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SUMMARY 

A study is made of the aerodynamic technology for a vertical attitude VSTOL 

(VATOL) supersonic fighter /attack aircraft. The selected configuration features a 

tailless clipped delta wing with leading-edge extensian (LEX), maneuvering flaps, 

top-side inlet, twin dry engines and vectoring nozzles. A relaxed static stability is 

employed in conjunction with the maneuvering flaps to optimize transonic performance 

and minimize supersonic trim drag. Control for subaerodynamic flight is obtained 

by gimballing the nozzles in combination with wing tip jets . 
Emphasis is placed on the development of aerodynamic characteristics and 

the identification of aerodynamic uncertainties. A wind tunnel test program is . 
proposed to resolve these uncertainties and ascertain the feasibility of the conceptual 

design. Ship interface, flight control integration, crew station concepts, advanced 

weapons, avionics, and materials are discussed. 

Aerodynamic uncertainties which have been identified include LEX 

effects on lift and flow to the topside inlet, aerodynamics center shift ,  high 

angle-of-attack characteristics, supersonic wave d rag  estimation, supersonic 

maneuvering flaps, and jet spray effects on takeoff and landing. 
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SECTION 1 

INTRODUCTION 

The study of aerodynamic technology of VSTOL fightedattack class aircraft is 

being pursued by the NASA Ames Research Center and the David Taylor Naval Ship 

Research and Development Center. This document reports the work covered under 

the joint sponsorship of these organizations in Phase I of Contract NAS2-9771, "Study 

of Aerodynamic Technology for VSmL Fighter/A ttack Aircraft. 'l This phase covered 

the period from 1 November 1977 to 31 May 1978, Phase I objectives were: 

1. To identify and analyze two high performance VSTOL concepts 

having potential utility to fulfill the Navy fighter/attack role. 

2. To estimate the aerodynamic, propulsion, and performance characteristics 

of these concepts and to assess technical uncertainties requiring additional 

research. 

3. To outline a wind tunnel program in which these aerodynamic uncertainties 

would be investigated and which would provide a data base for future use. 

The VSTOL fighter/attack concepts studied both employ the lift/cruise propulsive 

lift concept; one is a vertical attitude configuration termed VATOL, and the other is 

a horizontal attitude configuration and is termed HAVSTOL. This report deals with 

the VATOL concept, Results of the study of the HAVSTOL concept a re  presented in 

NASA CR 152130. 

Satisfying the combined requirements of supersonic flight and vertical takeoff 

provides a significant design challenge. The severity of this challenge is increased 

by the need to deal with the fighter-related issues of agility and combat persistence 

while minimizing the problems associated with the presence of engine exhaust flow in 

proximity to the aircraft and ground surface. 

A listing of the major problem areas and the conceptual solutions offered by 

horizontal and vertical attitude configurations is presented in Table 1-1. This table 
.- - - . 

- 



TABLE 1-1. SUPERSONIC VSTOL CONCEPT DIFFERENCES 

Supersonic VSTOL 
Problem Area 

Fountain 

Comparison of Solutions 

Horizontal Attitude VSTOL: Vertical Attitude VSTOL : 
L/C Concept; Twin, Variable L/C Concept, Twin Vari- 
Cycle, Turbofans able Turbine, Dry Turbojets 

Achievement of 
smooth, low cross- 
sectional area . 

Exhaust 
ingestion 

Propulsive lift separation, Thrust always through 
wide-spaced afterbodies C. G. - conventional rear 

engine configuration 
shaping 

Ship interface 

Minimize by configuration Inherently minimum base 
shaping, high attitude area 
liftoff and touchdown 

Avoid by jet location and Closely spaced nozzles; 
direction, high attitude no fountain 
liftoff and touchdown 

Avoid fountains, inlet Launch and recovery out- 
location, high attitude side deck edge to avoid wall 
liftoff and touchdown j et formation 

Normal VTOL operations, Vertical operations 
exceptional ST0 performance restricted to specialized 
very low conventional gantry, pilot attitude 
approach/landing speeds maintained by rotating 

cockpit enclosure, ST0 
by limited sink off bow 
(or skijump), conven- 
tional attitude approach/ 
landing speed requires 
arresting hook 

shows that ,  compared with the  HAVSTOL, the  VATOL is a simpler approach to  

achieving supersonic performance and a minimum level of propulsion-induced 

interferences, but  that  its short takeoff performance is inferior and the  ship- 

board interface is more complex. 

During this  s tudy,  emphasis was placed on the  aerodynamic and propul- 

sion areas. Supporting work in structures,  flight control, avionics, and com- 

ponents areas was completed only to the extent needed' to assure that the  

concept was credible. Correspondingly, the  cruise-combat regime was 

. emphasized and the  hover-transition regimes studied to the  extent necessary to  

assure configuration credibility. 



A number of individuals have made major contributions to this study. They a r e  

identified below. The work was performed under the general direction of 

Dr. P. T. Wooler. 
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Flight Performance 

Takeoff Performance 

Flight Controls 





SECTION 2 

AIRCRAFT DESCRIPTION 

The configuration selected for the VATOL study features a tailless 

clipped delta wing with leading edge extension (LEX) , maneuvering flaps, 

tilt cockpit, topside inlet, twin d ry  engines and vectoring nozzles. A relaxed 

static stability is employed i n  conjunction with the maneuvering flaps to  opti- 

mize transonic performance and minimize t r i m  drag. Control for subaerodynamic 

flight is obtained by  gimballing the nozzles in  combination with wing tip jets. 

2 .1  DESIGN PHILOSOPHY 

The design philosophy for the Vertical Attitude Takeoff and Landing (VATOL) 

3 concept was to use an unconventional operational approach to minimize VTOL impact 

on the aircraft design while accepting some complication of ship interface. This 

approach yields the lightest weight, lowest cost aircraft solution to supersonic VSTOL 

capability. 

The achievement of VSTOL capability in a supersonic aircraft by rotating the 

aircraft to the vertical is an effective means of reducing VTO~/combat configuration 

compmmises. A vertical attitude takeoff and landing concept reduces thrust deflection 

requirements, inherently aligns weight and thrust vectors, eases control requirements, 

and minimizes propulsion-induced VTOL effect such as  suckdown, fountains and 

exhaust ingestion. 

Vertical attitude operation requires a specialized launch/retrieval system which 

restricts the number of potential VTOL operational sites. Also, since the VATOL 

concept does not inherently offer propulsive lift benefits at  conventional attitudes, 

ST0 ground/deck run and landing speeds will be greater than on the horizontal attitude 

concept. For future naval applications, however, site restrictions on takeoff and 

landing operations will occur naturally a s  ship size decreases and the VATOL concept 

adds the potential to minimize aircraft/ship structure interference. Further, opera- 

tions from carr ier  decks can take advantage of the aircraft's high thrust-to-weight 

combined with either a nominal sink off the bow to effect rotation o r  the use of a ramp 

at the end of the deck (ski jump) to impart an upward momentum. 



The aircraft configuration determined for the VATOL concept emphasizes 

high-speed agility with little compromise to achieve VTOL capability. In addition to 

a favorable blend of transonic turn performance and low wave drag, the slender leading 

edge extensionfwing/body arrangement offers potential for minimizing radar cross 

section (RCS) level over a wide frontal spectrum. The dominant frontal contribution 
- 

to RCS for tactical aircraft is the inlet duct cavity and engine compressor face. The 

use of airframe shielding for the compressor, and the use of radar absorbing materials 

(RAM) inside the duct cavity, offer substantial survivability advantage, particularly 

during penetration and attack of enemy ground o r  sea-based defenses. Flow control 

from tailored vortex flow surfaces facilitates use of efficient top-mounted inlet , 

configurations appropriate to transonic maneuvering requirements. h addition to i ts  

RCS advantages, the top-mounted inlet provides design and operational advantages by 

maintaining an unrestricted lower surface for efficient weapon/landing gear integration 

and aircraft equipment accessibility. 

The use of twin, dry turbojets provides significant operational advantages a s  

well as  performance benefits. Twin-engine design coupled with the high thrus t-to- 

weight and vectoring nozzles provides not only good single-engine performance but 

also additional engine-out safety in the vertical flight mode. This safety results from 

the ability to control the attitude of the aircraft by directing the remaining engine's 

thrust through the c. g. , thus giving the pilot time and proper attitude to execute a safe 

ejection. The twin, dry turbojets offer the advantages of minimum propulsion system 

length, reduced IR signature during combat and a high level of combat persistence. 

The unique operational concept for the VATOL requires special consideration 

of the aircraft crew station and launch/retrieval system. Candidate crew station 

design approaches vary from rotation of the pilot seat, in a manner similar to current 

high acceleration cockpit studies, to rotation of the entire nose of the aircraft. The 

launch/retrival system for the proposed concept employs a nose gear hook/arresting 

wire engagement similar to that used in the Ryan X-13 program. 



2.2 DESIGN GUIDELINES 

The initial design guidelines for the VSTOL aircraft configuration were a 

VTO weight of 13,608 k g  (30,000 lb)  and a ST0 weight of 18,144 k g  (40,000 lb)  . 
Wing size and engine thrus t  were selected to meet the performance requirements 

of a 6.2 g sustained t u rn  at M0.6 a t  3048 m (10,000 f t )  and a specific power (Ps) 

of 274,32 m/sec. (900 ftlsec) a t  M0.9 at 3048 m (10,000 f t)  . Engine thrus t  

should not be less than the  VTO weight times 1.15 to ensure sufficient hot-day 

thrus t  for vertical takeoff. The wing sweep should be enough to allow the  leading 

edge to remain subsonic a t  the design Mach number of 1.2. 

2.3 AIRCRAFT ARRANGEMENT DESCRIPTION 

The VATOL concept is shown in  the  general arrangement drawing of 

Figure 2.1. This high performance filter/attack aircraft is designed for a VTO 
2 weight of 13,608 k g  (30,000 lb) with a wing loading of 293 kg/m (60 psf) and 

an  installed thrust-to-weight ratio of 1.17 on a tropical day and a fuel fraction 

of 0.41. 

,l Distinguishing features of the concept are: 

1. An integrated leading edge extension (LEX) blended delta wing 

2. Tilt cockpit module 

3. Topside inlets 

4. Twin non-afterburning (dry) engines with 2 -axis gimballed nozzles 

5. Clipped delta wing with maneuvering flaps 
. 

The aircraft is area-ruled to achieve a smooth overall area distribution that 

closely matches an ideal area distribution a s  shown in Figure 2-2. This is possible 

through proper placement of the LEX, wing, inlets, and canopy in the area distribution 

plot. By locating the LEX between the canopy and inlet, a gradual area buildup in the 

total area distribution is achieved while permitting the wing area distribution to deter- 

mine the location of the maximum area, Also shown in Figure 2-2 a re  wetted area 

distribution, body fuel distribution, and in Figure 2-3, the engine duct area distribution, 

Leading-edge and trailing-edge surfaces a re  used to vary the wing camber to 

attain maximum maneuvering performance. In addition, with the absence of a hori- 

zontal tail, the trailing-edge surfaces provide pitch and roll moments. 



Reaction control jets a re  located in each wing tip to provide roll control in the 

vertical attitude. Translation, yaw, and pitch control a re  achieved through proper 

scheduling of the two-axis gimballed nozzles with additional roll control capability 

attained by the differential gimballing of the nozzles to *30 degrees. 

The location of the engine inlets above the wing permits a wide, flat, low fuse- 

lage for maximum flexibility for weapon mounting and minimum structural complica- 

tions while engaging the landing platform. In addition, this location reduces radar 

cross-section and has potential for reducing exhaust gas reingestion. 

Subsystems integption is achieved by the consideration of functional location, 

maintainability, and survivability. The functional location of systems is of primary 

importance in the reduction of weight and volume. As shown on the inboard profile, 

Figure 2-4, the location of the radar, avionics, and cockpit close together is func- 

tional in that they all require air-conditioning, and their close proximity to each other 

and the ECS minimizes ducting and temperature losses. 

~ighter/attack aircraft have long been designed to meet a high level of perfor- 

mance, while configured with little o r  no weapons. When, in the real operational 

world, these aircraft a re  loaded with external bombs and tanks, their performance 

is degraded such that they become vulnerable to attack from lower-performance air- 

craft. It has been recognized that better aircraft/weapon integration is necessary to 

improve aircraft performance and weapon delivery. 

A total of six weapon configurations are  shown on the  Conformal Stores 

Matrix, Figure 2-5. The first  five are  representative of advanced air-to-ground 

weapons concepts. The sixth represents state-of-the-art air-to-air guided wea- 

pons, with large-span fixed main lifting surfaces in  a cruciform configuration. 

This type of weapon is carried on the fuselage corners either semi-submerged 

o r  tangent-mounted. Minimum aircraft performance degradation and low detection 

signature are  primary factors that influenced the weapon configuration and 

carriage. 

The operational concept for VATOL requires special consideration of the 

aircraft crew station and launch/retrieval sys tem. Of the candidate crew station 

approaches,, a representative tilt cockpit module is indicated in Figures 2-1, 2-4 o r  

2-6. This approach avoids potential gantry interference problems with the proposed 

launch/retrieval system. The cockpit module is designed to tilt upward during landing 

transition until the fuselage is vertical, and the pilot remains in a normal landing 



i 
d 

attitude. Aircraft launch and recovery are  normally made in the vertical mode from 

ship -mounted gantries. Normal landing gear is provided to permit overload takeoffs 

and landings in a horizontal attitude. 

A diagram of the launch and retrieval concept is shown in Figure 2-6. The 

rotating platform system consists of three retractable cable tiers for aircrafk arrest- 

ment. The capturing hook mechanism is integral with the nose gear. This system 

has been configured to accomodate the relatively rapid and appreciable heave and roll 

motions expected with smaller ships. The platform, which is inclined to aid wire 

engagement and match the aircraft's pendulum position, can be rotated to bring the 

aircraft weight vector ahead of the main gear. Mechanical latching of the main gear 

is employed a s  the vertical motion is arrested. A conventional hook arrangement is 

retained to permit emergency recovery on a conventional carrier. 





FIGURE 2-1. GENERAL ARRANGEMENT 
2-7 I 
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SECTION 3 

AERODYNAMIC CHARACTERISTICS 

Aerodynamic data for the selected VATOL configuration were generated based on 

a correlation of wind tunnel test results and computed results using the NASA-Ames 

Wing-Body Program. Stability, control, and trim to high angles-of-attack were de- 

termined for a c. g. location of 0.405. The sea spray problem was analyzed through 

dimensional analysis of small-scale jet nozzle data. 

3.1 WING SELECTION 

The wing design incorporated in the VATOL concept was developed during an 

ongoing fighter technology IR&D program. The wing selection study examined a 

range of wing planforms to investigate impact on aircraft turn performance, accelera- 

tion capability, maximum speed and overall weight. The wings were configured with 

trailing edge flaps acting as  pitch trim controls (applicable to both tailless o r  zero 

trim-load tailed designs) and automatic leading-edge flaps. 

The use of negative static margin at  subsonic speeds permits the aircraft to be 

balanced such that the trailing edge flap deflection for trim, at a given lift, matches 

the setting for minimum drag due to lift, so that the aircraft is trimmed for best L/D 

over a wide range of lift coefficients. A t  supersonic speeds, the shift in aerodynamic 

center results in near-neutral static stability, again yielding the least drag due to lift 

and trim. The synergism in this approach was found applicable over the full range of 

wings evaluated. , 

Three baseline configurations using a common, fixed engine were developed, 

including detailed area ruling and weight evaluation. Perturbations in aspect ratio, 

sweep, thickness, and wing camber were made to refine and optimize each baseline. 

Throughout, a fuel sizing mission, incorporating specific cruise, subsonic turn, 

supersonic turn and acceleration segments was used to establish the minimum weight/ 

maximum performance geometry. Figure 3-1 summarizes some of the results of the 

study in the form of parameter ratios relative to the wing of this investigation. For 

the comparison shown, wing loadings were chosen to provide equal sustained turn rate 



START OF COMBAT WEIGHT 

20 30 40 

QUARTER-CHORD SWEEP - DEG. 

QUARTER-CHORD SWEEP- DEG. QUARTER-CHORD SWEEP- DEG. 

1.4 

2~ 
N Z  
A!- 

% F! 
E 8  z a  

1 .o 
20 30 40 50 20 30 40 50 

QUARTER-CHORD SWEEP DEG. QUARTER-CHORD SWEEP - DEG. 

FIGURE 3-1. WING PLANFORM SELECTION 



at M0.9 and 9144 meters (30,000 feet) altitude. This resulted in  the wings having 

approximately the same span. The advantages evidenced by  the baseline wing 

reflect a cross-sectional area distribution close-r: to ideal and a higher structural 

efficiency. 

3.2 LONGITUDINAL 

The aerodynamic analyses presented in Section 3 are  for the clean configuration 

and do not include the effect of conformal o r  external stores. 

3.2.1 Minimum Drag ' 

The minimum drag includes all drag components that a r e  independent of lift and 

engine throttle position. The reference conditions for thrust-drag bookkeeping pur- 

poses are a s  follows: 

1. Maximum open nozzle position with nozzle static pressure ratio (Pg/Pam) 

equal to unity 

2. Inlets operating at  the supercritical mass flow point a t  each Mach number, 

(spillage drag for this condition is included in the aircraft drag) 

3. Altitude of 9144 m (30,000 ft). Inlet bleed, ventilation, ram cooling drag 

increments and other components a re  included in the installed thrust 

data a s  listed in Table 4-2. 

The minimum drag components a re  presented in Figure 3-2 as  a function of 

Mach number at  the reference altitude. Variation in minimum drag level with altitude 

is shown in Figure 3-3. The detailed drag buildup for the design is included as  

Table 3-1, showing the individual drag components for several Mach numbers at  the 

reference altitude condition. The viscous drag coinponent is hr ther  broken into its 

components in Table 3-2 for M 0.5 a t  the reference altitude. 

Skin friction coefficients were obtained using charts contained in Reference 1. 

An equivalent roughness of 0.00127 cm (0.0005 in) was utilized to determine cut-off 

Reynold's number effects. Form factors were obtained from Reference 2 and an 

interference factor of 1.05 was applied to all planar surface components. 

Wave drag was calculated using the Langley Wave Drag Program outlined in 

Reference 3. Two adjustments were made to the drag levels obtained from the program. 

The first adjustment, shown in Figure 3-4, adjusts the wave drag a s  a function of 

Mach number for he input option selected in this study. To facilitate input and area 



ruling studies, the equivalent circular area input option was selected. Analysis of the 

YF-17, using both the equivalent circular area and the actual cross-section geometry 
- - - - - --- - -- - - - - 

inputs, agreed with previous NASA tests showing an increasingly optimistic drag 

level with Mach number when using the cirular input option. The adjustment in 

Figure 3-4 is based on the differences obtained in the YF-17 study. The second 

adjustment is a correction factor developed at Northrop, based on wind tunnel data, 

and applied to the wave drag of all wing and empennage surfaces. The adjustment is 

due to the fact t b t  substituting three-dimensional bodies for wing surfaces generally 

results in underestimating the wing wave drag, especially for wings of low sweep 

having supersonic leading edges. The adjustment is a function of Mach number, 

sweep angle, and thickness ratio, and i s  shown in Figure 3-5. This adjustment is on . - 

the order of *3 percent of the total wave drag estimate. - 

Subsonic canopy pressure drag was determined using data available in Ref- 

erence 4 as a function of canopy frontal area. The supersonic drag increment is 

accounted for in the wave drag data. The reference spillage drag is included in the 

minimum drag. Subsonic afterbody-nozzle drag is based on scaled YF-17 afterbody 

wind tunnel test data. The supersonic afterbody-nozzle drag is included in the wave 

drag. The drag increment for boundary layer diverters was estimated using the data 

from Reference 5 a s  a function of frontal area and included wedge angle. The transonic 

drag levels between M 0.8 and M 1.2 were based on the drag rise characteristics of 

existing aircraft. 

The remaining miscellaneous drag items include wing actuator fairings, wing 

tip pods, proturberance, gaps, vents, doors, etc. , and a re  based on Y F-17 analyses 

and data from References 4 and 6. 

The final correction applied to the minimum drag buildup is the full scale 

adjustment which is based on a comparison of analitical results with flight test data 

of the YF-17 airplane. The adjustments for subsonic and supersonic flight a re  shown 

in Figure 3-6. 

The final minimum drag for the complete airplane, given in Figure 3-2, shows 

a characteristic decrease at  subsonic speeds before the drag rise; however, a rising 

trend in the minimum drag is indicated at  supersonic speeds which contrasts with the 

constant level normally found in flight tests of high speed aircraft. This is an area 

of uncertainty needing test verification. 



! 
3.2.2 Basic Lift, Drag, and Pitching Moment 

Basic subsonic aerodynamic data for the VATOL airplane have been generated 

a t  Mach numbers of 0.6 and 0.9 for four leading edge flap deflections and a range of 

trailing edge flap deflections. The data at  M 0.6 a re  based on a correlation of wind 

tunnel test data atM 0.3 and 0.6 (References 7-10) and are, therefore, considered 

applicable to flight from M 0.6 down to low subsonic speeds. The wing-body config- 

uration tested is essentially similar to the VATOL configuration with the exception of 

the smaller LEX.which impacts primarily on the maximum lift and the maximum 

recovery moment, Methods of extrapolating the LEX size a re  explained in Sec- 

tion 3.2.5 on high angle-of-attack characteristics. However, the data at  M 0.9 a r e  

presented without LEX size correction, which means a possible underestimation of 

nose up pitching moment a t  high angle of attack. Tests a re  desirable to ascertain 

these effects, since estimation methods are  not available in the non-linear high angle- 

of-attack, transonic Mach number region. 

Lift vs. angle-of-attack data at MO, 6 a re  presented in Figures 3-7 to 3-10 for 

leading edge flap deflection of 0, 8, 16 and 24 degrees. Corresponding pitching 

moment data are  presented in Figures 3-11 to 3-14, lift-drag data in Figures 3-15 

to 3-18, and lift-drag ratios in Figures 3-19 to 3-22. Similar data for MO. 9 a re  

shown in Figures 3-23 to 3-38. Both sets of data were adjusted for effects of wing , 

twist and camber which result in changes in C C , and location of the aerodynamic 
L, mo 

center. Values of these parameters were determined from the NASA-Ames Wing- 

Body Program (Carmichael-Woodward Program, Reference 11) and incorporated in 

the results shown. 

Basic supersonic aerodynamic data have been generated at  Mach numbers of 

1.2 and 1.6 using the Carmichael-Woodward Program (Reference 11). Results a r e  

presented in Figures 3-39 to 3-46 for the case of undeflected leading-edge flaps. 

Computations with deflecied leading edge flaps indicate some reduction in drag-due- 

to-lift, even at M 1.6 (cf, Section 3.2.4 on flap schedules and trim polars). Note the 

trim line on the pitching moment plot in Figure 3-40 showing neutral static stability 

at  M 1.2 for a c. g. location of 0.40~. At M 1.6 (cf. Figure 3- 44) a slightly positive 

static margin is shown for the 40 percent c. g. location. The rationale for establishing 

the c. g. location is given in the following section on stability analysis. 



3.2.3 Longitudinal Stability Analysis 

The effect of static margin on the VATOL longitudinal aerodynamics was deter- 

mined with the aid of the Carmichael-Woodward program (Reference 11). The use 

of negative static margin at  subsonic speeds was found to permit the aircraft to be 

balanced so that the trailing edge flap deflection for trim, at  a given lift, is very 

nearly the deflection for minimum drag due to lift. At supersonic speeds, the aft 

shift in the aerodynamic center results in near-neutral static stability, again yielding 

the low drag due' to lift and trim. This synergistic approach to unstable aircraft 

design was found to give optimum performance polars with minimum trim drag penalty 

over a wide range of lift coefficients for the Mach number range of interest. 

Computations with the Carmichael-Woodward program were made showing the 

incremental effects for leading edge and trailing edge flaps, wing camber, and angle- 

of-attack, Minimum drag-due-to-lift was obtained as a function of lift and moment 

center for various control deflections. 

Results at M 0.6 for various camber distributions a re  shown in Figure 3-47. 

Comparison of the polars for the flat wing and the design-camber wing (see Sec- 

tion 3.2.7 for details), with no flap deflections shows that there is  a slight reduction 

in drag at  a given lift due to wing camber. The polar which is obtained by deflecting 

the leading- and trailing-edge flaps to achieve least drag at a given lift without a 

pitching moment constraint (untrimmed) shows a large reduction in drag over the flat 

and design-camber wings. Also shown in Figure 3-47 a re  the optimum control sur- 

face deflection both untrimmed and trimmed. A s  expected, large deflections of the 

flaps occur at the higher lift coefficients. If a trim pitching moment constraint is 

imposed, the resulting polar is changed only slightly from the untrimmed polar 

illustrating the self-trimming property of the configuration. Note the comparison 

between test correlated data and theoretical polar for optimum trim. The lower drag 

in the test polar is attibuted to a significant amount of leading-edge suction which is 

not accounted for in the analytical calculations. 

The effect of static stability on polar shape has been further studied and com- 

parisons made with the HAVSTOL configuration (Reference 12) which is a canard 

configuration. The Oswald efficiency parameter "e " is shown plotted against static 

margin in Figure 3-48. For each of the configurations, a s  the static stability is 



reduced, "en increases and then levels off with the knee of the curve being at  about 

-0.15; for the VATOL configuration, and a somewhat larger negative number for the 

HAVSTOL configuration. Current thinking is that a negative 15 percent static margin 

is about the maximum allowable from a controls point of view. Control system tech- 

nology is expected to be developed for the 1990' time period which will be capable of 

handling these levels of static instability. 

Also shown on Figure 3-48 are  test data for the VATOL configuration and for a 

configuration featuring a canard. The test data have a somewhat higher value of "eW 

because of the zero leading edge suction assumption of the theoretical method. 

On an unstable airplane, the degree of negative longitudinal stability must be 

carefully chosen to achieve the associated performance benefits without creating 

conditions in which the capabilities of the control system are  exceeded. A s  the center- 

of-gravity position also has to be fixed rather precisely because of thrust balancing 

conditions, the aerodynamic center position has to be carefully determined. Therefore, 

a considerable effort was undertaken to determine the a. c. position. A static instabil- 

ity limit of negative 15 percent was set  for subsonic speeds, and the effort was made 

to achieve neutral o r  near neutral stability at supersonic speeds. 

The basic tool for the a. c. calculations was the Carmichael-Woodward wing- 

body computer program used in conjunction with NASA and Northmp test data of 

similar configurations for a more accurate modeling of forebody effects. Previous 

experience with the wing-body program showed that the body contribution to stability 

is underestimated when compared to test results. The er ror  in computed a. c. is 

less when the body is represented as  a lifting surface rather than a body of revolution. 

For either representation i t  is necessary to establish a certain forebody geometry 

characteristic a s  a correlation parameter which most closely matches the test data 

incremental a. c. due to forebody. 

For the case of bodies of revolution, the characteristic parameter appears to 

be the produc t of the maximum cross-sectional area forward of the wing panel and the 

distance from the theoretical center of pressure (on an isolated forebody from NACA 

TR 1307) to the intersection of the body and the leading edge of the exposed root chord 

of the forward wing panel. 



The nose volume coefficient i s  not a good correlation parameter when the body 

is simulated by a low aspect ratio wing surface. A better parameter in this case is 

the product of the projected body planform area forward of the exposed forward wing 

panel and the distance to the nose center of pressure. A s  Figure 3-49 shows, in the 

range of interest in particular, good agreement of theory and test is indicated. In 

particular, the computed a. c. for the VATOL is estimated to be only 0.015E ahead 

of the test a. c. 

Results from the Carmichael-Woodward Program, corrected for forebody 

geometry, are  shown in Figure 3-50 as a function of Mach number. The aerodynamic 

center location is 0.25C at M 0 . 6  and 0.40E at M 1.2.  Thus with the CG at 0.40E the 

limiting 15 percent negative static margin exists at low subsonic speeds. 

3 .2 .4  Trim Analysis 

The basic longitudinal data presented in Section 3 .2 .2  were trimmed to a c.g. 

location of 0.40C by deflecting the trailing edge flaps. The leading edge flaps were 

varied in accordance with the deflection schedule shown in Figure 3-51, which resulted 

in conditions for minimum trimmed drag for a given lift, Mach number, and angle-of- 

attack. The corresponding trailing edge flap deflection for trim is shown in Fig- 

ure 3-52. Maximum deflection limits a re  30 degrees for the leading-edge flaps, and 

40 degrees for the trailing-edge flaps. 

These limits a re  reached only in subsonic flight, where the relatively large 

negative stability margins (-15 percent at M 0.6 and -12 percent a t  M 0.9, as  shown 

in Figure 3-50) require full control deflections for aerodynamic trim at high angles 

of attack. At supersonic speeds, the Carmichael-Woodward program indicates some 

trim benefits to accrue from leading-edge flap deflection; the corresponding trailing- 

edge flap deflections a re  small, but negative. 

For small angles of attack the optimum leading-edge flap deflections are  small 

negative angles (leading edge up). This is due to the leading edge droop in the design 

camber. The benefits which could be derived from these small deflections are 

relatively small, and do not justify the structural and controls penalty. Thus, the 

leading edge flap remains undeflected until cr = 40 at M 1 .2  and a= go at M 1.6 .  At 

the higher angles of attack there a re  benefits to be obtained from deflecting the lead- 

ing edge flap both at M 1 .2  and M 1.6 .  This is not surprising at  M 1.2, as the 



leading edge of the wing is subsonic., At M 1.6, however, the wing leading edge is 

supersonic and the result was unexpected. The benefit is apparently due to a forward 

rotation of the local wing load. The corresponding trailing edge flap deflections a re  

negative (trailing edge up) showing that the flaps are  being unloaded with angle-of- 

attack for trim at supersonic speeds. 

Optimum trim lift curves for the foregoing flap schedules are shown in Fig- 

ure  3-53 for subsonic speeds, and Figure 3-54 for supersonic speeds. The corres- 

ponding trim polars are shown, respectively, in Figures 3-55 and 3-56. Based on 

previous experience with similar planforms, the maximum spanload efficiency factor, 
2 defined as  e = CL / (nmCDL) ,  was limitedto 0.95 at M 0.6, and to 0.80 at M 0.9. 

These conditions prevail only at the lower lift coefficients, since the spanload effZ- 

ciency falls off naturally at the higher lift coefficients. 

The supersonic polars at  M 1.2 and 1.6 were obtained using the Carmichael- 

Woodward program and assuming neutral static stability; the polar at M 2.0 was 

estimated by methods presented in DATCOM. Note the trim drag penalty (18 to 19. 

counts at zero lift) resulting from the cambering effects which were built into the 

) wing design. 

The optimum trim lift-drag ratios for the full range of Mach numbers are sum- 

marized in Figure 3-57. 

3.2.5 Longitudinal High cr Aerodynamic Characteristics 

High angle of attack characteristics are of critical importance in the design of 

the VATOL configuration, as they have a great impact on transition and ST0 per- 

formance, on angle of attack restrictions in maneuvering flight, and on the quality 

of the topside inlet flowfield. In that context, the size and shape of the leading edge 

extension (LEX) is of particular importance. .Since the  high attitude aero- 

dynamics a re  not amenable to analytical prediction, they are  determined by 

judicious extrapolation of wind tunnel test  data of configurations featuring the 

same basic wing with a series of sma l l  LEXfs .  

The law speed longitudinal characteristics at  high angles of attack as affected 

by LEX size a re  shown in Figures 3-58 and 3-59. The data used in the extrapolation 

procedure could not be used directly as a number of additional configuration 



differences existed. Adjustments had to be made to account for differences in trailing ) 

edge flap span, the existence of chordwise wing root slots and saw teeth on the leading 

edges. The curves labeled test data in Figures 3-58 and 3-59 reflect these adjust- 

ments. A large amount of test data exist on tailed, but otherwise similar configura- 

tions, and attempts were also made to utilize these data. This effort was largely 

unsuccessful, as changes in downwash and resultant tail load changes due to LEX size 

variation tended to obscure the correlation trends. 

I t  was observed that the rate of increase in C 
'max 

with (exposed) LEX area was 

substantially higher on the proposed clipped delta wing than on the YF-17 wing of 

higher aspect ratio, higher taper ratio, and lower sweep. One reason is thought to 

be that the LEX vortex can influence the flow over a much larger part of the wing' 

area for the delta wing which has a larger root chord. Another reason i s  that most 

high angle-of-attack test data were obtained on confi&rations with leading edge flaps 

deflected. The leading edge flap deflection tends to increase the effective exposed 

LEX area which, in the case of the relatively small LEX1s tested on the delta wings, 

amounts to a rather large area increase. 

In using the larger effective LEX areas with flaps deflected, on the present 

configuration, a smoother trend of CL- with LEX area was established than had 

been the case when lTflaps-upll LEX areas were used in the extrapolation of the earlier 

test  data. This procedure has been used to  determine the  high angle-of-attack lift 

and moment characteristics in Figures 3-58 and 3-59. As compared to the earlier 

data, a slight reduction in C Lmax and a substantial reduction in the nose-up pitching 

moment is indicated. Recent test data from a half-span model featuring the selected 

large LEX are  in substantial agreement with the extrapolated data with the exception 

of pitching moment beyond the stall angle of attack which tended to be more positive. 

(It should be noted that the half-span model had only a rudimentary body, and there- 

fore that test data, while tending to confirm, do not supersede the data determined 

through extrapolation. ) The predicted decrease in nose-up pitching moment tends to 

ease the problems of angle-of-attack limitation in maneuvering flight. 

Aerodynamic characteristics beyond the stall are presented to 90 degrees angle- 

of-attack in Figures 3-60 to 3-62. The results a re  based on low-speed high-attitude 

tests of the VATOL wing which have been run with smaller size LEXTs. The lift curve 

(Figure 3-60) is shown to have a smooth and gradual fall-off past the stall. This i s  



! 
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believed the result of proper design of the LEX which governs the vortex-flow over 

the wing. Such pos t-s tall lift behavior is important in alleviating transition difficulties 

during decelerating flight, where the aircraft is required to rotate through 90 degrees 

angle-of-attack range (Section 6.2) .  

C Estimation. The estimate of usable Chm as a function of Mach number 
Lmax 

is presented in Figure 3-63. Subsonic C L ~ ,  values represent trim limits achieved 

with maximum trailing edge flap deflection rather than aerodynamic limits. With the 

flap being at  its maximum deflection, a nose-down recovery must be made using thrust 

vectoring. In maneuvering flight entailing high pitch rates, the maximum angle of 

attack may have to be limited to prevent an overshoot into an uncontrollable post-stall 

flight condition. This may result in a decrease in the usable C L ~ ~ ~ .  On the other 

hand, a t  low speeds and certainly during transition flight, no angle-of-attack limits 

exist and the true aerodynamic C L ~ ,  = 1.64 can be obtained when thrust vectoring 

is employed for t r i m .  

At supersonic speeds, no trim limits exist as the airplane is essentially 

neutrally stable. Limitations arise from inlet operations on top of the wing. The 

inlet is designed for a maximum Mach number of 2.0 ,  and the angle of attack a t  

which the local Mach number i s  2.0 was used to determine Chax at the higher Mach 

numbers. 

Buffet Onset. Buffet onset lift coefficients were estimated using wind tunnel 

test data from Reference 7. As previously noted, the wing which was tested had the 
- .  . 

same planform a s  the V A T ~ L  aircraft- The balance roll k i n  gauge dynamics output 

was recorded and the root mean square calculated. The angle of attack a t  which the 

root mean square of the ralling moment showed a significant increase was used to 

determine buffet onset. These data a r e  shown in Figure 3-64 for various Mach 

numbers and leading and trailing edge flap deflections, Leading and trailing edge 

flaps, individually and in combination, a r e  seen to increase the buffet onset boundary, 

The buffet onset curve is similar to the CL,,, curve a t  subsonic Mach numbers a s  

expected. At supersonic Mach numbers no buffet is expected to C L , ~ .  



3.2.6 Aerodynamic Control Effectiveness 

Longitudinal control effectiveness for the VATOL airplane was determined 

using wind tunnel test data a t  subsonic speeds and Carmichael-Woodward Program 

calculations at  supersonic speeds. Trailing-edge flap effectiveness data a r e  presented 

for M0.6, 0.9, 1.2 and 1.6 in Section 3.2 .2 . .  At subsonic speeds, flap effective- , 

ness is seen to decrease with angl-e-of-attack a s  full flap deflection is  reached. Fig- 

ures 3-7 and 3-10, for example, show the fall off in flap effectiveness at  maximum 

lift conditions a s  the trailing-edge flaps are  deflected from 0 to 40 degrees. Similarly, 

Figures 3-14 and 3-30 show the decrease in longitudinal control effectiveness a s  the 

flaps are  deflected from 0 to 40 degrees. Some fall off in effectiveness i s  also 

expected a t  supersonic speeds, although linear variation in the computing method" 

prevents i ts  prediction. In any case, flap control r e l i r emen t s  a re  less at supersonic 

speeds since the aerodynamic center is coincident with the c.g. at M 1.2, and only 

slightly behind the c. g . a t  M 1.6. Note that the maximum angle-of-attack for pitch 

recovery with fully deflected flaps is  about 19 degrees at M 0.6 and 18 degrees at 

M 0.9, as indicated in Figures 3-14 and 3-30. Thrust vectoring would be required 

above these values to reach the maximum aerodynamic lift shown on the trim lift 

curves in Figure 3-53. At supersonic speeds of M 1.2 and above, the maximum 

angle-of-attack is limited only by the airflow requirements to the topside inlet. 

3.2.7 Wing-Body Camber 

The conventional approach to wing-body camber design has been to first  deter- 

mine the wing camber which minimizes drag for a specified lift and pitching moment 

coefficient at  a given Mach number. The body area i s  then wrapped around the wing 

such that the body area growth is the same above and below the projected wing camber 

surface within the body. This approach i s  deficient in two important areas. First,  

the body i s  essentially uncambered in the spanwise direction so that the wing camber 

in this region is greatly modified by the presence of the body. Second, the optimum 

camber for the wing in the presence of the body is expected to be quite different from 

the wing-alone camber. Additionally, the use of pressure loadings in the optimization 

procedure precludes the imposition of geometric constraints such as  a straight line 

for a control hinge. 



": 
An alternate approach has been developed which uses a selection of a number of 

component distributions of camber and twist. Each of the component shapes embodies 

desired geometric constraints so that any combination of the shapes will also satisfy I 

the same constraints. The bodies are  modeled as  thin cambered surfaces based on 

previous comparisons with wind tunnel test data. The model configurations were 

divided into ten equal width chordwise strips (Figure 3-65). Appropriate element 

distributions were selected along each strip (not shown in Figure 3-65) such that a 

total of 115 elements were used. 

The Carmichael-Woodward computer program was used for the calculations. 

The configuration was analyzed a s  a flat planform and with various combinations of 

control surface deflections a t  MI. 2. The results of these calculations a r e  . 

tions are summarized in Table 3-3. 

An optimum distribution of wing camber with limited twist was also calculated 

for the configuration. The design conditions were M 1.2, a lift coefficient of 0.2, 

and zero pitching moment coefficient. This design condition was selected from con- 

siderations of both maneuvering and cruise at  M 1.2. I t  represents a lift coefficient 

'l which is approximately mid-way between cruise and sustained turn at 9,144 m 

(30,000 ft.).  Geometry, rather than pressure control modes were selected for these 

calculations with constraints of straight flap hinge lines and single curvature body 

camber. Geometry modes also facilitate the optimization of control surface deflec- 

tions at off-design conditions. The selected modes are listed in Table 3-4. The "root" 

designation means that the particular mode varies from a nominal value at the wing 

root to zero at  the tip. For the "tipv designation, the variation is from a nominal 

value at the wing tip to zero at  the root. The root is  defined a s  the airplane center 

line, but the wing camber is  only effective outboard of the body which is  defined 

separately. 

The Carmichael-Woodward program was used to calculate the aerodynamic load 

distribution for each mode. The interference drag terms between modes were then 

calculated. The optimum combination of modes was calculated to minimize the wave 

drag due to lift at the design conditions cited above. The VATOL design was optimized 

for body camber, leading edge extension (LEX) camber and twist, and wing camber 

and twist. The configuration was initially optimized with zero leading and trailing 

edge flap deflections a t  the design point. The resulting surfaces had unacceptably 



high values of twist so that a limit was placed on the twist. Flap deflection modes 

were introduced to reoptimize. Again, the criterion was trim and minimum drag 

over the appropriate angle of attack range. These results are summarized in 

Table 3-5. The design mean lines along the center line of each chordwise strip a re  

shown twice scale in Figure 3-65. 



TABLE 3-1. MINIMUM DRAG BUILDUP BY COMPONENT 

I COMPONENT MO. 3 M0.6 M0.9 M1.2 M1.6 

I 

i WAVE/DRAG RISE . 0000 .0000 ,0011 ,0135 .0175 

SUBSONIC CANOPY .0002 ,0002 ,0002 (IN WAVE DRAG) 

SUBSONIC AFTERBODY NOZZLE .0009 .0009 .0009 (IN WAVE DRAG) 

SPILLAGE . 0000 .OOOO .0001 .0011 ,0002 

BOUNDARY LAYER DIVERTER . 0000 ,0000 ,0002 .0005 .0010 

MISCELLANEOUS .0009 .0009 .0012 .0026 .0025 

FULL SCALE ADJUSTMENT .0014 .0014 .0014 -. 0010 .0015 

TOTAL .0124 .0115 .0124 .0233 
- - -  A- - - - - - - - -- - - - OY 



TABLE 3-2. VISCOUS DRAG BUILDUP BY COMPONENT 



TABLE 3-3. DRAG DUE TO LIFT WITH NO CAMBER, M1.2 

TRIMMED WITH: 

T.E. FLAPS 

OPT L.E. AND T.E.  FLAPS 

TABLE 3-4 GEOMETRY DESIGN MODES 

T I P  L.E. DROOP 
ROOT CAMBER 
T I P  CAMBER 
ROOT REFLEX 
BODY BEND 
BODY CAMBER 
LEX ANGLE OF ATTACK 
LEX LINEAR TWIST 



TABLE 3-5. DRAG DUE TO LIFT WITH DESIGN CAMBER, M1.2 

UNTRIbIMED : UNCAMBERED 
(REF. TABLE 3-3) 

T.E. FLAPS 

OPT. L.E. AND T.E. FLAPS 
f I I 
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FIGURE 3-10. L I F T  VS ANGLE OF ATTACK AT M 5 0 . 6 , k  = 24O 





























































FIGURE 3-40. TRAILINGEDGE FLAP EFFECTIVENESS AT M 1.2,  6,"o 









FIGURE 3-44. TRAILING-EDGE FLAP EFFECTIVENESS AT M 1.6, 6 =O 
n 









VATOL (w/o canard)' 







FIGURE 3-51. LEADING-EDGE FLAP SCHEDULE 
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FIGURE 3-52. OPTIMUM 'J3AILING-EDGE FLAP DEFLECTION FOR TRIM 
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FIGURE 3-59. EFFECT OF LEX SIZE ON PITCHING MOMENT AT ANGLE OF ATTACK 
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FIGURE 3-63. MAXIMUM USEABLE LIFT 







a 3.3 LATERAL/DIRE CTIONAL ANALYSIS 

Lateral /~irectional  data a r e  presented in the body axes system for a rigid air- 

craft with a reference moment center of O.40E. The data a r e  derived essentially from 

wind tunnel test results. 

3 . 3 . 1  Lateral /Directional Stability 
- 

A Northrop transonic wind tunnel test (NAL-171) of a tailless design having the 

same wing planform (but a smaller LEX) and a very similar vertical tail planform 

compared to the VATOL configuration, was used as  a data base which was suitably 

modified by theory to obtain the estimated lateral/directional data. The test body 

characteris tics, A Cy and A Cn, as a function of a, and (3, were estimated and sub- 

tracted from the wing body test data. The body alone A C1 was assumed negligible 

(body axes). The VATOL body characteristics were similarly estimated and added 

back in. The body estimation procedure used modified incremental slender body 

theory, a technique which has been found to give reasonable approximations in most 

cases. A self-correcting tendency is inherent in the process just described, provided 

consistency in the body estimation details is maintained. The wind tunnel test model 

was nominally a midwing configuration with zero dihedral. The VATOL is essentially 

a midwing configuration also, but with three degrees of cathedral. Corrections were 

made to VATOL for three degrees of cathedral, using standard DATCOM procedures. 

The vertical tail effects were then estimated, using the test data modified by 

moment area relationships, and added in to the wing body estimates. The effects of 

the increased LEX size, relative to the model tested, a r e  difficult to estimate in the 

absence of specifically applicable test data because of the strong aerodynamic inter- 

relationship of the LEX, wing and vertical tail surfaces. For  the VATOL configura- 

tion, it was assumed on the basis of Northrop test experience, that the lateral/ 

directional stability would fall off less  rapidly because of the increased LEX size at  

angles of attack above twenty degrees. This beneficial effect may require wind tunnel 

investigation, particularly with regard to vertical tail location. 

Wind tunnel  t e s t  data were available as a base for  M0.6, 0.9, and 1.2, but 

not a t  1.6. As a result, t he  data had t o  be  extrapolated t o  1.6, using trends 

characteristic of delta wing airplanes, and a r e  therefore not as well substantial- 

ized a t  1.6 a s  a t  t he  other  Mach numbers. 

The  stat ic  lateralldirectional parameters C Cn and  Cl are plotted a t  
Y' 

constant angles of attack versus  sideslip angle for  M0.6, 0.9, . 1 . 2  and  1.6 in  



Figures 3-66 through 3-77. Each figure shows the configuration with the vertical tail 

off and on. The controls a r e  fixed at  zero deflection angle in these figures, but will 

in fact move as  required to supplement the aerodynamic stability characteristics 

via the active control system. 

Side force due to sideslip is shown in Figures 3-66 through 3-69. Conventional 

trends a r e  apparent for the wing-body and wing-body vertical tail configurations. The 

fixed-vertical-tail directional stability of the complete configuration, as seen in Fig- 

ures  3-70 through 3-73, is positive for  the low and moderate range of angles of attack. 

Adequate aerodynamic directional control is available via the vertical tail a t  the 

higher angles of attack to provide apparent stability even a t  statically unstable con- 

ditions. The corresponding dihedral effect, Figures 3-74 through 3-77, is favorable 

for  much of the angle of attack and sideslip range shown without the active control 

system, although the goal of good flying qualities and control harmony will dictate the 

active control system stability inputs. - 
- 

As a result of the use of electronic adaptive flight control systems, the stability 

and control characteristics of the aircraft a r e  not'as clearly related to the static 

aerodynamic parameters a s  they have been for the more conventional control systems. 

The apparent aircraft stability is ,  instead, a combined function of the aerodynamic 

stability, the aerodynamic control power, and the control system mechanization. 

Angle of attack or sideslip limitations can be designed into the control system to avoid 

any situation where the aircraft aerodynamics might lead to an uncontrollable condi- 

tion. This section of the report does not treat the control system, and the reader is 

referred to Section 5.2. 

3.3.2 ~ a t e r a l  /~ i rec t iona l  Control Effectiveness 

Control effectiveness of the all movable vertical tail and of the elevons in roll 

was estimated by correcting the wind tunnel test data described in 3.3.1 using moment 

area  relationships. The vertical tail was sized to satisfy the cross  wind landing 

requirement of -MIL-F-8785B (ASG) for  conventional aircraft. The vertical tail is not 

required for trim, in a failed engine case, as the thrust line of the remaining engine 

can be vectored to pass through the center of gravity to eliminate assymmetric thrust 

moments. 

Vertical tail and elevon roll control effectiveness a r e  presented in derivative 

form versus angle of attack for  M0.6, 0.9, 1.2 and 1.6. 



Figures 3-78 through 3-81 present the control power derivatives of the all 

movable vertical tail. The vertical tail provides good directional control power to 

high angles of attack a t  all  Mach numbers. The rolling moment due to vertical tail 

deflection is small. The comparatively small s ize of the vertical tail warrants more 

careful scrutiny throughout the flight envelope than was possible in this conceptual 

study . 
Elevon roll  control power appears in Figures 3-82 through 3-85. The rol l  

control power holds up well to high angles of attack except a t  M 0.9 where i t  falls to 

about 15 percent of i ts  a= 0 value a t  a= 26 degrees. The yawing moment due to roll  

control is very small. 



FIGURE 3-66.  SIDE FORCE AT M 0.6 
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FIGURE 3-67. SIDE FORCE AT M 0.9 
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FIGURE 3-68. SIDE FORCE AT M 1.2 
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FIGURE 3-69. SIDE FORCE AT M 1.6 
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- FIGURE 3-70. YAWING MOMENT AT M 0.6 
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FIGURE 3-71. YAWING MOMENT AT M 0.9 
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FIGURE 3-74. ROLLING MOMENT AT M 0.6 
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FIGURE 3-75. ROLLING MOMENT AT M 0.9 
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FIGURE 3-80. VERTICAL TAIL CONTROL EFFECTIVENESS AT M 1.2 
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FIGURE 3-81. VERTICAL TAIL CONTROL EFFECTIVENESS AT M 1.6 
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3 . 4  PROPULSION INDUCED EFFECTS 

A vertical attitude vehicle inherently minimizes propulsive lift interference 

problems and ingestion of exhaust gases. In contrast to the horizontal attitude 

configuration, neither large nozzle deflections nor multiple exhaust locations a r e  

required. However, there is the potential for generation of sea  spray which could 

intefere with pilot visibility, be ingested into the engine and impinge on aircraft 

structure. A limited study of available data has been made, a simple correlation 

formula generated and spray height estimates made. 

Experiments done, with small-scale je t  nozzles a t  NASA Langley and observa- 

tions of the X-13 suggest that operation of a VATOL vehicle may produce considerable 

sa l t  water spray. The effects of this spray on visibility, corrosion, and thrust loss 

(due to water ingestion) could be considerable. Although a few experiments have been 

conducted with scale model jets to determine spray height as a function of various 

flow parameters (references 13 and 14), none resulted in a parametric formula for  

spray height that satisfactorily predicts full-scale results.  This section presents the 

results  of an analysis to find a parameter which correlates the available jet nozzle 

d a t a ,  so  tha t  t h e  s p r a y  height  for  t h e  configuration may be estimated. 

Considering the physics of this problem, spray height (HS) is assumed to be a 

function of the nozzle exit dynamic pressure (QN), the height of the nozzle above the 

water's surface (HN), the nozzle diameter (D), the density of the water (pW), and the 

acceleration due to gravity (g). 

Thus, 

Writing HS a s  a power series ,  

D ~ $ W  wgh in which CaPyEk a r e  constants, 
&'=-a @=-a €=-a, 

3 

Dimensional analysis shows that 



and 

s o  that 

Data on the spray height produced by jet nozzles, expressed in the form of the 

parameters used in this analysis (QN, HN, D) were obtained from Richard Kuhn of 

NASA Langley, and are summarized in Table 3-6. Data on the X-13 airplane was 

obtained from photographs of the aircraft in operation. These data a r e  used to deter- 

mine or, @ and C. To determine n; HN and D a r e  held constant. This gives the relation 

HS = 1 K&{ where tTKQ" is a constant. 

This is seen plotted on log-log scale in Figure 3-86 for  a number of values of 

HN and D. I t  is observed that the data for  each HN/D lie reasonably well on a straight 

line. The slopes of these lines were determined using a linear regression curve fitting 

procedure. The value of cr is determined from the average of the slopes of these 

lines. 

This gives 



Note that this dimensionless equation contains the group (Q /p gH ) which is N w  N 
a Froud number for  this problem. The Froud number is an important scaling para- 

meter for  systems involving the free surface behavior of water (reference 15). 

The value of P is determined in a similar manner. The data have been plotted 

on log-log scale in Figure 3-87. A linear regression curve fitting procedure was 

used to determine a line through these points. The resulting equation is: 

= 0.539 log (%) + log (0.1407) 

This becomes, upon rearranging, 

indicating that 

and 

The final ecpation for estimating spray height in terms of nondimensional 

quantities is 

The data a r e  plotted in Figure 3-88, a s  a function of the calculated value of 

H S / H N  Although there is a great  deal of scatter, the results appear to be randomly 

spread about the predicted values. Note that the full scale X-13 points lie very close 

to the predicted values. Also noCe that essentially all of the data lies within 20 percent 

of the predicted values. For an analysis of this sort, 20 percent e r ro r  is most 

reasonable. 



The following approximations of the VATOL spray height a re  based on the 

information and assumptions in Table 3-7. Nozzle conditions a t  maximum power are 

used for both takeoff and landing. The equivalent jet diameter is 

where D = diameter of a single jet with the same area a s  the two VATOL jets. 

Spray heights calculated for operation from two types of carr iers  are: 

Figure 3-89 is a carpet plot showing how each of the physical parameters affects 

the spray height. Two X-13 operating points, as well a s  the operating points for the 

VATOL configuration during both takeoff and landing for the two different carriers ,  

a r e  indicated on this plot. 

Takeoff 

Landing 

Clearly, more test data on this problem, particularly for large nozzle diameters 

(1-2 feet) and high nozzle dynamic pressures (1000-3000 lbs/ft2), a r e  needed before 

an accurate prediction of spray height can be made. The effects of temperature, 

insofar a s  steam may be produced, have been ignored and should be investigated in 

future tests. In spite of this, an estimate of spray height can be made using the 

empirical equation derived here. For  the VATOL concept operating from an LPH 

carr ier ,  spray heights between 70 and 96 feet a r e  predicted, and between 55 and 

75 feet for the VATOL operating from a CVH carrier .  This spray will clearly affect 

the operating environment of the aircraft in takeoff and landing and is a potentially 

serious problem. 

LPH 

HS, m (ft) 

29.3 (96) 

21.3 (70) 

CVN 

HS, m (ft) 

22.9 (75) 

16.8 (55) 
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FIGURE 3-86. CORRELATION OF SPRAY HEIGHT FOR VARYING 
NOZZLE HEIGHT AND DYNAMIC-PRESSURE 
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FIGURE 3-87. CORRELATION OF SPRAY HEIGHT DATA 







3.5 CONTROLS BLENDING 

Stability and control estimates show positive aerodynamic effects throughout 

most of the angle of attack range of interest. Propulsion-induced airflows a r e  

expected to add to the innate aerodynamic characteristics.  Only a t  high angle of 

attack combined with sideslip, large unstable yawing moments a r e  developed. The 

yawing moment available from vertical tail and nozzle deflections, however, a r e  

assumed adequate to trim these moments. 

Providing adequate roll  control is the most critical requirement for a VATOL 

vehicle. During a landing t r ~ s i t i o n ,  especially when deceleration takes place along 

a sloping flight path, the engines a r e  temporarily at a rather  low thrust setting while 

the airplane pitches through the CL,, regime. As aileron roll  control is lost within 

that range, al l  roll  control must come from differential main nozzle deflection and 

wing tip reaction control, both of which a r e  affected by low engine power. Roll control 

available from anti-symmetric main nozzle deflection for the landing transition case 

is given in Figure 3-90. Using 1.4 rad/sec2 a s  the roll  control requirement(l), i t  

is shown that this can be achieved down to a thrust setting of 64.6 kN (14,500 lb), 

(i. e. , 42 percent of maximum thrust) given a maximum differential deflection of 

i30 degrees. If wing tip reaction control is added, assuming that 5 percent airflow 

can be bled from the compressor, the minimum engine thrust a t  which the specified 

roll control can  b e  achieved d rops  t o  about 22.24 kN ( 5000 lb) as shown in 

Figure 3-91. 

( " ~ e a n  value of roll control requirement range specified in AGARD 577. 
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FIGURE 3-91. TOTAL ROLL CONTROL POWER 



SECTION 4 

PROPULSION CHARACTERISTICS 

An advanced turbojet engine as  described by Pratt and Whitney in PWA Report 

INST. 801 was selected for this study. The concept is an unaugmented single spool 

engine with variable turbine area. The high turbine inlet temperature capability of the 

engine provides a large engine thrust-to-weight ratio. 

4.1 ENGINE SELECTION AND DESCRIPTION 

The Pratt and Whitney Parametric Variable Turbine Geometry Turbojet Engine 

computer program (CCD 0260) was used to obtain engine characteristics. This deck 

allows the simulation of dry or afterburning engines incorporating a variable turbine 

inlet temperature and engine scheduling. The program estimates engine performance 

s%) 
and weights based on mid-1980's technology and will be slightly conservative for the 

time period in question, 

The selected engine and its static performance a re  illustrated in Figure 4-1. 

The turbojet was selected for the high level of thrust available a t  high speed without 

afterburner. In this manner, the engine can be sized for takeoff conditions, and the 

engine weight is minimized. The high turbine inlet temperature also minimizes the 

engine weight. The non-afterburning concept was chosen for its lower SFC at maxi- 

mum power enhancing persistence in hover and combat tasks. Further, the exhaust 

gas and hot metal temperatures, although comparatively high, a r e  still lower than those 

which would result from an afterburning engine and, as such, will result in a reduced 

infrared signature of the vehicle. One disadvantage of the dry engine concept is the 

SFC r ise  associated with cruise and loiter operation where the engine will operate a t  

a lower percentage of intermediate power. This is minimized by the use of a variable 

turbine for which the rise in SFC at low power is delayed considerably. The var- 

iable turbine will also reduce inlet spillage drag  a t  reduced throttle settings since 

the engine will  operate a t  a high airflow over a wide range of operational conditions. 



4.2 PROPULSION TRADES 

The vehicle makes use of an advanced technology dry turbojet engine. In the 

selection of the cycle using this concept, the tradeoff between engine weight and fuel 

weight caused by varying cycle pressure ratio must be considered. An analysis was 

made to determine the optimum cycle pressure ratio for the VATOL turbojet engine. 

In this analysis, the maximum turbine inlet temperature was held constant (Tqmax - - 
3200'~). 

The study of the effects of cycle pressure ratio on engine cycle selection was 

performed with the Pratt and Whitney Variable Geometry Turbine Turbojet computer 

program (CCD 0260). An engine performance installation deck, representative of the 

engine installation, was used in conjunction with the PWA cycle deck to obtain installed 

engine data. 

Four engine cycles varying in cycle pressure ratio were studied. The pressure 

ratios ranged from 12 to 25. 

In order to evaluate the overall effects of cycle pressure ratio on aircraft per- 

formance, a mission performance study was made. A fighter escort mission, as 

shown in Table 4-1, was selected. In this table, fuel consumption i s  shown for the 

various mission segments for aircraft using an engine pressure ratio (12) and an 

engine pressure ratio of 20. 

In making this comparison, aircraft gross takeoff weight was held constant, 

while the fuel weight was reduced by the engine weight increment. The results showed 

a substantial improvement in mission radius a s  the engine pressure ratio was increased 

(the airplane configuration was virtually unaffected). A 13 percent increase in radius 

capability resulted from an increase in the engine pressure ratio from 12 to 20. The 

engine size necessary for the design sustained load factor capability (nZ = 6.2g, 

M 0.6, 3.05 km altitude) showed a small increase of about 0.6 kN (130 lb) per engine 

in terms of rated thrust. 

For the change in pressure ratio from 12 to 20, the engine weight increased by 

less than 20 kg (50 lb), the length increased by less than 30 cm (12 in), and the dia- 

meter decreased by less than 8 cm (3 in). The resulting maximum wetted area vari- 
2 2 ation for the design was less than O.2m (3 ft ). The change in drag would be less 

than inherent e r rors  in the drag estimation procedure. 



I 
Increases in the pressure ratio above 20 produced performance improvements 

at  a reduced rate, and the benefits became more difficult to substantiate. Such higher 

pressure ratios would most likely require twin-spool arrangements. In addition, more 

detailed analyses considering engine design, complexities and costs would be required 

to determine an optimum design pressure ratio. In anticipation of only minor perform- 

ance improvements, these more exhaustive studies were not justified at this stage of 

development. Thus, a pressure ratio of 20 was selected a s  the engine pressure ratio. 

4.3 AIR INDUCTION SYSTEM 

The air  induction system is designed to operate efficiently at  the critical takeoff, 

maneuvering, and maximum speed conditions. The baseline design concept features 

a 2-D topside inlet arrangement which has certain advantages such as  RCS reduction, 

FOD problem reduction, and relaxation of lower fuselage constraints associated with 

landing gear placement, location of stores, store/inlet interference, access doors, etc. 

The inlet has a fixed-seven degree ramp with shock-on-lip operation a t  a local 

inlet M 2.0 (M, 1.8). The configuration utilizes a horizontal ramp. 

S The leading edge extension (LEX) on the wing provides a favorable flow field for 

surface of the aircraft. The 7-degree ramp provides a good compromise between 

recovery and spillage over the required Mach range. Pressure recovery at  takeoff 

and transition is improved by the use of auxiliary inlet doors located in the duct imme- 

diately upstream of the compressor face. These doors a r e  sized to minimize the 

amount of a i r  passing through the main inlet, thus minimizing lip-induced pressure 

losses. Spillage drag for the main inlet is  held to a minimum by proper scheduling of 

the variable turbine features of the engine. 

The sized, main air inlet has the following characteristics (per engine): 

2 2 4613cm (715 in ) capture area 

2 2 e 3620cm (561in ) throat area 

Inlet lip thickness of 1.3cm (1/2 in) 

2 2 The auxiliary inlet doors a r e  sized to provide 4335cm (672 in ) of flow area. The 

inlet duct area  distribution i s  shown in Figure 2-3. The main inlet system incorpo- 

rates a ramp bleed system which removes most of the ramp boundary layer, improves 

pressure recovery, and lessens shock/boundary layer interaction problems. This 



type of ramp bleed system is used on the F- 17 a i r  induction system. Tests have shown 

it capable of providing stable inlet operation to flight speeds of M 2.2. 

TOPSIDE FLOW FIELD EFFECTS 

The leading edge extension (LEX) on the wing provides a favorable flow field for 

the air inlets located above the rear  part of the wing. The strong vortices generated 

by the LEX improve the upper fuselage flow field at  angle of attack by removing the 

low energy boundary layer flow outboard and replenishing it with high energy external 

flow. Furthermore, the downwash induced on the center plane serves to align the flow 

with the upper fuselage, even a t  considerable heights above the fuselage. Previous 

aerodynamic investigations have shown the vortex system is stable to relatively high 

angles of attack, thus providing the desired inlet flow field characteristics a t  all 

maneuvering conditions. The vortex system eventually breaks down at very high 

angles of attack/sideslip as  a result of the increasing adverse pressure gradients on 

the upper wing fuselage. Vortex stability i s  achieved by proper shaping of the LEX 

planform. Test data generated a t  Northrop provided design guidance. 

A low speed wind tunnel test has been conducted on an advanced fighter model 

having the same wing, LEX planform, and inlet location a s  the VATOL concept. 

Figure 4-2 shows experimental low speed (M 0.3) a/p envelopes for an inlet pressure 

recovery of 0.99. The effects of L EX-off, wing height, and leading edge flap deflec- 

tion on the cr/p envelopes a r e  also shown. Figure 4-2 shows that an inlet recovery of 

0.99 can be obtained for angles of attack up to 40' within a sideslip range of *6O. The 

data indicate that the inlets should operate satisfactorily up to a high angle of attack 

with moderate sideslip. During the very low speed portion (M < 0.2) of the VATOL 

landing transition maneuver, however, the aircraft angle of attack may exceed 90'. 

High inlet recovery should still be obtainable by use of the auxiliary inlet doors at this 

very low speed condition. 

4.5 EXHAUST NOZ ZLE/AFT END DESIGN APPROACH 

The exhaust nozzles a r e  of the variable geometry, balanced beam, axisyrnmetric 

type used with the PWA FlOO turbofan engine. This type of nozzle can schedule throat 

area and exit area independently so a s  to provide nearly optimum thrust for a wide 



i 
range of flight conditions. The nozzle has a gimbal capability of 30 degrees in the pitch 

plane and 15 degrees in the yaw plane. This provides the pitch, yaw, and roll control 

capability (differential gimballing) required of the propulsion system during VTOL 

flight. The engines have been placed close together to provide smooth aft end slopes 

similar to the approach taken in the F-17/F-18 aircraft. 

4.6 ENGINE INSTALLATION LOSS ASSESSMENT 

Propulsion installation losses can be divided into two categories: (1) engine cycle 

losses, and (2) propulsion-related subsystem losses. Installation factors causing 

engine cycle performance losses are: 

a. Extraction horsepower for aircraft power systems (hydraulic and electrical). 

b. Engine a i r  bleed for the environmental control system. 

c. Inlet total pressure recovery. 

Drag components assigned to the propulsion system alr! a s  follows: 

a. Environmental Control System (ECS) and avionics system cooling airflow 

momentum losses. 

b. Engine bay ventilation airflow momentum loss. 

c. Inlet ramp and/or throat bleed airflow momentum losses. 

d. Inlet spillage drag. 

e.  Throttle-affected nozzle/afterbody drag. 

The engine installation computer program is written such that the engine cycle 

losses a r e  computed by the engine manufacturer's cycle deck (CCD0260). The com- 

pressor bleed flow rates a r e  shown in Figure 4.3. They vary from 0.5 kg/sec cl. 1 

lb/sec) at sea level to about 0.14 kg/sec (0.3 lb/sec) at  15.2 km (50,000 A) altitude. 

The external losses a r e  calculated by a program developed specifically by Northrop 

for the aircraft installation. The assessments of these propulsion loss items a r e  

summarized in Table 4-2. The thrust-drag bookkeeping procedure relative to the 

inlet spillage and afterbody drags is the same as  the "Navyw procedure used for the 

F-18. In this procedure, at Mach numbers of and above one, the critical inlet spillage 

drag is assigned to the aircraft minimum drag. Only the subcritical portion of the 



spillage drag is assigned to the propulsion system. Throttle-dependent nozzle/afterbody 

drag is handled in the same manner. The reference condition is a wide-open, fully- 

expanded flow, cylindrical nozzle. Since this is the same reference condition assumed 

by the aerodynamic group, there is no need to add another drag increment to the air- 

craft minimum drag. 

Typical build-ups of installed thrust losses at  maximum power for M0.6 and 

MO. 9 at 3 k m  (10,000 ft) altitude a re  shown in Figure 4-4. The build-ups for M1. 2 

and MI. 8 at  11 lim (36089 ft) a re  shown in Figure 4-5. These figures show that for 

subsonic and transonic Mach numbers, installed thrust losses at maximum power a r e  

only 4 percent or  less. At higher supersonic speeds, however, these losses increase 

rapidly to 35 percent at  MI. 8. The reasons a r e  increasing inlet recovery loss and 

increasing spillage drag. 

The effect of the tropical day atmosphere (T - 305O~, sea level) on installed 

engine takeoff performance was calculated with the installation program. 

4.7 INSTALLED ENGINE PERFORMANCE 

Installed engine performance was obtained for intermediate (maximum dry) and 

cruise power settings over the range of Mach numbers from 0 to 2.4 and altitudes from 

sea level to 18.3 km (60 kft). However, the data a re  proprietary to Pratt and Whitney 

and are  therefore not included in this report. 

4.8 REACTION CONTROLS 

In the hover and transition flight regimes, roll control is provided primarily by 

wingtip mounted reaction nozzle jets. Additional roll control capability is obtained by 

differential deflections of the gimballed main engine nozzles. This helps to reduce the 

size of the reaction control system, compressor'bleed air  requirements, ard installed 

engine performance losses. The reaction control system is composed of a left hand 

and right hand subsystem. Each subsystem consists of a (1) feeder pipe which trans- 

fers bleed air  from the engine compressor through the wing to (2) a wingtip plenum 

chamber, and then exhausted through (3) a reaction nozzle to create thrust and rolling 

moment. The reaction control subsystem for each wing has been designed for a maxi- 

mum flow rate of 2.5 kg/sec (5.5 lb/sec). The compressor bleed air  is supplied at a 



,) stagnation temperature of 730 '~  (850'~) and pressure of 1630 k ~ / m  2 (236 psia). To 

ensure low feed pipe pressure losses, the pipe is sized so that the pipe flow Mach 

number is only 0.2 at  the maximum flow rate. This means a pipe inner diameter 

of 6.4 cm (2.5 in). The wingtip reaction nozzle is of the convergent type and has an 

exit diameter of 3.7 cm (1.6 in). The maximum reaction thrust from each wingtip 

nozzle i s  2 kN (450 lb) . 



TABLE 4-1. F I G H T E R  ESCORT S I Z I N G  M I S S I O N  

MISSION EVENT 

START, T.O. TRANSITION AND 
ACCELERATE TO BEST CLIMB 
SPEED 

CLIMB TO BEST CRUISE ALTITUDE 

CRUISE OUT 

DESCENT TO 9144 rn (30,000 ft) 

TASK ORIENTED COMBAT 

TOTAL FUEL 

F 

G 

H 

I 

I RADIUS 
FUEL REQUIREMENT BASIS 

CLIMB TO BEST CRUISE ALTITUDE 

CRUISE BACK 

DESCENT TO S.L. 

RESERVES AND LANDING 

45 SEC EACH, INTERMEDIATE AND MAX 
THRUST (VSTOL MODE). 1 MIN INTERMEDIATE 
THRUST (UP-AND-AWAY MODE) (S.L. 
TROPICAL DAY) 

MAX RIC AT INTERMEDIfiTE THRUST 

BEST ALTITUDE AND MACH NO 

NO DISTANCE OR FUEL CREDIT 

(1 ) ACCELERATION FROM M0.8 TO M 1.2.9144 rn 
(30,000 FT) 

(2) 360' SUSTAINED TURNS AT MI. 2.30,000 FT 
(4) 360' SUSTAINED TURNS AT MO. 6. 10,000 FT 

MAX RIC AT INTERMEDIATE THRUST FROM 
20,000 FT 

BEST ALTITUDE AND MACH NO 

NO DISTANCE OR FUEL CREDIT 

VSTOL MODE 1 MIN EACH INTERMEDIATE 
AND MAX THRUST ALLOWANCE UP AND- 
AWAY MODE 10 MIN AT BEST LOITER 
SPEED PLUS 5% INTERNAL FUEL RESERVE 

FUEL USED I 
926 KM (500 NM) ( 1046 KM (565 NM) 

PR= 12 I PR = 20 

692 KG (1525 LB) 621 KG (1370 LB) 

283 KG (625 LB) 

1361 KG (3000 LB) 

259 KG (570 LB) 

1490 KG (3285 LB) 

739 KG (1630 LB) 671 KG (1480 LB) 

206 KG (455 LB) 

1107 KG (2440 LB) 

190 KG (420 LB) 

1225 KG (2700 LB) 



TABLE 4-2. PROPULSION LOSS ASSESSMENT 

ITEM 

POWER 
EXTRACTION 

ENGINE 
BLEED A I R  

INLET 
RECOVERY 

ECS, AVIONICS 
SYSTEM DRAG 

ENGINE BAY 
VENTILATION 
DRAG 

&IMP BLEED 
DRAG 

INLET SPILLAGE 
DRAG 

THROTTLE - 
DEPENDENT 
NOZZLE/ 
AFTERBODY 
DRAG 

ASSESSMENT 

37 kw (50 HP) per  engine except  f o r  c e r t a i n  t akeo f f ,  
landing,  and combat condi t ions  where 63 kw (85 HP) is 
assumed. 

A s  shown i n  Figure 4 - 3 .  

U s e  modified F-17 7" ramp i n l e t  da t a .  Correct ions 
made f o r  s h o r t e r  VATOL i n l e t  d i f f u s e r  l ength ,  l o c a l  
Mach number, and use of a u x i l i a r y  i n l e t  doors.  

ECS and Avionics ram a i r f l o w s  equal  t o  t h r ee  times 
engine a i r  bleed.  Drag equal  t o  1 /2  f rees t ream 
momentum. 

F-17/F-18 procedure wi th  v e n t i l a t i o n  a i r f l o w  sca led  
t o  engine s i z e .  Cooling a i r  v e l o c i t y  change de te r -  
mined with semi-empirical technique. Drag propor- 
t i o n a l  t o  product of a i r f l o w  and v e l o c i t y  change. 

Scaled F-17 7"  ramp bleed d a t a  used f o r  a i r f l o w  and 
bleed a i r f l o w  v e l o c i t y  change. Drag propor t iona l  
t o  product of a i r f l o w  and v e l o c i t y  change. 

Calculated wi th  ~ i b u l k i n  method. For Mach numbers 
r 1 only t h e  s u b c r i t i c a l  i n l e t  s p i l l a g e  drag i s  
assigned t o  t he  propuls ion system. The c r i t i c a l  
s p i l l a g e  drag is  assigned t o  t h e  a i r c r a f t  minimum drag. 

Based on F-17 nozzle/af terbody drag da t a .  Reference 
nozzle  is  a fully-open c y l i n d r i c a l  PWA-type balanced 
beam nozzle  wi th  f u l l y  expanded exhaust (P /pam= 1 ) .  

s 9 



GI MBALLED 
NOZZLE 

0 PR = 20 TURBOJET 

T4 = 2030'~ ( 3 2 0 0 ~ ~ )  o VARIABLE TURBINE 

VTOL THRUST* = 77.8 KN (1 7500 LB) 0 NON-AUGMENTED 

o T/W = 35000/30000 = 1.17* SELF-COOLED 

* INSTALLED, TROPICAL DAY (T = 305'~, 90'~) 

FIGURE 4-1. TURBOJET ENGINF, DESCRIPTION 



FIGURE 4-2. E F F E C T  OF WING CONFIGURATION AND LOCATION ON 
PERFORMANCE ENVELOPE 





PERCENT 
THRUST 

FIGURE 4-4 .  BUILD-UP OF INSTALLED NET THRUST LOSSES 
AT 3 KM (10,000 ft) ALTITUDE 
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FIGURE 4-5. BUILD-UP OF INSTALLED NET THRUST LOSSES 

AT 11 KM (36,089 ft) ALTITUDE 



SECTION 5 

AIRCRAFT DESIGN 

The aircraft structural design and system study was conducted to a limited depth, 

The intent was to ensure that the configuration was sufficiently credible to justify a 

detailed aerodynamic and propulsion integration analysis. 

5.1 STRUCTURAL DESIGN AND ANALYSIS 

5.1.1 Design Criteria 

Current military specifications were reviewed to establish the applicability of 

available requirements for structural design of VSTOL aircraft. Results indicated 

that although current MIL-SPEC requirements provide adequate criteria for operation 

a s  a conventional airplane; appropriate criteria must be developed to provide a basis 

for structural design during both hover and transition modes of flight. Criteria for 

hover require specification of thrust forces, inertia effects, engine gyroscopic effects, 

and crosswind forces. Control requirements for maximum load factor maneuvers and 

for maneuvers induced with maximum control deflection must be defined to provide for 

evaluation of the effects of rapid changes in trim, moment shifts, and interactions 

between aerodynamics and propulsion forces during transition. 

The thermal environment of structure in areas exposed to propulsion system 

effects has been reviewed utilizing F-18A design experience and available data. 

Temperature limitations were established a s  follows: 

1, Engine Compartments were designed with appropriate cooling flows such 

that the temperature distribution did not exceed the design limits of adjacent 

structure. Engine cooling airflows were sized such that aluminum o r  com- 

posite airframe components were not exposed to temperatures in excess of 

1 2 0 ~ ~  (250'~) with titanium used in areas where higher temperatures may 

be experienced. Steel structural components were not exposed to tempera- 

tures greater than the design thermal level. 



2. Reaction control duct walls were considered exposed to the same temperature 

as  bleed a i r  from the compressor; approximately 455 '~  (850'~). 

5.1.2 Structural Materials 

Advanced composite materials were selected a s  the primary materials of construc- 

tion for both strength and stiffness-critical applications. Not only a re  lightweight 

structural components possible through efficiently tailored properties and lower speci- 

fic s trength/s tiffness, but lower fabrication costs result through integral o r  one piece 

design concepts. 

Advanced metallic materials were selected for areas of extremely localized load- 

ing a s  well as  severe thermal, acoustic, moisture, and corrosive environmental/ 

operational conditions. A proper blend of the application of aluminum powder metal- 

lurgy, titanium superplastic forming plus diffusion bonding will result in lightweight, 
' 

low cost, and durable advanced metallic material airframe components in the 1990's. 

5.1.3 Structural Description 

The aircraft structure is shown in Figure 5-1. Major structural components 

include a fuselage with integrated nacelles, a carry-through wing, and single pivoted 

vertical stabilizer. 

Fuselage Structure. The fuselage is a semi-monocoque structure of stressed 

skin panels stabilized by edge members, bulkheads, and frames. Frame spacing is 

based on trade studies made for both honeycomb sandwich and integrally stiffened skin 

panel designs. Typical of most airframe designs, a common frame spacing is not 

achievable due to support frame or  compartment bulkhead location constraints. However, 

studies have shown that by optimizing honeycomb panel thickness o r  integral stiffener 

heights within any specific bay based on local loading conditions, near optimum panel 

weight is obtainable for frame spacing varying from 38 cm (15 in) to 102 cm (40 in). 

An average frame spacing of approximately 51 cm (20 in) has been selected for this 

design based on system routing support and battle damage considerations. 

For ease of producibility the fuselage was divided into three major sections: a 

forward section from FS 25 (10) to FS 564 (222), a center section from FS 564 (222) to 

FS 1067 (420, and an aft section from FS 1067 (420) to FS 1488 (586). 



? 
The Forward Fuselage contains radome, radar bay, nose landing gear, cockpit, 

avionics bay and ECS system. The cockpit module extends from FS 262 (103) to canted 

bulkhead FS 394 (155) and contains all crew accommodations, aircraft and system con- 

trols, pilotf s enclosure, and associated mechanisms. The cockpit module pivot point 

is at  FS 249 (98), and the actuators a r e  housed between FS 262 (103) and FS 394 (155) 

below the module. 

The Center Fuselage extends from the fuel bulkhead at FS 564 (222) aft to FS 1067 

(420). Fuel is contained within the entire basic fuselage shell from FS 571.5 (225) to 

FS 998 (393). Panels in the lower skin and doors in the fuel floor provide for access 

to the tanks. The ECS system is housed forward of the fuel boundary between FS 526 

(207) and FS 564 (222). A removable section of the engine a i r  intake above the wing 

permits installation of the carry-through wing. 

The Aft Fuselage extends from FS 1067 (420) to FS 1488 (586). This section con- 

tains engines and engine mounts. The primary structure consists of two side panels, 

a center keel f ire wall and an upper panel. Engine mounts a r e  located between FS 1261 

(496.5) and FS 1287 (506.5) and a re  metal components. Intercostals forward and aft 

of these frames support engine thrust loads. A machined steel spindle fitting centered 

between FS 1321 (520) and FS 1346 (530) mounts the all movable vertical stabilizer. 

The vertical stabilizer acutator i s  installed between FS 1321 (520) and FS 1407 (554), 

and an access panel on the left side of upper fuselage is provided. 

Wing Structure. The wing has a carry-through main box structure which is  

trunnion mounted to the fuselage between FS 856 (337) and FS 1067 (420) bulkheads. 

The wing consists of a fuel containing main structural box, leading edge flaps, 

flaperon, LEX, and wingtip jet reactor fairings. 

The main structural box is of thick skin, multispar construction fabricated of 

advanced composite materials. Flaperon actuators a t  WS 203 (80) a r e  located below 

the wing. The front spar supports leading edge flap rotary actuators. All wing access 

panels a r e  structural and located on the upper surface. A wing shear attach fitting is 

located at  the inboard end of the aft spar. 

Leading edge flaps and trailing edge flaperon panels will be of full depth honey- 

comb sandwich construction fabricated of advanced composite materials. Metallic 

inserts, cocured with the panel, will be used a t  hinge o r  actuator attach locations. 



Vertical Stabilizer Structure, The vertical stabilizer main structural box is a 1 

bonded assembly of graphite/epoxy skins, spars, ribs and full depth fiberglass honey- 

comb core. A machined titanium root rib i s  attached with mechanical fasteners. The 

tip and leading edge antenna covers a r e  of fiberglass/epoxy. 

5.1.4 Structural Analysis 

The basic structural concepts used a re  standard military aircraft approaches and 

can be adequately substantiated using current military specifications estblished for 

structural integrity. Construction of the aircraft is  such that compliance with the 

appropriate manufacturing and process requirements together with adequate stress/ 

damage tolerance analysis and static/fatigue testing will result in unrestricted service 

operation within the strength envelope. 

The wing structural configuration is similar to that of an existing finite element 

wing model upon which comprehensive flutter analysis was performed considering 

various flaperon actuator arrangements. Results of the analysis revealed that the wing 

equipped with a full span flaperon actuated by a mid-span actuator met flutter speed 

requirements. It was also shown to be the optimum design in terms of incremental 

structural weight and cost over the baseline design of two actuators installed per side. 
1 

It should be noted that the analysis conducted was on a low elastic-to-rigid ratio delta 

wing structure and the VATOL wing will be expected to be much stiffer. 

The flutter analysis could necessitate a change in the flaperon actuator location. 

However, the basic concept of the wing design provides assurance that no significant 

problems involving aeroelastic stability exist within the flight envelope of the aircraft. 

In summary, the studied concept was considered to be a straightforward airplane 

unlikely to be subjected to flutter problems. 

5.2 FLIGHT CONTROL SYSTEM 

5.2.1 Hover and Transition Regimes - Normal Operation 

One of the most frequent complaints about previous VSTOL aircraft is the excess 

pilot workload during the transition between aerodynamic and powered-lift configura- 

tions and during the hover period. The study aircraft has 10 parameters available at  



the beginning of the landing transition (and end of the takeoff transition) to control its 

forces and moments, and seven controllable parameters when solely in the powered- 

lift configuration. Such a large number of controls, along with their mutual interac- 

tions, would make extraordinary demands on the abilities of even a highly-skilled 

pilot. Consequently, the control system shown conceptually in Figure 5-2 was con- 

ceived to reduce pilot workload. Its main features are: 

1. The number of cockpit controls remains at  the familiar five (pitch and roll 

stick, rudder pedals, and left and right throttle controls). 

2. The cross-axis coupling between controls is greatly reduced. 

3. The aircraft response to cockpit controls is flnaturalll; i. e., similar to its 

response when in the conventional aerodynamic-lift mode. 

4. The transition phase, including cockpit rotation, is fully automatic; however, 

however, manual override can be used to modify all automatic functions. 

5. The system readily lends itself to expansion to fully automatic landings and 

takeoffs, depending upon the quantity of earth-referenced data available. 

The sketches at the bottom of Figure 5-2 define the symbols used. 

The heart of the control system is the Crossfeed Matrix and the two Augmentation 

blocks. As a result of these blocks, in the Manual mode the cockpit controls produce 

the following results. At the beginning of transition, to hover regime fore-aft stick 

movements produce pitch attitude changes proportional to stick displacement. Altitude 

rate is proportional to throttle lever at airspeeds below 1.1 V,. When airspeed is 

below about 55.6 km/hr (30 knots) and attitude is greater than about 70°, fore-aft stick 

movements cause speed change commands in a fore and aft direction. When pitch 

attitude is less than 45 degrees, lateral stick and pedal movements cause roll and yaw 

rates, respectively, proportional to displacement.. When the controls a re  at  neutral, 

roll attitude hold and heading hold are  maintained. When pitch attitude exceeds 45 

degrees, lateral stick movements command the yaw axis (yaw-rate/heading hold) and 

pedal movements command the roll axis (roll rate/attitude hold). This swapping of 

the lateral controls was found to be highly desirable during Ryan X-13 VATOL tests. 

Note that in the current design, the pilot will rotate during transition by 45' as  was 

done in the X-13. 



The sequence of events during a landing transition is shown in Figure 5-3. 

Figure 5-4 gives the details of the Pitch Augmentation block. At the transition initiation 

point, a 90' step is applied to the Rate Limit. Its output commands a nominal pitch 

rate of 5 degrees/sec. When airspeed drops below 1.1 Vs, SW1 transfers to the -0. l g  

position and is summed with a horizontal acceleration signal. The resulting accelera- 

tion error signal modulates the nominal pitch rate to null itself. Pilot fore-aft stick 

movements, asp, can also be used to modulate the pitch rate to modify the automatic 

transition if reqNred. As horizontal speed (obtained by integrating horizontal acceler- 

ation) drops below about 55.6 km/hr (30 knots), a speed hold loop is engaged, The 

pilot now uses his stick to command speed in a fore-aft direction. 

Prior to transition, the sink rate and horizontal acceleration were being synch- 

ronized to zero by K~/S .  At transition, SW2 moves to the center position and the 

output of K ~ / S  is held at a constant value, the initial sink rate. Subsequent changes in 

sink rate produce errors signals which vary thrust to maintain initial sink rate. When 

pitch exceeds 80' o r  altitude drops below 15.2 m (50 ft.), SW2 transfers to position A 

and the commanded sink rate expotentially decays to zero. The pilot takes control and 

manually uses throttle levers to control sink rate. - 
) 

Since the thrust level required prior to transition is small (especially if a steep 

descent angle is being flown), and a large thrust level is required during hover, a 

means must be provided to maintain the thrust difference. The output of integrator 

K /S can provide the required difference, but since its input is the altitude rate error, IH 
relying solely upon the integrator, forces the aircraft's sink rate to be greater than the 

commanded value. To reduce the demands upon the integrator, a bias, whose magni- 

tude increases a s  pitch increases, provides about 2/3 of the increased thrust level 

required. The integrator provides the remainder. 

Nozzle motions away from the vertical a re  passed through absolute value circuits 

and increase the thrust level, thus providing additional decoupling (over what the verti- 

cal acceleration signal provides) between changes in horizontal or lateral speed and 

altitude rate. 

Details of the Lateral Augmentation block are  given in Figure 5-5. (Roll means 

rotation about the X - body axis; yaw about the Z - body axis. ) Roll rates a re  



proportional to lateral stick movements for small pitch angles o r  to pedal movements 

for  large pitch angles. Centered controls provide attitude hold. During transition, the 

bank signal is generated by approximately integrating roll rate with a long-time-constant 

lag. During hover, the "bank" signal would come from a heading error  source. 

In aerodynamic flight, the rudder is driven to maintain turn coordination. In 

powered-lift flight, yaw rate is proportional to pedal displacement for small pitch 

attitudes and lateral-stick displacements for large pitch attitudes. During transition, 

heading changes .are held to zero. Heading changes are  generated by approximately 

integrating yaw rate with a long-time-constant lag. During hover, the "headingf1 error  

signal would come from a bank angle source. 

Figure 5-6 shows the details of the Crossfeed Matrix. Its 5 inputs, which a re  

the various e r ror  signals from the two Augmentation blocks, a r e  distributed to its 

10 force and angle outputs a s  shown. To illustrate its use, consider bat, which is 

commanded aileron position. Reading down the fourth column to the first  non-zero 

elements, a and a 24 and then reading to the left end of the row, we see that the 14 
primary effect of bat in the powered-lift regime is on thrust from the wingtip reaction 

S S 
$, 

jets, R and R L  Continuing down, elements a34 and a& show that 6ac also pro- 
8 R s S duces thrust from the rear nozzles (a34 = -a ). Finally, a indicates that kc also 44 94 

drives the aileron, whose effectiveness goes to zero as  airspeed goes to zero. In the 

cruise-combat regime, tj,, affects the aileron only. Although the matrix elements a r e  

shown a s  constants, most of these elements have first o r  second order denominators 

representing the transfer functions of the surface and nozzle actuators, and the engine 

dynamics. Also, gain scheduling might be required for some of these gains. 

The Outer Loop Control Laws block and the Auto-Man switch in Figure 5-2 pro- 

vide the means of readily adding modes such a s  Altitude Hold, VOR, glide slope and 

localizer and even a fully automated landing mode, The main restriction on these 

modes is the availability of the appropriate earth-referenced and air-data signals. 

The Auto-Man switch is shown a s  having all signal paths either from the pilot o r  

from the Outer Loop Control Laws block. The actual hardware could easily be imple- 

mented to permit split-axis operation. 

Note that in the above discussion, parameter values such a s  -0. lg, 15.2 m 

(50 feet), 1.1 VA, etc., were chosen arbitrarily to illustrate the control system 



concept and to provide approximate estimates. More exact values will be obtained 1 
from simulator studies. Note also that switching details to lock the system out during 

combat conditions when, for example, V might drop below 1.1 V a re  not shown. A S* 
Finally, it was assumed that all of the pilot's cockpit controls only move a s  a result of 

his inputs, and that electrical signals generated by the control system do not move the 

pilot's controls. 

During the takeoff transition, the reverse sequence occurs with some of the 

switching occurring at slightly different points than shown in Figures 5-4 and 5-5, 

which are  drawn to mainly show a landing sequence. 

Since takeoff is generally less demanding than landing, fully automated takeoffs 

can readily be provided without having to add additional earth-referenced signals. One 

easily implemented profile might be to command a 0. l g  upward acceleration for about 

4 or  5 seconds, and then maintain the existing climb rate while commanding a maxi- 

mum forward acceleration. 

5.2.2 Engine Failure in Hover or  Transition 

Since the maximum thrust level from each engine is less than the landing weight 

of the aircraft, an engine loss in a certain range of altitudes with airspeed below some 

critical value will result in loss of the aircraft. The problem now becomes one of 

pilot-escape before the aircraft reaches an attitude where safe ejection is impossible. 

Assuming the airplane was in steady hover with the nose vertical when engine loss 

occurs, the effects of an engine loss a re  unbalanced vertical forces, which increase 

the sink rate, and a yawing moment because the thrust from the remaining engine is 

laterally offset from the center-of-gravity. Since the moment arm is so short, the 

yawing moment is readily eliminated by the control system by vectoring the remaining 

engine such that the thrust goes through the c. g. and by leaning the aircraft such that 

the thrust is aligned with the gravity vector. 

One possible approach to an engine monitor is  as  follows. The most basic engine . 
input, commanded fuel flow rate, is fed to the input of a model whose dynamic response 

simulates the engines' dynamic response. The output of the model is compared to some 

thrust-indicating parameter such a s  pressure ratio or  exhaust gas temperature. 

Differences between the compared signals exceeding some threshold for some time 

period would indicate a lost engine and provide appropriate warnings. 



\ 
5 . 2 . 3  Conventional Flight Regime 

The aircraft i s  designed to operate with 15 percent negative static margin a t  

subsonic speeds in pitch. With this level of static instability, the aircraft cannot be 

flown unaugmented with mechanical controls. Hence, a full authority fly-by-wire 

stability and command augmentation system (SCAS) with proper redundancy is used to 

provide good flying qualities and to ensure flight safety. 

With static instabiIity, the amount of control power available at high angles of 

attack i s  insufficient to counteract moments due to inertial and aerodynamic cross- 

coupling, engine gyroscopic effects, and thrust offset. Hence, high angle of attack 

maneuvering capabiIity has to be restricted to prevent uncontrolled departures from 

which the aircraft cannot be recovered. An automatic departure prevention system 

has been designed for an aircraft having a 15 percent negative static margin and a wing 

planform similar to that used for this concept. The automatic departure prevention 

system is integral with the SCAS so that the pilot can use any combination of control 

inputs without the danger of the aircraft becoming uncontrollable, and he can fly with 

"head out of the cockpit. " Nonlinear control laws a r e  used to maximize the lift and 

'.I 
turn rate capability. For structural protection, the SCAS limits the maximum load 

factor that the pilot can command. 

The performance at low dynamic pressures i s  enhanced by using the thrust vec- 

toring capability. The Thrust Vector Control System (TVC) is designed integral with 

SCAS and i s  phased in automatically a t  low dynamic pressures. With additional con- 

trol power available, the angle of attack flight envelope and roll rate capability a r e  

substantially expanded. The inputs to the TVC a r e  provided, along with inputs to aero- 

dynamic control surfaces, by pitch and roll stick displacement. The pilot task is thus 

made easier by not requiring extraordinary control input. 

An extensive a i r  combat simulation was recently concluded, using an aircraft in 

which this flight control system was modeled, in which the pilot on a moving base simu- 

lator was engaged with an interactive target. This target, computer controlled, took 

defensive a s  well a s  offensive action. The resulting maneuvering was very realistic, 

with the aircraft driven to its performance limits. In a total of 500 combat engage- 

ments, not a single departure from controlled flight occurred. 



5.3 MASS PROPERTIES 

A parametric weight estimation procedure in conjunction with the Northrop D-SYN 

sizing program was used for the sizing and sensitivity studies of the aircraft under 

study. The weight prediction equations a re  of the rational-empirical type applicable 

to conventional aircraft configurations, and supplemented to include the appropriate 

increments and penalties peculiar to the VSTOL aircraft (e. g., reaction controls, 

thrust vectoring devices). Factors a r e  applied to the structural weight e s t i m  tes to 

account for different materials, fatigue life and thermal environment. 

The resulting individual group weight estimates a r e  then accumulated for several 

assumed design gross weights, including the effect of fuselage sizing for the required 

fuel volume. The corresponding fuel available is  then found from mission performance 

computations and is subsequently used to iterate for a takeoff gross weight (fuel 

required = fuel available). 

Identical weight computations may also be performed by a stand-alone computer 

program utilizing the formulas to estimate the weights of individual design groups 

(wing, tail, body, flight controls, etc. ) for a specific aircraft and design mission. 

Each formula employs significant design parameters affecting weight; such as, design 1 
weight, load factor, basic dimensions, and yields a predicted weight for a particular 

design group. 

Appropriate to the 1990+ time period, service introduction of advanced composite 

materials was reflected in the use of the following structural weight savings: wing and 

tail surfaces 26 percent, fuselage 25 percent, and landing gear 18 percent. 

5.3.1 Weight Estimates 

The weights a r e  presented in the group weight statement in Table 5-1. 

5.3.2 Balance 

The baseline configuration is balanced for the center of gravity position (cor- 

responding to 13,608 kgf (30,000 lb) T. 0. W. ) at 36 percent rnac. At zero fuel weight 

of 7885 kgf (17,442 lb) the c. g. location is a t  40.2 percent rnac. By nature, the VATOL 

concept in the VTOL mode is less sensitive to longitudinal c, g. travel and loading 

conditions than the HAVSTOL concept. 
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5.3.3 Moments of Inertia 

Moments of inertia of the baseline configuration were calculated for two loading 

conditions and a re  given below: 

5.4 CREW STATION 

5.4.1 Design Philosophy 

Units 

kg. m2 

sl. ft2 

kg. rn2 

sl.ft 2 

In a vertical takeoff and landing aircraft, the critical function of pilot operation 

over the range of flight attitudes i s  of primary concern. The pilot must be afforded 

excellent visibility and comfort so that he can operate his aircraft precisely in the 

liftoff and touchdown maneuvers. The unique problem facing VSTOL operations i s  the 

necessity to maximize pilot vision while still maintaining a good supersonic area dis- 

tribution. An overnose vision angle of 15 degrees in conjunction with overside vision 

of 40 degrees was deemed necessary for operation during liftoff and touchdown as  well 

as  transition. 

Izz 
(Yaw) 

171,434 

126,443 

98,618 

72,737 

Loading Condition 

Take-Off Weight, 13,608 kgf 

(30,000 lb) 

Zero-Fuel Weight, 7,885 kgf 

(17,442 lb) 

In the case of a vertical attitude VTOL aircraft, there is an extreme attitude 

change from horizontal to vertical; i. e., 90 degrees. This special case requires a 

more dramatic solution so that reasonable pilot vision can be maintained as  well a s  a 

position that will allow him to retain his orientation during the transition maneuver. 

As this VSTOL aircraft i s  also a high performance fighter, i t  is essential that 

the pilot has good aft visibility and that he maintains a high level of proficiency during 

air combat high "Gfl maneuvers. There is a contradiction in the requirement for high 

"Gff tolerance and VSTOL visibility. Greater proficiency results from a reclined seat 

position in the former case, and an upright position for the latter. 

IYY 
(Pitch) 

134,401 

99,129 

77,760 

57,353 

Ixx 
(Roll) 

19,935 

14,703 

11,634 

8,581 



Pilot safety is of primary concern during VSTOL operations with a necessity 

that the aircraft provide an escape system for all modes of flight. This escape crite- 

rion is referred to as  the "pilot ejection envelope" and, in the case of VSTOL aircraft, 

must cover the flight regime from low altitude no speed to high altitude high speed. 

In some cases, the extreme attitude of the aircraft will require some kind of "vertical 

seeking seat" so that altitude may be gained before chute deployment. 

During VTOL operations, pilot workload is high, a condition exacerbated by the 

need to monitor critical controls and displays to assure safe operations while permit- 

ting major emphasis on the exterior situation. Engine health must also be monitored 

to assure sufficient thrust f0.r safe vertical flight. Any instrument operation that must 

be completed during the vertical flight mode must be operable from either the control 

stick or the throttle. 

5.4 .2  Crew Seat Positioning 

The problem of pilot orientation and visibility through the transition maneuver 

arises as  a result of the extreme attitude change from horizontal flight to vertical 

flight. How the aircraft interfaces with the ship in the vertical attitude presents a 

formidable problem combined with the added difficulties of reducing risks and making 

this mode of operation acceptable to pilots. The solutions to these problems may 
d .  

result in a complex articulation system with associated weight and drag penalties. 

Three crew station articulation concepts have been developed for possible application 

on the VATOL aircraft: forward articulating seat, forward articulating crew station, 

and articulating forward fuselage. The fundamental considerations of each are  dis- 

cussed below. 

Forward Articulating Seat. The concept of articulating the seat represents the 

simplest system and is similar to that used on the X-13 research aircraft developed 

by Ryan to investigate VTOL technology, (See Figure 5-7). The seat is rotated through 

an angle of 45 degrees while the aircraft changes attitude by 90 degrees, resulting in 

the effective pilot attitude change of only 45 degrees. This attitude reduction helps to 

maintain the pilot's orientation through the transition maneuver. The seat is pivoted 

about a point that will permit the pilot's feet and hands to remain in a stationary 
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position, allowing him to use a single set of controls during transition. Control for  

the seat position i s  provided by a switch on the control stick that initiates and termi- 

nates seat articulation. Careful attention must be paid to cockpit instrumentation to 

compensate for the pilot's eye movement relative to the instrument panel. An effect 

this system has on the basic aircraft is  the requirement for additional volume to accom- 

modate the seat articulation. This results in an increase in cross-sectional area at  

the critical cockpit location. 

Pilot ejection from the vertical attitude is accomplished by returning the seat 

to the back position and then firing the seat in a normal sequence. The seat back angle 

from this position combined with the vertical attitude results in a downward trajectory 

which must be compensated for by the use of a vertical seeking seat. 

This crew station concept has the minimum of shipboard interface difficulties 

because the entire articulating seat remains within the basic mold lines of the aircraft. 

One area that may develop a s  an interface problem is a requirement for shipboard 

visual aids during gantry engagement because of the restricted visibility from the 

forward seat position. 

> 
Articulating Crew Station. The second crew station concept considered for the 

vertical attitude aircraft incorporates the idea of rotating the entire crew station out 

of the basic aircraft fuselage as  shown in Figure 5-8. This concept permits the pilot 

to remain in the same relative position with the instrument panel, flight controls, and 

horizon through the transition thus retaining his orientation. Operation i s  automatic 

during the transition maneuver, with an additional override switch provided on the 

stick. The crew station is a capsule which during transition is unlatched about the 

canopy and rotated out unpressurized through an angle of 45 degrees. The effect of 

this rotation is to reduce the angle that the pilot i s  rotated from 90 degrees to 45 degrees. 

As a result of the crew station rotating away from the body, visibility is improved 

during vertical attitude operation, Critical areas for design emphasis a r e  the herme- 

tic sealing of the unpressurized capsule in the out position, and the method of articu- 

lation and support for the capsule. These detail design considerations may result in 

an increase in volume and weight for the cockpit area. 



Pilot ejection is possible from any attitude during transition because the seat 

back angle is maintained in an upright direction. Wheter this angle is  sufficient to 

make a safe escape without the necessity of a vertical seeking seat has not been 

determined. 

Shipboard interface of this crew station i s  essentially the same as  the previous 

concept, with the exception of vertical attitude visibility. While the seat back angle 

in the vertical attitude is the same as  on the articulating seat, visibility is improved 

by the capsule rotating out away from the fuselage, thus providing a less obstructed 

view. 

Articulating Forward Fuselage. The third crew station concept for use on the 

vertical attitude VSTOL utilizes a completely articulating forward fuselage which is 

hinged just aft of the cockpit (see Figure 5-9). This system rotates the pilot through 

an angle of 75 degrees during transition so the net effect is that the pilot maintains 

almost the same attitude while aircraft translates into the vertical position. With this 

concept, the pilot not only retains his orientation but also most of the forward visibility. 

While this concept articulates the most mass, resulting in the largest weight increase, 

it also results in the minimum volume buildup at the cockpit, and thus the least amount 

of wave drag. 

Escape from this concept is similar to the horizontal attitude aircraft as  the 

forward fuselage always remains in a horizontal attitude. With this simplified system, 

pilot ejection can be accomplished with a ffO-Off ejection seat. 

Significant development would have to be undertaken to determine the possibili- 

ties of adapting this concept to shipboard operations. While this system offers superior 

visibility and pilot attitude, it also introduces an interference between the gantry and 

the projecting nose. 

A subject reevaluation of the candidate crew station design approaches has been 

made, Figure 5-10, with the articulating crew station selected to be in the 

configuration. 
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5.5 SUBSYSTEMS 

Primary study effort for aircraft subsystems was to define preliminary concepts 

to support the configuration development. Specific systems such as  landing gears and 

propulsion installation were evaluated in more depth than other sys tems since they had 

a major impact on the configuration development. Other systems discussed below 

include hydraulics, environmental control, fuel, and electrical. General location of 

system components a re  shown on the inboard profile drawing, Figure 2-4. 

The propulsion installation utilizes two engines mounted in the aft fuselage. A 

three point mount system is used to attach each engine to the airframe. The a i r  

induction system consists of -closely-spaced rectangular fixed geometry inlets posi- 

tioned above the wing and fuselage, internal ducting terminating at each engine com- 

pressor face and a plenum with auxiliary aTr inlet doors located forward of the engine 

compressor face. A single splitter plate separates the two inlets and a boundary layer 

diverter is  positioned below the inlets. A variable C-D, axisymmetric, gimbled 

nozzle, capable of 30' pitch, 15O yaw of swiveling, is  provided on each engine. Air- 

craft accessories consisting of generator and hydraulic pump are  mounted on and 

driven by the engine. Firewalls, fire detection, and extinguishing systems are  pro- 

vided. Access doors a re  located on the lower surface of the aft fuselage to facilitate 

engine servicing, maintenance and engine installation/removal. 

Fuel is carried in three bladder cells in the fuselage and in two integral wing 

tanks. Two of the bladder cells a re  engine feed tanks, one supplying each engine. 

All other tanks supply fuel to the feed tanks by a~tomatic sequence transfer of fuel. 

Booster pumps installed in inverted flight compartments, within the engine feed tanks 

supply fuel to the engines. Cross feed fuel capability is provided. Other fuel system 

components include a vent system, fuel quantity and flow measurement, pressuring 

fueling, fuel dumping and external fuel provisions. 

The environmental control system is located in the center fuselage aft of the 

nose gear compartment. The system provides a i r  to the cockpit for pressurization 

and defog, anti-G suit, canopy seal, and avionics equipment cooling. Hot air  anti- 

icing and rain repellant/removal systems are  provided for the windshield. Closed 

loop air  cycle environmental control concepts are  proposed and require further study 

to define specific system arrangements and performance capabilities. 



Aircraft electrical power is provided by two alternating current generators, 

transformer rectifiers, a battery, and the power distribution system. The generating 

system is  of the constant hertz type with the generators mounted on and driven by the 

engine gearbox. Use of electrical technology concepts such a s  solid state switching, 

multiplexing, power monitoring, fibre optics for signal transmission and use of 

advanced permanent magnet materials in generator and electric motor construction, 

provide for an efficient lightweight electrical system. 

Dual independent high pressure (8,000 psi) hydraulic systems a re  used. Pri- 

mary flight control actuators a re  dual and receive one-half of their power from each 

system. Each system consisis of multiple circuits which can be isolated from the 

main system in the event of a leakage failure. An engine-driven pump, sealed pres- 

surized reservoir, return pressure sensing switching valves, filters, and ground 

power connections a r e  provided for each system. High strength steel and titanium 

lines and low flammability fluid a re  used. Adequate power is provided in each system 

to control the airplane in the event of a complete failure of a single system. 

The landing gear is compatible with the vertical platform takeoff and 

landing system as well as  an emergency landing on a conventional carrier deck. 

Adequate tip-back and turn-over angles are  provided for deck and ground 

handling. The gear system is not designed for conventional carrier catapult 

launch. Adequate wheel brakes and a nose gear steering system are installed 

for decklground handling and taxi on/off the platform. 

The nose gear is specifically designed to engage one of the vertical platform 

cables as  well a s  absorb the shock of an emergency conventional carrier landing. The 
basic shape and angles of the shock strut housing and trailing arm are configured to 

guide the platform cable into the locking slot when the aircraft is allowed to settle 

downward. The cable will be guided into the slot when the nose tire is  within several 

inches of the platform or  fully loaded against the platform. The latch will retain the 

nose gear in the slot while the cable stanchions a re  rotated and the platform lowered 

to the horizontal position. Replaceable wear plates are attached to the housing and 

trailing arm where cable contact is made. The shock absorber unit is  fully protected 

within the outer housing. 
A baseline avionics suite is shown in Table 5-2 which also lists certain options 

and alternatives. Options are  additions to the baseline which provide significant sup- 

plemented capability and may be adopted either through missionizing a single version 

of the aircraft, o r  in alternate versions of the fighter/attack aircraft. 



The avionics have been configured to support the anticipated missions of the air- 

craft. The multi-mode radar has a full air-to-air search and track capability along 

with an air-to-ground synthetic-aperture high-resolution ground-mapping and target- 

designating capability. It would be capable of detecting a 5-square meter target at a 

range of 35 to 45 NMI in a look-down situation over 6 0 "  azimuth coverage and track up 

to 10 targets simultaneously. The radar will include reduced probability-of-intercept 

features and have its emissions controlled by the Observables Control and Management 

system. The avionics will be covert, i.e., designed to minimize observables through- 

out the rf, JR and visible spectrum. The air-to-air features and characteristics of the 

avionics suite are  only gross estimates at this time and would be refined as the capa- 

bilities and characteristics of the supporting functions (GCI, AEW, Defense Suppres- 

sion, etc.) and the advanced weapons are  better defined. 
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TABLE 5-2. BASELINE AVIONICS SUITE 

COMMUNICATIONS 
NAVIGATION 
IDENTI FlCATlON 

TARGET ACQUISITION1 
WEAPON DELIVERY 

CONTROLS & DISPLAYS 

DATA PROCESSING 
& DISTRIBUTION 

DEFENSIVE SYSTEMS 
(ELECTRONIC 
WARFARE) 

BASELINE 

68KG 
JTIDS TERMINAL (150 LBS ) 
UHF RADIO 
MMW RADIO 
INTERCOM 
INTEGRATED INERTIAL ASSEMBLY 
LANDINGITAKE-OFF SENSORS 

122KG 
SYNTHETIC APERTURE MULTIMODE RADAR (270 LBS) 

GUN FIRE CONTROL & DISPLAY 
WEAPON LAUNCH CONTROL 

ARMAMENT CONTROL-FIBER 
OPTICS TERMINAL 

DAMAGE ASSESSMENT SET 
45KG 

WIDE ANGLE HEAD-UP DISPLAY (100 LBS) 
MASTER MONITOR DISPLAY 

MULTIMODE SITUATION DISPLAY 
VOICE ACTUATEDISIGHT LINE 

ACTUATED & MANUAL CONTROLS 
HELMET SIGHT UNIT 

23KG 
MISSION COMPUTER (50 LBS.) 
AIR DATA/FLIGHT CONTROL & 

NAVIGATION COMPUTER 
FIBER OPTICSIMUX BUS 

CONTROL TERMINAL 
152KG 

THREAT WARNING RECEIVERS (335 LBS) 
ECMIEOCMII RCM 
OBSERVABLES REDUCTION & CONTROL 
INTERFERENCE & POWER MANAGEMENT 
EXPENDABLES 

TOTAL 410KG 
(905 LBS) 

OPTIONS 

GPS TERMINAL 

TFITA (IN RADAR) 

FLlR (MULTICOLOR) 
TARGET 

DESIGNATOR 
LASE R/MMW 

MMWAVE SENSOR 
TVSU 

INTEGRATED 
IMAGINGIMAP 
DISPLAY 
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PILOT ESTABLISHES INITIAL SINK RATE AND REDUCES 
AIRSPEED 

I COMMAND TO INITIATE TRANSITION IS GENERATED 1 

3 
START TRANSITION 

1. INCREASE PITCH ATTITUDE TO go0, AT ABOUT 5 DIS 

2. MODULATE PITCH RATE TO MAINTAIN A PRESELECTED DECELERATION 
UNTl L UH 4 55.6 km/h (30 KTS),THEN HOLD 55.6 km/h (30 KTS) 

1 3. MAINTAIN INITIALSINK RATE BY VARYING THRUST LEVEL I 
4. MAINTAIN INITIAL HEADING 

/ 5. MAINTAIN INITIAL BANK I 
r 

4 
END TRANSITION ( 0>80° OR ALT < 15.2111 (50 FT)) 

I 1. REDUCE ALTITUDE RATE TO ZERO 

I 2. ENGAGE A1 RSPEED HOLD IF NOT YET ENGAGED I 
I I 

5 
HOVER AND LAND 

1. PILOT MANUALLY PERFORMS LANDING MANEUVER 

NOTE: FUNCTIONS IN BLOCKS 3 AND 4 PERFORMED AUTOMATICALLY 

FIGURE 5-3. TRANSITION-LANDING SEQUENCE 



ALL GAINS POSITIVE 
SW 1 TO -0.1G WHEN U A 4  1.1 VSAND LAND UNTIL UH < U1 

SW 1 TO t0.1G WHEN ALT> 15.2 m (50 FEET) AND TAKEOFF UNTIL U A >  l . l V S  

SW 2 TO CENTER WHEN U A 4  1.1 VS UNTIL 0 > 80' OR ALT 4 15.2 m (50 FEET). THEN CLOSEST0 POSITION A 

aH = ap COSO - a~ SIN 0 

av = ap SIN 0 t aN COS 0 

ay IS POSITIVE FOR ACCEL ALONG X-BODY AXlS 

aN IS NEGATIVE FOR ACCEL ALONG 2-BODY AXlS 

RATE LIMIT 

'EC 

a~ 

MAN NOTE: UI = 55.6 ?;i- km (30 ktsl 

FIGURE 5-4. PITCH AUGMENTATION 



AUTO 

SW1 - AS SHOWN WHEN UA < 1.1 VS UNTIL 0 > 80°, THEN SWITCHES TO OPPOSITE POSITION 

FIGURE 5-5. LATERAL AUGMENTATION 

5-26 

r 

g sin 9 

ay -g sin 9 



CROSS- 

MATRIX 

MATRIX A 

SUPERSCRIPT S INDICATES THIS TERM IS OF SECONDARY IMPOR- 

TANCE, BUT NOT NECESSARILY NEGLIGIBLE. 

FIGURE 5-6. CROSSFEED MATRIX 

ALL ELEMENTS 
EXCEPT THESE 
EQUAL ZERO 
IN CONVENTIONAL 
FLIGHT 



FIGURE 5 -7 . ARTICULATING SEAT 

FIGURE 5-8. ARTICULATING CREW STATION 



FIGURE 5-9. ARTICULATING FORWARD FUSELAGE 
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SEAT 
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I' 
1 

15 DEG - -- - -- 

- 60 DEG SEAT BACK ANGLE 
w .  

POSITIVE 

0 LEAST WEIGHT 
MINIMUM COMPLEXITY 
HAS ALREADY BEEN FLOWN 

NEGATIVE 
o HIGH CROSS--SECTIONAL AREA 
o LOWEST "G" TOLERANCE 
o POOREST VISIBILITY (HORIZONTAL 

81 VERTICAL ATTITUDE) 
0 POOREST PILOT ORIENTATION 

COMPLEX EGRESS 
0 REDUCED INSTRUMENT AREA 

ARTICULATING 
CREW STATION 

EG 

15 DE 

18 DEG - 63 DEG SEAT BACK ANGLE 

POSlTlVE 

0 MINIMUM VOLUME 
GOOD VISIBILITY 

NEGATIVE 
e WEIGHT INCREASE 
r MODERATE "G" TOLERANCE 

UNDEVELOPED SYSTEM 

ARTICULATING 
FORWARD FUSELAGE 

1 . ,  
1 %  i 

1:- i 
18 DEG - 33 DEG SEAT BACK ANGLE 

POSITIVE 

0 BEST VISIBILITY (HORIZONTAL & 
VERTICAL ATTITUDE) 

o BEST PILOT ORIENTATION 
GOOD "G" TOLERANCE 

NEGATIVE 

HIGHEST COMPLEXITY 
HEAVIEST WEIGHT 
HIGHEST VOLUME REQUIRED 
POSSIBLE GANTRY INTERFERENCE 

FIGURE 5-10. ADVANTAGES/DISADVANTAGES - VERTICAL ATTITUDE CREW STATION CONCEPTS 
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SECTION 6 

AIRCRAFT PERFORMANCE 

Aircraft performance is presented in two sections. The first pertains 

to  combat performance, and the second pertains to takeoff and landing perform- 

ance. 

6.1 FLIGHT PERFORMANCE 

6.1.1 Data Summary 

All combat performance data a re  presented at 88 percent of takeoff weight. The 

specific excess power performance capabilities, as  a function of load factor, of the 

13,608kg (30,000 lb) baseline configuration a re  provided in Figures 6-1 through 6-3 

for 3048; 6096; and 9144 m (10,000; 20,000; and 30,000 ft), respectively. The base- 
2 line configuration has a wing loading of 2.873 kN /m (60 psf) and a T /W of 1.17 

installed tropical day. Data for M0.5, 0.6, 0.9, and 1 . 2  are presented for each 

altitude with M I .  6 data for 6096 and 9144 m (20,000 and 30,000 ft)  . Sustained 

load factor capabilities decrease with altitude for all Mach numbers except M1.6. 

At each altitude, the sustained load factor capability increases with Mach number 
in the subsonic region (MO. 9) and through the transonic region (Ml. 2) at 6096 and 

9 144 m (20,000 and 3 0,000 ft) . The maximum instantaneous load factor available is 

limited by the maximum usable lift coefficient for MO. 5 at all altitudes and for MO. 6 

at 6096 and 9144 m (20,000 and 30,000 ft.) The structural design load factor of 8g can 

be attained at all other Mach numbers. At 3048 m (10,000 ft), MO. 9 and 1.2, the spe- 

cific excess power capabilities are greater than 35 m/sec (115 fps) at 8g. 

Additional flight performince data are  presented in Figures 6-4 and 6-5 in terms 

of flight envelope contours. Figure 6-4 gives specific excess power contours of 0.91, 

183, and274 m/sec (0,300, 600 and 900 fps) for lg flight. Figure 6-5 provides lg, 3g, 

6g and 8g sustained load factor contours. - 



The baseline configuration at  88 percent takeoff weight can accelerate 

from M0.8 to M1.6 at  9144 m (30,000 f t )  in 63 sec with a maximum speed capa- 

bility of M 1.76. (See Figure 6-4) . The absolute ceiling is approximately 

19,500 m (64,000 f t )  . The lg specific excess power goal of 274 m lsec (900 fps) 

a t  M0.9 at  3048 m (10,000 f t )  can be  attained a t  4000 m (13,000 f t )  . The struc- 

tural  design load factor level of 8g can be achieved from M0.79 to  1.21 a t  

3048 m (10,000 f t )  and a t  M I .  05 at  4600 m (15,000 f t )  . The sustained load factor 

goal of 6.2g a t  M0.6 a t  3048 m (10,000 f t )  can be attained a t  M0.606. 

A representative fighter escort mission depicted and defined in Table 6-1 was 

selected to determine the baseline configuration radius capability and for the T/W and 

w/S trades sizing studies discussed below. The baseline configuration can perform 

the mission a t  1170 km (630 nm) radius. A radius of 926 km (500 nm) was selected 

a s  a more representative Navy radius requirement for the T/W and W/S trades. The 

takeoff and landing allowances reflect Navy specified allowances. 

6.1.2 Thrust  Loading and Wing LoadingIAircraft Sizing 

The effects of T/W and W/S variations on the size of aircraft capable of per- 

forming the 962 krn (500 nm) mission can be seen in Figure 6-6. For this matrix of 

sized aircraft, specific excess power and sustained load factor matrices a r e  presented 

in Figures 6-7 and 6-8 for combat weights at  88 percent of the takeoff weights of 

Figure 6-6. The rated T/W of 1.27 required to perform a VTO at sea level on a 

tropical day, a 2743 m/sec (900 fps) specific excess power line from Figure 6-7 and 

a 6.2g sustained load factor line from Figure 6-8 (performance goals) have been 

superimposed on the sizing matrix of Figure 6-6 and a r e  shown in Figure 6-9. 
- 

The intersection of the takeoff line and the 6.2g load factor goal line indicates 

that a wing loading of approximately 2.750 kN/m (57 psf) is the highest that could be 

used to provide the performance goals. The aircraft weight would be approximately 

10,500 kg (23,200 lb) with an acceleration time of 93 sec from M 0.8 to  1.6 a t  

9144 m (30,000 ft). A slightly lighter weight aricraft results at  a wing loading of 
2 approximately 2.3 kN/m (48 psf). However, the higher wing loading is required to 

assure an acceleration time less than 100 sec and provide the highest specific excess 

power capabilities. The takeoff weight of the lighter aircraft is 10,450 kg 



Z 
(23,050 lb), 50 kg (100 lb) less than the aircraft just meeting the takeoff and sustained 

load factor goal. The minimum weight aircraft has a 6.9g and 290 m/sec (950 psf) 

performance level, but cannot achieve M 1.6 a t  9144 m (30,000 ft). 

Data shown in Figure 6-10 have been transferred from the specific excess power 

matrix (Figure 6-7) to the aircraft sizing matrix, Figure 6-6. The same procedure for 

sustained load factor levels gives the data of Figure 6-11. 

Figures 6-10 and 6-11 can be used to perform additional trade studies to deter- 

mine the effects of various levels of specific excess power and sustained load factor 

combinations on aircraft size and T/W - W/S. For example, if the performance goals 

were 6g and 290 m/sec (950 psf), the aircraft weight would be approximately 10,750 kg 

(23,700 lb) with a T/W of 1.29 and wing loading of 2.92 k ~ / m ~  (61 psf) with an acceler- 

ation time of about 80 seconds. 

6.1.3 Sensitivity Studies 

Two forms of sensitivity studies have been conducted, one at constant takeoff 

weight with mission radius and combat performance varying and one a t  constant mission 

radius with takeoff weight and combat performance varying. The parameter varied 

a re  empty weight, minimum drag, drag-due-to-lift, specific fuel flow, and installed 

thrust. For the selected sized aircraft, the effect on mission radius and combat per- 

formance a s  shown in Figure 6-12. The weight variation is approximately 5 per- 

cent of the empty weight, and the minimum drag variation i s  approximately 

8 percent at  M 0.8 at  9144 m (30,000 ft) . For convenience, the performance para- 

meters variations a r e  based on 70 percent fuel rather than 88 percent takeoff weight. 

From Figure 6-12, we see that the empty weight change produces almost twice the 

change in radius capability a s  the specific fuel consumption. The specific fuel con- 

sumption is almost three times a s  significant a s  the other parameters. As expected, 

the thrust variation is the most significant for the performance parameters Ps, nZ 

and radius. The effect on takeoff weight an& combat performance a t  constant 

radius with T /W and W I S  maintained is shown in  Figures 6-13 and 6-14. 

For the constant mission radius sensitivity studies, the empty weight variation 

produces over twice a s  much change in takeoff weight a s  the specific fuel consqption 



and eight to ten times the effect of the other parameters (see Figure 6-13). The 1 
thrust variation still produces more effect on the performance parameters for sized 

aircraft; however, the other parameters can be a s  significant. As the aircraft a r e  

resized for each parameter variation, the installed thrust changes at constant T/W 

a r e  greater than the minimum drag changes with wing area a t  constant W/S. The 

selected aircraft is marginal on achieving M 1.6 at  9144 m (30,000 ft). Consequently, 

five percent reductions of thrust, specific fuel consumption and 1,000 lb empty weight 

and an increase of 10 counts (0.0010) in minimum drag reduces the maximum speed 

below M 1.6. Direct addition of the effects of combinations of the sensitivity para- 

meters provides reasonable accuracy. 

6.2 TAKEOFF AND LANDING 

6.2.1 Control Concept 

For flight in the sub-aerodynamic regime, with the airplane essentially in the 

vertical attitude, the controllers include thrust modulation of the two engines in unison 

for height control and coupled gimballing deflections of the two nozzles for pitch and 

yaw control. Anti-symmetric pitch deflections provide roll control in conjunction with 
h;j 

reaction nozzles at the wing tips. Motions in the horizontal plane a re  obtained by 

inclining the aircraft in the direction of the desired movement. 

6.2.2 Takeoff Transition 

Transitions of vertical attitude VTOL configuration are  potentially more difficult 

than horizontal attitude VTOL configuration transitions in that, at least in the deceler- 

ating landing transition, the airplane has to rotate through a 90-degree angle of attack 

range. Difficulties encountered during transition by the Ryan X-13 demonstrated that 

poor aerodynamics in and beyond stall can interfere with the smoothness of transition. 

LEX-generated vortex flow is used in the study concept to increase the angle of attack 

for maximum lift and to cause the lift to drop gradually past the stall. These charac- 

teristics were found to produce smooth transition trajectories using simple control 

command schedules. 



A series of accelerating transition trajectories is shown in Figure 6-15. For 

fuel economy and for flight safety reasons, it is advisable to complete the transition 

in the shortest time possible. This means holding the time in vertical ascent to a 

minimum and pitching over rapidly, in order to maximize kinetic energy (airspeed) a s  

much a s  reasonable vertical clearance will permit. Pitch angle time histories follow 

closely the commanded pitch, and the pitch rate averages about 12 degrees per second. 

The actual control commands used in the calculations a r e  pitch attitudes a s  a function 

of airspeed, which a re  shown in Figure 6-16. Angles of attack during accelerating 

takeoff transitions generally remain below stall, as  shown in Figure 6-17. All takeoff 

transitions were executed with maximum thrust. 

Flight safety aspects in takeoff transition in case of failure of one engine were 

studied to determine the extent of the initial unsafe zone in which pilot ejection is  the 

only recourse for survival. Engine failures were programmed to occur at various 

points along the flight path, after which transitions continued with one engine inopera- 

tive. The boundary beyond which transitions can be completed safely is indicated in 

Figure 6-15. From the time marks, it is evident that there is a critical time almost 

independent of the initial trajectory which must be exceeded to acheve flight safety in 

case of an engine failure. 

6.2.3 Landing Transition 

During decelerating landing transitions thrust modulation is needed as  a control 

parameter to control flight path and deceleration in conjunction with pitch angle and 

associated aerodynamic lift. A combination of favorable aerodynamic characteristics 

and an automatic electronic control system make smooth transitions possible. 

Figure 6-18 shows angle of attack versus airspeed of a high weight (13,608 kg, 

(30,000 lb)) decelerating transition which was executed by commanding a constant 

flight path angle of three degrees and the deceleration schedule shown in Figure 6-19. 

The smoothness of the curve in Figure 6-20 and the absence of speed reversals attest 

to the satisfactory high angle-of-attack aerodynamic longitudinal characteristics. The 

associated thrust variation is shown in Figure 6-20. As the time marks on Figure 6-18 

indicate, the duration of the decelerating transition is 43 seconds which is about four 

times a s  long a s  an accelerating takeoff transition at  the same weight. A horizontal 

flight path instead of a sloping one would allow more deceleration and a shorter landing 

transition. 



6.2.4 Short Takeoff (STO) 

A short takeoff, necessitated by the required 4536 kg (10,000 lb) VTO overload 

is difficult a s  thrust deflection is not available to any significant degree. In addition, 

landing gear geometry limitations preclude the airplane reqching a high attitude while 

rolling along the deck so that aerodynamic lift and the lift component of the thrust 

remain small. Improved ST0 performance may be obtained with airplane rotation to 

a higher atttitude over the water after leaving a flight deck. During the rotation, the 

airplane will sink, a condition which is not inconsistent with current Navy practice for 

aircraft carrier catapult operations. This maneuver minimizes the required deck run 

by permitting the aircraft to depart the ship at  sub-airborne speed at its maximum 

ground clearance attitude. The subsequent rotation achieves conditions for sustained 

flight by the higher levels of aerodynamic l i f t  and thrust support available at  angles of 

attack in excess of the ground clearance limit and by continued longitudinal acceleration. 

Figure 6-21 shows the deck run required as  a function of takeoff weight and wind over 

deck, if a 1.524 m (5 ft) sink off the bow is  permitted. The maximum angle of attack 

to which the airplane was permitted to rotate was 20 degrees which corresponds to 

0.9 CLmax, a customary safety-related launch restriction, but in some cases this 
limit was not reached. Nose wheel lift off (easily initiated by thrust vectoring) to a 

10 degree pitch attitude occurs during the deck roll. The pitch rate for over-the-water 

rotation reaches 10 degrees per second. 

Deck runs can be shortened further when takeoff is aided by a ramp at the end of 

the deck. A straight ramp was chosen instead of the curved "ski jumpn ramp to facili- 

tate calculations. The function of the ramp is to increase the initial attitude of the 

airplane when it leaves the deck and to impart an upward momentum which allows more 

time for the airplane to reach the limiting sink condition, time which the airplane 

utilizes to accelerate to airborne speeds. Figure 6-22 shows how the deck run is 

shortened as  a function of ramp angle. Two conditions a re  indicated: (2) the airplane 

is allowed to sink 1.524 m (5 ft)  below the lip of the ramp, and (b) the airplane is 

allowed to sink 1.524 m (5 ft) below the level of the main deck. The latter condition 

adds ramp height to the total sink permissible. Caution should be exercised in inter- 

preting the curves, however, a s  the straight ramp ends at a greater height than the 

more realistic curved ramp of equal length and terminal angle. On the other hand, 

the calculations also reduced the launch kinetic energy of the aircraft by approximately 

the excess height of the ramp, a consideration which would shorten the deck run. 



i The equivalence of ramp angle and wind over deck to achieve the same deck run length 

as  shown in Figure 6-23. 

The level of ST0 performance attained with the over-the-water rotation maneuver 

is largely made possible by the favorable high angle of attack characteristics achieved 

through the LEX. The LEX increases aerodynamic lift by extending the linear portion 

of the lift curve to higher angles of attack. This in turn allows aircraft rotation to a 

high attitude to achieve a high thrust lift component. 

6.2.5 Conventional Takeoff and Landing 

Conventional takeoffs and landings can be performed on land-based runways. 

Landing approach speeds in the conventional attitude will be of the order of 213 k m h r  

(115 kn) which will require arrestment for carrier landings. The inclusion of con- 

ventional carrier suitability is considered incompatible with design for VSTOL, but 

some carrier landing capability is believed desirable in the event of engine failure o r  

similar emergency. Hence, the proposed configuration includes a standard tail hook 

and associated backup structure, but the aircraft and alighting gear are  not designed 

to either carrier landing or catapult design criteria. 
j 



TABLE 6-1. TYPICAL FIGHTER ESCORT MISSION 

+- RADIUS (SEE TEXT) 

LIMB FROM SEA LEVEL TO BEST MAX R/C AT INTERMEDIATE POWER 
RUSE ALTITUDE 

BEST ALTITUDE AND MACH NO. 

DESCENT TO 9144 METERS NO DISTANCE OR FUEL CREDIT 

TASK ORIENTED COMBAT 
-- 

(1) ACCELERATION FROM M 0.8 TO M 1.2; 9144 METERS (30,000 FEET) 
AT MAXIMUM THRUST 

(2) 360°SUSTAlNED TURNS AT M 1.2; 9144 METERS (30,000 FEET) 
(3) 360' SUSTAINED TURNS AT M 0.6; 3048 METERS (10,000 FEET) 

TO BEST CRUISE ALTITUDE 

CRUISE BACK BEST ALTITUDE AND MACH NO. 

DESCENT TO SEA LEVEL NO DISTANCE OR FUEL CREDIT 

RESERVES AND LANDING (1) 10 MINUTES LOITER AT SEA LEVEL AT MAXIMUM ENDURANCE 
SPEED - ALL ENGINES OPERATING, STANDARD DAY 

(2) 45 SECONDS AT INTERMEDIATE POWER AT SEA LEVEL STATIC 
CONDITIONS ALL ENGINES OPERATING, 32.1°C (89.8'~). 
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SECTION 7 

AERODYNAMIC UNCERTAINTIES 

Aerodynamic uncertainties have been identified which are related to the VATOL 

concept. These include accurate estimations of supersonic wave drag, LEX effects on 

lift pitching moment, and flow to the top-side inlet, aerodynamic center shift, high 

angle-of-attack characteristics, maneuvering flap effects at supersonic speeds, and 

jet spray effects on takeoff and landing. 

7 . 1  WAVE DRAG AT HIGH MACH NUMBER 

Estimates show 2 rise in wave drag to about M 1 . 8  while experimental data 

for similar wings and others indicate that the drag is essentially constant from M 1 . 2 .  

b 
Tests should be made to verify the wave drag characteristics of the complete model. 

) 

7 . 2  LEADING EDGE EXTENSION RELATED 

The tailless design is flown about 15 percent unstable at subsonic speeds. A 

wing leading edge extension (LEX) is used to provide good high angle of attack and 

high lift characteristics. However, the LEX causes relatively large nose up pitching 

moments. These moments, together with the instability, limit angle of attack to that 

controllable with the trailing edge flap plus thrust vectoring. The LEX is also used 

to provide flow control for the topside inlet and fin during combat. 

Because of the large LEX pitching moment, ,a smaller LEX would be preferred, 
-- . - 

but not at the expense of poor high lift, inlet distortion or poor fin characteris- 

tics. It is difficult to accurately assess the effect of a LEX on the above and tests 

with the LEX off and two sizes of LEX are recommended. The flow field characteris- 

tics of the inlet and fin (on and off) require tests with sideslip ( 3  angles of attack 

subsonic) in addition to those in pitch. Inlet ducts should be instrumented with pres- 

sure rakes. Tests at subsonic speeds should include appropriate maneuvering flap 

defections. The leading edge flap contributes some help to the flow field and with the 

LEX off should be extended to the side of the body. The trailing edge flap for the 

pitch runs should be at maximum deflection (40 degrees) to determine t r i m  capability. 



7.3 AERODYNAMIC CENTER SHIFT 

T h e  correc t  location of t h e  c g  and the aerodynamic shif t  from subsonic to 

supersonic speeds  are critical fo r  an aircraft  with relaxed static stability. T h e  

methods which a r e  available for  estimating t h e  a.c. location are not very accurate. 

I t  is desirable to obtain subsonic and supersonic longitudinal stability da ta  t o  

ver i fy  the estimates of the a.c. position and t o  assist  refinement of the prediction 

method. 

7 . 4  HIGH ANGLE OF ATTACK 

Only limited subsonic data a r e  available on high angle of attack characteristics. 

The effects of LEX size and maneuvering flaps were extrapolated from test data a t  

low subsonic speeds. At high subsonic speeds (M 0.9),  test data were not available 

to correct  for  LEX effects, and a t  supersonic speeds, linear assumptions in the 

Carmichael - Woodward Program limit i ts utility. Tests,  therefore, a r e  necessary 

to better define the high angle-of-attack characteristics, subsonically and a t  transonic 

Mach numbers. 

7 . 5  MANEUVERING FLAPS AT SUPERSONIC SPEEDS 

The value of maneuvering flaps at subsonic speeds is well established. The 

use a t  supersonic speeds has not been clearly demonstrated. The optimum super- 

sonic drag polar estimates indicate that there is a potential for  improvement by use  

of deflected leading edge flaps. Wind tunnel tests  a t  supersonic speeds a r e  required 

to verify the results.  

TOPSIDE INLET 

Low speed wind tunnel tests have indicated that the leading edge extension pro- 

duces good flow for  the top inlet up to quite large angles of attack and moderate 

sideslip angles. The inlet characteristics which exist a t  angles-of-attack of 

90 degrees and a t  transonic and supersonic speeds needs to be determined. 

7 . 7  BUFFET ONSET 

Transition from a conventional horizontal altitude to vertical altitude in the 

landing phase of flight must be made. It is possible that the aircraft could be subjected 

to intense buffet at some stage of this maneuver. Since this might have a degrading 



influence on  pilot performance in th i s  critical stage of flight it is important to  

obtain buffet  onset  and intensity da ta  a t  low speed and high attitude. 

OTHER UNCERTAINTIES 

Other, propulsion related aerodynamic uncerainties exist, but require a 

propulsion simulator to obtain meaningful results.  Three uncertainties that have 

been identified follow. 

7.8.1 Inlet Effect on Wing Drag 

A spilling inlet can interact with the wing by the sides of the inlet producing a 

shock over the wing upper surface. The shock reduces lift and very probably 

increases drag. The side slopes of the inlets have been minimzed and the duct raked 

s o  that spill is primarily over the top. However, some interaction with the wing will 

exist and needs to be determined. Spillage drag may be obtained from test by varying 

the inlet mass  flow ratio. 

'I 7.8.2 Inlet Effect on Afterbody Drag 

The effect of inlet spill on afterbody drag i s  an uncertainty because of the close 

coupled inlet-nozzle relationship. Tests should be conducted to find the effect with 

the correct  inlet mass flow and nozzle pressures.  

7.8.3 J e t  Spray 

Another aero-hydrodynamic uncertainty exists for the concept. It is the 

existence and magnitude of sea  spray that occur  in the hover mode. Preliminary 

estimates indicate that this is a potential problem. However, there is a lack of data, 

especially larger  scale data, to be able to assess  the magnitude of the problem. It  

is recommended that tests be undertaken for  different scale models to generate data 

s o  that a better assessment of the sea spray problem may be made. 





SECTION 8 

PROPOSED RESEARCH PROGRAM 

The proposed research program defines the objectives of the research, presents 

a recommended wind-tunnel test program to resolve the aerodynamic uncertainties 

described previously and describes the wind-tunnel model to be used during the test 

program. 

8 .1  RESEARCH OBJECTIVES 

The primary objectives of the wind-tunnel tests  a r e  listed in the following: 

1. Verification of estimates 

2 .  Assessment of estimation methods 

3. Extension of limited test data through a more extensive angle-of-attack 

and Mach number range 

4. Investigation of areas  of aerodynamic uncertainty where analytical 

procedures a r e  unavailable or  inadequate. 

8 .2  WIND-TUNNEL TEST PLAN 

The proposed wind-tunnel test plan addresses only those research tests  that 

can be accomplished with an aerodynamic, flow-through duct model. Identified aero- 

dynamic uncertainties requiring propulsion simulation a r e  not included. 

The proposed wind-tunnel test plans a r e  presented in tabular form in Tables 8-1 

and 8-2. Table 8-1 presents the test plan for the 11 F t  and 9 x 7 F t  tunnels and 

Table 8-2 presents the test  plan for  the 12-Ft tunnel. These tests are concerned 

with the variation of wave drag with Mach number and the effects of the wing leading 

edge extension (LEX) on the aerodynamic characteristics of the aircraft in pitch 

and sideslip. 



Tests have been grouped and a re  listed numerically. 

Group 1 is a Mach number ser ies  in pitch to moderate angles of attack in order 

to assess the variation of wave drag with Mach number for the complete configuration. 

Effect of leading edge flap deflection i s  also obtained. 

Group 2 is a Mach number ser ies  in pitch to high angle of attack at subsonic 

speeds and moderate angles at supersonic speeds. The primary objective is to 

determine the effect of LEX size on the longitudinal characteristics. Besides the 

standard LEX, there will be a smaller LEX and LEX off configuration. All three 

configurations will be tested at intermediate and maximum flap deflections a t  sub- 

sonic speeds and zero flaps a t  supersonic speeds. Maximum flap deflection is used 

subsonically to help assess any angle of attack limits with the various LEX sizes. 

In addition, the standard LEX size is tested subsonically with two other flap settings 

in order to determine the best flap schedules for minimum trimmed drag a s  a func- 

tion of angle of attack and Mach number. Pitch control effectiveness is automatically 

obtained. 

Group 3 is a sideslip ser ies  of runs a t  three angles of attack with the standard 

LEX a s  well a s  LEX off and intermediate LEX. The appropriate estimated flap 

settings for minimum trimmed drag-due-to-lift are  used. This group provides the 

basic data used in conjunction with groups 4 and 5 to determine the LEX effect on 

the vertical tail contribution to stability and the tail control effectiveness. 

Group 4 is the Group 3 data repeated with vertical tail removed so that the tail 

contribution to stability may be assessed with various LEX sizes. 

Group 5 data is for the purpose of determining vertical tail control effectiveness 

with various LEX sizes. 

Groups 6, 7 and 8 are  for the purpose of finding the LEX influence on inlet 

duct recovery for various angles of attack and sideslip. Duct rake measurements 

in these groups a r e  made during force data measurements of Group 2. Polars a t  

various sideslip angles a r e  run. Maximum flap settings are  used a t  subsonic speeds 

for two reasons. 

1. The main interest is inlet operation a t  high angle of attack, and the nose 

flap is somewhat beneficial to inlet recovery. 



2. The trailing edge flap is set a t  maximum as there is no effect on inlet 

recovery, but the data would be useful in obtaining the capability of the 

flap to trim at  high angle of attack with sideslip. 

Item 2 assumes force data can be obtained with the inlet pressure instrumentation 

in place. The sideslip polar force data would also be useful in cross plotting lateral 

directional characteris tics when combined with the data of Group 3. 

WIND TUNNEL TEST MODEL DESIGN 

In order that the aerodynamic uncertainties of the concept may be explored and 

to generate an aerodynamic data base, a wind tunnel test model is required. As 

noted in the previous section, the configuration features significant aerodynamic / 
propulsion interactions which can best be studied experimentally with simultaneous 

simulation of inlet and exhaust flow influences. This can be achieved by the use of a 

propulsion simulator. However, in order that sideslip data may be obtained, and to 

reducejeliminate support system interference at transonic and supersonic speeds an 

aft-sting mounted model with flow through inlets is also desirable. 

i The initial model design work was based on design of the model as a flow-through- 

inlet model with consideration given to later modifications to include engine simulator 

testing and a jet-effects model test. The impact on model size of including the pro- 

pulsion simulator has been considered a s  well a s  the desirability of achieving full 

scale mass  flow ratios and minimizing aft-end geometry changes. 

The wind tunnel test model will be surface-defined by the NORLOFT computer 

program which represents conic shapes with parametric bi-cubic patches. This sur- 

face definition is now represented in a NORLOFT format, but the possibility exists 

that this data can be made suitable for the NASA/Ames analytical wind tunnel purposes. 

The wing, which has a 65A004-series thickness distribution on a twisted and cambered 

planform, is shown in Figure 8-1 with section cuts at  every ten percent semi-span. 

This wing represents the common wing that will be used on both wind tunnel test 

mode configurations . 



8.3.1 Powered Simulator Installation 

The critical area of design which determines the size of the model i s  in the 

physical placement of the powered simulator in the model. The powered simulator 

to be used has a three-inch diameter compressor face with an additional 0.5-inch 

exterior hardware. On this basis, an 11 percent scale model is required to physically 

contain the powered simulator without aborting the fuselage lines (See Figure 8-2). 

Further study indicated that the maximum airflow of the power simulator would be 

approximately 25 percent under that required to simulate full scale intermediate power 

setting. Maximum powered simulator performance was plotted for three different 

model scales (Figure 8-3). 'J%e aircraft's intermediate power settings at  3,000 and 

11,000 meters (10,000 and 36,000 feet) are  superimposed on Figure 8-3 indicating 

the requirement of a 9.5 percent scale model to simulate full scale airflow. The 

objectives of the test are felt to be best met by aborting the fuselage lines and building 

a model that will simulate full scale mass flow ratios. In order to fit the powered 

simulator into a 9.5 percent scale model with minimum abortions, the drive and 

bleed manifolds will be reduced in size as  determined from the chart in Figure 8-4. 

The approximate amount of deviation of fuselage lines from full scale lines is  

shown in Figure 8-5. 

8.3.2 Wind Tunnel Installation 

Three wind tunnels are being considered for testing the model. Those tunnels 

a r e  the NASA-Ames 12-foot, 11-foot, and 9x7-foot. The sizing of the 9.5 percent 

model has been analyzed and the results shown in Table 8-3. The test rhombus for 

M 1.5 and M 1.8 in the 9x7-foot tunnel is illustrated in Figure 8-6. Models of this 

size and larger have been tested in these tunnels; therefore, the proposed 9.5 percent 

model is well within tunnel operating limits. 

8.3.3 Aerodynamic Force Model 

Preliminary design work on the aerodynamic force model has been completed. 

This model will be a conventional flow-through duct model mounted on a balance 

sting arrangement. A sketch of the model with commonparts to the horizontal attitude 

VSTOL model identified is  shown in Figure 8-7. The six-component balance will 

measure all the forces and moments encountered. In addition, inlet rakes will be 



1 installed at  the throat to measure inlet recovery and distortion and duct exit rakes to 

measure a i r  flow momentum and pressure losses through the duct. The aft end will 

be aborted to accommodate the sting and, if necessary, to obtain mass flow ratios 

approaching 1.0. The model will be capable of obtaining model build-up.data. Off 

blocks will be provided for wing off, vertical off, etc., configurations. Control sur- 

faces, such as leading and trailing edge flaps and rudder, will be provided. 

8.3.4 Je t  Effects Model 

A jet effects model will be designed using the basic parts of the aero and powered 

simulator model. The blade. sting will be used to support the model with the aft por- 

tion of the model metric. High pressure air will be provided to the internal non-metric 

nozzles. Numerous external surface static pressure measurements will be obtained 

during this phase of testing. The inlets of the model will be faired shut. The aft end 

abortions which were required in order to f i t  the powered simulator into the model 

and to sting mount the model will also be duplicated and tested on and off for their 

effects. 

j 8.3.5 Model Support 

Two methods of support will be used. One method is the use of a conventional 

sting entering the aft end of the model. This method will be used for the aerodynamic 

force model configuration incorporating flow through ducts. A blade type strut  will 

be used for the powered simulator and the jet effects model. Figure 8-8 illustrates 

these two mounting arrangements. The blade support will contain air delivery /return 

system. It will be designed to minimize its effects on the flow over the model. This 

minimized effect will be tailored either for the subsonic o r  transonic regime. 

An analysis of the maximum dynamic presswe in the Ames tunnels versus model 

scale is shown in Figure 8-9. The limit criteria was the maximum load capability of 

the respective tunnel support systems. As shown, for the 9.5 percent model, the 

maximum dynamic pressure is 43000 ~ / m ~  (900 psf) in the 11-foot tunnel, giving a 

Reynolds number of 19 million per meter ( 6  million per foot). This maximum dynamic 

pressure reflects the requirement to test a t  28O angle-of-attack. There remains the 

capability of testing at  higher dynamic pressures (higher Reynolds numbers) a t  lower 



angle-of-attack. For  example, at  lo0, the maximum dynamic pressure, limited by 

the tunnel support system, is 55000 N/m2 (1150 psf). This would give a Reynolds 

number approaching 25 million per meter (8 million per foot). A few runs a t  higher 

Reynolds numbers, to check Reynolds number effect, would be possible. 

8.3.6 Model Balance 

A two-inch diameter Task MK XXEV balance, owned by Northrop, is being con- 

sidered for the subject model. This balance has a normal force limit of 2,900 kg 

(6,400 pounds) and an axial force limit of 160 kg (350 pounds) which corresponds to a 

maximum dynamic pressure of 29000 N/m2 (600 psf). Figure 8-10 shows the balance 

envelope. The maximum normal force shown occurs a t  an angle-of-attack of approx- 

imately 280 with trailing edge flaps deflected to 40° and leading edge flaps deflected 

to 25O. If the dynamic pressure is held to 29000 N/m2 (600 pfs) , the maximum axial 

force that will be experienced by the balance will be approximately 75 percent of the 

gage limit. Thus, the balance i s  the limiting component in the system. The balance 

will be oriented in a reverse  position when used with the blade support. 



TABLE 8-1. TEST PLAN - 11 FT AND 9 X 7 FT TUNNELS 

W = WING, L =  LEX B = BODY-CANOPY D = DUCTS V = VERTICAL TAIL 
cr RANGE A = - 4' TO 20' SUBSONIC AND - 4' TO 12' SUPERSONIC 
cr RANGE B = - 4' TO 30°, 6 RANGE C = -3O TO 15O 

= NOSE FLAP DEFLECTION1T.E. FLAP DEFLECTION - DEG 

2 

3 

4 

5 

6 

7 

8 

WBDV 

WBDV 

WBD 

WBDV 

WLBDV 
PLUS INLET RAKES 

WBDV 

WLBDV 

A 
B 
B 
A 
B 
B 
A 
B 
B 

0' 
1 o0 
20° 
o0 
1 o0 
ZOO 

o0 
1 o0 
20' 

0' 

0' 

C 

C 

REPEAT 3 WITHOUT VERTICAL TAIL 

REPEAT 3 WITH VERTICAL TAIL DEFLECTED 10' 

O F F 0 1 0  

OFF 
STD 

STD 
ALT 

ALT 

OFF 
1 

OFF 
STD 

1 
STD 
ALT 

1 
ALT 

X 

X 

15/20 
30140 
010 
15/20 
30140 
010 
15/20 
30140 

010 
15120 
30140 
010 
15120 
30140 
010 
15/20 
30140 

REPEAT 6 WITH NO LEX 

REPEAT 6 WITH ALTERNATE LEX 

X 

X 

X 
X 
X 
X 
X 
X 
X 
X 
X 

X 
X 

X 
X 

X 
X 

X 

X 
X 

X 

A 
B 
A 
B 

X 

X 

STD 

I 
STD 

5' 
5O 
10' 
10' 

X 
X 
X 
X 
X 
X 
X 
X 
X 

X 
X 

X 
X 

X 
X 

010 
30140 
010 
30140 

X 
X 
X 
X 
X 
X 
X 
X 
X 

x 
X 

x 
X 

X 
X 

X 

X 

X 

X 

X 

X 

X X X  

X X X  

X X X  

X 

X 

X 

X 

X 

X 

X 

X 

X 



TABLE 8-2. TEST PLAN - 12 FT. TUNNEL 

W = WING, L = LEX B = BODY CANOPY D = DUCTS V = VERTICAL TAIL 
cu RANGE D = O0 TO 90° 
f l  RANGE C = -3O TO 15O 
d -=  NOSE FLAP DEFLECTI0NIT.E. FLAP DEFLECTION - DEG F 

3 

4 

5 

6 

7 

8 

WBDV 

WBD 

WBDV 

WLBDV 
Plus Inlet 

Rakes 

WBDV 

WILBDV 

40° 
0 
20° 
40° 
40° 

C 
C 
C 
C 
C 

REPEAT 3 WITHOUT VERTICAL TAIL 

REPEAT 3 WITH VERTICAL TAIL 
DEFLECTED 10° 

OFF 
STD 
STD 
STD 
ALT 

X 
X 
X 
X 

D 
D 
D 
D 

30140 
010 
30140 
30140 
30140 

REPEAT 6 WITH NO LEX 

REPEAT 6 WITH ALTERNATE LEX 

X 
X 
X 
X 
X 

5O 
5O 
lo0 
10° 

STD 
STD 
STD 
STD 

010 
30140 
010 
30140 



TABLE 8-3. COMPARISON MODEL SIZE TO TUNNEL SIZE 

AM ES 9x7' 
TUNNEL 

46.45 (500) 

41 89.9 (4.51 ) 

7.2 

2.68 (28.82) 

241.5 (0.260) 

0.4 1 

9.94 (32.6) 

94.49 (3.10) 

44.2 

59.97 (645.5) 

5416.2 (5.83) 

9.2 

AMES 12' 
TUNNEL 

46.45 (500) 

4189.9 (4.51 ) 

4.5 

2.68 (28.82) 

241.5 (0.260) 

0.26 

9.94 (32.6) 

94.49 (3.10) 

27.4 

59.97 (645.5) 

5416.2 (5.83) 

5.8 

PARAMETERS 

WING REFERENCE AREA 
2 2 FULL SCALE: m (ft ) 

2 2 MODEL SCALE: cm ( f t  ) 

% TUNNEL CROSSSECTION 
AREA: 

MAXIMUM FRONTAL AREA 

FULLSCALE: m2(ft2) 
2 2 MODEL SCALE: cm (f t  ) 

% TUNNEL CROSS-SECTION 
AREA: 

WING SPAN 

FULL SCALE: rn (ft) 

MODEL SCALE: cm (ft) 

%TUNNEL WIDTH: 

PLANFORM AREA 

FULLSCALE: m2(ft2) 
2 2 MODEL SCALE: cm (ft 

% TUNNEL CROSSSECTION 
AREA: 

AMES 11' 
TUNNEL 

46.45 (500) 

4189.9 (4.51 ) 

3.7 

2.68 (28.82) 

241.5 (0.260) 

0.21 

9.94 (32.6) 

94.49 (3.10) 

28.2 

59.97 (645.5) 

5416.2 (5.83) 

4.8 





MODEL SCALE - PEBCENT 

FIGURE 8-2. MODEL SCALE REQUIREMENTS FOR PROPULSION SIMULATOR SIZE 
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FIGURE 8-3. ENGINE SIMULATOR PERFORMANCE 
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FIGURE 8-9. MAXIMUM DYNAMIC PRESSURE AND REYNOLDS NUMBER - BASED ON STRUT LIMITS - 
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SECTION 9 

CONCLUSIONS 

A detailed aerodynamic study has been made of a vertical attitude VSTOL 

(VATOL) fighter attack aircraft concept. The aircraft design was investigated to suf- 

ficient depth to ensure that the configuration was sufficiently credible to justify the 

aerodynamic study. As a result of this study i t  is concluded that: 

1. The VATOL concept offers a viable solution to the shipboard supersonic 

. VSTOL fighter /attack recpirement. 

2.  The requirement for VTOL involves little compromise on the VATOL 

concept. However, i t  will require new equipment and techniques for 

ship interface. 

3. The minimum drag a t  supersonic speeds may be increasingly conservative 

as Mach number is increased because of the corrections that were applied 

to the estimates. Test data a r e  required to establish the correct drag 

levels. 

4. The topside inlet appears to operate in a good flowfield due to the leading 

edge extension. Inlet flow characteristics at  high angle of attack and 

sideslip needs to be determined, especially a t  transonic and supersonic 

speeds. 

5. The NASA-Ames Wing-Body Aerodynamics Program is a good tool for 

generating wing-body fixed camber and.variable camber effects. The 

effectiveness of supersonic variable camber needs to be verified. 

6 .  The longitudinal aerodynamics a t  high angles of attack, especially the LEX 

effects on pitching moment need verification through wind tunnel test. 

7 .  Sea spray generation by the VATOL engine exhaust in hover is a potential 

problem area requiring further study. 
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