t h e  

s e q u e n t i a l  burning of two f u e l s  but  may use t h e  second f u e l  (hydrogen) as a 

coolant  t o  avoid a p o s s i b l e  inadequate cool ing c a p a b i l i t y  of t h e  primary f u e l .  

This l a t e r  type of engine is a c t u a l l y  a s i m p l i f i e d  ve rs ion  of t h e  dual-mode engine 

and t h e s e  single-mode engines can be der ived from the  dual-mode engines formulated 

i n  t h i s  study. f .. 

i 

Ground r u l e s  were e s t a b l i s h e d  f o r  t h e  dual-mode engine concept (Fig. 25) and 
' .- 

a s e t  of candidate  engine cyc le  and p rope l lan t / coo lan t  combinations was es tab l i shed .  ; . .  
i - 
I - 

Formulating these  va r ious  engine system conf igura t ions  provides a b a s i s  f o r  

eva lua t ing  engine system and component requirements f o r  a dual- fuel  engine and 

t h e  subsequent compat ib i l i ty  of t h e  SSME with  these  requirements. These candidate  

systems (Fig. 26) inc lude  a l l  t h r e e  s p e c i f i e d  hydrocarbon f u e l s  and t h e  f u l l  range 

of regenera t ive  coolants .  This group of candidate  engine systems is considered 

t o  be r e p r e s e n t a t i v e  of t h e  power cyc les ,  p rope l lan t  combinations, and cool ing 

techniques of i n t e r e s t .  Other engine system v a r i a t i o n s  could be der ived from 

these  ground r u l e s  bu t  would no t  o f f e r  any g r e a t e r  p o t e n t i a l  f o r  t h e  a d a p t i b i l i t y  

of SSME hardware. 0x16- a d d i t i o n a l  important gu ide l ine  i n  e s t a b l i s h i n g  t h e  candidate  

engine systems was t o  minimize t h e  use of H i n  t h e  mode 1 operat ion.  2 

" ince  t h e  SSME preburners opera te  f u e l  r i c h ,  i t  was p a r t i c u l a r l y  d e s i r a b l e  t o  

include s e v e r a l  s taged combustion engine cyc les  wi th  a l l  preburners  f u e l  r i c h .  

A s  work was begun on t h e  engine power balance c a l c u l a t i o n s ,  i t  was found t h a t  even 

i f  a l l  of t h e  a v a i l a b l e  f u e l  i s  used, tu rb ine  i n l e t  temperatures exceeding 2000 R 

were required t o  achieve a power balance on the  a l l - f u e l - r i c h  preburner systems. 

This  is  a r e s u l t  of t h e  lower energy a v a i l a b l e  per  pound of tu rb ine  d r i v e  gas  

when comparing LOX/hydrocarbons wi th  LOX/H2. I t  is f e l t  t h a t  these  t u r b i n e  i n l e t  

temperatures exceed the  c a p a b i l i t y  of the  ex i s t in ;  SSME hardwcre. Actual ly ,  some 

of t h e  f u e l  must bypass t h e  preburners  t o  provide coolant  f o r  t h e  i n j e c t o r  f a c e  

and hot-gas manifold. It is  a l s o  d e s i r a b l e  t o  maintain some engine power c y c l e  
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PROPELLANTS 
I '. - --- - - ' 

I LOXIRP-11H2 LOX PREBURNER LOX HIGH RICK LOXIRP-1 
FUEL 61 Hp PREBURNERS FUEL RlCH LOXlRP-1 
ALL  PREBURYERS FUEL RlCH 

I S.C I H2 I A L L  PREBURNERS OX RlCH LOXlRP-1 

S.C. 

S.C. 

S.C. 

LOX PREBURNER LOX RlCH LOXEQ 
FUEL & H z  PREBURNERS FUEL RlCH L O W -  
ALL  FUEL RlCH PREBURNERS 

ALL  PREBURNERS OX RlCH LOXICHI 

LOX PREBURNER LOX RlCH LOX/CSH8 
FUEL H2 PREBURNERS FUEL RlCH LOXIC3H8 
ALL PREBURNERS FUEL RlCH 

I S.C. I H 2  I ALL PREBURNERS OX RICH L O W C 3 Y  
I G.G. I H 2  I FUEL RICH G.G. LOX/H2 

I G.G. I y I FUEL RlCH G.G. L O X I H ~  

I G.G. I H 2  I FUEL RlCH G.G. LOXMp 

LC. LOX PREBURNER LOX RICH LOXtRP-1 
FUEL PREBURNER FUEL RlCH LOXIRP-1 
ALL  PREBURNERS FUEL RlCH 

I S.C. I 0 2  I ALL  PREWRNERS OX RlCH LOXIRP-1 

CHJn2 1 ALL PREBURNER OX RICH LOXICM I E I c 4 m 2  ALLPREBuRNERs FUEL R l c n  

C3H8/H2 ALL PREBURNER OX RlCH LOX/C$+s I I C3b,H, I ALL  PREBURNERS FUEL RICH 

I G.G. I CjH81H2 I FUEL RlCH 0.0. LOXIC3H8 

Figure 26. Candidate Engine Concepts 

OI~IGINAL PAGE IS 
i l k 1  P: N)T'; QUALITY 



margin, thus  requ i r ing  an a d d i t i o n a l  preburner f u e l  bypass flow. Probably a more 

d e s i r a b l e  means of incorpora t ing  t h i s  power margin c a p a b i l i t y  is t o  use a l l  of t h e  

f u e l  a v a i l a b l e ,  thus  reducing t h e  gas temperature and inc reas ing  t h e  t o t a l  gas  

f lowrate .  One o t h e r  approach is t o  reduce t h e  opera t ing  chamber pressure ,  thus  

reducing tu rb ine  power requirements and f u e l  flow t o  t h e  preburners.  

The required reduct ion i n  chamber p iessure  is excess ive  s o  t h e  i n i t i a l  ground 

r u l e s  cannot be met and t h e  r e s u l t i n g  system is undesi rable .  However, because 

of t h e  importance of these  a l l - f u e l - r i c h  preburner systems i n  any f u t u r e  s t u d i e s  

concerning dual- fuel  e n g i n e . ,  i t  was decided t o  c a r r y  t h e s e  systems through t h e  

engine balance c a l c u l a t i o n a  t o  show t h e  magnitude of t h e  t u r b i n e  i n l e t  temperature 

inc rease  o r  t h e  chamber p ressure  reduct ion required t o  achieve an engine power 

balance.  Therefore,  candidate  systems 2A, 3A, 5A, 10A, 1 1 A ,  and 13A a r e  shown i n  

Fig. 26. Other s taged corubustion cyc les  incorpora te  e i t h e r  mixed fue l - r i ch  and 

ox id ize r - r i ch  preburner o r  a l l  LOX-rich preburners.  

I n  a l l  o ther  s taged combustion cases ,  a 2000 R t u r b i n e  i n l e t  temperature was in- 

corporated i n  performing t h e  engine balance c a l c u l a t i o n  f o r  e i t h e r  a f u e l - r i c h  o r  

LOX-rich preburner. A t u r b i n e  d r i v e  gas  temperature of 2000 R may produce some 

a r e a s  of uncer ta in ty  wi th  LOX-rich gases  where the  fue l - r i ch  cond i t ions  would be 

more wel l  known. A common temperature f o r  bot' fue l - r i ch  and LOX-rich preburners  

-gas s e l e c t e d  f o r  t h i s  study t o  maintain c o ~ s i s t e n c y  f o r  comparison purposes. It 

should be noted t h a t  f u r t h e r  i n v e s t i g a t i o n  is  required per ta in ing  t o  m a t e r i a l s  

compat ibi l i ty  wi th  2000 R LOX-rich gases.  

5 

Engine Balances i 
The r e s u l t s  of t h e  mass/pressure/temperature balances f o r  each of t h e  candidate  

engine systems is presented i n  Table 6. A l l  f lowra tes  t o  t h e  major engine system 

components a r e  presented along wi th  vacuum and s e a  l e v e l  t h r u s t s ,  s p e c i f i c  impulse, 

and pump discharge p ressure  requirements. The LOXIRP-1 s taged  combustion systems 

with e i t h e r  LH2 o r  LOX regenera t ive  roo l ing  a r e  presented f i r s t .  A s  previously  

mentioned, t h e  a l l - f u e l - r i c h  preburner cases  requ i re  tu rb ine  i n l e t  temperatures 

above 2000 R. A l l  of t h e  a v a i l a b l e  f u e l  i s  d i r e c t e d  t o  the  preburners and no power 



TABLE 6. ENGINE BALANCES 

02/RP- I /H2 STAGED COMBUST l ON 

S.L. Thrust 
Vac. Thrcst 

Propellants 
Coolant 
Turblne Orlw F l u i d  
M.R. 

Is S.L.,  SCC 
Is Vac, t r c  

T ~ u r b j n r '  
Pr?burmr/GC. 1 b / s u  

O2 
Fuel 

"2 
+,*lne. l b / ~ c c  

O2 
Fut 1 

"2 
Ltoolsnt~ ~~ISCC 

Po* (Total  1. l b / s ~  

GFuel (Tots 1 1, 1 b/stc 

&lip (Total  1, lb lsec 
%otal * I ~ I S C C  

T . C . ,  lb/sec 

Pmp OIschrrge Pressure 
LOX PB 

Chmber 
Fuel PB 

Chamber 

"2 

2250 

460K 
5OOK 
02/RP-1 

"2 
02/RP-1 
2.8 
333.8 
362.5 
2000 

478.8 
240.3 

- 

395.8 
174.7 
147.6 
34 

1045 

300.3 

34 

1379 

34 

7331 
4123 
7331 
4123 
4000 

460K 
500K 
02/RP-1 

"2 
02/RP-1 
2.8 
333.8 
362.5 
2000 

733.2 
22.2 

396.8 
187.3 
171.3 
34 

1045 

300.3 

34 
1379 

34 

7331 
4123 
7331 

4123 
4000 

2100 

470K 
51 1.7K 
02/RP-1 

"2 
02/RP-1 
2.8 
311.6 
345.8 
2000 

655.7 
1 U  $5 - 
622.4 
177.9 

22560148 
2 75NOZ 

1090.4 

389.4 

- 
1479.8 

- 

7331 
8600 
7331 
4123 
- - 

470i 
511.7K 
02/RP-1 

"2 
OgRP-1 
2.8 
317.6 
345 .8 
2000 

765.5 
23.2 
- 

622.4 
166.2 

225tM8 
27SNOZ 
1090.4 

389.4 

- 
1479.8 

7331 
8600 
7331 
4123 
-- 



L' . 
TABLE 6 .  (Ccnt inued) 

02/CH4/H2 STAGED COMBUST l ON 

Fuel-Rich 1 
- - 
Hydrogen-Cool ed 

Fuel-Rich 
A l l  PB'r 
02-Rich 

A l l  PB's A l l  PB's 
LL Rich Fuel-R'ch Fuel - R t c  

128 

S . C .  S . C .  
32 j a  2950' 

470K 470K 429.3 

516.2K 514.9K 473.3 

CDNCEPT NO. I 
S.C.  S . C .  

32 30 1 3230 

Cycle Type S . C .  

3230 pc 
S.L. Thrust 
Vac. Thrust 

Propel l a n t s  

Coolant 

Turbfne Drfva F l u i d  

M.R. 

is S.L.r kc 
Is vac, m c  

T ~ u r b f n c *  
Preburner/GG. Ib / rcc  

O2 
Fuel 

"2 
%urbines Ibiscc 

O2 
Fuel 

(Tota!), lb/sec 

7 0 t 4 l '  lb/= 

B T.C., lb/sec 
"2 

Punp Discharge Pressur 

LOX PB 
C  hanber 

Fuel PO 
Chamber 

"2 

+Mlnlmum turbine i n l e t  tpTercrture or  maximum chamber pressure tha t  can be achieved 1 T a1 1 avai lable fuel  i s  
Gfrected t o  preburners. I n  an actual engine some fuel must be reserved t o  cool the i n j ec to r  and hot gas rmnifold.  



Cycle Type 

S.L. Thrust 
V u .  Thrust 
RPpl l r n t s  

Coolurt  

Tu rb lm  bin F l u l d  

M.R. 

Is S.L.. Stc 
Is Vm. KC 

T ~ u r b l m *  
Pnbumer/GG. 1 b:sec 

"2 
Fuel 

"2 
%urbtnr* lbIKc 

"2 
Fuel 

I Lo2 (Total) .  l b h e c  

LFucl (Total) ,  lb/%?c 

&ti2 (Tota l ) .  l h / s u  

jrotal. l b / x c  

& ~ 2  T .C- *  lb/= 
Punp Discharge Pressure 

LOX PB I chamter 

Fuel PB I Chamber 

TABLE 6. (Continued) 

02/C3Hg/H2 STAGED COMBUSTION 

S.C. S.C. 

3230 31 0 

464.6K 

W7.6K 

02/Ci% 

"2 

02/C3H8 
3.0 

335.7 

366.7 

2375 2000 

- 

S.C. 

3230 
464.41: 
507.6K 

02/C3% 

H2 

02/c9'8 
3 -0 

335.7 

366.7 

zoo0 

H y d r o g ~ - C ~ l c d  
Fuel W 

Fwl -R ich 
b 0 2 " E '  A l l  PB's 

Fuel-Rlch 02-Rich 02-Rlch 

S.C. 
3230 

S.C. 

3230 I 470K 
I 
I 5151: 

' ' ~ ~ ~ 3 %  

'3% 

O2/CJ1, 
3.0 

320 
35: 

2000 

SA 5 6 1 1. 1 . 1 3  

Cooled 
.L 

A l l  PB's 
Fuel Rich 

A l l  PB's 
02-Rich 
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TABLE 6 .  (Concluded) 

GAS GENERATOR CYCLES 

I CONCEPT NO. 1 7 1  

Cycle Type 

S.L. Thrust 
Vac. Thrust 

Propellants 

Coolant 

Turbine Drive F lu id  

R.R. 

Is S.L.. k c  

IS Vac. Kc 

T ~ u r b i n c *  
Preburner/GG. 1 b / s a  

O2 
Fuel 

"2 
';rUrbinc. 1 blsec 

O2 
Fuel 

"2 
IjCoolant. 1 blsec 

iO2 (Total) .  lb/sec 

iFuel (Tota l ) ,  lb/sec 

Ln2 (Total) .  lb/sec 

L;Total. lb/sec 

IjH2 T.C., Ib/sec 

Pump Discharge Pressure 

LOX PB 

Chamber 

Fuel PB 
Chamber 

"2 

G.G. 

4000 

470K 

502K 

02/RP-1 

"2 

O2/"2 
2.8 

329.7 

352.3 

2000 

8 9 

G.G. G.G. 

4000 4000 

4 70K 470K 

504K 503.5K 

02/CH4 02/C3H8 

"2 "2 

O2/"2 O2/"2 
3.5 3.0 

336.9 3 34 

361.3 358 

2000 2000 

14 

G.G. 

4000 

470K 

5O5K 

02/CH4 

'3"' 
02/CH4 

3.5 

318.5 

342.2 
2000 

28.6 

66.5 

- -- 

I S  1 SA 

- G.G. G.G. 

4000 3230 

4701: 470K 

505.5K 505K 

OZ/~+% " ~ / ~ 3 " 8  

3% '$8 

Oz/CPa 02/CJHs 
3.0 3.0 
311.3 300.6 

334.5 337.1 

2000 2000 



margin remains. Since the primary fuel (RP-1) is not used for regenerative 

cooling, some of the fuel does not have to bypass the preburner to provide cooling 

for the hot-gas manifold and injector face. In those cases where LH is used as 
2 

the coolant, the H2 is directed to the main injector after exiting the cooling 

jacket, thus resulting in a higher spec+ f ic impulse than if only the LOXIhydrocarbon 

were cornbusted. 

For themixed fuel and LOX-rich or all-LOX-rich preburner cases, there is always 

sufficient fuel available above the preburner requirement for auxiliary cooling 

of the injector face and hot-gas manitold. 

Pump discharge pressures are generally in a range comparable with the SSME pump 

designs. The discharge pressures of the fuel and oxidizer flows to the preburners 

and directly to the main chambers are shown to aid in the SSME pump adaptibility 

studies. 

The LoX/CH staged combustion cases are shown in the second part of Table 6. Again, 4 
the all-fuel-rich preburners require turbine inlet temperatures exceeding current 

hardware capabilities. An additional variation of case 12A is presented where the 

chamber pressure is reduced to a level where an engine balance can be achieved 

with all-fuel-rich preburners and tur5ine inlet temperzture of 2900 F. Cases 12A 

and i23 are only of theoretical interest in that they are limiting cases. In an 

actual engine system, some of tllc. fuel flow must be reserved for cooling the in- 

jector face and hoc-gas manifold. Also, no power margin capability exists unless 

the gas temperature is increased. 

The maxim~lm achievable chamber pressure for 2000 R turbine inlet tc-.?erzture and 

the required turbine inlet temperature for 3230 psia chamber pressure are shawn 

i~ rig. 27 as a fl~nction of percent CN reserved for auxiliary cooling. Estimates c, 
based on SSME design expcriencc indicate that spproximztely 15 to 20X of the fuel 

musL bypass the prebur.~er for auxiliary c:ooling rsqr.ircments. This results in 

an actual 2ngine operating chamber pressure of 2300 to 2400 psia at 2000 R turbine 

inlet temperTture, or a turbine inlet tempe:dture of 2250 to 2300 k for a chamber 

pressure of 3230 psia. 
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The gas generator system balances are presented in the last part of Table 6. 

In general, these systems are not power limited as relatively small amounts of 

fuel are required for the gas generator feeding the higher pressure ratio turbines. 

It was also determined that gas generator engine system chamber pressures of 4000 

psia could be achieved with pump discharge pressures appoximating those of a 

staged combustion cycle at 3230 psia chamber pressure. For this reason, all gas 

generator system balances werz conducted at 4000 psia chamber pressure. The C3H8 

cooling jacket AP at 4000 psia resulted in an excessively high fuel pump discharge 

pressure; therefore, a blanace also is shown for 3230 psia. 

,b 

/ , i  

I 

I 

Systen Schematics 

The engine balances for the staged combustion LOX/C3H8 systems exhibit the same 

trerds as seen for the LOX/CH systems except for slight differences in preburner 4 
flowrates resulting from the lower energy LOX/C3H8 preburner combustor products. 

Again, all-fuel-rich preburners are not feasible at 2000 R turbine gas temperature 

and 3230 psi8 chamber pressure. 

Preliminary engine flow schematics were generated for each of the engine system 

I !  

concept types. These schematics show the flow paths required for both mode 1 and 

2 operation but all control components (valves, check valves, etc.) are not shown. 

A separate study conducted within Task IV established control requirements and 

necessary components. In some cases, the flow schematics were changed in the 

control studies to minimize the necessary control valves or simplify the system. 

It was found that in some cases, it was necessary to indicate isolation valves 

for the purpose of clarity. Boost pump drive methods were maintained as in the 

SSME where possible. In those cases where additional pumps are required or con- 

cepts do not permit the same boost pump drive technique, a logical alternative 

is selected, but is not necessarily the only method that might be considered. 

A schematic representative of systems 1 through 6 is shown in Fig. 28. All three 

turbopumps must operate during mode 1 as the combustion chamber and nozzle are 

H2 cooled in both mode 1 and mode 2. The H2 bypass from the pump to the main 

chamber and the H flow to the preburners is required only during mode 2 operation. 2 





Pump s tud i e s  have shown t h a t  it  is  questionable whether one pump (SSME main H2 

pump) can s . ~ t i s f y  both mode 1 and 2 H2 head and flow requirements. The hydrocarbon 

(HC) pump operates only during mode 1. The LOX highpressure o r  kick pump s t age  

is  required t o  feed the  preburners i n  both mode 1 and mode 2 operation. The HC 

boost pump is assumed t o  be driven i n  p a r a l l e l  with theHC mainpump by preburner 

gases. The LOX and H preburners must operate  on e i t h e r  LOX/HC o r  LOx/H2, a s  
2 

! does t he  main chamber. 

.' 5 i / System concepts No. 10 and 11, a s  shown i n  Fig. 29, a r e  qu i t e  s imi l a r  t o  No. 1 

and 2 except t ha t  they are LOX cooled ins tead  of H2 cooled. The lack  of H2 being '1 ' 
- 1  i in jec ted  i n t o  the  main chamber explains  the  d i f fe rence  i n  performance. The LOX 

1 :.I coolant requirements f o r  the chamber and nozzle a r e  Lower than those required f o r  
{ 

the  preburners and the remainder of the  LOX flow is  not  s u f f i c i e n t  f o r  t he  pre- 1; burner. Therefore, some of t he  nozzle coolant flow (GOX) is mixed with the  LOX 
.i 1 ';1 i being fed t o  the  preburners. This has the  added advantage of heat ing up the LOX 

before i t  is in jec ted  i n t o  t he  chamber with tke hydrocarbon and reducing the 

p o s s i b i l i t y  of an explosive g e l  forming. 

gas) and only the H2 pump operates  dar ing mode 2 (GH2 turbine d r ive  gases).  This 

technique of dr iving the f u e l  and H boost pump i s  only one of severa l  possible;  
2 

hydraulic turbines  cr dr iv ing  them i n  p a r a l l e l  with the  main pumps with t he  pre- 

burner flow a l s o  could be considered. The switch of chamber and nozzle cooling from 

The schematic f o r  systems 12 and 13  is  shown i n  Fig. 30. These systems a r e  

a hydrocarbon i n  mode 1 t o  H i n  mode 2 r e s u l t s  i n  s ign i f i can t  system and opera- 2 
t iona l  complexities. 

I 

The schematic fo r  system concepts 7 ,  8, and 9 is shown i n  Fig. 31, and i s  typ i ca l  

of a low pump discharge pressure gas generator cycle. The chamber and nozzle a r e  

H2 cooled i n  both modes 1 and 2 and the chamber coolant f lowrate  i s  adequate t o  

s imi l a r  t o  systems 1 through 6 except t h a t  No. 12 and 13 a r e  hydrocarbon cooled 
1 

: b 

t ;  during mode 1 aad H2 cooled during mode 2 ,  while No. 1 through 6 a r e  H2 cooled I 

. 
I 

, i n  both modes. The f u e l  and the H2 boost pumps a r e  driven by the nozzle coolant 

discharge flow. I so l a t i on  valves a r e  shown i n  the hcost pump dr ive  gas del ivery 

l i n e s  s ince  only the  HC pump operates  during =ode 1 (with gaseous HC turbine d r ive  





I b 1 ,  .-4 ! 4 I ! !  
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e a t i e f y  t h e  gae generator  requirements. Again, i n  t h i s  case ,  t h e  H2 f!.owrates 

are g r e a t l y  d i f f e r e n t  between modes 1 and 2 and t h e  H2 bypass from t h e  pump t o  

t h e  chamber is needed only  dur ing mode 2. It is ques t ionab le  whether t h e  SSME H2 

main pump can e a t i s f y  t h i s  requirement. A l l  of t h e  t u r b i n e s  a r e  dr iven i n  

p a r a l l e l  wi th  a s i n g l e  gas  generator  and t h e  t u r b i n e  exhaust  p ressures  a r e  co l l ec -  

ted  and ducted i n t o  t h e  main nozzle  where t h e  expansion p ressure  matches t h e  tu rb ine  

exhaust  p ressure  (approximately 200 p ~ i a ) .  I n  t h i s  case ,  t h e  HC boost pump is 

dr iven  by t h e  HC main pump through a hydrau l ic  tu rb ine ,  as is t h e  c a s e  f o r  t h e  

SSME LOX boost pump. The H2 coolant  f low through t h e  nozzle  s u p p l i e s  t h e  hot-gas 

f low t o  d r i v e  t h e  H2 boost  pump. 

System concepts 14 and 15 (shown schemat ical ly  in  Fig. 32) a r e ,  aga in ,  gas  

generator  c y c l e s  but  d i f f e r  from No. 7,  8, and 9 i n  t h a t  t h e  chamber and nozzle  

a r e  hydrocarbon cooled dur ing mode 1 and H2 cooled dur ing mode 2. The gas gen- 

e r a t o r  f u e l  i s  suppl ied by t h e  combustion chamber coolant  flow; t h e r e f o r e ,  t h e  gas  

generator  f u e l  as wel l  a s  t h e  main chamber f u e l  changes between mode 1 and 2. The 

low-pressure boos te r  pumps a r e  dr iven by t h e  r e s p e c t i v e  nozz le  coo lan t s  dur ing 

mode 1 and mode 2. 

i System Var ia t ions  

i 
Mass flow balances shown i n  Table 6 f o r  system concepts No. 1, 3, 4,  5,  and 6 

r e s u l t  i n  a l a r g e  percentage of e i t h e r  t h e  o x i d i z e r  o r  f u e l  being combusted i n  

t h e  preburner and t h e  remaining smal le r  percentage being bypassed d i r e c t l y  t o  t h e  

main combustor. This occurs  a s  a r e s u l t  of f i x i n g  t h e  t u r b i n e  p ressure  r a t i o ,  

t u r b i n e  i n l e t  gas temperature,  and chamber p ressure  (pump discharge p ressure ) ,  

This r e s u l t s  i n  a d d i t i o n a l  main chamber i n j e c t o r  complexity s i n c e  a t h i r d  f l u i d  

must then be i n j e c t e d  i n t o  t h e  chamber, and where t h i s  t h i r d  flow is r e l a t i v e l y  

smal l ,  i t  would s impl i fy  t h e  system i f  t h e  preburner flows could be increased s o  

t h a t  e i t h e r  a l l  of t h e  a v a i l a b l e  ox id ize r  o r  f u e l  could be fed through t h e  pre- 

burner. S u f f i c i e n t  f u e l  must be reserved t o  s a t i s f y  t h e  l u x i l i a r y  cool ing 

requireaents .  

In system concepts 4 and 6, a l l  preburners  a r e  operated o x i d i z e r  r i c h  wi th  a 2000R 

t u r b i n e  i n l e t  temperature and a t u r b i n e  p ressure  r a t i o  of 1 . 6 : l .  This  temperature 

was s e l e c t e d  f o r  t h e  ox id ize r - r i ch  preburners  t o  maintain c.onsistenty i n  t h e  study. 
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However, mterialr conpatibilicy with high-temperature LOX-rich garee could have 

some impact on the selection of this temperature. The resulting ongin.; :ycle 

balances require approximately 87% of the available O2 flow to the preburners. 

Themain chamber injector adaptation would be easier if d l  of the oxidizer were 
I 

routed through the preburner, thus eliminating the need for the liquid oxyaen 

delivery to the miil chamber. Several alternatives exist as to the possible 

utili~ation of this excess oxygen flow to the preburners. 

1. The excees oxygen flow could be distributed to the three preburnere, 

thus reducing turbine inlet temperature. Thie ie probably the pre- 

ferred method of utilizing the excess oxygen. An iterative flow balance 

would be required to determine :tow much this temperature could be reduced 

since pumping requirements are changing along with turbine drive gas 

properties. 

2. The turbine flows could be increased at the same mixture ratio and tem- 

perature, thus producing more horsepower and permitting a higher chamber 

pressure. 

3. The turbine flowe could be increased, with the same mixture ratio and 

teqerature, with a reduced turbine preeeure ratio, thus producing the 

:I same horsepower at the higher flow. 

Mode 2 U)X/H? Engine Balance 
1 
I 

The mode 2 LOX/H~ engine operating capabilities can be impacted by the mode 1 

?; 
operating configuration. The ideal situation would be to have the mode 2 engine 

I 

configuration and operation identical to the current S m .  This means LH2 I regenerative cooling with both preburners fuel rich. It is also necessary, from 

a practical standpoint, that the cycle configuration be maintained from mode 1 

to mode 2. Phis, coupled with the fact that most of the cahdidate mode 1 engine 

systems have turbine drive cycle configurations different than those uf  the SSME, 

means that other cycle configurations must be examined for the LOX/H2 mode 2 

operation. 



Engine system mass/pressure/temperature balances were calculated for several 

'WXIH~ mode 2 operating configuration and the results are shown in Table 7. Both 

staged combustion and gas generacor cycles are presented. 

Two etaaed combustion cycles were considered. The case with both preburners fuel 

rich is taken directly from current SSklE FPL performance ~redictiona. 

The other case incorporates a LOX-rich LOX preburner and a fuel-rich fuel pre- 

burner. This represents the mode 2 operating conditions required for those systems 

that incorporate mixed fuel and oxidizer-rich preburners in m d e  1. This turbine 

drive configuration is feasible from a flowrate energy availability standyoint, 

but is not compatible with che PSME main chamber and preburner injectors. 

An additional mode 2 staged combustion LOX/H2 system was investigated that wauld 

incorporate LOX-rich preburners. This mode 2 system would cxrespond to those mode 

1 systems that operate wilt1 LOX-rich preburners. This wotlld eliminate the main 

chamher injector difficulties that occur when switching opxation from mode 1 to 

mode 2. It was fougd that to operate the preburners LOX rich at 2000 R tempera- 

ture, a mixture ratic of 86:l is required and there is sufficient LOX flow in the 

system to achieve a power balance. Approximately 1840 lb/sec of LOX are required 

in t:.rr? preburner with only 965 lb/sec available. Therefore, it was concluded 

that a LOX/H staged combustion engine system at SSME conditions was not feasiblc 2 
with L3K-rich preburners. 

/ ,[ 
, 

I i 
1 1  

t i  
i . '  

be practical in any dual-mode erlgine system. 

An analysis also was conducted to establish an engine balance for mode 2, LOX/H2 

SSME with LOX cooling. However, with the limiting chamber pressure value of 

2500 psia and the cooling AP established in the cooling analysis, the required 

LOX pump discharge pressure is excessively high and it was determined that oper- 

ating rhe SSME with LO:! cooling is not a practical cl~ernative. This, in essence, 

eliminates LOX cooling for the dual-:.lode spplications. The SSME hardware constraint 

, i 
', I 
: j 

plays a i.~inor role in this conclusion and it is believed that LOX c~oling would not I 
' j 



7. wx/H2 ENGINE BALANCE FOR MODE 2 

&L P.B.'S 
FUEL RICH 

STASED 
C ~ U S T I O W  

4000 

S.L. Thnnt.  l b  3 7 3 . a  343.4K 

'J 
9 

1 
1 

V l c .  Thrust 525.5K 51 3.8K 517.5K 

P m p c l l m t r  
Turbine Drive 
M.R. (T.c.) 6:1 
Is S.L. 337 331.9 304.9 

Is V U .  466.7 466.7 456.3 

I 
459.5 

T ~ u r b i m *  
M.P. Ox 1860 2000 2000 
M.P. Fuel 1932 

PM-, o r  as Gmrrator Flowrahs. Iblsec 

Oxld I 
0% 32.3 ME .3 I 4.,8 

I 
36.1 

85 -8  
87.2 

5.4 1 6.1 1 4.92 3 9 4  

I 
75.2 1 23.4 19.0 

15.2 

8.87 

34 .2  

94 .O 

68.4 470.7 

54.5 54.5 ' 1T.9 54 5 

32.0 i 
I 32.0 

365 I 965 96 5 
161 1 I C ,  161 161 
1126 1126 1125 

4972 4972 5106 

3050 LO50 

5939 1 6939 
---- I 

29.3 

10.98 
171.0 j 169.2 I 52.7 

I I 



Power balances also are presented for two gas generator cycle versions of the 

LOX/H2 mode 2 engines. The current SSME fuel and oxidizer flowrates were assumed 

for both the 3230 and 4000 psia chamber pressure cases. This implies that a 

different thrust chamber with a smaller throat diameter is employed for the 4000 

psia chamber. 

Sunrnary of Results 

The results of the engine system balance analysis have produced the following 

conclusions: 

1. For the ~OX/hydrocarbon mode 1 candidate systems, there is insufficient 

energy (fuel flowrate) available Lu obtain a stage combustion power 

balance with all preburners fuel rich at a chamber pressure of 3230 

psia and a turbine inlet temperature of 2000 R. 

2. ~OX/hydrocarbon staged combustion cycle power balances can be achieved 

for all-fuel-rich preburners with sufficient fuel reserved for auxiliary 

cooling at reduced chamber pressures (-- 2300 psia) or increased turbine 

inlet temperatures (- 2275 F). 

3. LJX/hydrocarbon staged combustion power balance is achievable rith both 
b 

pxeburners LOX rich or LOX-rich LOX turbine and fuel-rich fuel turbine. % 

4. There is insufficient energy (LOX flowrate) available to obtain a 

staged combustion power balance with all preburners LOX rich for the 

mode 2 LOX/H2 operation. 

5. Mode 2, LOX/H operation with LOX cooling is limited to a maximum 2 
chamber pressure of-2500 psia with an excessively high pump dischzrge 

pressure. For this reason, LOX cooling is not practical for duai-mode 
3 

applications. i 
3 

6. Gas generator cycles are not power limited. d 
5. 

7. Mode 1 or node 2 hydrogen coolant from either the chamber or nozzle is 

adequate for fuel flow to the gas generator. This also provides minimum 

turbine drive performance loss. 

63 
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TASK I V  - CONTROL SYSTW REQUIREHENTS 

The start sequence and control system selection for the tripropellant engine 

are patterned after the Space Shuttle Engine (SSME). During normal power 

level, it takes the SSME (a closed-loop controlled stage combustion engine) 

approximately 3.6 seconds to attain 90% of rated thrust (Fig. 33). With closed, 

locp control and proper selection of valve operating sequences, the start and 

cutoff transients of the tripropellant engine can be made to follow closely 

those of the SSME (Fig. 33 and 34). 

It is illtended that the tripropellant engine utilize SSME turbomachinery; 

therefore, valve opening schedules and utilization of open- and closed-loop 

control procedures are expected to be similar to those of the SSME. Engine 

start and shutdown criteria are indicated in Table 8. 

Staged Combustion Cycle Concepts 

The staged combustion cycle cooling options for the tripropellant engine are: 

hydrogen cooled in both modes 1 and 2, hydrocarbon cooled in mode 1 and 

hydrogen cooled in mode 2, and oxygen cooled. Oxygen cooling was ruled out 

from the standpoint of mode 2 operating limitations but was carried through 

the controls study to determine other aspects of the concept. There are 10 

engine concepts (1-6 and 10-13) that fall within these three cooling categories. 

Schematics for these 10 concepts are shown respectively in Fig. 35 through 37. 

Required control valves are indicated in each schematic. Start and shutdown 

procedures and transients are similar for all three schematics. 

Mode 1 Operation. The start sequence for the tripropellant ~OX/hydrocarbon 

engine (concepts 1-6, 10-13) employs the open-loop control mode during early 

start phases and switches to closed-loop operation for buildup to rated thrust. 

Initial valve opening and sequencing provides ignition sequencing, engine 

priming, and initial turbine power buildup. Closed-loop control is then 

activated to achieve a start to the desired power level without transient 

overshoots or undershoots. 
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TABLE 8. ENGINE START AND SHUTDOWN CRITERIA 

.I 

Prevent trans len t  overshoots o r  undershoots. 

Provide mixture r a t i o  var iat ions compatible w i th  engine l i f e  and 
re1 i ab i  l i ty. 

Provide repeatable engine s t a r t  character is t ics t o  rated power 
levels.  

Provide thrust  accelerations w i th in  customer speci f icat ion.  

Provide th rus t  accelerations required to minimize side loads 
a t  sea level .  

Provide s t a r t  t ransients insens i t i ve  t o  vehic le and mission 
operat ion requirements. 

Provide shutdowns without detrimental pump speed and turbine 
temperature transients. 

Provide shutdowns w i th  combustion o f  a l l  fue l  and ox id izer  re- 
siduals without damaging mixture r a t i o  transients. 
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Open-Loop C o n t r o l  Mode. S t a r t  is i n i t i a t e d  by a command from t h e  v e h i c l e .  
i 

( P r e s t a r t  p rocedures  p rov ide  f o r  removal of  a l l  vapor  from eng ine  pas sages  

above t h e  main p r o p e l l a n t  v a l v e s  and above t h e  o x i d i z e r  p rebu rne r  v a l v e s  and 

i n e r t  i n g  of p r o p e l l a n t  f e e d  mani fo lds  and c o o l a ~ i t  j a c k e t s .  ) 

The s t a r t  sequence (F ig .  38) s tar ts  wi th  a c t u a t i o n  of  t h e  main hydrogen v a l v e  

( v a l v e  No. 8 i n  Fig.  35) t o  t h e  fu l l -open  p o s i t i o n  and t h e  p rebu rne r  and main 

chamber hydrogen i g n i t e r  va lve .  Th i s  e s t a b l i s h e s  f low under  t a n k  p r e s s u r e  t o  

sys tems downstream of  t h e  v a l v e  f o r  pr imlng ,  i n c l u d i n g  t h e  main combustors ,  

p r e b u r n e r s ,  and i g n i t i o n  system. Upon pr iming  of  t h e  f u e l  sys tems,  t h e  main 

o x i d i z e r  v a l v e  ( l ) * ,  t h e  o x i d i z e r  p rebu rne r  o x i d i z e r  v a l v e  ( 2 ) ,  t h e  hydrocarbon 

f u e l  p r ebu rne r  o x i d i z e r  v a l v e  (3 ) ,  and t h e  hydrogen p rebu rnc r  o x i d i z e r  v a l v e  ( 7 )  

beg in  t o  open, r e t r a c t i n g  t h e  v a l v e  b a l l  s e 3 t s .  Before  main f low beg ins  t o  

b u i l d  up from t h e s e  v a l v e s ,  i g n i t e r  element  o x i d i z e r  f lows  p a s t  t h e  v a l v e  b a l l  

s e a t  and i n t o  t h e  p rebu rne r s ,  and main combustion chamber. S e a l  r e t r a c t i o n  of  

t h e  o x i d i z e r  v a l v e s  e s t a b l i s h e s  hydrogen p r o p e l l a ~ t  f low i n  t h e  i g n i t e r  sys tems.  

P r o p e l l a n t  f l ow  (hydrogen and oxygen) t o  t h e  main chamber and p rebu rne r  i g n i t i o n  

u n i t s  i s  i g n i t e d  by a s p a r k  i g n i t e r  u n i t  a t  t h e  main chamber and p rebu rne r ,  

p roducing  a hot -gas  c o r e  f o r  main (mode 1 )  p r o p e l l a n t  i g n i t i o n  a t  t h e  i n j e c t o r  

approximate ly  300 m i l l i s e c o n d s  a f t e r  t h e  s t a r t  s i g n a l  i s  a c t u a t e d .  I n i t i a t i o n  

of LoX/H p i l o t  combustion e a r l y  i n  t h e  sequence e n s u r e s  t h a t  t h e  main hydro- 2 
carbon p r o p e l l a n t s  of t h e  main chamber and p r e b u r n e r s  i g n i t e  s a f e l y  and t h a t  

no raw p r o p e l l a n t s  a r e  dumped i n t o  t h e  v e h i c l e  b o a t t a i l  d u r i n g  s t a r t .  4 '  
Actt iated a f r a c t i o n  o f  a  second a f t e r  t h e  main hydrogen v a l v e ,  t h e  main o x i d i z e r  

v a l v e  c o n t i n u e s  t o  open t o  approximate ly  602 of i t s  f u l l  t r a v e l .  Hydrocarbon, 
l i 
il I 

oxygen, and hydrogen p rebu rne r  o x i d i z e r  v a l v e s  a r e  then  rampod open t o  t h e i r  

i n t e r m e d i a t e  50% p o s i t i o n .  Imnmediatelq fo l lowing ,  t h e  hydrocarbon main va lve  (5) 

i s  ramped t o  t h e  fu l l -open  p o s i t i o n .  T h i s  i n i t i a t e s  p rebu rne r  F - ~ e r  bu i ldup  I 
o f  t h e  hydrocarbon turbomachinery,  w i t h  t h e  o x i d i z e r  turbomachinery power l a g g i n g  t 

I 
s l i g h t l y  behind t h e  hydrocarbon.  

*Numbers i n  p a r e n t h c s e s  r e f e r  t o  v a l v e  number on a p p r o p r i a t e  schemat ic .  @ 
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CCV - It--------------- 
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START SHUTDOWN 
V -A - 
0 1 2 3 4 0 1 2 SECS 

* C o n c e p t s  1 0  6 1 1 :  N o  H P H C I V ,  H P H I V ,  CCV 

C o n c e p t s  1 2  & 1 3 :  N o  H P H C I V ,  H P H I V  

F i g u r e  38. S t a r t  and Shutdown Sequence,  Concepts 1-6,  10-13*, Mode 1 



t. 

Hydrocarbon isolation valves on the oxidizer (6) and hydrogen (7 )  preburners 

are opened with the activatJ.on of the start signal and remain open during 

mode 1 operation, as well as the thrust chamber hot-gas hydrocarbon isolation 

valve (12). The oxidizer (10) and hydrogen (11) preburner isolation valves 

and the coolant control valves ( 5 )  remain closed during mode 1 operation. The 

first two valves prevent hot-gas hydrocarbon products from entering the 

hydrogen flow system during mode 1 operation. 

Propellant flow to the main chamber and preburner ignition units is ignited by 

a spark igniter producing a hot-gas core for main propellant ignition at each 

injector 250  milliseconds after the engine start signal is actuated. Icitiation 

of LoX/H combustion early in the sequence provides assurance that no raw 2 
propellants are dumped into the vehicle boattail during start and that the main 

hydrocarbon propellants of the main chamber and preburners ignite safely. 

Actuated at a fraction of a second after the main hydrogen valve, the main 

oxidizer valve ( :tinues to open to 62% of their travel. Shortly after, the 

hydrocarbon preburner oxidizer valve is ramped to the intermediate ope7 position 

of 52%. Immediately after, the hydrocarbon main valve i e  ramped to the full-open 

position. This initiates preburner power to the intermediate open position of 

5 2 % .  Immediately after, the hydrocarbon main valve is ramped to full-open 

position. This initiates preburner power buildup of the hydrocarbon turbo- 

machinery. 

The valve positions established by approximately 1 second set the engine power 

level at approximately 2 5 %  of rated power level. The transient to this thrust 

level provides preburner and main combustion chamber mixture ratio variations 

that do not degrade component life and reliability. The engine continues in 

this operating mode until 2 . 0  seconds. At this time, all engine start transients, 

including the slowest systems under the worst operating conditions, will have 

reached 25% of ratad power level. When the thrust is increased from 25% to the 

final thrust level, all engine systems, regardless of environment, will respond 

in the same manner and with the same characteristics. The pre-establtshed thrust 

acceleration rates conform with customer specifications and provide for minimiza- 

tion of side loads for sea level starts. 



Closed-Loop Mode. S t a r t  buildup t o  t h e  commanded t h r u s t  and mixture  

r a t i o  l e v e l s  is performed under closed-loop c o n t r o l .  A t  approximately 0.75 

second l n t o  the  start t r a n s i e n t ,  t h e  o x i d i z e r  aad fuel. preburner  o x i d i z e r  

va lve  posi t ior l ing c o n t r o l s  a r e  turned over  t o  closed-loop t h r u s t  c o n t r o l .  Th i s  

procedure is s e l e c t e d  t o  mainta in  the  engine  mjxture r a t i o  between t h e  proper 

l i m i t s  i n  t h e  high-impulse range dur ing t h e  major p o r t i o n  of t h e  t h r u s t  buildup.  

The commanded t h r u s t  l e v e l  i s  achieved i n  approximately 4 seconds. Th i s  method 

ach ieves  repea tab le  s t a r t  c h a r a c t e r i s t i c s  wi th  commanded t h r u s t  and mixture 

r a t i o  achieved i n  t h e  same ttme on every  start,  

S t a r t u p  procedures a r e  s i m i l a r  f o r  concepts 1-6, 12, and 1 3  except f o r  a few 

nonconsequential  s t e p s .  The main hydrogen va lve  (7) remains c losed dur ing 

mode 1 opera t ion  s i n c e  ihe  engine is  hydrocarbon cooled i n  mode 1. Hydrogen 

f o r  t h e  i g n i t i o n  system is obta ined from upstream of t h e  hydrogen valve .  No 

hydrogen preburner hydrocnrbon i s o l a t i o n  valve  (7)  o r  hydrogen preburner  

hydrogen i s o l a t i o n  va lve  (11) is  required s i n c e  t h e  hydrogen preburner opera tes  

only  once dur ing the  cycle .  

During mode 1, t h e  heated hydrogen i s o l a t i o n  va lves  (14 and 15) remain c losed 

whi le  the  heated hydrocarbon i s o l a t i o n  va lves  (16 and 1 7 j  a r e  open. With t h e  

main h ~ d r o g e n  valve  c l3sed,  a p o r t i o n  of the  hydrocarbon provides  t h r u s t  chasbzr 

cool ing and pgwer f o r  t h e  low-pressure pump t u r b i n e  before  flowing i n t o  t h e  t h r u s t  

chamber i n j e c t o r .  

Since concepts 10-11 u t i l i z e  oxygen-cooled t h r u s t  chambers, no coolant  c o n t r o l  

va lves  (9) have been included.  A s  i n  concepts 12-13, t h .  hydrogen preburner  

opera tes  only once dur ing t,he cyc le  and, t h e r e f o r e ,  does not r e q u i r e  preburner 

i s o l a t i o n  valves ,  hydrogen :/,, and hydrocarbon (11).  Also, no i s o l a t i o n  va lves  

(14-17) a r e  required i n  the  coolant  c i r c u i t s .  Except f o r  the above, t h e  s t a r t  

procedures dur ing mode 1 a r e  i d e n t i c a l  t o  those  of concepts 1-6. 

Engine Shutdown, The engine achieves  shutdown func t ions  wi th  t h e  same 

elements used f o r  s t a r t  and mainstage c o n t r o l .  The shutdown sequence (Fig.  381, 

by employing closed- and open-loop elements,  provides  repea tab le  shutdown 

t r a n s i e n t s  t h a t  a r e  i n s e n s i t i v e  t o  v e h i c l e  and mission o p e r a t i o n  requirements.  



Mode 2 Operation. Mode 2 operation of the tripropellant engine is in the 

LOX/H~ mode which is identical to SSME operation. Start and shutdown transients 

are as shown in Fig. 33 and 34. Valve sequenr-ing and scheduling rre as shown in 

Fig, 38. All the hydroc~irbon valves (3, 5 ,  6, 7, 12, 16, 17) remain cl.ased while 

all the hydrogen valves are operative. 

Control Velve Requirements. Control valves required in the staged combustion 

cycles are summarized in Table 9 according to the three thrust chamber ccaling 

concept groups. The least number of valves (10) is required by the oxygen cooled 

concepts 10 and 11 and the largest number (15) i~ required by concepts 12 and 13 

which use both fuels sequentially for cooling the thrust chamber. This sequential. 

use of fluids requires an increased number (3) of isolation valves over the , 

all-hydrogen-cooled concepts (1-6). Isolation valves are used whenelver 6 com- 

ponent such as the preburrer, main thrust chamber, coorant jacket, or turbine 

is required to operate sequentiaily with two fluids. The respective isolation , , 

- 1  - valve prevents the fluid in use from entering and contaminating the inactive 1 

. 1  . 4 circuit of the fluid not in use. In most cases, these isolation vaives are 
C I 

siaple one-way on-off valves while. In the case of isolation valves that handle 

hot gas, they can become large 'n size and intricate in design if nearly zero t 
I 

leakage is a requirement. I - 
1 .  
I 

The principal system valves are used for coarse or fine control of fluid flow 

and are of design similar to the SSME valves. These are the main fuel and \ 
oxidizer valves, the preburners oxygen valve;, and the coolant control valves. 

Though the SSME-type vnlve designs can be adopted in all cascs for mode 1 
\. 

tripropellant engine valves, the specific SSYE hardware cannot be utilized in 

sane cases because of differences in flowrate and pressure requirements between 

the SSME and the tr!oropellant engine (Table 10). Thc applicability of SSME 

control valves to the staged combustion tripropellant engine is indicated in 

Table 11. Because of flowrate restrictions (Table 10) the SSME OPOV canno: be 

used for the tripropellant engine OPOV (Table 11). Flowrate restrictions again 8, 
$ .  

prdclude use of some of th? SSME oxidizer vall-e candidates to the trlproj)ell,nL \ 
4 .  

engine HCPOV and HPOV (Table 11). There are no propellant isolat!on va!. cs used 

in the SSME cnd, therefore, no candidates for the tripropell.?nt engi:~.? ! .aletion 

valves. 

- 
b .  
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L A ~ L E  10. FLOW AND PRESSURE REQUIREMENTS, STAGED 

COMBUSTION CYCLE SYSTEM CONTROL VAI.VES 

F 

CONCEPT NUMBER 

VALVE FUNCTION $SHE 1 2 3 4 5 6 I 0  11  12 13 - 
HOV, LB/SEC 9651045 1045 1085 ;085 I064 I064 1090 1090 1128 1101 

PSI  4788 4123 4123 4123 4123 4123 4123 4123 4123 4123 4123 

OPOV, LB/SEC 32.4285.1 385.1 448 448 446 446 604 604 369 328 
PSI 8038 7331 I 7331 7331 7331 7331 7331 7331 7331 7331 

HCPOV, LB/SEC - 50.8 182 56.3 316 6 260 51.7 161 291 448 
PS I - 7331 7331 7331 7 3 3  7331 7331 7331 7331 7 3 3  7331 

HPOV, LEISEC 85.8 42.9 166 29.5 182 40 182 85.8 85.8 85.8 85.8 
PS 1 8038 7331 7331 7331 7331 7331 7331 8038 8038 8038 8038 

flHV,LB/SZC 161 34 34 34 34 34 34 143 148 148 148 
PS I  6831 4000 4000 4000 4000 4000 4000 6206 6206 6206 6206 

CCV,LB/SEC 66 .562  62 62 62 52 62 62 62 62 62 
PS I 6534 5700 5700 5700 5700 5700 5700 5700 5700 5700 5700 

HHCV,LB/SEC - 300 300 252 252 287 287 389 389 322 367 
PS I - 4123 4123 4123 4123 4123 4123 4123 4123 6064 6064 

L 
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Other Valve Requirements. I n  t h e  case  where components a r e  opera ted wi th  

two p r o p e l l a n t s  s e q u e n t i a l l y ,  purging of  t h e  component is requ i red  a f t e r  use 

wi th  t h e  f i r s t  p r o p e l l a n t  be fo re  use  wi th  t h e  second can proceed. To minimize 

trajectory-performance l o s s e s ,  purging must occur in t h e  s h o r t e s t  p o s s i b l e  t i m e  

i n t e r v a l .  The p r o p e l l a n t s  i n  ques t ion  a r e  methane, propane, and RP-1 used a s  

coo lan t  i n  t h e  t h r u s t  chamber j a c k e t ,  and a s  p r o p e l l a n t  i n  the main i n j e c t o r  

dur ing  mode 1 followed by hydrogen coolant  dur ing mode 2. Because t h e  hydrogen 

e n t e r s  t h e  system at  i ts normal b o i l i n g  po in t  o f  37 R ,  t h e  p o s s i b i l i t y  e x i s t s  

t h a t  any of t h e  hydrocarbon r e s i d u a l s  may f r e e z e .  The lowest mel t ing po in t  is 

t h a t  of  methane (154 R), t h e  h i g h e s t  is t h a t  of  RP-1 (405 R). Gaseous purging 

is requ i red  t o  reduce t h e  concen t ra t ion  of t h e s e  p r o p e l l a n t s  and w i l l  be 

e s p e c i a l l y  e f f e c t i v e  i n  t h e  case  of methane and propane. I n  the  case  of RP-1 

(a  l i q u i d ) ,  purging e f f e c t i v e n e s s  w i l l  depend on o r i e n t a t i o n  of engine,  l o c a t i o n  

of ven t s ,  and geometry of t h e  coo lan t  passages.  Experimental e v a l u a t i o n  i s  

required i n  t h i s  a rea .  Purge va lves  and f l u i d s  a r e  r equ i red ,  t h e r e f o r e ,  a t  t h e  

coo lan t  j a c k e t s  and a t  t h e  i n j e c t o r  manifolds f o r  concepts 12 and 13.  Concepts 

1-6 r e q u i r e  f u e l  system purge v a l v e s  a t  the  o x i d i z e r  preburner and a t  the  

hydrogen preburner.  Concepts 10  and 11 r e q u i r e  purge va lves  a t  t h e  o x i d i z e r  

preburner  f o r  the  same r e a s  ~ n s  a s  s t a t e d  above. 

Gas Generator Cycle Concepts 

The gas  genera to r  c y c l e  cool ing op t ions  a r e :  al l-hydrogen cooled,  and hyarocarbon 

cooled i n  mode 1 with  hydroeen coo l ing  dur ing w d e  2. Only one gas  genera to r  

i s  used i n  both concepts,  thus  n e c e s s i t a t i n g  an i n j e c t o r  capable of burning 

LO~/hydrocarbon and LOX/hydrogen s e q u e n t i a l l y .  S t a r t  and shutdown procedures 

a r e  desc r ibed  below. 

Mode 1 Operation.  C r i t e r i a  f o r  s t a r t  and shutdown a r 2  the  same a s  o u t l i n e d  i n  

Table 8. Schematics of t h e  four  engine  concepts  a r e  ca tegor ized according t o  

the  two coo l ing  o p t i o n s  and a r e  dep ic ted  i n  schematic form i n  F ig .  39 and 40. 







Start and shutdown procedures for both engine cooling categories are similar 

and will be discilssed jointly. 

Start valve sequencing is shown in Fig. 41. The start signal causes the main 

hydrogen valve (4) and the igniter hydrogen valves in the gas generator and - 1 :  
thrust chamber to open, allowing priming of coolant jackets and hydrogen lines I 
and initial igniter units hydrogen flow to start in the case of concepts 7, 8, 

1,. 
1 

and 9. Shortly after, the main oxidizer valve (1) and the gas generator oxidizer 

valve (2) are actuated allowing initial unseating of ball valve seals and 

allowing oxidizer flow to the igniter units. Ignition of ~ 0 x 1 ~ ~  propellants 

is then initiated in the gas generator and thrust chamber augmented spark 

igniters. In the case of cor~cepts 14 and 15 (schematic in Fig. /to), the igniter 

hydrogen flow is obtained from upstream of the fuel valve which remains closed 

during mode 1 operation. The gas generator fuel valve (6) is then sr.quenced 

open (hydrogen in the case of concepts 7, 8, and 9). Main propellant ignition 

occurs then in the gas generator. Ignition is caused ;y the hot stream of 

combustin: LOX/H~ in the gas generator igniter. The main hydrocarbon valve (3) 

is then actuated which causes main propellant ignition to occur in the thrust 

chamber updn contact with the main chamber igniter LOX/H combustion products. 
2 

The engine then enters a closed-loop control phase wherein the thrust is first 

increased to a 25% plateau with mixture ratio control and, after approximately 

1/2 second, ramped to 100% rated thrust at prescribed ramp rates. This action 

produces start transients similar to those of the SSME (Fig. 33). 

As in the staged combustion cycle concepts, closed-loop control prevents start 

transient overshoots or undershoots of any of the parameters that may affect 

engine life. It also provides for the uniformity of start transient behavior 

between engines. 

Shutdown is effected with the same components and in a closed-loop control mode 

to minimize detrimental transients in turbine temperatures and pump speeds. 





Control Valve Requirements. The valve requirements for the gas generator cycles 

are shown in Table 12. Concepts 14 and 15 require 6 isolation valves more than 

concepts 7, 8, and 9. This is caused by the dual nature of the coolant fluid, 

i.e., hydrocarbon in mode 1 and hydrogen in mode 2. The hydrogen circuits need 

isolation during the hydrocarbon phase (valves 9 and 10) and vice-versa during 

mode 2 (valves 7 and 8;. The hydrogen pump turbine requires isolation during 

mode 1 with valves 11 and 12. During  ode 2, valves 13 and 14 isolate the 

hydrocarbon flow system from hot gases entering through the hydrocarbon pump 

turbine. 

In addition to the s i x  maia control valves (1-6) concepts 7, 8, and 9 require 

hydrocarbon purp turbine isolation valves (13 and 14) during mode 2 operation. 

Other Valve Requirements. For dual-fuel cperation purging of the thrust chamber - 
coolant jacket, injector manifolds and feed lines are required immediately after 

the hydrocarbon phase and before the hydrogen can be introduced in the circuits. 

Purging has to be performed to a degree so that no hydrocarbon residuals 

capable of freezing and obstructing flow passages or forming explosive mixtures 

remain. Other purge and inerting operations are as required by standard pre- 

launch or preactivation procedures. 

Control Valve Availability. Flowrate and operating pressure requirements for 

the gas generator cycle main contrcl valves are indicated in Table 13. Also 

shown are flows and pressures for applicable SSME main control valves. In 

Table 14, the applicability of SSME valve functions is indicated. 
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TABLE 13. FLOW AND PRESSURE REQUIREMENTS, GAS 
GENERATOR CYCLE SYSTEM CONTROL VALVES 

* 
CONCEPTS 

VALVE FUNCTION SSHE 7 8 9 14 15 

HOV, LB/SEC 965 1056 1004 I058 1102 1074.5 
PS I &788 5106 5106 5106 5106 5106 

(OPOV) 
GGOV, LB/SEC 32.4 13.9 15.8 14.7 28.6 33.6 

PSI 8038 5106 5106 5106 5106 5106 

HHV, LB/SEC 161 34 3 4 - - 
PSI 6831 $84 6084 6084 - - 1 (HPOV) 

GCFV, LB/SEC 85.8 - - - 66.5 76.4 
PSI 8038 - - - 5466 5107 

HHCV, LB/SEC - 335.7 277 314 573 423.3 
PSI 5\06 SIC6 5\06 5106 5106 



. 
CONCEPTS 

';ALVE NAME SYMBOL 7 8 9 14 15 
r 

Main Oxidizer Valve MOV SSME SSME SSME SSME SSME 

Gas Generator Oxidizer Valve SSHE SSME SSME SSME SSME GGov OPOV OPOV OPOV OPOV OPOV 
SSME SSME SSME SSME SSME 

Main H.C. and Coolant l so la t  ion MHCV MOV MOV MOV Va l ve 

Main H2 and Coolant l so la t i on  l MHv I 

Va l ve 

Coolant Control Valve CCV SSME SSME SSME SSHE SSHE 

Gas Generator Fuel Valve GGFV 
SSME SSME 
HPOV HPOV 

Heated H.C. I so la t ion  Valves HHC l V 

Heated H2 Iso la t ion  Valves HH2lV 

H Pump Turbine Iso la t ion  HPT l V 
~4 I ves 

H.C. Pump Turbine Iso la t ion  HCPT 1 V 
Va l ves 



I 

TASK V - SSME COMPONENT ADAPTABILITY 
I 

T h i s    ask is o r g a n i z e d  L O  i n t e r a c t  w i t h  t h e  e f f o r t s  o f  T a s k s  I t h r o u g h  I V  t o  e v a l -  
I , u a t e  t h e  p o s s i h i l i t y  o f  a d a p t i n g  t h e  a l r e a d y  d e s i g n e d  atid proq7rd SSME components  
I 

I t o  t h e  c a n d i d a t e  s y s t e m s .  A s t u d y  h a s  b c c n  c o n d u c t e d  t o  e v a l u a t e  t h e  a d a p t a b i l i t y  

I 
I 

o f  t -ist i n g  o x i d i z e r  and f u e l  l o w - p r e s s u r e  and h i g h  - p r e s s u r e  pumps. A s e p a r s  t r  

s t u d y  was c o n d u c t e d  t o  d e t e r m i n e  i f  t h e  e x i s t i n g  SSME t u r b i n e s  c a a  s n t i s f v  t h e  

I 
I horsepower  anhi h o t - g a s  f l o w  r e q u i r e m e n t s  e s t a b l i s h e d  i n  t h e  c n g i n r  b a l a n c e  a n a l -  

1 y o i s .  A t h i r d  s t u d y  was c o ; l d ~ ~ ~ t e d  t o  i n v e s : i g a t c  t h e  p o s s i b i l i t v  o f  u s i n g  t h e  

1 SSME p r e b u r n e r s  and main i n j t c t o r s  i n  t l ic  t r i p r ~ p ~ l l a n t  s y s t e m s  b e i ~ i g  s t u d i e d .  

SSME PUNP APFi:C?.!?ILTTS 

I 
I The f l o w  and head  r e q u i r e m e n t s  f o r  e a c h  of t h e  c a n d i d a t e  s!.stt.ms ;~rt. prc .s tantcd i n  

T a b l e  1 5 .  The f u l l - f l o w  pumps s u p p l y  thtb h a d  r i s e  f o r  t h e  t o t a l  f low t o  t h e  

chamber;  a  p a r t - f l c w  pump t h e n  p r o v i d e s  t h e  a d d i t i o n a l  head r ise t o  t h a t  p o r t i o n  

of  t h e  f l o w  t h a t  g o e s  t o  t h e  p r e b u r n c r .  Pump a p p l i c a b i l i t y  was dcbtcrmiccd by 
I p l o t t i n g  t h c  d e s i g n  p o i n t  head and f l o w  r r q t i i r t  ments  on  t h e  SS!IE pump p t ~ r f o r m a n c i ~  

maps ( F i g .  42 t h r o u g h  46)  t h a t  a r c  b ; i s ~ c l  on  a c o m b i n a t i o n  o t  a n a l y t i c - a 1  prr.dic.- 

t i o n s  and e x p e r i m e n t a l  t c B s t  d a t a .  Both f u l l - f l o w  and p a r t  -f  low pumpinq r t  q u i r c -  

ments  a r e  p l o t t e d .  The  d a t a  p o i n t s  t h a t  f e l l .  w i t t i i n  t h e  pump ol>csrat i r lg  l i m i t s  

( d e f i n e d  i n  T a b l e  1 6 )  were t h e n  d e n o t r d  a s  b e i ~ g  a c . c e p t a b l ~ ,  f o r  t h a t  a p p l i c , a t i o n .  

Due t o  t h e  v e r y  low d e n s i  t v  o f  1 i q u i d  Iiytlrojien rc l ln t  ivc. co t h e  o t t i c r  prupt.1 l * ~ n t  5 

i n  T a b l e  1 5 ,  hydrogen  pumps were  ~ i o t  a p p l i c a b l e  t o  t t ic  o t h e r  p r o p c l  l a n t s .  l'ticrt3- 

f o r e ,  hydrogen pumps were  c o n s i d e r e d  o n l v  f o r  hydrogen  and  l i q u i d  o>rygcln pumps 

were  used  f o r  a l l  o t h e r  p r o p c l l ~ n t s  (LOX,  KP-I, CI1 and C H ) .  For  ~ . i * r t a i n  vclrv 4' 3 8 
low f u e l  f l o w r a t e  c a s e s  ( 2 ,  6 ,  11 ,  1 2 ,  and 1 3 ) ,  ti16- o x i d i z e r  pump f o r  :he XSI: can- 

g i i l e  ( t h e  Mark 38 o x i d i z e r  pump) was fou~:d t o  be vclry . i p p l i c a b l : ~ ,  a s  sllown i n  

F i g .  46. T h e r e f o r e ,  t h a t  1;urnp was i n c l u d e d  i n  t h C  s t u d y .  

The a p p l i c n b  i  l i  t y  o f  t t ic SSllI' t u r b i n e s  was eva1uatc.d i n  a sc , i ) a r i i t~% s t a d v ;  cjnlv 

t h e  pumps a r e  bc.ing c o n s i d e r e d  i n  t h i s  (!isc-ussian. Howrvc,r, thc c s t a b l  i shcld pr~mp 

horsepower  r e q u i r e m e n t s  were u s e d  i n  t h e  e v a l u a t i o n  of t h e  t u r b i n e s .  I2 
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TABLE 15. ENGIPIE REQUIREMENTS 

Id1 tlw 

P a r t  Flou 

P u l l  l l o u  

P a r t  l lw 

TC Coolant 

P rope l l an t  V o l m t  Head 
Density F l o v t a t e s ,  Rise, 

P. 1 1 Q. 0. I AH* f t  

2 UX F u l l  Flow 1045 6600 8,320 

LOX P a r t  ?lw 733.2 3208 4630 6,500 

ILP-1 1 1 300.3 4108 2670 11,710 

W-1 P a r t  F l w  22.2 3208 ) 50.5 19 7 9,150 

6.50C 

F u l l  F l w  4108 27.5 411C 21.500 

3208 27.5 33?0 16,8n0 

LH2 I TC Coolanc Y 3985 4.42 3450 I117,SOO I 
c LCX 1 FUU F l w  1085 i 4108 1 71.1 6850 8,320 

LOX P a r t  Plcw 945.9 7; .A 5970 6,500 

F u l l F l o w  252 27.5 4110 21.59" 

'% Pa-t F l w  25.2 ! 3208 27.5 411 16,800 

LP2 K Coolant 3; 3985 4.42 3450 117.500 -- 
LOX F u l l  F l w  1063.5 4108 71.1 { '20 A .  320 

LOX P a r t  Flow 549.5 3208 71.1 34 70 6,500 

=3% l u l l  F l w  28h.5 4108 36 .4 3530 16,250 

CjHl P a r t  F l w  257.6 3208 5'250 12.69C 

La TC Coolant 34 Y"., 4.42 
r 

6 

7 

8 

UX 

LOX 

C3B8 

C3% 

="2 
1 D X  

UP-1 

'J'2 

LOX 

814 

IH2  

F u l l  Fiow 

P a r t  ?low 

l u l l  t lw 

P a r t  Fl- 

T- Coolant 

F u l l  :.low 

Pull  t lw 

t C  Coolant 
+ f i r b .  

lull F l w  

PUU nw 
TC Coolant 
+ TurL . 

1063.3 

88:.8 

286.5 

26.1 

A 
1056 

335.7 

% 

1084 

277 

34 

4108 '"--I 6720 8.320 

3208 71.1 5610 t , 500 

4108 36.4 3530 16.250 

3208 36.6 12,690 

3985 4.4~ 157,503 I 

509 1 11.1 10, '10 

509 1 50.5 14,520 

509 1 71.1 

W9 1 27.5 4520 

6069 4 .42 



TABLE 2 5. (Concluded ) 

I Ctoe 

I 

i 9  
10 

11 

12  

1 3  

14 

15 

7 

Prope1:ant 

LOX 

c3b; 

u2 
. .. 

LOX 

LOX 

nP-1 

RP-1 

LOX 

LOX 

RP-1 

RP- 1 

LOX 

LOX 

(314 

CH4 
LOX 

LOX 

C3R8 
C 

LOX 

CH4 

CH4 
LOX 

C3H8 

'3'8 

Head 
Rise, 

AH, f t  

10,310 

20,100 

172,700 
I 

14,820 

2.5 73 

11,710 

9,150 

14,820 

2,570 

11,710 

9,150 

8,320 

6,500 

31,700 

6,630 

8,320 

6.500 

23,900 

5,010 

10,310 

28,500 

16,440 

10,310 

20,100 

10,310 

Pmp 

Fu l l  Flow 

Fu:, r'lw 

TC Coolant 
+ f i r b  . 
F u l l  Flow 

Pa r t  F l w  

Fu l l  F l w  

Pa r t  Flow 

Fu l lF low 

Pa r t  Flov 

F u l l  Flov 

Par t  Flow 

F u l l  Flow 

Pa r t  Flow 

F u l l  Flow 

Pa r t  Flow 

F u l l  Flow 

Pa r t  Flow 

Fu l l  Flow 

P a r t  Flow 

Fu l l  Flow 

F u l l  F l w  

Pa r t  Flow 

Fu l l  Flow 

F u l l  Flw 

Par t  Flow 

F l w r a t e ,  
s, l b / s t c  

1058 

314 

34 

1090.4 

511.9 

389.4 

140.1 

1090.4 

621.5 

389.4 

18.8 

1128 

659.2 

322 

17.6 

1101 

776 

36 7 

22.8 

1102 

373 

66.5 

1074.5 

423.3 

76.6 

Volume 
Flowrates, 
Q, gPa 

6680 

38 70 

3450 

6890 

32 30 

3460 

1246 

6890 

3929 

3460 

167.2 

7120 

4160 

5260 

287 

6950 

49 00 

4530 

281 

6960 

6090 

10 86 

6790 

5220 

942 

Pressure 
Rise, 

AP, p s i  

5031 

5C91 

6069 

7316 

1269 

4108 

3 208 

7316 

1269 

4108 

3208 

4108 

3208 

6049 

1267 

4108 

3208 

6049 

1267 

5091 

5451 

3140 

5091 

509 1 

2605 

Propellant 
Density 

p ,  l b / f t  

71.1 

36.4 

4.42 

71.1 

71.1 

SO -5  

50.5 

71.1 

71.1 

50.5 

50.5 

71.1 

71.1 

27.5 

27.5 

71.1 

71.1 

36.4 

36.4 

71.1 

27.5 

27.5 

71.1 

36.4 

36.6 



P i g w e  42. SSME Low-Pressure Oxidizer Pump 
Performance Map and Limits 

'ULL FLOW 
FULL FLOId 
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Figure 43. SSME High-Pressure Oxidizer Pump 
Performance Map and Limits 



Figure 44. SSME Low-Pressurt: Fuel Pump Performance "ap and Limits 



Figure 45. S S U  High-Pressure Fuel Pump Performance Hap and Limits 
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Figure 4 6 .  Mark 48 Oxidizer Pump Performance 



TABLE 16, SSME TURBOPUMP I.IM1TS 

L inti t Description 
I 

TURB ME STRESS TURBINE WHEEL FACTOR OF S A F E R  OW ULTIMATE - 1.: 

ON ROTATIONAL SPEED ('VHCEL BURSTS @ N/NDES - 1 . 2 ) .  

CASING PRESSURE CASING FACTOR OF SAFETY Oh' LrLTIbWTE - 1 . 5  

(CASING BURSTS @ AP/dPDES = 1.5). 

VAPOR 12 AT I ON HIGH TEMPWit'RE R I S E  AT LOk' F L O K  CAtlSES VAPOR- 

IZATION AND CONSEQUENT PRESSLRE DROF I N  PL!?lF'. 

CAV XTAT ION HIGH now COEFFICIENT (Q/N) OPERATIOS CAUSES 

DROP IN SUCTION PERFO\%iKCE CAPABILITY.  

BEARING Ch' AXIAL THRUST LOADS ARE TOO HIGH FOR THE DK AT 

WHICH TEE BWRIh'C: IS @ P E U T I N G .  

ZERO SLOFE OPERATIOS TO THE LEFT OF ZERi' SLOPE C k Y  CAUSE 

SURGING IN THE PL'MP. 



soine c a s e s ,  i f  i t  is found t h a t  t h e  t u r b i n e  is u n s a t i s f a c t o r y  f o r  a p a r t i c u l a r  

a p p l i c a t i o n ,  t h i s  w i l l  a l s o  d i s q u a l i f y  t h e  pump f o r  a  d i r e c t  s u b s t i t u t i o n  as t h e  

SSME turbopumps a r e  an  i n t e g r a l  u n i t  and i t  is cons ide red  a  major  m o d i f i c a t i o n  t o  

s e p a r a t e  t h e  two and mate them t o  a new pump o r  t u r b i n e .  The r e s u l t s  a r e  sum- 

marized i n  Tab le  17. A s  shown, a new pump was i n d i c a t e d  i f  no a p p l i c a b l e  u n i t  

cou ld  b e  found.  

As shown i n  Tab le  17 ,  t h e  SSME low- and h igh-pressure  o x i d i z e r  turbopumps (LPOTP 

and HPOTP) were found t o  b e  s a t i s f a c t o r y  f o r  a l l  f u l l - f l o w  LOX pumping a p p l i c a -  

t i o n s  and t h e  HPOTP was found t o  be  s a t i s f a c t o r y  f o r  a l l  pa r t - f l ow  LOX pumping 

a p p l i c a t i o n s .  A l l  o f  t h e  o x i d i z e r  p a r t  f l ows  (p rebu rne r  f low)  a r e  h i g h e r  flow- 

rates t h a n  t h e  SSME p reburne r  o x i d i z e r  turbopump (PBOTP) can hand le ;  t h e r e f o r e ,  a  

second HPOTP must be used  i n  series t o  p rov ide  t h e  o x i d i z e r  p rebu rne r  f low. The 

PBOTP w i l l  s t i l l  be r e q u i r e d  on t h e  f u l l - f l o w  pump f o r  mode 2 o p e r a t i o n  b u t  t h e  

PBOTP cou ld  be  removed from t h e  second pump i n  t h e  s e r i e s  arrangement .  

A s  f a r  a s  t h e  f u l l - f l o w  f u e l  a p p l i c a t i o n s  a r e  concerned ,  t h e  LPOTP i s  s a t i s f a c t o r v  

a s  a boos t  pimp and a  new pump i s  r e q u i r e d  f o r  a l l  main pumps. i f  t h e  SSME HPOTP 

is c a p a b l e  of be ing  t h r o t t l e d  t o  t h e  l e f t  o f  t h e  z e r o  s l o p e  l i n e  on t h e  performance 

map, t h e  HPOTP may b e  a p p l i c a b l e  t o  t h e  l o v e r  p r e s s u r e ,  f u l l - f l o w  f u e l  c a s e s  ( 1 ,  

2 ,  5 ,  6,  7 ,  1 0  and 1 1 ) .  However, t h i s  would be a t  t h e  expense of  pump e f f i c i e n r v .  

It is  a l s o  of i n t e r e s t  t o  n o t e  t h a t  two HPOTP s t a g e s  : in  s e r i e s )  would do t h e  j o b  

f o r  a l l  f u l l - f l o w  f u c l  pumps and most t h e  t h e  pa r t - f l ow  f u e l  pumps. Howcvcr, such 

a  d e s i g n  would r e q u i r e  a  new hous ing ,  a  new b e a r i n g  and s e a l  a r rangement ,  a  new 

s h a f t ,  and t h e  a d d i t i o n  of  i n t e r s t a g e  d u c t i n g .  It  would be cons ide red  a  new de- 

s i g n  and ,  t h e r e f o r e ,  such  a c a n d i d a t e  was not  cons ide red  p r a c t i c a l .  

The ASE o x i d i z e r  pump (ASEOTP) was found t o  be a p p l i c a b l e  t o  t h e  pa r t - f l ow  f u c l  

pumping a p p l i c a t i o n s  f o r  c a s e s  1, 6 ,  11, 12 ,  and 1 3  ( a g a i n ,  t h e  t u r b i n e  was riot 

c o n s i d e r e d ) .  For a l l  o t h e r  pa r t - f l ow  f u e l  c a s e s ,  a  new pump was found t o  be 

n e c e s s a r y .  



. 
Pump Candidrtcr 

US* ?roprl l rnt  Applicat ion Boor t I Hain 

1 Lax Pull tlw WTP Pm 
L O X .  t a r t  tlw You. = O n  
at-1 Nl Ilw VOTP I- hrp 

at-1 Part  tlw None N- Plrp 

u2 ft Coolrot WY'l'P(Phrg1nal) IN ?- 

2 LOX Ful l  Plou LPOIP WWTP 

LOX Part Flow None WPOTP 

W-1 Full  P l w  LPOlT Nw Pump 

W-1 . Part  P l w  None ASWTP 

u2 K Coolant VMP (nrrg inr l )  N.u Pmp 

3 LOX Ful l  Flow LWTP WVTF 

LOX Part Flow None HPQTF 

("4 ~ u l l  ~ l o v  VOTP Now Pump 

Part Flcw None New Pump 

LH2 Tt Coolant LPFTP (I(rrgina1) Nw P P I ~ ~ F  

4 LOX r u l i  Flar  1MTP RPOTP 

LOX Part  Flow None UPOTP 

Full  flow LNT P Nev Pmp 

Q~ 
Part Flow None New Pmp 

'J'2 'K Coolant L P n P  (ttsrgixu:~ New Pump 

5 LOX Full F l w  LFOTP A P O i F  

LOX Part Flow NOM EmTP 

3% F u l l  Plrm urn Wow P u p  

Part Flow None New Pump 

182 TC Coolant LPITP (I(.r#inrl) New Pump 

6 LOX Pull Plow L W T P  UPTOP 

LOX ?ar t  F l w  lano BPOTP 

'3'8 hll Flow LTVTP New P u p  

3'5 ?art  F l w  l a r e  ASL0l-F 

7 

b 

WX 

u-1 

"2 

TC Coolmt 

hll nw 
hu Flov 

ZC C e ~ l u r t  
+ Tur bin0 

LPRF ( U r g i n a l )  

U W P  

L m  
( U r g i n a l )  

New Pump 

PPOTP 

I- PlDp 

ku hrp 

- 
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TABLE 17. (Concluded) 
r 

Pump Candidates 
Case Prope l l an t  Appl ica t ion Boost Main 

8 LOX F u l l  Flow LPOTP HP OTP 

CH4 F u l l  Flow LPOTP New Pump 

TC Coolant LPFTP (Marginal) New Pump 
+ Turbine 

9 LOX F u l l  Flow LPOTP HPOTP 

C3H8 F u l l  Flow LPOTP New Pump 

LH2 TC Coolent LPFTP (Marginal) New Pump 
+ Turbine I 

1 0  LOX F u l l  Fiow LPO TP HPOTP 

LOX P a r t  Flow None HPOTP 
I 

RP- 1 F u l l  Flow LPOTP New Pump 

RP-1 P a r t  Flow None New Pump 

11 LOX F u l l  Flow LPOTP HPOTP 

LOX P a r t  Flow None HPOTP 

RP- 1 F u l l  Flow LPOTP New Pump 

W-1 P a r t  Flow None ASEOTP 

1 2  LOX F u l l  Flow LPOTP HPOTP 

LOX P a r t  Flow None HPOTP 

CH4 F u l l  Flow LPOT? New Pump 

CH4 P a r t  Flow None ASEOTP 

1 3  LOX F u l l  Flow LPOTP HPOTP 

LOX P a r t  Flow None HPOTP 

C3H8 F u l l  Flow LPOTP New Pump 

' ~ ~ 8  Part Flow None ASEOTP 

14  LOX F u l l  Flow LPOTP I HPOTP 

CH4 F u l l  Flow LPOTP New Pump 

CH4 P a r t  Flow None New Pump 

15 LOX F u l l  Flow LPOTP RPOfP 

C3H8 F u l l  Flow LPOTP New Pump 

C3H8 Part Flow None New Pump 



As f a r  a s  l i q u i d  hydrogen  is c o n c e r n e d ,  t h e  f l o w s  are low enough t o  p o s s i b l y  

i!.:i c a u s e  s u r g i n g  i n  t h e  SSME LPFTP ( p i g .  4 4 )  and  b o t h  s u r g i r , g  and  v a p o r i z a t i o n  i n  

'3 , - 
t h e  SSME HPFTP (Fig.  45) .  A s  a r e s u l t ,  t h e  LPFTP was deemed m a r g i n a l  and t h e  

1 HPFTP was deemed u n a c c e p t a b l e .  I f  f u t u r e  SSME e n g i n e  t h r o t t l i n g  s t u d i e s  and  modi- i 
% .  

f i c a t i o n s  a r e  s u c c e s s f u l  i n  t h r o t t l i n g  t h i s  pump down t o  t h e s e  f l o w s ,  t h e  a p p l l -  . . 
c a b i l i t y  s h o u l d  b e  r e a s s e s s e d  due  t o  t h e  dual-mode e n g i n e  s i m p l i f i c a t i o n  t h a t  

:g c o u l d  b e  o b t a i n e d  ( f o r  c a s e s  1 t h r o u g h  9)  i f  t h e  mode 2  pumps c o u l d  b e  u s e d .  

A n o t h e r  p o s s i b i l i t y  is t h e  u s e  o f  f o u r  ASE l i q u i d  hydrogen  pumps (ASEFTP). T h i s  

:..I would p r o b a b l y  b e  t o o  complex. However, a  r e d e s i g n  p o s s i b i l i t y  would b e  a n  ASEFTP .> 

I s c a l e d  up t o  t w i c e  s i z e  ( t w i c e  t h e  d i a m e t e r  and  h a l f  t h e  s p e e d )  so t h a t  i t  would 

match w i t h  t h e  h i g h e r  f low.  

A s  f a r  as new pump d e s i g n s  a r e  c o n c e r n e d ,  o n l v  ont3 rew d e s i g n  is  required f o r  

cases 11, 1 2 ,  and 13 .  T h i s  i s  f o r  t h e  h i g h - p r c s s u r e  f u e l  pumps t h a t  r t ~ c l u i r t ~  more 
$ 
I head t h a n  c a n  b e  d e l i v e r e d  by t h e  HPOTP b e c a u s e  t h e  p o s s i b l e  s u r g e  l i m i t  is cx-  2 
il c e e d e d  i n  a l l  t h r e e  c a s e s  and t h e  t u r b i n e  s t r e s s  l i m i t  is exceedkad i n  c a s e s  12  

I and 13. However, a l l  t h r e e  c a s e s  r e q u i r e  t h r  a d d i t i o n  o f  f o u r  pumps t o  t l ie  SSHE 

s y s t e m  t o  g e t  t h e  dual-mode c a p a b i l i t y .  C a s e s  14  and  1 5  r e q u i r e  t h e  minimum num- .! 
b e r  o f  a d d i t i o n a l  pumps, which is  t h r c r .  However, two o f  them h a v e  t o  b e  new 

'I d e s i g n s .  

SSME TURBINE APPLICABILITY 

The t c r b o m a c h i n e r y  s t u d y  p h a s e  o f  t h i s  t a s k  of t h e  t r i p r o p e l l a n t  e n g i n e  i n v t s t i s a -  

t i o n  i s  c o n c e r n e d  w i t h  t h e  u t ! l i z a t i u n  o f  e x i s t i n g  SSllE and ASE t u r b o m a c h i u t ~ r y  i n  

t h e  p r o p e l l a n t  f e e d  s y s t e m s  o f  t h e  c a n d i d a t e  e n g i n e  c o n c e p t s .  Thc t u r b i n c  analysts 

were  c o n d u c t e d  t o  e s t a b l i s h  a r e l a t i o n s h i p  be tween  t h e  r e q u i r e d  c p e r a t i n g  c o n d i -  

t i o n  f o r  t h e  t r i p r o p e l l a n t  f e e d  s y s t t b n s  b e i n g  pvi31uarcd and t h e  o p c r a t  i o n a l  capa-  

b i l i t y  o f  t h e  t u r b i n e s .  

Those d e s i g n s  t h a t  c o u l d  be  a d a p t a b l e  t o  t h i s  a p p l i c i i t i o n  would have t o  bta I I S L I ~  

e i t h e r  a s  b u i l t  o r  r e q u i r e  r e d e s i g n  of t l ie g a s  p a t h  e l c m e n t s  0111s; t h i s  i n c - l t ~ d c s  

t h e  n o z z l e s  and r o t o r  b l a d e s  o n l y .  Any a d d i t  io l la l  m o d i f i c a t i o n s  t o  thc t u r h i n c  



assemblies are not practical because of the complexity of the turbomnchinery. 

The development of new designs would be more cost-effectl~~e on the basis of de- 

velopment time, performance characteristics, and modification cost. The criteria 

used to evaluate the respective high-pressure fuel and oxl4rzer turbines to the 

15 candidate concepts are associated with: (1) the engine cvcle, (2) turbine 

working fluid properties and available energy, (3) operating condi tions and rr- 

quired turbine horsepower, and (4) size of the existing gas paths to hsndle the 

required turbine flows. 

The high-pressure SSME turbopumps are driven by two-stage, reaction turbine dr- 

signs; the respective pitch diameters of the fuel and oxidizer turbines arc 10.19 

and 10.09 1nt.he.s. The principal turbine operating parameters are as follows: 

Turbine -- HPOTP - H I'FT 

1. Working Fluid LO, /LH., 
& 

LO ., / LH ? 
L b 

2. Speed, N, rpm 31,204 38,000 

3. Total Inlet Pressure, Ptl, psia 5,848 5,916 

4. Turbine Pressure Ratio, PRt ,  T-T 1.57 1.58 

5 .  Mass Flowrate, Wt, lb/scc 64.24 lb2.7 

6. Horsepower, 
HPt 

2 8 , 6 5 8  76,698 

7. Total Inlet Tt%mp, t R tl' 
1.5h7 1,938 

A major consideration is the enpinr cycle in which these low-prtassurr ratio tur- 

bines, which were designed for the staged combustion SSME, shall be requircd to 

operate. 

The gas turbine analyses utilized the working fluid available energy data a n d  th t .  

operating parameters. Turbine velocity r;~t ios ( U / C  ) were cst i~hlished, and pre- 
0 

dictions of turbine performance wrrv subscqucntlg i+alculated. Thc rrquircd tur- 

bine mass flowrates, based on oxidizt>r and furl propellant pump horsepowcr(s) ; ~ n d  

spccd(s), were evolvcd. If the requirt4 turbinct plwcrs could be dt.vc1opc.d wit11 



the propellant feed system operating conditions, the required turbine gas path 

flow areas were calculated. This datermined whether the existing turbine hard- 

ware could be used for the appliciltion or the limiting parameters could be pin- 

pointed and gas path modifications cotild be considered. A summary of the study 

conclusions is presented in Table 18, 

Candidate engine 1 and 2 utilize LOX/RP-1 tur' rne working fluid in a staged com- 

bustion cycle installation. The 28,660 design horsepower of the hPOT turbine is 

not exceeded by the required 22,100 horsepower of thesc candidate engines. The 

required 25,800 rpm turbine speed can be achieved, The analysis indicates the 

L02/RP-1 velocity ratio (U/Co) is 0.624; this is in an unfavorable off-design 

operating region; the HPOT turbine design U/Co is 0.296. The oxidizer turbine 

required turbine gas path area is larger than the physical areas existing in the 

turbine nozzles and blading. The area difference is too large, and modification 

of the existing gas oath eltnents is not practical. The required flow area(s) is 

approximately three times larger than available in the existing turbine. Use of 

the HPOT turbine in those applications is not recommended. 

Candidate engines 3 and 4 use L02/CH0 turbine working fluid in a staged combustion 

cycle configuration. The 23,200 required turbine horsepower in these candidate 

engines does not exceed the HPOT tllrbine design power, and turbine speed car. be 

achieved for these candidate designs. Turbine velocity ratio U / C  is 0.684: this 
0 

is in the off-design operating range of the turbine. In addition, a large differ- 

ence exists betv :-n the gas path area(s) required for these candidate applications 

and the flow area(s) available in the HPOT turbine. This is exemplified by the 

12.57 sq in. area required in the first-stage nozzle for rhe LO /CH4 working f l u i d ;  2 
the current design area for this gas path clement is 2 . 9 4  sq in. The difference 

between these turbine gas path areas is too large and it is impractical tc con- 

sider modifying the existing turbine design to accommodate operations for the 

L02/CH4 staged combustion condidates. 

The L02/C3H8 turbine performance and flow constraints for No. 5 and 6 candidate 

engines are approximately the same as found in the staged conbustion candidates 
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4 1 th rough 4. The 0.683 o f f -des ign  v e l o c i t y  r a t i o  (UIC ) i n  t h e s e  c a n d i d a t e  de- 
0 

s i g n s  r educes  t h e  t u r b i n e  e f f i c i e n c y  t o  55.7%. The 22,600 horsepower can  be 

ach ieved  a t  a speed o f  26,100 rpm; t h i s  r e q i a i r e s  a t u r b i n e  mass f l o w r a t e  of  

1 Candida te  e n g i n e s  7, 8, and 9 u t i l i z e  N . / H  t u r b i n e  working f l u i d  i n  a p a s  gen- 
L 2  

etator e n g i n e  cyc l e .  The s t u d y  r e s u l t s  i n d i c 3 t e  t b e  r e q u i r e d  t u r b i n e  powers and 

speeds  can  be  achieved .  To accompl ish  t h i s ,  25 l b / s e c  t u r b i n e  mass f l o w r a t e  i s  

~ r e q u i r e d  w i t h  t h e  des igna t ed  t u r b i n e  p r e s s u r e  r a t i o  of  20:l. The g a s  pat11 of  t h e  

I HPOT t u r b i n e  w a s  de s igned  f o r  a p r e s s u r e  r a t i o  of  1.57 f o r  a  s t a g e d  combustion 
I 
I e ng ine  c y c l e .  The re fo re ,  t o  s a t i s f y  t h e  r e q u i r e d  power r t ~ q u i r e m e n t s ,  t h c  ; ~ n a l y s i s  
I 

i n d i c a t e s  t h e  t u r b i n e  should  be  modi f ied  w i t h  new n o z z l e ( s )  and r o t o r  b l a d i n g  

d e s i g n s  i n  t h e s e  c a n d i d a t e  eng ines .  A t y p i c a l  redes igned  t u r b i n e  gas patfr w ! l l  

c o n t a i n  t ~ o  s t a g e s ,  w i t h  a  p r e s s u r e  r a t i o  o f  5  a c r o s s  t h p  f i r s t  stage. The re- 

s u l t a n t  55: s t a g e  e f f i c i e n c y  is in f luenced  p r i n c i p a l l y  bv t h e  low 0.155 v e l o c i t y  

r a t i o  (U/C ) i n  w h ~ c h  t h e  t u r b i n e  w i l l  o p e r a t e .  The t u r b i n e  perform an^^ can  be 
0 

improved w i t h  a d j u s t m e n t s  i n  t h e  d e s i g n  speed ,  p r e s s u r e  r a t i o ,  and t u r b i n e  i n l e t  

t empera ture .  The r equ i r ed  f i r s t - s t a g e  n o z z l e  a r e a s  f o r  t h e  e x i s t i n g  r e a c t i o n  

t u r b i n e  d e s i g n  and f o r  t h e  r edes igned  g a s  g e n e r a t o r  c y c l e  t u r b i n e  n o z z l e  a r e  ap- 

proximate ly  equal .  

The horsepower requi rements  i n  t h e  s t a g e d  combust ion  c a n d i d a t e  e n g i n e s  No. 10  and 

NO. 11 exceed t h e  des ign  power o f  t h e  HPUT t u r b i n e  and,  therefore, tbl iminate i t s  

u s e  i n  t h e s e  a p p l i c a t i o n s .  The r e q u i r e d  t u r b i n e  powrr is 39,300 horsepower 

whereas t h e  e x i s t i n g  t u r b i n e  was des igned  t o  develop  a maximum of 28.65S i w r s t -  

power. A r edes ign  o f  t h e  t u r b i n e  t o  accommodate t h e  i n c r e a s e d  powcr requirement  

is no t  p r a c t i c a l .  The complexi ty  of  modifying t h e  e x i s t i n g  c o n f i g u r a t i o n ,  coupled  

w i t h  t h e  c o s t  and t i m e  r e q u i r e d  t o  a c h i e v e  t h i s  t ype  of  change,  c l i m i n a t c s  u se  of 

t h e  HPOT t u r b i n e  i n  t h e s e  c a n d i d a t e  eng ines .  

I.02/CH and LO, / C  H t u r b i n e  working f l t r ids  a r c  r e s lwc t iv t - l y  used i n  t h e  stngtxd 
4 2 3 5  

combustion c a n d i d a t e  e n g i n e s  12 and 13. Thc power and speed r v q u i r e d  in  t h e s e  

a p p l i c a t i o n s  a r e  w i t h i n  t h e  d e s i g n  l i m i t s  of t h e  HPOT t u r b i n e .  ';'lr t u r b i n e  

v e l o c i t y  r a t i o ( s )  (U/C ) a r c  0.69 a t  t h e  24,000 rpm speed rnngc and 1.6 turbine 
0 



pressure ratio. This places the turbine in an off-design operating range and, 

therefore, the perfo~nce is penalized; the predicted turbine efficiency is 552 
b in each of these candidate engine systems. The turbine required mass flow is 

555 lb/sec and 553 lb/sec, respectively, in engines 12 and 13. The initial sizing 

- of the gas path details indicates the existing turbine nozzle area is too small 

to nccomodate flow for the new application. The 2.94 sq in. nozzle design area 

is approximately one-fourth the area required for the 555 lb/sec turbiuc mass 

flowrate in candidates 12 and 13. The use of the HPOT turbine is e.'-iminated on 

the basis of low turbine performance and too large a mismatch in gh3 path area to 

effectively implement a gas path modification. 

Candidate engines 14 and 15 require turbine designs, which respectively operate 

with 02/CH and OZ!CgHg working fluids in gas generator installations. The HPM 4 
turbine design speed and horsepower are within the design requirements for these 

candidate engines. Matching the gas path conditions, at the 20:1 turbine pressure 

o ratio to the 1.57 HPOT design pressure ratio configuration, reduced the velocity 

ratio range in which the turbines operate. The respective single-stage velocity 

ratios (U/C > for these candidat-s are 0.188 and 0.133; these were calculated with 
0 

: a 5:l pressure ratio in the first stage. The data indicated the use of a two- 

stage HPOT turbine was pressure-ratio limited and, therefore, new nozzles and 

blading were considered. The performance of a typical redesigned two-stage con- 

figuration is penalized because of the velocity ratio range in which it will oper- 

ate. Thp proper design for these candidate engines would contain three turbine 

stages, ur perhaps a three-row design could be developed to efficiently utilize 

the working fluid zvailable energy. For these reasons, the use of the HPOT tur- 

bine was determined not suitable for these candidate applications. A redesign to 

a three-turbine rotor configuration for the HPOT turbopump is too complex and 

costly. A new turbopump design is recommended. 

SSME COMBUSTION COMPONENTS ADAPTABILITY 

. . 
The purpose of this task is to evaluate the SSME preburner and main combustion 

chamber injectors to determine if they could be used in any of the 15 candidate 



t r i p r o p e l l a n t  engine systems. T h i s  means t h a t  these  i n j e c t o r s  must provide s t a b l e ,  

high performance when opera t ing  i n  any of t h e  1 5  mode 1, hydrocarbon f u e l  config- 

u r a t i o n s  and then be a b l e  t o  swi tch t o  LOXIH2 opera t ion  i n  laode 2. 

The SSME turb?umps are powered by two preburners  providing fue l - r i ch  gases. .  

The two preburner  f lows expand through t h e  t u r b i n e s  and are then cornbi.ted and 

ducted t o  t h e  main i n j e c t o r .  Both t h e  preburners  and t h e  main chambers employ 

coaxial-type i n j e c t o r s .  The preburners  have l i q u i d  oxygen i n j e c t e d  through t h e  

c e n t e r  post  and gaseous H i n j e c t e d  from t h e  annulus. I n  the  main i n j e c t o r ,  the  2 
fue l - r i ch  t u r b i n e  exhaust gases  a r e  i n j e c t e d  through t h e  annulus and l i q u i d  oxygen 

i n  t h e  c e n t e r  post .  SSME i n j e c t o r  flow a r e a s  a r e  presented i n  Table 19.  

TABLE 19. SSME INJECTORS TOTAL FLOW AREA* 

I Center,  f t 2  I Annulus. f t 2  I 

I Main Chamber 1 0.1012 1 0.1979 1 

t 

Fuel Preburner 

Oxidizer Preburner 

*Excluding b a f f l e  elements 

0.01 14 

0.00388 

J 

0.025 

0.01 113 



The coaxial injector relies on a large velocity ratio betwen the two streams 

to eaba~c:e the turbulent mixing. If one fluid is in liquid form, atomization 

can be i: ;:hieved only by the shearing force between the two streams. Hence, a 

lare;e v:locity differential is promoted to ensure good atomization and sub- 

sequen.Ly good vaporization and high performance. To determine whether 

h:,?drocarbon fuels can be used in the SSME combustiori devices, the injection 

velocd.t:ies must be estimated for each case based on the fixed injector element 

flow areas. The calculated injection velocities for the preburners and main 

c:rmber are presented in Tables 20, 21, and 22 for the staged combustion cycle 

cngiirc? ystans and Table 23 for the gas generator cycles. The SSME conditions 

a.loo ar'i! shown for reference. A velocity ratio oi 10 or higher is desirable. 

In cases 1, 3, 5 ,  and 10, the oxidizer preburner operates oxidizer rich and 

the fuel and H preburners operate fuel rich. These two gas streams would 2 
either have to be mixed prior to injection into the main chamber or injected 

sepa.:ately. The latter would require a completely redesigned injector since 

three streams must be accommodated. If the oxidizer- and fuel-rich turbine 

exhallst streams are mixed prior to injection, it would be extremely difficult 

to uutntain the mixture nonreactive and avoid a detonation hazard. If they 

are allowed to reaz; further in another chamber, the coolinp, ~rculd be a 

substantial engineering problem. The injection velocitie:; shorm for these 

cases in Table 20 were based on the assumption that the two streams are mixed 

prior to injection and somehow maintained nonreactive. Baced on these factors, 

the aain chamber injector cannot be used directly in cases 1, 3, 5, and 10. 

In the case of the preburners, the injection velocity ratios are quite high 

for the oxitlizer prt'orner but the injection pressure drop will be very high 

on the oxidizer :.de. The orifices at the entrance to the injector posts 

could be enlarged to reduce this pressure loss but this would adversely affect 

the mode operation. In some of the cases where the preburner fuel injection 

velocities are low, the pressure drops also are low and comblistion stakility 

 cot:-^ be a problem. For. the fuel preburner, injection vt?locity ratios are low 

in most cases, and in those cases where the oxidizer iniection velocity is high, 

the pressure loss also will be high. In general, the coaxial injector is not 

considered a good configuration for liquid-liquid injection, which is the 



TABLE 20. HAIN INJECTOR FLOW CHARACTERISTICS 

i v in.l ; inJ v 
Case Fuel - - ' (lb/sec) ( f  t/sec) Oxidizer i lb l s ec )  )£t / sec)  

Fuel Rich* 798.1 
Comb Gas 560 LOX 577.2 8 2 

Fuel Rich* 
Comb Gas 785.8 551 LOX 551.2 78 

4 CH4 226.8 54 COX 1110.2 1443 

Fuel Rich* 
Comb Gas 836.0 587 LOX 514 73 

C3H8 260.4 3 7 COX 1089.6 1417 

10 Fuel Rich* 1045.1 754 COX 434.7 263 
Comb Gas 

1 1  RP-1 366.2 37 COX 1113.6 1448 

12 CH4 304.4 252 COX 1145.6 740 

SSKE H2 241.4 1506 LOX 846.9 120 

* Assumes a l l  the f u e l  mixes with a l l  the combustion gases a t  1600F. 



TABLE 21, FUEL PREBURNER INJECTION VELOCITIES 

Fuel - Oxidizer -- 
Case - ( lb / sec )  "id ( f t / aeoy  w ( Ib / sec )  'inj ( f t / s e c ) *  

SSME 

2 2 * Flow Area = 0.025 f t  (F), O.'J114 f t  (Ox) 
2 ** Flow Area - 0.0111 f r (F) . 0.0039 f r (Ox) 



TABLE 22. OXIDIZER PREBURNERS INJECTlON VELOCITIES 

Case - 

1 

2 

3 

4 

5 

6 

10 

11 

12 

13 

SSME 

Fuel - Oxidizer 



TABLE 2 3 .  GAS GENERATOR CYCLES 

T 
inj ' inj  Q inJ v i n j  * 

Case Fuel  (R) ( l b / f t 3 )  ( l b i s r c )  ( f t l s e c )  - - - -  - 

300 2 . 3 5  1 2 2 . 3  263 
SSME 

W 
( 1 )  t n j  'inj** 

Oxidizer ( l b / s e c )  ( f t l s c c )  

LOX 1 0 4 2 . 1  14 7  

LOX 1 0 6 8 . 2  151  

LOX 1 0 4 3 . 3  14 7  

LOX 1 0 7 3 . 4  152 

LOX 1040 .9  14 7 

LOX 0 ..'+. 1 132 



cond i t ion  f o r  t h e s e  preburners .  Based on t h i s  r a t h e r  genera l  a n a l y s i s ,  i t  

appears  t h a t  t h e  preburners  cannot be d i r e c t l y  s u b s t i t u t e d  i n t o  these  cand ida te  

caees.  

I n  t h e  c a s e  of systems No. 2 ,  4 ,  6, and 11 through 13,  a l l  preburners  a r e  

o x i d i z e r  r i c h  and a l l  of the  o x i d i z e r  e n t e r s  the  main combustion chamber through 

t h i s  source.  There a r e  two a l t e r n a t i v e s  a s  t o  how t h i s  h o t ,  px id ize r - r i ch  f low 

can be introduced i n t o  the main chamber. I t  could be i n j e c t e d  through the  

hot-gas manifold and through the  annulus i n  the  i n j e c t o r  element. The main 

problem with  t h i s  approach is t h a t  i n  mode 2, t h e  flow through t h i s  s i d e  of 

the  i n j e c t o r  would suddenly become f u e l  r i c h ,  a s  t h i s  is the  normal mode of 

opera t ion  f o r  t h e  SSME. A mode 2  c y c l e  balance  cannot be  achieved wt th  both  

preburners  f u e l  r i c h .  There would a l s o  be a  swi tch  from f u e l  t o  o x i d i z e r  on 

the  o t h e r  s i d e  of t h e  i n j e c t o r .  This  p r e s e n t s  a  de tona t ion  problem t h a t  is 

unacceptable.  

The o t h e r  approach is t o  i n j e c t  the  hot  o x i d i z e r - r i c h  gases  through the  o x i d i z e r  

dome of the SSME. Some means of  coo l ing  the  dome must be provided. Based on 

the i n j e c t o r  flow a r e a s ,  i n j e c t  ion v e l o c i t y  c a l c u l a t i o n s  show l a r g e  v e l o c i t y  

d i f f e r e n t i a l  between t h e  f u e l  and o x i d i z e r .  The p resen t  i n j e c t o r  should 

provide adequate v e l o c i t y  r a t i o  f o r  good a tomizat ion and mixing. I t  should be 

noted t h a t ,  i n  t h e s e  cases ,  t h e  main i n j e c t o r  has  l i q u i d  f u e l  through t h e  

annulus and gases  through the  o x i d i z e r  pos t .  Due t o  the  low l i q u i d  f l o w r a t e  and 

l a r g e  annular  f low a r e a ,  l i q u i d  i n j e c t i o n  v e l o c i t i e s  and p ressure  drops appear 
I 

t o  be too low and w i l l  be prone t a  low-order f a d  system-coupled i n s t a b i l i t y .  

To c o r r e c t  t h e  i n s t a b i l i t y  problem, o r i f i c e s  can be i n s t a l l e d  i n  the  f u e l  

annulus of the  i n j e c t o r  element a s  i n  the  SSME ox id ize r  i n j e c t i o n  elements.  

However, t h i s  w i l l  c r e a t e  excess ive  p r e s s u r e  drop i n  mode 2 and the  H is 2 
i n j e c t e d  a s  a  gas.  A s o l u t i o n  t o  t h i s  problem would be a d j u s t a b l e  o r i f i c e s  

f o r  e i t h e r  t h e  annulus o r  thcx pos t .  However, t h i s  obviouslv  r e q u i r e s  cons ide rab le  

development and a  new i n l e c t o r .  



Cases 10 and 11 are both oxygen cooled. Due to the possible detonation 

problem with direct contact of cold liquid oxygen and RP-1, warm oxygen 

obtained by mixing the cooling circuit flow with the remaining liquid oxygen 

is necessary. Case No. 10, with both oxidizer-rich and fuel-rich preburners, 

will have the same problem as th t described for cases 1, 3, and 5. Case 11 

is similar to cases 2, 4, and 6 with respect to the preburner and main injector 

problems. It is also necessary to use the SSME oxidizer preburner as the fuel 

preburner in these two cases since there is a large amount of oxygen to be 

pumped at the high pressure and a considerably high turbine flow is required. 

The rearrangement of these components may present some hardware interface and 

packaging problems. 

The main injector fuel and oxidizer velocities are presented in Table 23 ior 

the gas generator cycles defined in cases No. 7, 8, 9, 14, and 15. The SSME 

main injector cannot provide a large velocity differential because of the 

low fuel injection temperature and, hence, high density. The higher densities 

of the hydrocarbons further reduce their injection velocities relative to Hz. 

Even in cases 14 and 15, where the hydrocarbon fuel is heated in the cooling 

circuit, the injection velocity on the fuel side is too low. 'The mode 2 o,/H, 
6 - 

(gas generator cycle SSME) case shown in Table 23 is for a gas generator cycle 

and it is shown that the velocity ratio for this case also is low. This suggests 

the possibility of resizing the elements in the SSME main injector to provide 

acceptable pressure drops and velocities in both niodes 1 and 2 operation for 

cases 14 and 15. In general, the coaxial injector is not suitable for liquid- 

liquid injection; therefore, cases 14 and 15 have the greatest potential for 

adaptation of the resiztd element SSME injector. The same situation occ:urs in 

the use of either of the SSME preburners as a gas generator. In general, t h c y  

are sized for conside1:ably higher flows and a gaseous H fuel. There is a 2 
possibility of resizing the elements in one of these prcburners to adapt it to 

one of these gas generator cycles. 

Several other factors should be considered in determining the adaptability of 

these injectors to the candidate tripropellant engines. Little experience is 

available in the operation of a LOX-rich precombustor. It has been suggested 



t h a t  a  flame ho lde r  may be requ i red  t o  mainta in  a lower mixture r a t i o  i n  t h e  

c e n t e r  and then provide  rap id  mixing of the  hot  combustion gas and t h e  excess  

oxygen. Th i s  remains t o  be demonstrated. 

In  those  c a s e s  where a  t u r b i n e  d r i v e  g a s  is suddenly switched from o x i d i z l r  - r i c h  

t o  fue l - r i ch  hot  gases  i n  t r ans i t ion inp ;  from mode 1 t o  mode 2, t h e  e f f e c t  of 

a l t e r n a t e l y  exposing m a t e r i a l s  t o  an ox id iz ing  and f u e l - r i c h  environment should 

be i n ~ e s t i g a t e d .  

Another significant f a c t o r  i n  i n j e c t o r  des igns  f o r  l i q u i d  oxygen is the  p o t e n t i a l  

fcrmat ion of de tona tab le  ge l .  fhe  cold  l i q u i d  oxygen mixes with and s o l i d i f i e s  

most hydrocarbon f u e l s  i f  d i r e c t l y  mixed. The c o a x i a l  i n j e c t o r s  should be 

considered not s u i t a b l e  f o r  LOX/RP-1 un less  gaseous oxygen can be assured.  

Methane and propane have mel t ing p o i n t s  above the  LOX i n j e c t i o n  temperature 

(190 F:) a s  shown i n  Table 24. It is hopeful  t h a t  de tona tab le  g e l  would not  

occur.  However, experiments have t o  be performed t o  v e r i f y  t h a t .  

I n  t h e  S822, t h e  main i n j e c t o r  p l a t e  is cooled by hydrogen t r a n s p i r a t i o n  

through t h e  r igimesh faces .  More ana lyses  should be performed i f  e i t h e r  

methane o r  propane a r e  used a s  the  coo lan t ,  Oxygen is not recommended nor is 

RP-1. Hence, cases  10 and 11 w i l l  r e q u i r e  hydrogen cool ing f o r  t h e  main 

i n j e c t o r .  

TABLE 24. FUEL PHASE SHANCE CONDITIONS 

I 

- I '  
p: - I ;1 

1 

*- ' ' .. 

i': 

Normal Melting Po in t ,  R 

40 5 

163 

154 

r 

RP-1 

3H8 

CH4 

Normal Boi l ing Point ,  R 
P 

88 2 

201 

416 



: ;  

TASK VI - TEST PLANS 

The objective of this task was to identify critical areas for experimental 

component evaluation based on the results of Tasks I through V. Based on 

this information, test plans were generated for additional testing 'LO complement 

the current NASA test plans for 40K hardware with LOX/RP-1. Since the tripro- 

pellant engine studies have not identified any SSME components that wculd htve 

direct applicability to a tripropellant engine, these test plans kill not be 

directed toward verifying component adaptability but will be geared ?i-$1 sore 

general technology questions that arose during the course of these {es. The 

results of the proposed testing, therefore, wuld have a more genera, .,rfulness 

in that they would answer questions pertaining to the design of an all new 

dual-mode tripropellant engine or a single mode ~~Xlhydrocarbon booster engine. 

NASA has already planned a coa..rehensive test program using the 40K SSME 

subscale hardware with LOXIRP-1 propellants and the test plans developed in 

this study are to be in addition to or complement the current NASA plans. The 

results of this study have shown that CH4 offers some significant advantages for 

a dual-mode tripropellant engine or in any LOX/hydrogen booster engine system. 

Therefore, the test plans to be studied in this task will be primarily for 

LOXicH4 propellants. However, some of the tests would be of equal importance 

with any hydrocarbon fuel being considered. A list of test plan objectives and 

reasons why the technology demonstrations are needed is presented in Fig. 47. 

Low Mixture Ratio Gas Properties - 

Previous experience in the F-1 and H-1 engine programs has shown that considerable 

difference exists between the low mixture, low temperature hot combustion 

(LOX/RP-1) gas properties observed experimentally and those predicted with 

current free-energy performance codes. This is believed to be primarily due 

to the high amount of carbon formed in the very fuel-rich combustion process. 

This comparison has been demonstrated only at low combustion pressures 

(<lo00 psia); the effect is unknown at higher pressures and, therefore, is a 

subject for an experimental test program. It is anticipated that LOX/CjHB will 
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behave much l i k e  LOX/RP-1 b u t  t h a t  t h e  L O X / C H ~  sys tem m y  n o t  e x h i b i t  t h i s  

d i s c r e p a n c y  between e x p e r i m e n t a l  and t h e o r e t i c a l  p r e d i c t i o n s  of m i x t u r e  r a t i o  

v e r s u s  tempera ture .  

Approach. T h i s  expe r imen ta l  h o t - f i r i n g  program would be conducted u s i n g  a 

combust ion chamber and i n j e c t o r  capab le  of  o p e r a t i n g  a t  h igh  cliamber p r e s s u r e s  

and a t  mix tu re  r a t i o s  t y p i c a l  o f  t h e  LOX/hydrocarbon p r e b u r n e r  o r  g a s  g e n e r a t o r  

low mix tu re  r a t i o  c o n d i t i o n s .  The eombus t io t~  gas  p r o p e r t i e s  can  be measured 

from p r e s s u r e ,  t empera tu re ,  and f l o w r a t e  measurements c o l l e c t e d  d u r i n g  t h e  

test. The d e t n i l s  of  t h e  pa rame te r s  t o  be  recorded  and t h e  n e c e s s a r y  c a l c u l a -  

t i a n s  are J i s c u s s e d  i n  a la ter  s e c t i o n .  An a l t e r n a t e  means o f  e s t i m a t i n g  

combust ion g a s  p r o p e r t i e s  is tlrrough chemica l  a n a l y s i s  of combust ion g a s  samples  

c o l l e c t e d  d u r i n g  t h e  h o t - f i r i n g  test. A d d i t i o n a l  test o b j e c t i v e s  such  a s  

p rebu rne r  i n j e c t o r  performance and t h e  i n v e s t i g a t i o n  o f  p o t e n t i a l  carbon 

d e p o s i t i o n  prcblems c a n  be  e v a l u a t e d  d u r i n g  t h e s e  test s e r i e s  by i n c l u . ~ i u g  t h e  

neces sa ry  test parameter  measurement t echn iques .  

Two approaches  can  be  t aken  r e g a r d i n g  t h e  hardwarc t o  be used i n  t h i s  program. 

The e x i s t i u g  SSME s u b s c a l e  &OK p rebu rne r  chamber and i n J e c t o r  could  be used o r  

a  new sub-subsc.;lle p r ebu rne r  could  be f a b r i c a t e d  f o r  t h i s  technola~gy program. 

The e x i s t i n g  c o a x i a l  p r ebu rne r  i n j c c t o r  element  was ana lyzed  t o  de t e rmine  i f  

t h i s  i n j e c t o r  could  be  used w i t h  LOX/CH~. 

I t  was assumed t h a t  l i q u i d  oxygen and amhient ternperaturc griseous methane would 

be s u p p l i e d  t o  t h e  i n j e c t o r  a t  a  mix tu re  r a t i o  of  app rox ima tc lv  0.44 (combust ion 

teinpcrnture of 2000 K ) .  I t  was found t h e  t o t a l  f l o w r a t e s  ot from 20 t o  45 l b / s c c  

would r e s u l t  i n  reaso i lab le  f u e l  and o x i d i z e r  i n j e c t i o n  v c . l o c i t i t s .  These f l ows  

cor respond t o  chamber p r e s s u r e s  of 2500 t o  3500 f o r  t h e  c u r r e n t  t h r o a t  a r e a .  

Howcvt~r, t h e  i n j e c t  i on  ve l .oc i ty  r a t i o  is  somcwhat low and mlxiny, e f f i c i e n c y  in:\? 

no t  be a s  good a s  w i th  t h c  H f u r l .  2 

I n c r e a s i n g  t h e  cliamber l e n g t h  would c.ompcns;~tc f o r  t h i s  reduced mixing e f f  ic.it \n~.y. 

T h i s  cou ld  be  ;tccomplished by adding  ;I s poo l  t o  t he  c x i s t  ink: chamber ; ~ f t c r  iir:;t 

t e s t i n g  w i t h  t h e  e x i s t  ins 12-ihch cha. '. -r Length. I'erformnn-e would be more 



questionable with higher density fuels such as Cjhg and RP-1. A plate-type 

nozzle with multiple small holes or slots could be used in the preliminary 

tests to evaluate the carbon c'eposition at the low mixture ratios sssoci3ted 

with a gas generator or preburner. 

The fabrication of a new subscale preburner would provide more versatility in 

the test program in that test costs can be reduced by the smaller flowrstcs, 

other test facilities can be considered, multiple injectors could be fabricated 

for other fuels, and the hardware can be designed to specifically accomplish 

the test objectives and additlonal injectors can be provided to investigate 

high mixture ratio operation. A typical sub-subscale yreburner design would 

incorporate injector elements much like those in the existing 40K preburner 

except resized to providc the proper injection pressure drops and velocities. 

A 2- to 3-inch-diameter injector face would incorporate from 19 to 41 injector 

elements, thus providing high performance. 

Property Measurement. The goal of this experimental procedure is to measure 

combustion product properties, including: 

Tc - chainber temperature 
Mw - hot-gas molecular weight 
C - hot-gas specific heat at constant pressure 
P - ratio of specific heats 

A schematic diagram of the proposed experimental setup is shown in Fig. 48. It 

consists of the combustion chamber and a converging-diverging nozzle. The 

throat and exit areas of the nozzle are known, as well as the total mass flow 

(in) during a particular test. 



F i g u r e  A8. I ' r tqwsed Exper  lmcnt 21 1  S e t u p  

Thc c o m b i ~ s t o r  cand nozz lc A r t .  it~zsu l;tLt*ri to  i ) r t h v c ~ l t  Irt*dt 10::s f ronl t Ir t '  K ~ S .  TIIC 

d i v c * r g i a g  sc>ct itrtl I s  not nectPss;ary f o r  pt*rft)t-m,~nct- tbf thtb t *xp t - r in~c~n t  , ..;it1~.(\ .ri 1 

tlr;tt is t -c*quirc~i  is tt i  b r ! , ~ g  tllv g.ts t l \  scruic v t * l ~ r c i t v  ( M = l \  ;rt :I tllr.ci:tt, st) 

t l w t  I'o* a n d  '1' .t may bt- ~ t ~ t i : : i ~ r ~ J .  
eb 

'hi' .tL ti\rtl;ttc- n~~~t I rc , t i s  t o r  dttt t - r m t ~ ~  111s t t r t b  i)r.t~ibc*t.t it':: e l l  Iicbt s.1~ . i r k .  ritlL;l i ltlri 

ht. 1 ow. 

In this case, the equations of flow in a 1-D converging-diverging channel 

apply directly. Chamber pressure ( P o )  and temperature (To) are monsured Jirect- 

i y .  To measure gas y , note that 

which upon integration gives 



In particular, at the throat, 

Solving for y: 

n ol/ o 

The assumption of ideal gas behavior gives 

cal - 
with R = 1.987 g mole K 

Molecular weight is determined by noting that the nozzle is choked at 

the throat, so that: 

Solving for Mw, 

where 
gc = 32.174 lbm - ft 

lbf - sec 
2 

f t - l b f  lS4' lb mole R 

To = stagnation (chamber) temperature, R 



Throat stagnation pressure and temperature may be measured with total temperature 

and total pressure probles like that shown below: 

Ik*ig~t nl to1.11 trnllrraiurc pml*. From Eva M. Winklcr, J .  AF#. i 'af~.,  25 
(1954). 11. 231. 

11. GGB Sampling and Analysis - 
An alternate approach to obtaining hot-gas y, 

CP' 
and M is through 

W 
chemical analysis of a sample of gas. Mass spectroscopy, gas chrona- 1 :fi 

t: 

tography, or both can be used to determine the constituents of the . . I :.- 
combustion products. Gas properties can then be inferred from the mole I 6;:; 

fractions of the constituents: 

where 
t h Xi = mole fraction of i- constituent 

th 

5, 
= nolecular weight of i- constituent 

N = No. of constitu8r.t~ 

PREXTllhT PACE l3l.tlKK NOT FILMED 
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where 
t h C = C of i- constituent molar Cp 

p i  

Note that cannot be mole-weighted. 

This method provides an alternate and independent determination of gas properties. 

It is reconmended that both gas sample analysis and flow property measurement 

methods be used. Note that chamber temperature must be measured directly, as 

sampling cannot be used to determine Tc. 

Oxidizer-Rich Preburner 

Staged combustion  hyd hydrocarbon engine system power balances at chamber 

pressure levels of interest have shown that insufficient energy (fuel f lowrate) 

is available to drive the turbines with all fuel-rich preburners. One alterna- 

tive is to operate one or more preburners oxidizer rich since there is con- 

siderably more LOX available. This brings up numerous questions concerning 

the design and operation of a preburner capable of operating in a very high 

mixture ratio, low combustion temperature mode. Littie experience is available 

and a test program would provide the much needed information in this area. 

The lack of experience along with the need for design and operational information 

for LOX-rich combustion gases makes this test objective of major importance to 

the overall LOX/Hydrocarbon Engine Technology Program. To achieve LOX-rich 

combustion gases at temperatures near 2000 R, a LOX/CH4 mixture ratio of 3 4 : l  

is required, This results in large LOX flows and very small fuel flowrates 

relative to current preburner injector designs. The possibility of operating 

the existing coaxial injector with reversed flows (oxidizer through the annulus 

and fuel through the center post) was investigated briefly for injection 
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velocities and pressure drop. The LOX flow through the annulus results in 

reasonable pressure drops and injection velocities. However, the fuel flow in 

the center po~ts would have a very low pressure drop, A means could be devised 

to reduce che size of the existing orifices in the center posts, but the resulting 

nonopt imum injector would probably result in low performance. It is recommended 

that a new, optimum design, LOX-rich preburner injector be fabricated to satisfy 

this test objective. 

A new injector could be fabricated for the existing preburner or a new sub- 

subscale LOX-rich preburner could bz fabricated and these test run in conjunc- 

tion with the fuel-rich preburner testing. Preliminary injector configuration 

studies have sbown that a pentad (4 oxldizer - 1 fuel) injector element might 
be attractive for this application because of the low fuel stream energy. The 

four oxidizer streams provide nesr-equal orifice sizing and the impinging 

oxidizer streams would provide the necessary atomization, and the small fuel 

stream is introduced into the middle of the impingement zone. Also, because 

of the relative fuel and oxidizer flowrates, this injector will probably usv 

the oxidizer for face cooling. 

&drocarbon Cooling 

Little information is available pertaining to experience with any of the 

hydrocarbon fuels as regenerative coolants. Analytical predictions indicate 

that the RP-1 is a poor coolant and therc is less interest in demonstrating 

its chamber cooling capabilities. However, CH appears to be an attractive 4 
candidate for future LOX/hydrocarbo:i booster engine systems and a ilot-f iring 

cooling demonstration would provid. valdeble information in the further study 

and comp~rison of the candidate systems and in the actual design of a chamber. 

It is expected that this regenerative cooling demonstration could be conducted 

uith the 40K hardware in conjunction with an injector/combustion process 

demonstration, The approach would be first to perform calorimeter chamber 

tests to determine the heat flux profile in the main chamber with LOX/CH 4 
combustion. With this infonuation, predictions for wall temperatures and coolant 

temperatures for the regenerotively cooled chamber could be improved, A 



ORIGINAL PAGE IS 
OF POOR QUALITY 

subsequent test with the channel wall regeneratively cooled chamber would 

finally demonstrate the CH4 cooling capabilities and provide valuable design 

information necessary to design a full-scale engine. 

The regenrative cooling testing can be conducted using the existing preburner 

and main chamber injectors in a staged combustion mode or a new liquidlgas 

LOX/CH4 injector and the existing 40K channel wall main chamber can be used in 

a gas generator mode. Preliminary calculations indicate that the existing 40K 

preburner and main chamber injectors will provide satisfactory performance 

without any modifications when operated in a staged combustion configuration 

and using gaseous CH4. However, the CH4 density results in a very low injection 

pressure drop and velocity if gaseous CH4 is introduced as in a gas generator 

cycle. The fuel annulus gap must be reduced to near 0.010 inch to maintain a 

reasonable pressure drop and injection velocity. It is anticipated that this 

very thin annulus stream and the relatively large core stream will result in 

p ~ o r  performance. A new injector is reconnnended for operation with LOX and 

gaseous CH in a gas generator configuration. 4 

As part of this effort to consider using the 40K hardware to experimentally 

investigate an 02/CH4 combustion with CH4 cooling, a thermal analysis was 

conducted for the calorimeter and CH4 cooled channel wall chambers. 

H:at Transfer Analysis. Ratioing of the combustion gas properties and flowrates, -- 
as in the case of the full-scale SSME heat transfer analysis conducted in Task I1 

of this study effort, gives a heat transfer coefficient profile for the O ~ / C H  
4 

propellants of 63% of the 02/Ii2 propellants at the same chamber pressure. The 

O2(H2 heat transfer coefficient profile utilized is 95% of the experimentally 

determixed profile corrected to 3000 psia. For this analysis, it has been 

assumed that there is no carbon coating on the hot-gas wall. 

For the calorimeter chamber, the water burnout heat flux is calculated from the 

following equation: 

QlA BO = 0.00908 vog5 (TSAT - Tc) 

125 
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The methane coolant heat transfer coefficients are calculated using the 

following equation: 

The roughness enhancement (qr) is calculated by taking the ratio of the actual 
friction factor to the friction factor assuming a smooth surface. An average 

roughness enhancement value of 1.4 is used. A coolant inlet temperature of 

-240 F is used. A coolant inlet pressure of 4500 psia is assumed for operation 

1 
at a chamber pressure of 3000 psia. 

Calorimeter Chamber Results. The water coolant maximum log pressure available 

now at the MSFC Test Facility is 1500 psia. For this pressure, the optimum 

velocity in the small throat region channels is apprcix:mately 170 ft/sec. 

For the large combustion zone channels, the optimum velocity is 120 ftlsec. 

For 40K calorimeter chamber No. 1, the burnout heat flux profile using these 

water velocities is shown in Fig. 49. Since the heat flux in the combustion 

zone and expansion section is much lower than in the throat region, the optimum 

velocity (120 ft/sec) need not be used in these regions. 

The throat heat flux and the Lhroat heat flux relative to the throat maximum 

burnogt heat flux (for a whter log pressure of 1500 psia) are shown in Fig. 50 

as functions of chamber pras,3ure. For a burnout margin of 10X the maximum 

chamber pressure at which the calorimeter chamber can be operated is 1800 psia. 
2 The throat heat flux at this chamber pressure is 41 Btu/in -sec. 

Methane-Cooled Chamber Results. The wall temperst t re in the thi'od t rcgi on (-1") 

and the combustion zone (-9") at a chamber pressure of 3000 psi.! is shown in 

Fig. 51a as a function of the methane coolant flowr3te. This figure is for an 

uppass cooling circuit. The maximum wall temperatu.-e occurs in the combustion 

zone and the required coolant flowrate to keep the .saximum wall temperature at 

1000 F is 30 lbmlsec. 





Figure 50. 40K Calorimeter Chamber Throat 
Heat Flux for 0 2 / C H  Propellants 4 
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In an effort to decrease the required coolant flowrate, a downpass cooling 

circuit was considered (Fig, 51b). The maximum wall temperature now occurs in 

the throat region, However, the required flowrate to maintain a 1000 F wall 

temperature has been increased to 38 lbmlsec (due to increp-4 bulk ternperatur? 

and lack of curvature enhancement) so that there is no coolant flowrate benefit 

to be gained by going to . downpass cooling circuit. 

Hot-gas wall temperature versus axial position curves for chamber pressures of 

2000 and 3000 psia are shown in Fig. 52. The curvc3+ are for an uppass cooling 

circuit with the coolant flowrates which ~ i v e  a maximum wall temperature of 

1000 F. No change has been made to the combustor coolant channel geometry. 

For both chamber pressures, the coolant flowrate requirement is low enough so 

that the chamber could be run in the regenerative cooling mode if dzsired. For 

the chamber pressure equal to 3000 psia case, the coolant pressure r'rop is 

515 psia and the coolant temperature rise is 360 F. For an inlet temperature 

of -240 F, this reslllts in an cutlet temperature of 120 F. The chamber heat 
2 load is 9000 Btu/sec with a throat (-1") heat flux of 65 Btu/in. -sec. 

Dual-Fuel Operational Transition 

One of the biggest questions that arises in the tripropellant engine concept 

concerns the transition from a hydrocarbon fuel during mode 1 to H2 in mode 2. 

It is not known whether some intermediate purging of the injector, manifold, 

and cooling circuit will be required to prevent freezing of the residual 

hydrocarbon by the entering LHZ. Based on hardware thermal response experience 

on the SSME, there is a good possibility that the thrust chamber residual heat 

will provide sufficient heat during the transition from CH4 to LH2 fuels to avoid 

the need fur the intermediate purge. A detailed transient lidat transfer analysis . , 

. . . . 
must be conddcted to verify this for the demonstration hardware. The demonstra- i ,  

1 

tion testing could be cond~c~ed us& the existing 40K calorimeter and regenera- i .  

tive main chambers. The initial pres.ure-fed injector transitional operational '! 
1 ;. 
I '  

testing would be conducted with the ca.orimeter chamber and the pressure-fed ? regenerative cooling transition with th regenerative chamber. Injector flowrates, 

pressure drops, and injection velocities\were calculated for operation with both 
\ 

+. 
k 

rt . , . 
3. . 
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:I CH4 and.H2 fuels. The results indicate that the existing preburner and main 
.- . 

chamber injectors are capable of high-performance operation in the staged 
1 combustion mode. A new liquidlgas, LOXICH~ injector that NASA-MSFC is currently 

in the process of procuring is also capable of the dual-mode operation in a 

gas generator cycle mode. Important injector operating parameters for mode 1 

(CH4 fuel) and mode 2 ( l i t  fuel! are shown in Table 25. Regenerative crr ling 

capabilities are adequate since the chamber was designed to be cooled with H 2 
I 

and the analysis showr. in the previous test plan shows that the chamber also 

1 can be cooled with methane. 

. 'I 

r.1 Higher Turbine Drive Gas Temperatures 

The engine cycle balances conducted during this study for the staged combustion 

cycle have shown that to achieve an engine balance with all preburners fuel 

rich, turbine inlet gas temperatures exceeding 2000 R are required. This 

' - 1  ! ; requires that the preburner operate at higher mixture ratias than the current 

i i SSME design and that it must be able to withstand the additional heat load. 

1 The higner temperature turbine inlet gases also will have a significa~t impact 
f 

, j on the turbine operational limits. A demonstration test could be conducted with 

the existing 40K preburner operating at combustion temperatures of 2000 to 

I 
2500 R with instrumented ceramic turbine blade simulators in the hot-gas stream. 

A orief analysis was conducted to evaluate the capability of the existing 
I I 

I/ preburner operating at these elevated temperatures. It was found that the injector 

flow parameters with LOXICH will provide adequlte performance. Some injector 4 

[I face cooling is provided by the fuel flow and this shoald be adequate for 

ji 
temperatures up to 2503 R. The preburner body is heat sink cooled and the 

inside surface tenperature transient as func~ion of the hot-gas temperature is 

shown in Fig. 53. The melting temperature of the material is approximately 

2900 R. Some srress calculations must be performed to determine the limiting 

hot-gas temperature and hot-firing durations. 

Staged Combustion with ~~X/Hydrocarbon 

A 40K demonstration of a staged combustLon system using LOX/hydrocarbon pro- 

pellants would provide information concerning ignition, carbon formation, 



TABLE 25. NEW GAS GENERATOR CYCLE CHG/LOX INJECTOR 

I - 
Me thane Opera t ion 

P = 3000 psia 
C 

MR = 3.5 
c* = 6131 f t /sec 

3 T = 5 8 0 R  
P C H 4 = 9 ' 1  Iblft p =  3000 psis 

w = 104 1 b/sec 
0 

w = 30 Ib/sec 
CH4 

V = 120 f t /sec  
0 

V = 530 f t /sec 
CH4 

APo = 600 psi  

APCH4 = 360 ps i  

Hydrogen Operation 

PC = 3000 psia 

t4R = 6.0 

c* = 7750 f t /sec 

T = 350 R 

0H2 
1.4 l b / f t 3  p =  3000 psia 

w = 91 lb/sec 
0 

w = 15 lt;/sec 
2 

Vc = 105 f t/sec 

V = 1725 f t /sec  

AP = 460 ps i  
0 

AP = 580 ps i  
H2 
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combust ion h e a t  t r a n s f e r  c h a r a c t e r i s t i c s ,  and stability of  t h i e  sys tem,  These 

test o b j e c t i v e s  cou ld  p o s s i b l y  be  ach i eved  i n  c o n j u n c t i o n  w i t h  t h e  hydrocarbon 

c o o l i n g  and i n j e c t o r  t e s t i n g .  As s t a t e u  i n  p r e v i o u s  t e s t  p l a n  d i s c u s s i o n s ,  

i t  has been found t h a t  t h e  e x i s t i n g  40K p reburne r  and mait. chamber i n j e c t o r  are 

capab le  of  s t a g e d  combustion o p e r a t i o n  wi th  LOX/CH p r o p e l l a n t s .  I n i t i a l  4 
t e s t i n g  would be conducted w i t h  t h e  c a l o r i m e t e r  chamber t o  2 s t a b l i s h  h e a t  f l u x  

p r ~ f i l e s  and p rebu rne r  and main i n j e c t o r  performance. Thcde d a t a  would then  

be  used t o  p r e d i c t  t h e  r e g e n e r a t i v e  chamber o p e r a t i n g  c o n d i t i o n s .  The f i n a l  

tests would be conducted w i t h  t h e  r e g e n c r a t i v e l y  cooled  chamber t o  demonst ra te  

r e g e n e r a t i v e l y  coo ied ,  s t a g e d  combustion o p e r a t i o n  w i t h  LOX/CH The a l l o w a b l e  4' 
ope ra t i r l g  c o n d i t i o n s  and c o o l i n g  c a p a b i l i t i e s  of t h e s e  two zhambers a r e  d i s c u s s e d  

i n  d e t a i l  i n  t h e  r e g e n e r a t i v e  c o o l i n g  demonst ra t  ion t e s t  p l a n  d i s c u s s i o n .  

Combined F u e l  and Ox id i ze r  Rich P r e b u r n e r s  -- 

One of  t h e  a l t e r n a t i v e s  f o r  a c h i e v i n g  adequate  t u r b i n e  drivcx gas  energy  f o r  t h e  

~ ~ > l / h v d r o c a r b o n  s t a g e d  combustion sys tems i s  t o  o p e r a t e  t h c  f u e l  p r ebu rne r  f u r l  

r i c h  and t h e  o x i d i z e r  p rebu rne r  u x i d i z e r  r i c h .  T h i s  concept r e q u i r e s  a  new 

main i n j e c t o r  t o  clccommodatr t h e  two hot-gas s t r eams .  Tlie c u r r e n t  NhS;\ p l a n s  

a l r e a d y  c a l l  f o r  t h e  f a b r i c a t i o n  o f  new f u e l - r i c h  and o x i d i z e r - r i c h  p r e b u r n e r s  

of t h e  40K s i z e .  These p rebu rne r s  could  be used i n  c o n j u n c t i o ~ ~  w i t h  t h e  I 

a v s i l a h l t :  4OK main chamber and a  new main cliarnber i n j e c t o r  t o  p rov ide  a l l  of t h e  

hardware n e c e s s a r y  f o r  t h i s  demonst ra t ion .  The e x i s t i n g  ca lo r ime t t l r  main 
i 

chamber would b e  used t o  e s t a b l i s h  t h e  t i rat  f  111x p r ~ j f  i le ;rud demonst ra te  

i n j e c t o r  performance.  The h e a t  t r a n s f e r  d ; ~ t d  ob t a incd  i n  tllcsc t e s t s  wc~uld he 

used t o  p r e d i c t  t he  r e g e n e r a t i v e  ~ ~ o l  ing  1 l~nr i>c . t t . r i s t  i c s  and suhsequcnt  t c s t  i n g  

would be  conducted w i t h  t h e  r e g e n e r a t  i v e l y  coolcd  c.hambt>r. i'hc f u e l - r i c h  onJ 

o x i d i z e r - r i c h  p rebu rne r  i n j  r c  t o r  r equ i r emen t s  were d i s ~ . u s s e d  in p r c ~ v i o u s  t e s t  

p l a n s .  

The new item t h a t  is  r equ i r ed  f o r  t h i s  t e s t  demons t r a t i on  is ,I m & ~ i n  i n j c c t o r  

t h a t  w i l l  a c c e p t  an o x i d i z e r - r i c h  hot-gas s t r eam and a f u e l - r i c h  h o t - g , ~ s  st r~,.im. 

There is no p rev ious  e x p e r i e t ~ c e  w i th  t h i s  t y p r  of i l l l e c t o r  nnd i t  is e s p e c t c d  

t o  be a complex d e s i g n  grobiem. The concept  of  f e r s  t he  ~ : o t e n t i ; ~ l  f o r  h igh  



performance due t o  the  el iminat ion of vaporizat ion problems and the  gaslgas 

propel lant  i n j ec t i on  i a  cormidered t o  be less suscept ib le  t o  combustion 

i n s t a b i l i t y .  The g a d g a s  i n j ec t i on  a l s o  should r e s u l t  i n  l e s s  s t reak ing  of 

t he  chamber wall .  Candidate i n j e c t o r  element types t o  be considered include 

coaxial,  im-glnging (doublet o r  t r i p l e t ) ,  and showerhead. Some of the major 

design problems t h a t  w i l l  be encountered i n  t h i s  gaslgas i n j ec to r  design w i l l  

be i n  the  a r ea s  of i n j ec to r  and injector- to- thrust  chamber thermal stress, 

in j ec to r  face  cooling, hot-gas manifold cooling, and s t a b i l i t y  a id  cooling. 



SYMBOL NO. ..NCLATURE 

= combustion pressure hg = hot gas heat transfer 

= combusti~z 23s temperature 
coefficient 

K = gas thermal col~ductivity - combustion gas flowrate 
= combustion gas mixture ratio p = gas viscosity 

(o/f X = distance 

MW = molecular weight of combustion G mass velocity 
gases 

Z Q/A)gg = burnout heat flux (~tu/in. -see) 

V = water velocity (ft/sec) 

T~~~ = water saturation temperature (F) 

Tc = water temperature (F) 

hc coolant coefficient (~tulin. '-sec-~) 

k = thermal conductivity (~tu/in.-sec-F) 

Dh hydraulic diameter (in. ) 

Re = Reynolds Number = G D /u (dimensionless) 
h 

G = mass velocity (lbmlin.*-sec) 

Dh = hydraulic d leter (in.) 

p = dynami: visoscity (lbm/in. -sec) 

Pr = Prandtl Number = c ~ / k  (dimensionless) 
P 

C = specific heat (Btu/lbm-F) 
P 

p = dynamic viscosity (lbm/in.-sec! 

k = thermal conductivity (Btu/in. -see-F) 

Or = roughness enhancement = fr/f s 

fr = friction factor for rough surface 

f 8  = friction factor for smooth surface 
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