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ORIGINAL
CONFERENCE OVERVIEW OF POOR QUALiTY
C L. Lawson, Conference Chairman

THE NUMERICAL SOFTWARE COMMUNITY, especially 1n
North America, has predominately used the Fortran
language In the Tate 60's, there may have been
thoughts that some other language might soen re-
place Fortran for scientific computing. By the
early 70's, however, this appeared much less likely
and a number of people began developing prepro-
cessors and other software tools that would make
some of the newer systematic approaches to software
development and testing more read1ly available n
Fortran environments.

The 1974 SIGNUM Workshop on Fortran Preproces-
sors for Numerical Software held at the Jet Propulsion
Laboratory, Pasadena, spotlighted this developing
area and nitiated closer communication between
SIGNUM and the ANSI Fortran Committee X3J3. Contacts
established at the 1974 Workshop led to the organi-
zetion of two Fortran Forum meetings n 1976, one in
Cairfornia and one 1n New York, providing early
public discussion of the emerging Fortran 77
standard

The Workshop and the two Forums gave added
impetus to a changing mood within X3J3. There was
tncreased willingness to deal with significant
additions to the language. 1In particular, 1t seems
T1kely that the eventual decision to add the
structured IF nto Foriran 77 was strongly influ-
enced by (he considerabie 1nterest 1n structured
Fortran evidenced at the Workshop.

For the present conference we have carried the
SIGNUM-X3J3 communication a Step further by
arranging for a half-day joint meeting of the two
groups  Brainerd and Schenk will speak on the
current directions of X3J2 and Lawson, Brown, and
Smith will present some views from the mathematical
software community for consideration by X3J3. An
extendad discussion period 15 scheduled for more
general interaction between the SIGNUN conference
attendees and the members of X3J3.

Boyle, Dr1tz, Schryer, Crary, and Presser w11l
describe a variety of software tools applicable to
the development of numerical software. Rice gives
an analysis of the increased programming efficiency
attawnable by use of a very high order problem
oriented language for solving PDE's Miller
presents a case for an EISPACK-type research and
development project n the area of software tools.
Osterweil speaks on strategies for making the best
use of software tools.

The organtzations with the most pressing
necessity to make systematic and efficient use of
tools for dealing with mathematical software are
the vendors of commercial mathematical 1ibraries.
We w111 hear from Fox of the PORT library, Aird of
IMSL, and du Croz of NAG on their methods and
experiences

Appreoaches to the techmical problems associated
with the exchange of mathematical softiware between
different facilities w11l be treated 1n talks by
Butler and Van Snyder.

New preprocessor-based languages w11l be
presented by Grosse and Feldman, PASCAL, which has

been regarded mainly as a teaching language has
achieved a new burst of popularity among micro-
computer users, due 1n large part to PASCAL compiler
developments at UCSD. Volper of that group w11l
discuss PASCAL*s relevance to the mathematical
software community.

The DoD High Order Language Working Group 15 1n
the midst of one of the largest efforts ever under-
taken by a user organization to create and promote
the use of an entirely new language The talk by
Fisher on this project wiill give conference
attendees an opportunity to begin to assess the
s1gnificance of this project for numerical software.

Hull will discuss Tanguage and hardware features
that would give the numerical analyst new levels of
control and confidence in numerical computations.

Kahan and Eggers are both presently active on
an IEEE committee to specify a standard for
floating-point arithmetic hardware. They will
present two different proposals on this subject.

Fong w111 report on the recent DoE Workshop on
Mathematical Libraries dJones will report on the
PoE Advanced Computing Committee Language Working
Group which 1s developing guidelines for Fortran
extensions to meet Dof needs.

It 15 a pleasure to thank Tom Ai1rd, Jim Boyle,
and Norm Schryer for working with me 1n organizing
the technical program For this conference John
Rice provided valuable assistance 1n coerdination
with ACM Headgquarters, publicity, and budgetary
guidance.

The Jet Propulsion Laboratory has supported the
conterence by permitting me and my secretary,
Kay Cleland, %o carry through the preparation, and
by publishing the conference schedule and pro-
ceedings for distribution at the conference I
wish to personally thank Kay for her sustained
dedication to the success of the conference.

The members of the ANSI Fortran Committes X3J3
will be making a very generous effort on behaif of
the conference n travelling thirty miles across
Los Angeles from their own meeting site to Pasadena
for the Wednesday morning sessions I thank
Jdeanne Adams, Chairman of X3J3, and James Matheny,
local arrangements Chairman fo X3J3's Qct 16-19
meeting 1n Los Angeles for their unstinting
cooperation 1n arranging for X3J3's participation
1n this conference

I wish to express appreciation to all of the
speakers and their home institutions for their
outlay of time, funds, and energy to bring their
recent work to the podium of this conference. The
Session Chairmen and attendees at the conference
encompass a wide range of experience in mathematical
software and we look forward to stimulating ex-
changes of 1nformation during the discussion peripds.
We belteve this conference will provide a useful
snapshot of the current state-of-the-art n tools
and techniques for development of mathematical
software and we hope this will lead to more wide-
spread use of systematic methods 1n this field.
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A "GCORE + MODULES" APPROACH
TO FORTRAN STANDARDIZATIOR

Walt Brainerd
Los Alamos Scientific Laboratory
Los Alamos, NM 87544

ABSTRACT

The ANSI FORTRAN standards committee X3J3 has
adopted a "core + modules" approach to specifying
the next revision of the standard. The motivation
for and the projected benefits of this approach
are discussed.

In 1978 January, ANSI X3J3 voted to adopt a frame—
work consisting of a '"core" and "modules" for
developing the next revision of the ANSI Fortran
standard. Of course, this is a decision which
could be reversed if the approach appears to be
unsuitable or technically unsound after some exper—
imentatron. However, the approval of this procedure
is an 1ndicatilon that the committee wants te invest
considerable effort in an attempt to meke this ap-
proach work.

There are at least three reasons for adopting
the "core + modules" approach:

1) to provide a mechanism to interface wzth
collateral standards and implementations in
major applications areas

2) to provide a mechanism for having optional
functional areas described within the stan-
dard

3) to specify a smaller, more elegant, language
than Fortran 77 wrthout decreasing the
status of Fortran 77 as a standard language.

Each of these reasons 1s now discussed in more
detail,

One of the major concerns of X3J3 1s the de-
velopment of collateral standards in areas such as
data base management, real time process control,
and graphies. X3J3 does not have the resources to
do the technacal development of standards ain all of
these areas; in some cases X3J3 may not even be in-
volved directly in the approval of such a standard.
Therefore, 1t is Important that X3J3 provide a
schene whereby collateral standards in these appla-
cations areas can be regarded as modules in the
language that are "attached" to the core of the
language 1n a standard way. The only mechanism
consadered so far for interfacing with these modules
1s through the CALL statement, extended to allow
the arguments to be identified by key words. This
topic as covered in more detail in another paper
and 1s an area that can use more good ideas, be-
cause 1t 1s a very difficult and important problem.

A second kind of extension might be called a
"language feature module." This sort of module
would ineclude a collection of related langusge

features that might not be appropriate to include
in the core, but which should have its form spec-
1fied so that all extensions to the core in this
area will be the same. Example candidates for such
modules are array processing, a bit data type, and
specification of numerical precision., Fortran 77
should be considered to be such a module.

It may be quite inappropriate to add some of
these language features to Fortran 77, For example,
it would be rather messy to add a bit data type or
REAL*11 (andicating at least 11 digits of precision)
on top of the Fortran 77 equivalencing mechanism.

For these reasons 1t 1s impertant to design a
core that 1s sufficiently traim that new language
features can be added in a natural way.

Since Fortran 77 wall be one of the modules,
the core need not be constrained to contain all
archaic features of Fortran. One of the design
objectives 15 to eliminate those features (e.g.,
the arithmetic IF statement) that are no longer
necessary, due to the addition of better equivalent
features or those features (e.g., storage asso-
ciataon) that actually stand in the way of adding
features recognized as contrabuting to high quality
programming practices.

To provide just one example illustrating how
the storage association concept impedes the addition
of useful features, consider the possibality of a
conditional array assignment.

REAL A(S0), B(90), C(90}, D{90)

A(*) =0

B(*) =0

WHERE (A(*) .LT. 2) DO
C(*) = B(*) + 1
END WHERE

If no equivalencing 1s allowed, the assignment

may be implemented as
DDS9I=1, 90
9 IF (A(I)} .LT. 2) C{I) = B(I} + 1

However, 1f the program may contain the state-

ment
EQUIVALENCE (C(1), B(2)) .

the loop above will set C(I) = I for I =1 to S0
1nstead of setting each element to 1. The imple-
mentation will be more complex on most machines.

In 1978 August, X3J3 approved a proposal to
create a farst cut at a4 core language by starting
with Fortran 77 and making the following changes.
Of course, this list is not final, but is gaven to
provide a flaver of the final result. When reading
the list of changes, 1t is important to keep in
mind that Fortran 77 will be one of the modules, so
any compiler that contains the Fortran 77 module
will be able to process programs containing any of
the features of Fortran 77.

The following two paragraphs are excerpted
from the X3J3 proposal to indicate some of the ob-
jectaves of the approach-



The general philosophy governing this core
design 1s that the core should be comprehensive,
containing virtually all of the generally useful
features of Fortran and that 1t should ferm a
practical, general-purpose programming language.
Modules would be used largely for special-purposs
language features that entail high implementation
costs or are used primarily 1n special-purpose
application areas. The mumber of such modules
-should remain small an order to minimize problems
of program portability. Three examples might be
(1) a module providing comprehensive array process-
ing facilities, (2) one providing data base manage-
ment facilities, and (3) ome providing features of
Fortran 77, and possibly certain other 1solated
special-purpose features, not contained in the corve.

Another goal is to produce a more elegant lan-
guage by moving redundant features and including
features which lend themselves to modern program-
ming practices.

The net effect of these changes is the
following®

1) Subxroutane linkage facilities are enhanced

to improve the interface with applications
modules wratten in Fortran.

2) Archaic control structures are replaced

with modern ones,

3) The concept of storage association is re-

moved.,

4) Fixed-form source 1s replaced with free-

form source.

There are two kinds of changes: f{features
added to Fortran 77 and features remaining in
Fortran 77 but not included in the core.

To be added

Free-form source
Larger character set
Longer names .

To be moved to Fortran 77 module

~Column 6 continuation
C for comment

]

Simple data structures
Some array processing
Global data definition

B1it data type
A length (digits) for REAL

EQUIVALENCE

COMMON and BLOCK DATA
Passing an array element ox
substring to a dummy array
Assocration of ENTRY names
DOUBLE PRECISION

Enhanced looping
Case construct
Internal procedures
Subroutine linkage

Arithmetic IF

Computed GO TO

Alternate RETURN

ASSIGN and assigned GQ TO
Statement functrons

ERR = and END = specifiers

H, X, and D edit descriptors
Specific nemes for intrinsics
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ABSTRACT

Group T9 of the ANSI Fortran
Committee X3J3 has been assigned
to study the areas of numerical
precision, storage and data
structures, with a goal of devel-
oping technical proposals and
recommendations for future re-—
visions of the Fortran stan-
dard. Developers and users of
numerical software have proposed
the addition of wvarious functions
to return the base of a computer
system's number representation.
Also desirable are features to
enhance Fortran portability,
such as single and double pre-
cision word lengths, and expo-
nent ranges. Structured types
proposed include arrays, re-
cords, sets and files.

INTRODUCTION

Soon after completing work on
Fortran 77, the X3J3 Committee
began the task of identifying
technical issues to be considered
for future revisions of the
Fortran standard. As a first
approach, the Committee reviewed
all comments which had been re-
ceived during the public review
period of the proposed standard
(Fortran 77), especially all of
the comments which had been
referred to the "future develop-
ment" subcommittee.

This rough list of desirable
features was sorted and cate-
gorized, resulting in the current

X3J3 Committee organization of
technical subgrcups, such as T9,
to investigate and propose speci-
fic changes. PFor the past year,
group T9 has been gathering in-
formation about the issues of
Numerical Precision and Data
Structures.

NUMERICAL PRECISICN FEATURES

L. D. Fosdick (1) #* addressed
the ¥3J3 Committee at their
October 1977 meeting proposing a
set of environment parameters and
intrinsic functions to enhance
computations and portability of
numerical software. Since that
time, group TY9 has received pro-
posals from W. S. Brown and
8. I. Feldman (2) H. P. Zeiger
(3}, G. M. Bauer (4) outlining
similar sets of desirable fea-
tures. Additionally, group T9
has reviewed the discussions of
B. Ford (5) (6) on transportable
numerical software.

Fosdick's proposed” features
address portability, reliability,
and efficiency of the Fortran
language, with an automatic
adjustment to changes in the
environment. Examples cited are
those of IMSL of Houston, Texas,
and NAG of Oxford, England, who
adjust their mathematical soft-
ware libraries to a specific
environment by removing coded
records which do not apply to
the environment from the source
file. Environmental parameters
identified include the following:

* Numbers in parenthesis
designate References at end of paper.



1. Base of fleating
point representa-
tion.

2. Largest positive
real number, expo-
nent and integer.

3., Largest negative
real number, exXpo-
nent and integer.

4, Number of signifi-
cant digits.

5. Exponent Bias.

Fosdick suggests that these
parameters would be made availa-
ble to a FPortran program with a
set of intrainsic functions pro-
posed by IFIP WG2.5 (EPSLN (a),
INTXP (a), SETXP (alaz)).

FPord proposes three sets of
parameters to make software trans-
portable and adaptable to an en-
vironment. The arithmetic set,
includaing the radix (same as
Fozdick's base of a floating
point representation); the Input/
Output set, defining such en-
tities as the standard units
for input and output; and a mis-
cellaneous set, to define number
of characters per word, page
size, and number of decimal di-
gits.

Brown and Feldman present
a language-independent proposal
for environment parameters and
basic functions for f£loating-
point computation with specific
representation in terms of gener-
je functions. Their basic para—
meters include the base, the
precision, the minimum exponent,
and the maximum exponent. To
provide access to precise and
efficient numerical computation

tools, Brown and Feldman suggest
analysis and synthesis functions,
such as exponent (x) and frac-
tion (x); as well as precision
functions to aid in dteratiopal
computations. Seven generic

and six computational procedures
are suggested, with specific
illustrations of implementation
for Univac 1100, Honeywell 6000,
and Interdata 8/32 systems.

Group T9 expects to soli-
cit additional proposals in the
area of numerical precison from
users and designers of numerical
software. It is clear, that the
above authors agree on a certain
set of basic necessary parameters,
although a wide range of nomen-
clature and specific function
names have been proposed. With-
in the next year, group T? will
incorporate these suggestions
into position papers and spe-
cific Fortran language proposals.
The intent 1s to maintain close
liajison with groups such as
IFIP WG 2.5 to assure compati-
bility with language development
and numerical computation prac-
tices.

DATa STRUCTURES

At the August 1978 meeting
of X3J3, M. Freeman conducted a
tutorial on "Data Structures: A
Language Comparison." Feedback
from committee members yielded
the need for a glossary and
definition of terms in this area.
A survey questionnaire has been
designed and will be mailed to
X3J3 participants to reach some
consensus as to the types of
structures which should be con-



sidered for future Fortran revi-
sions.

R. Oldehoeft and R. Page (7)
have examined PASCAL data types
as a possible model for Fortran.
These types include arrays, re-
cords, sets and files. B. Lampson
and others (8) describe the pro-
gramming language EUCLID with its
structures, arrays, records, and
modules. In addition to defining
the types of structures to be in-
cluded 1n Fortran, group T9 will
develop and propose necessary

functions to operate on structures.

Currently identified operations
include: Read, Write, Assign,
Initialize, and Compare. The
array processing features are a
separate 1ssue being studied by
group Te of X3J3.

SUMMARY

Group T9 1s nearing the con-
clusion of a period of information
gathering. The next phase of
technical work will be- the iden-
tification of common features
which have been proposed for
numerical computation and data
structures, followed by the de-
velopment of Fortran language
proposals for X373 committee con-
sideration.
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THE IFIP WG 2.5 PROPOSALS ON FORTRAN

Charles L.

Lawson

Jet Propulszon Laboratory

Pasadena,

ABSTRACT

This paper is one of three 'to be presented at a
Jjoint meetang of SIGNUM and the ANSI X333 Fortran
Committee October 18, 1978, for the purpose of
cotmunicating suggestions arising in the mathemati-
cal software community to the X3J3 Committee. A
summary 1s given of language problem areas and
possible solutions that have been discussed by the
IFEP Working Group 2.5 on Numerical Software. Also
included are some thoughts on control structures
due to the author.

THE MATHEMATICAL SOFTWARE COMMUNITY has gaiven -
serious and continuing attention to portability and
black-box modularity. Thas 1s evidenced by the
existance of extensive and widely used labraries
and other systematized collections of poxtable or
transportable mathematical subprograms which are
ready for use in applications without need for
modification or recompilation.

We feel this approach has had large payeffs ain
injecting, good quality subroutines into inmumerable
applications programs. There is a great deal of
room for improvement, however, and some of this
improvement could be facilitated by enhancements in
programming languages. Following are three general
concepts that are often among the goals in designing
and programming mathematical software and which
could be better handled with the aid of appropriate
language enhancements.

1. Long argument lists are to be avoided. The
user should not be burdened with declaring,
dimensioning, and assigning variables that
are inessential to his or her functional
concept of the task to be done by the
subprogram.

2 Portability. Ideally it should be possable
to move the source code to different
machines with no changes. WNext best 1s code
that can be ported by systematic changes
effected by a processor designed for that
purpose. Since a library may involve
hundreds of subprograms, manual changes that
would be acceptable im porting an dindividual
subprogram do not provide a reliable
approach,

3. A library subprogram should be useable with-
cut the need to mzke changes dependent on
the application. The user has enough
concerns without also being asked to reset

Calaifornia

dimensions in a set of library subprograms
and recompile them.

TOPICS IN LANGUAGE ENHANCEMENT CONSIDERED BY WGZ.5

The topics listed in this section have been
discussed by WG2.5 [see Appendix A for information
on WG2.5]. Some of these have only been briefly
considered by WG2.5 while others have been the
subject of a substantial amount of effort including
the solicitation of comments via the SIGNUM
Newsletter and the formulation of detailed preposals
for language enhancements. I believe 1t is fair te
say that the mathematical software community,
including W62.5, is more concerned that some viable
solutions be worked out for these problem areas than
that any particular suggested solution be adopted.

DOUBLE COMPLEX. There are significant classes
of problems in engineering and science for whach
complex numbers provide the most natural and com—
venient mode of expression. If it i1s agreed that a
programming language for scientific computation
must support complex araithmetic, then it should alse
provide a choice of precasions for complex arithme-—
tic for the same reasons that such a choice 1s
provided for real arithmetic. See Ref [1].

ARRAYS OF WORK SPACE IN LIBRARY SUBROUTINES.
Many subroutines in a mathematical library requaxe
one or more arrays of temporary work space of sizes
depending on the problem parameters. Suppose for
example, a library subroutine SUB requires two
temporary integer arrays of length N and one of
length M where N and M are dummy arguments of SUB.
How should this Woxk space be provided to SUB?

One possibility 1s to 1nclude the three arrays
as distinct dummy arguments. This 1s objectionable
as 1t leads to long argument lists which, among
other thiangs, can discourage a potential user
considering the use of SUB. When libraries are
modularized so that SUB may call lower level library
subroutines which in turn call others, etec., thas
approach can lead to some very long argument lists
since temporary arrays needed only by some lower
level subprogram will appeaxr an the argument lists
of all higher level subprograms.

Use of COMMON storage as specified in Fortran 66
and 77 15 not suitable since the lengths of arrays
in COMMON in a set of precompiled library sub-
programs cannot adjust to the problem variables
M and N.

A frequently used approach is to require one
array of length 2%M4M as an argument to SUB and then
make yse of this array as two arrays of length N
and one of length M. WG2.5 has proposed in some
detail a "MAP" statement, Ref [1], to provide
dynamic renaming of subsets of dummy arrays to



facilitate this appreach., This capability 1s also
supported efficiently by the "DEFINE" statement in
Univac Fortran V.

Another appreach to this problem could be through
changes to the concept of COMMON. For example,
there could be two types of COMMON declaxationm,
primary and secondary. A primary declaration
establishes absolute amounts of storage needed just
as the present COMMON declaration does whereas a
secondary declaration may contain array names with
adjustable dimensions. Each distinct named COMMON
block would have to be declared by a primary decla-
ration 1n at least one program unit of a complete
executable program but could also be declared by
secondary declarations in other program units.

This concept appears to be convenient and
efficient for sets of library subprograms that are
always used together. It may not be convenient for
a library subprogram that 15 sometimes called by
other library subprograms and sometimes directly
by users.

Yet another approach would be truely dynamic
arrays that a black-box subroutine could fetch from
and release to the operating system as needed.

CALLS FROM A LIBRARY SUBPROGRAM TO USER CODE.
Certain mathematical subprograms require access to
user-provided problem-dependent code. For example,
a subprogram for numerical integration {quadrature)
requires access to the user's code for evaluation
of the integrand. Analagous situations arise with
library subprograms for differential equations,
nonlinear equations, optimization, sparse matrix
algorithms, etc.

The approach supported by Fortran and most other
languages would be typified by a user main program
MAIN calling a library subprogram, say QUAD, which
in turn calls a user-coded function evaluation
subprogram FUNC.

It 15 not uncommen that a need arises for a
dairect data path between MAIN to FUNC. For example,
one may need to integrate a number of fumctions, in
which case quantities which are input or computed
by MAIN need to be communicated to FUNC to select
or parameter:ize the function to be computed.

In Fortran this can be handled by inserting a
COMMON block in MAIN and FUNC. The user is then
required to wraite a number of things twice — the
COMMON statements and possibly some type and
dimension statements. This double writing and
maintenance could be alleviated, however, 1f an
INCLUDE feature were available.

An alternative approach sometimes called
"reverse communlcation' has been used in some
library software. In this appreach there is no
separate FUNC subprogram. The code that would
have been in FUNC is in MAIN. When QUAD needs a
function value instead of calling FUNC it returns
to MAIN with a branchang index set to cause MAIN
to branch to the function evaluation code and then
call QUAD again. In this appreach the user needs
to write and maintain only one program unit, MAIN,
instead of two, MAIN and FUNC. Furthermore, there
1s no need for COMMON to establish a data path
between the main driver and the function evaluation
code.

Reverse communication can be confusing te a user
and may involve more lankage overhead since it will

involve just one call to QUAD and many calls to FUNC.
Generally, FUNC would be a simpler code than QUAD in
ways that might cause 1ts linkage overhead to be
less.

1f internal procedures are added te Fortran, as
for instance was done in Univac Fortran V, then FUNC
could be written as an intermal procedure within
MAIN and one could have the moere easily understood
structure of QUAD calling FUNC and still have only
one program unit for the user to write and maintain,
and have data accessible to the driver and FUKC.
To support this usage it must be possible to pass
the name of the internal procedure FUNC to QUAD in
the call from MAIN so that QUAD can call FUNC.

DECOMPOSITION AND SYNTHESIS OF FLOATING-POLNT
NUMBERS. There are situations in which it 1s
desirable to decompose a fleating-point number into
its exponent and mantissa parts or conversely to
construct a floating-point number from these two
parts. One application would be the scaling of a
vector by an exact power of the machine's radix in
order to avoid antroducing rounding erreors in the
scaling operation. Another application would be in
vriting portable subprograms for certain special
functions such as SQRT, EXP, and LOG.

Let b demote the radix of the system used to
represent floating-point numbers on a particular
computer. Then each nonzero number x, representable
on this computer, can be associated uniquely with a
parr of numbers (e,f) by the requirement that

e

=fb~, b-lslf|<1, and e iz an integer.

WG2.5 has suggested the following two functions
Integer expeonent: INTXP(x)

Thic function returns the integer value e if
x#0 and x 1s associated with the pair (e,f).
The result is undefined if x=0.

SETXP (x,N)

If x=0 the result is zero. If x#0 and x is
associated with the pair (e,f) then the result

1.

Set exponent:

is the wvalue be if this value does not underflow
or overflow, otherwise the result 1s undefined.

As examples of usage, suppose x#0 and X 1s associated
with the pair (e,f). Then e and £ can be obtained

by:
INTEGER e
e = INTXP(x)
f = SETXP(x,0)

and x can be constructed from e and £ by
x = SETXP(f,e)

The machine radix b can be obtained by
b = SETXP(1.0,2)

It 1s further proposed that these functions be
generic to deal with both single and double precision
floating-point numbers.

ENVIRONMENT PARAMETERS. One of the key
hinderances to portability an Fortran has been the
need to anclude machine dependent parameterxs in
programs. For example, after strenuous effort to
achieve portability in the BEISPACK eigenvalue codes,
it remained that a number representing the arithmetic
precision needed to be reset in certain subroutines
to adjust the code to different machines.

A quite thorough discussion of this problem with
reasonable approaches to its resolution was givea
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by Redish and Ward Ref [2] in 1971. Redish and Waxd
noted that the problem had previously been discussed
by Naur Ref [3] 1n 1964

The approach to defining and naming the set of
environment parameters used in the IMSL labrary was
reported 1n Aird et al Ref [4]. Thus paper stimu-
lated an ad-hoc meeting on the subjeet by T. Aizd,
G. Byrne, B. Ford, and F. Krogh during a SIGNUM
conference in Pasadena, Nov 9, 1974 Ref [5]. The
draft produced by this ad~hoc meeting was used as
a working paper at the first meeting of WG2.5 an
January, 1975, and after further exposure and
discussion, particularly at the Oak Brook Porta-
bility meeting, June 1976, evolved to the paper
approved by WG2.5 and the parent IFIP Committee TCZ
apd published in Ref [6] and elsewhere.

This paper propcsed definiticns and names fox
three clases of quantities as follows:

Araithmetic Set
Radix, mantissa length, relative precision,
overflow threshold, underflow threshold,
and symmetxric range.

Input-Output Set
Standard input unit, standard output unit,
standard error message unit, number of
characters per standard input -record, and
number of characters per standard output
record.

Miscellaneous Set
Number of characters per word, size of a
"page" 1n a virtual storage system, and
number of decimal dagits useful to the
compiler in numeric constants.

PRECISION FUNCTION. WG2.5 has proposed a
function to be used to determine the resolution of
a computer's number system in the vicinity of a
given fleoating-point number. The set P of all real
numbers that can be represented as valid floating—
poant numbers of a particular precision, e.g.,
single precision, in storage in a given computer
forms a linearly ordered set. Let ¢ denote the
underflow threshold, i.e , the smallest positive
real number such that both 0 and -0 are members of
P, The proposed precisionm fumction as EPSLN(x}
whose value is max{x-x',x"-x,¢}
where

r JThe predecessor of x in P af there is one.
x 1f x is the least member of P.

and

" = The successor of x in P if there is one.
x 1f x is the greatest member of P.

OPTIONAL ARGUMENTS FOR SUBPROGRAMS. For some
mathematical subprograms it is desirable to provade
the userwith the choice of a simple calling sequence
with a minimal number of parameters or a longer
calling sequence giving the user more detailed
control of the subprogram This is presently ac-—
complished by provading different "front-end" sub-
programs or by "option—vectors” which are arrays in
the calling sequence the elements of whach
essentially play the role of arguments 1in a variable
length or keyworded calling sequence.

The econcept of keyworded calling sequences
currently being considered by X3J3 may be a very
useful mechanism for this satuation.

VIEWS OF THE AUTHOR ON CONTROL STRUCTURES

For the purpose of this discussion "structured
programming” will be defined to mean programming
using some specified set of control structures
designed to encourage and support the production of
programs whose control logic has a high degree of
hman comprehensibility. The author's opinions on
structured programming are strongly influenced by
his use of JPL's structured Fortran preprocessor
SFTRAN, Ref [7], over the past three years.

Sznce human comprehension of a program listing
1s a major goal of structured programming, the
format of a listing and the suitability of the
control structures for being formatted in a
rational way are important assues.

%k ko ok ok Pk kR R X A A XK kK KR EREA K

Suggestaon 1: Fach control structure should
have explicit beginning and endang statements.

L

R R R K kR R kR AR KRR KRR KEA KRR

For example, the IF(p)THEN and ENDIF play these
roles for the structured IF of Fortran 77 and of
SFTRAN. In contrast, there is no explicit ending
statement for the IF of ALGOL 60 or PASCAL and this
leads to the necessity of special nonintuitive
rules to match ELSE's with the correct IF's in
cases of nested IF's. TFurthermore, the lack of an
explicit ending statement for the WHILE in PASCAL,
and the presence of one (the UNTIL) for the REPEAT,
leads to the peculularity that the segment of code
controlled by the WHILE is a simple statemeni or a
BEGIN-END block, whereas the code controlled by the
REPEAT 15 a sequence of statements.

The presence of explicit beginnang and ending
statements also suggests a matural rule for
indenting laistings: The expliecit beginning and
ending statements of the same structure are listed
at the same indentation level. Lines between
these two statements are further indented with the
exception of certain secondary keyword lines, such
as ELSE, that are listed at the same level as the
associated beginning and ending statements.

L R O B

Suggestion 2: A compiler for structured
Fortran should be required to produce a
cononically indented listing.

W W b ¥ W
E I R

&k xF FF &k EKEF AKX KL KRk ko kA

The problem of a syntax for special exits from
structures has appeared in minutes of recent X3J3
meetings. The troublesome case of a speclal exit
from a looping structure that 1s to skip past some
code that follows the exited structure can be
represented as an exit from an enclosing structure.
In order to be able to place an enclosing structure
where it 1s needed to serve thas purpose, it is
useful te have an essentially null structure such
as DO BLOCK ... END BLOCK.



As an example consider:

DO BLOCK
DO FOR I = N1,N2
£
I¥(p) EXIT BLOCK

4
END FOR

h
END BLOCK

It seems very likely that a programmer having a
general acquaintance with control structures would
correctly guess the control flow of this example,
especlally with the indentation as shown, which
should always be supplied by the compzler.

I do not feel that this quality of self-evident
semantics is shared by alternative approaches that
have appeared in recent X3J3 minutes and use a
single, but more complicated, control structure to
express what has been represented ain this example
by a nesting of two elementary control structures.

An unconditional looping structure permitting
one or more exits from anywhere in the loop is
desirable. With such a structure one could do with-
out special looping structures for the cases of
testing at the beginning or testing at the end,
however, I think these special cases occur so
frequently that special structures should be
provided for them.

When keywords are selected, I hope real words
will be used rather than reversed words as in
ALGOL6S.
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Environment Parameters and Basic Functions for Floating-Point
Computation .

W S Brownand § I Feldman

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction

This paper presents a language-independent proposal for environment parameters and
basic functions for floating-point computation, and suggests a specific representation in terms of
generic functions for Fortran 77. The environment parameters were originally introduced n
1967 by Forsythe and Moler [1], who attributed the essentials of their theory to Wilkinsen [2].
These parameters are also used in the PORT mathematical subroutine library [3], with precise
definitions 1 terms of a more recent model of floating-point computation [4], and a similar set
has been proposed by the IFIP Working on Numerical Software [5] Three of the basic func-
tions are taken from a proposal by Ford, Reid, and Smith {6], but redefined in terms of the
parameters and the model to provide a firm theoretical foundation. The other three basic func-
tions can be expressed in terms of these, but we feel they should be provided separately for
convenience

The stated purpose of the model 1s to capture the fundamental concepts of floating-point
computation in a small set of parameters and a small set of axioms In thus paper we extend
the earlier work by proposing basic functions to analyze, synthesize, and scale floating-point
numbers, and to provide sharp measures of roundoff error.

Using the proposed parameters and functions, one can write portable and robust codes
that deal mtimately with the floating-pomnt representstion Subject to underflow and overflow
constraints, one can scale a number by a power of the floating-point radix mmexpensively and
without loss of precision. Simularly, one can take an approximate logarithm of a floating-point
number very cheaply by extracting the exponent field, and one can readily implement algo-
rithms (e.g., those for loganthmic, exponential, and »* root functions) that operate separately
on the exponent and fraction-part. The convergence of rterations i1s extremely important 1n
numerical computation While one often wants to relate the termination conditions to the accu-
racy of the host computer, it 1s essential to avoid demanding more accuracy than the computer
can provide Although a termination criterion can be formulated in terms of the environment
parameters alone, it may be desirable to use the roundoff-measuring functions for finer control,
especially when the floating-pomnt radix is greater than 2.

We view it as essentral to provide mechanisms for accomplishing these goals 1n any
language that is used for scientific computing Ideally, to facilitate translations from one
language to another, these mechanisms ought to be provided m a similar manner m ail such
languages Therefore, we present our proposal in a language-independent form, before. suggest-
1ng a specific representation for Fortran

2. Environment Parameters

In this section we present the environment parameters of the model, and review other key
properties First, for any given real number x#0, we define the (integer) exponent, e, and the
(real) fraction-part, f, relative to a specified (integer) base b>2, so that
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x = fb°

UL Il < 1. 1
Next, we wntroduce the parameters of the model — four basic mteger parameters and three
dernved real parameters, all constants for a given floating=point numiber system. If a computer

supports two or more such systems {(e.g., single~- and double-precision), then each has its own
parameters. The basic parameters are

1 The base, b=2.
2.  The precision, p =2
3.  The rmunanum exponent, ¢y, <0.

‘4, The maximum exponent, €y, >0.

These must be chosen so that zero and all numbers with exponents in the range
em]l’l ‘é € "'<"- emax (2)
and fraction-parts of the form

fF==(fdt+ -+ 1,57
fi=1,...,b-1
fi=0,....b=1, 1=2,....p (3

are possible values for floating-point vanables. These model numbers are a subset of all the
machine numbers that can occur in floating-point computation.

Returning to (1), 1t 1s evident that the model numbers with a given exponent e are
equally spaced, a change in f of one unit in the last place implies a change n x of #°77. It fol-
lows that the maxamum relatve spacing is

€= bl* 4
Also of interest are the smallest positive model number
o= bem‘“_l, 5
and the jargest model number
A= b m=(1-p7P), (6)

From the point of view of the model, the integer parameters b, p, eqn, and ey, are funda-
mental, a practical programmer 15 more likely to want the real parameters o, A, and e

3. Analysis and Synthesis Functions

As noted m Section 1, it is often necessary in numerical computation fo scale a number
by a power of the base, to break a number into 1ts exponent and fraction-part, or to synthesize
a number from these constituents. To provide convenient access to precise and efficient ver-
sions of these operations, we propose the foIIowm_g functions*

exponent (x) returns the exponent of x, represented as an integer; 1if x=0, the result 15
undefined

12



Jfracnon (x) returns the fractron-part of x; if x=0, the result is 0
synthesize (x e} returns fraction (x) b if possible, otherwise the result 1s undefined

scale (x,e) returns xb® if possible, otherwise the result i1s undefined However, if
0< |xb¢{< o, then any numerical result must be 1n the mterval [0,0] if x > 0
or in the mterval [-¢,0] if x < 0

4. Precision Functions

To attain sharp control over the termination of an iteration, one needs to know-the abso-
lute or relative spacing of model numbers 1n the vicinity of a given number x If x = fb%, we
have already shown {see Section 2} that the absolute spacing 15 47, and 1t follows that the
relative spacing 1s b~7/|f| Unfortunately, if {x| < o/e = 5°™*772 then the absolute spacing

1s less than o, and hence too small to be represented in the model. This suggests defining the
absolute-spacmg function

b7 af |x| = ofe
a{x) = [ o, if x| < ofe (D
and the relative-spacing function
b2/irl,  of x#0,
plx) = [undeﬁned, if x=0 @
Instead of including p (x) in the basic set, we favor the reciprocal-relative-spacing function
B(x) =1/p(x) = |f1b?, (9

because its definition is simpler, its evaluation is faster and 1involves no roundoff, and it is more
often wanted.

5. Implementability

Each of the seven environment parameiers 15 a well defined constant for any given
floating-pomnt number system. Although it may be convement to express these parameters as
functions (see Section 6), the compiler should substitute the correct values rather than produc-
ing code to fetch them at run-time

Fach of the six basic functions 18 simple enough to permat a short in-line implementation
on most machines. Furthermore, the definitions are meamngful for all real x, except that
exponent (0) 1s undefined Finally, each function can be evaluated without error whether or not
x is a model number, provided only that the result is representable; however, 1f x 1s initally in
an extra-long register, 1t may be rounded or chopped before the computation begins.

6. Fortran Representation

In all of the ahove, we have carefully 1gnored the distinction between single- and double-
precision numbers. The Standard Fortran language specifically has floating-point variables of
these two precisions; some compilers recognize a third. There is talk of adding a mechanism to
Fortran to permut specifying the number of digits of accuracy, rather than the number of
machine words To avoid difficulties in this area, we propose using generic functions, for which
the compiler chooses the operation to be performed and/or the type of the result from the type
of the first argument Like the conversion functions i Fortran 77, the proposed functions
need not have specific names for the different types. The only restriction on such generic func-
tions 18 that they cannot be passed as actnal arguments.

The following seven generic functions (in which the prefix “EP* stands for ‘“‘Environ-
ment Parameter”) would provide the necessary parameters

13



EPBASE(X) = &
EPPREC(X) = p
EPEMIN(X) = e
EPEMAX(X) = €max

EPTINY(X) = o
EPHUGE((X) = A
EPMRSP(X) = ¢

The first four of these functions return integers related to the precision of X. The last three
return floating-point values with the same precision as X. The functions EPBASE, EPPREC,
and EPHUGE should also be defined for mteger arguments; an appropriate model of integer
computation is outlined in [3]

For the six computational procedures, we suggest

FPABSP(X) = «(X)
FPRRSP(X) = 8(X)
FPEXPN(X) = exponent (X)
FPFRAC(X) = fraction (X)
FPMAKE(X,E) = fraction (X)b%
FPSCAL(X,E) = Xb%

where the prefix ““FP” stands for “Floating Pomt’>. FPEXPN returns the (integer) exponent
of X, the other five functions return floating-point values with the same precision as X
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INTRODUCTION

Recently, there have been published two different
proposals for expressing the dependence of numerical
software on the environment. One proposal, which 1s
essentially described 1n two papers [1,2] **
characterizes the dependence of the software on the
machine architecture essentially n terms of the
representation of floating pont entities 1n the
machine. The second, more recent proposal,
described 1n [3] characterizes the dependence of the
software on the environment 1n terms of models both
of the floating point numbers and of the behavior of
the arithmetic umt of the machine.

The purpose of tlms paper 1s to expose and
clarify the differences and sumlarities between
these two approaches. It 1s the author's opinion
that the two approaches interpreted in their
strictest sense serve two distinct purposes. When
each 1s mterpreted imprecisely, their roles
overlap.

In order that the compariscns briefly discussed
below are fully understood, we need to briefly
summarize the separate approaches Since our
1mterest here 15 1n the parameterization of the
numerical aspects of the environment, the non-—
numerical parameters discussed 1n [1] and the
considerations of implementation discussed m [2,3]
w1ll not be considered here

PARAMETERIZATION IN TERMS OF THE
REPRESENTATION

In [1], there 15 described and defined a collection
of parameters which characterizes the set of all
floating point numbers in terms of therr
representations on current machires. The assumption
underlying this characterization, which 1s not
explicitly stated, is that all machines use a
positional notation with a fixed radix and fixed
length to represent floating point entities Thus,
quantities such as the radix of the representation,
the number of radix digits in the signmificand, the
smallest and largest positive numbers in the set of
floating point numbers {denoted "representable"
numbers) such that both the number and rts negation
are representable, are defined. These parameters,
then, characterize the salient preperties of the
representable floating point numbers.

Other parameters are included which have more
relevance to preparing mathematical software, For
example, the relative precision parameter, knewn in
various papers as MACHEP, 1s defined so that 1t can
be used to determine neghgible numbers compared to
one in additive operations. Another such parameter
1s the symmetric range parameter which 1s the
largest positive representable number such that its
negation, its reciprocal, and 1ts negative
reciprocal each can be approximated by a
representable number within a relative error of the

15

relative precision parameter.

At first sight, the latter parameters seem to be
simply related to the former set, however, such
relations are not machine 1ndependent 1n general.

To complement this set of parameters, three
functions were defined which permitted access to the
size and representation of any floating point
number. Briefly, one function determined the
integer exponent of an entity X, when expressed in a
standard exponent—fraction form, another determined
a number that was small relative to X (that is, the
largest positive number X which could be considered
negligible when 1nvolved with X 1n addifive
operations), and a third function formed a {loating
point entity from an integer exponent and another
entity contaimng the fractional part,

The above defimtions were designed to make the
parameterization of the environment dependent as
much as possible on the representation of floating
point entities. This 1s not strictly adhered to in
terms of the detaixled defimtions 1n at least two
instances. The relative precision parameter and the
neghgble number funcfion are defined 1n terms of
the additive operations and so depend on the
arithmetic unit  Thas anomoly could be avoided by
defiming these 1tems 1 terms of the number of radix
digits in the representation. The second 1nstance
where a defintion was not tied to the representatron of
entities 1s that the integer exponent functidn 1s
defined in terms of a canomcal exponent-fraction
representation of numbers instead of the
representation of the machine. This was done for
wmformity of the returned result on different
machines for the same numbers and at the same time
permits floating point numbers to be decomposed and
synthesized without the introduction of rounding
errors

One goal of the above approach was to define the
parameters and functions basically in terms of the
representation. As the above discussion
1ltustrates, such definitwcns may conflict with
other important considerations such as portabihity,
and here the definition of: the exponent-fraction
mampulation functions was modified to satisfy the
more 1mportant consideration of portability.

This goal may also conflict with the desire to
obtain suitable and precise definitions for all
hardware. A case1in point is the defimtaon of the
relative precision parameter where the definition
given 1n [1] breaks down on unusual hardware. This
parameter 15 defined 1n [1] as the smallest number
e such that For the compuied and stored quantities
1-e and l+e,l-e<i<l+e. This definmition 15 not

*Work performed under the auspices of the U.S
Department of Energy.

**Numbers 1n brackets designate references at the
end of the abstract.



smtable for a machine with a large number of guard
digits whose rounding strategy 1s to round to the
nearest odd significand. The resulting e for such a
machine 15 not suitable for the relative precision
parameter as it cannot be used to measure negligible
numbers m additive operations with numbers near 1
as well as 1 1itself. One other common defimtion
for e 15 the radix raised to a power of 1 minus the
number of radix digits in the representation but

this 1s_not-completely satisfactory for-processors
that perform proper rounding.

Consequently, we see a major disadvantage with
this approach in constraiming the defimtions of the
parameter and functions to the representation of
floating point numbers. 1t appears to be very
difficult to define the parameters in a portable yet
reliable manner for all machines. For this approach
to be workable as an implemented feature in a
language, the defimtions may need to be adjusted to
each environment to satisfy the intent of the
original definitions

These difficulties with this approach lead one
naturally to the second approach [2]. Rather than
treating directly the diverse computing
environments, 1t mght be better to define a model
of a computer, and then siate the defimtions of the
parameters and functions in terms of the model.

THE MODEL APPROACH

Recently 1n {2], Brown et al describe a
characterization of the environment in terms of a
parameterized model of the floating point humber
system and arithmetic umt. The model characterizes
the representation of floating point numbers 1n a
signed magnitude notation 1n terms of 4 parameters,
and specifies the behavior of the arithmetic unit in
terms of a small number of axioms. Numbers
representable within the model are cailed model
numbers; the model numbers for a specific machine
may be a proper subset of the machine representable
numbers, The parameters which characterize a
particular environment are defined 1in terms of the
specific values of the 4 parameters which determine
the particular model. The environment functions
which mampulate floating point entities are also
defined 1n terms of the specific values of the 4
parameters.

The four parameters of the general model are: 1)
the radix of the model numbers, 2) the effective
number of base radix digits; 3) the maximum exponent
for model numbers, and 4) the mimmum exponent for
model numbers. The environment parameters include
these four parameters plus three others; 1} a large
positive number near the overflow threshold, set
equal to the radix raised to the power of the
maximum exponent minus 1;2) a small positive aumber
near the underflow threshold, set equal to the radix
raised to the mimmum exponent, and 3) a number
considered negligible when compared to 1, set equal
to the radix raised to the effective number of base
radix digits in the model minus 1.

The three basic analysis and synthesis functions
are: 1) a function to extract the exponent of a
floating point entity interpreted as a number within
the model, 2) a function to extract the fraction of
a floating point entity interpreted as a number
within the model, and 3) a function to form a
floating point entity from an integer exponent and
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the fractional part of a given floating point

entity. Also, two basic precision functions are
defined: 1) a function to determine the maximum
absolute spacing in the model near a gven floating
point entity, 2) a function to determine the
reciprocal of the maximum relative spacing in the
mode] near a given floating point entity.

The key to understanding the approach 1s the
specification &f the effective number of base radix
digits. The cholce of this parameter 1s determined
by the behaviour of the arithmetic unit. The 1dea 15
to penalize the specific model of the machine by
reducing this number unt1l a specified set of axaoms
and conditions characterizing the behavior of the
arithmetic umt are all satisfied.

This approach now has three major advantages over
the earlier approach. Tirst, the defimtons of the
environment parameters are in terms of the general
model and so can provide clean unambigucus
defimtions. Second, the intended use of the
parameters can be specified clearly 1n terms of the
model, And third, statements that specify the
behavior of the software in terms of the model can
conceivably be proven by relying on the axioms
characterizing the model's arithmehc.

But 1t 15 just these axioms that make the model
approach very difficult to use in practice. The
dafficulty comes in determimng the effective number
of radix digits. To be sure of your choice, one
must carefully and thoroughly anpalyze the algorithms
which implement the arithmetic operations on a
specific machine. With straightforward arthmetic
units, such verfication 1s tedious but possible.

With the more unusuval arithmetic units, such
verification can be very difficult indeed.

USES OF EACH APPROACH

We have referred to some of the advantages and
disadvantages of each approach in terms of the ease
with which the parameters and functions are defined
In this section, we compare the uses of each
approach,

In the first approach, the intent of the
deftnitions 1s to constrain the parameters and
functions to be dependent on the representation of
the floating point numbers alone. None of the
parameters {except for convemence and ease of
definition) depend critically upon the behavior of
the arithmetic umt. Consequently, the
characterization of the machine environment using
the first approach s most appropriate where the
dependence of the software on the envircnment 1s 1n
terms of the representation.

The second approach, on the other hand, applies
to situations where the dependence of the software
on the environment 1nvolves the behavior of the
arithmetic umt. For example, algorithms that
depend upon the size of rounding errors 1n each
operation can thus be written in terms of the model
parameters, thereby yielding rehiable portable
software Also, as the model guarantees a regular
and controllable behavior for the arithmetic
operations as specified by the axioms, and the
precision functions as well, algorithms can more
readily be analyzed and may be proven correct within
the medel.



Because of the manner 1n which the effective
number of base radix digits 1s determined, the model
1s deteriorated by the least accurate arithmetic
operation. Thus, a specific program which does not
use such 1mprecise arithmetic operations may be
unduly penalized.

Whereas the parameters and functions for the
first approach are determined in general by the
representation alone, some of the functions defined
1n the second approach are determined by both the
model and the representation. For example, the
function (x) returns the fraction
determined by the model but 15 as precise as the
machine; that 15, the returned fraction may not be
the fraction of any model number. The maximum
absolute spacing function returns a number that 1s
determined by the model alone and not the
representation of the argument The maximum
relative spacing, on the other hand, may return a
number that 15 not a model number. Consequently,
the algorithms that use the precision functions must
be anzlyzed in terms of the possibly less precise
model rather than the precision of the machine,
despite the fact that the precision functions seem
to address the representation of floating point
entities on the machine.

CONCLUSICN

Upen considering the two approaches to
parameterization of the environment for floating
pownt computation, there emerges two distinct uses
for environment parameters., On one hand, the
parameterization permits machine wide analysis of
the algorithms, and on the other hand, permits
machine wide control and formulation of algorithms
for numerical software.

In the past, we have performed the analysis under
the assumption thai our algorithms would be executed
on a well-behaved hypothetical amthmetic umt that
satisfied some straightforward and useful axioms for
floating point arithmetic. When implementing such
algorithms, we had two choices, either machine
constants were suitably adjusted where the constants
were critical for the rehable behavior of the
software so that the resulting software was safe, or
machine constants were used directly where there was
no danger of producing incorrect or misleading
results.

1deally, we are striving for a machine
environment that makes this final chotce
unnecessary. Such an ideal requires the general
availablity of the perfect hardware. However, 1t
15 not clear that the perfect hardware 1s forthcomng
1n the near future. Thus, 1t seems 1nappropriate at
this time to 1mplement one parameterization of the
environment to the exclusion of the other.
Possibly, the two approaches can be merged so that
we can have the best of both approaches.
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UNIX as an Environment for Producing Numerical Software

N. L. Schryer

- - Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction

The UNIX operating system [1] supports 2 number of software tools which, when viewed
as a whole, are an unusually powerful aid to programming.

The design, implementation, documentation and mamtenance of a portable FORTRAN
test of the floating-pont arithmetic unit of a computer is used to illustrate these tools at work
The result of this effort was a program created automatically from the paper descuibing the test.
Thus, only the documentation had to be written, the program was automatically produced from
it Also, changes in the document (debugging) were automatically reflected in the program.

The second section briefly describes the UNIX tools to be used The third section out-
lines the basic problem and the fourth section shows how the tools can help solve the problem.

2. Tools
This section lists and briefly describes the UNIX tools to be used

EQN - A mathematical equation-setting language [2].

When you want to say a,_",’ you sumply type a sub 1y sup k A general rule of thumb for
EQN 1s that you type at it the words you would use-1n describing the object to a friend on the
telephone The output of EQN 1s TROEF

TROFF- A phototypesetting Ianguage [1,pp2115-2135]

This processor lays out text according to user given commands and built-in rules. For
example, the subheading for this paragraph was produced by typing

SH O -
TROFF-
A phototypesetting language

where the SH command tells TROFF to underlme the following mput hnes. TROFF also left
and right justifies the text on the page, does hyphenation, and generally produces a tidy docu-
ment from free-form input This paper 1s an example of its output.

EFL - A FORTRAN pre-processor language [4].

This pre-processor has an Algol-hike input syntax, portable FORTRAN [31] as output, and
provides a language of considerable power and elegance It has the usual control-flow construc-
tions (IF  ELSE .., WHILE, FOR, etc.), as well as data structures and a macro faciity, A
useful feature of EFL is the ability to take mput while inside one program file from another file
during compilation, via the INCLUDE statement.

MAKE [5}

A UNIX command which makes sure that if A and B are two files, and B can be derved
from A by a command sequence, then that command sequence is executed if and only if the
date of A is later than the date of B Thus, MAKE 1s often used to keep object librares up to

AUNIX is a trademark of Rell Laboratories.
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date with respect to their source code

ED - The UNIX text editor [1, pp2115-2135]
For example, the ED command
g/bsup [* I*/s/b sup \{[* I*\)/BO\1)/g

{don’t worry, its easter to iype than to read one of these!) changes ail occurrences of b sup
String into B(String), where String is any string of non-blank characters

SHELL - The UNIX command interpreter [1, pp1971-1990]

Each process on UNIX has a standard input and a standard output These standard 1/o
"devices" may be files, teletypes, or even other processes Thus, for example, the editor ED
may take its editing commands from a file (script}  Also, the output from one process may be
input directly to another process This connection 1s called a "pipe” and 1s denoted by a "}'. A
typical use of a pipe is to create a document with the aid of EQN and TROFF, as

EQN files | TROFF

where EQN produces TROFF input which 1s then shipped directly to TROFF to make the docu-
ment.

3. The Problem

As part of the installation of the PORT hbrary [6] 1t 13 necessary that the PORT machme
parameterization be dynamically correct That s, 1t 1s not enough to simply read the owners
manual for the host machine and conclude that 1t has a base-2 floatmg-point archutecture with
48 bits in the mantissa The manner in which the the floating-point arithmetic units operate on
their data must also be taken into account. For example, if the result of a+b 1s only good to
24 bits in some cases, many algorithms aren’t going to behave well if they believe that a round-
ing error 15 2%

In order to test the accuracy of the floating-point arithmetic umt of a computer, we chose
to compute

xopy
where x and y are one of
bt (b7 +b7") 1
b T b/ ) 2)
=l
0 3)
b€ (b—1) z“,b_f 4)
J=1
b -1 (671 +b7) 5)

and op 1s any of +,—, * and / The test basically consists of finding the analytically correct
value of x op y and companng it to what the machine gets for f1(x op y)

The fly mn this omtment is that the exact result of x op y must be found Take, for
example, the product of two elements of pattern 1), denoted as 1)*1) We desire a b5 M
representation for the result The exponent of the result 1s trivial to compute The mantissa of
the result can be rather simply computed as in

(145 * (B714571Y) = b--l(b—1+b—r1+b—r2+b—(fl+f2—l))

This may be put into normalized form as follows
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If (b=2 & i1=2 & i2=11)

{ BB+ )
Else # No piling up
{ b—l(b—l+b—:l+b—i2+b—(11+12-1))}

This is a rather simple example since most x op y derivations run from 6 to § TROFF output
_pages, but 1t does illustrate the -technique. Thé préblem here is that there are 42 separate
x op y cases to be resolved, none of which 1s particularly complex individually, but which taken
together represent a major effort - more than 200 TROFF output pages.

There is a grand 1deal to which paper writers aspire - Document what you want to do, and
then do 11! Believing this, the author wrote the paper before writing any code A typist entered
the texf mto a file, transcribing mathematical formulas into the notation of EQN, using the ed:-
tor ED. Asan example, the preceding display for the result of 1)*1) was entered as

H$b=2"&11=2"&i2=11}%

{ $bsup 0 (bsup-1 + bsup-4)8% }
Else # No piling up
{ $bsup -1 (bsup-1+ bsup-il

+ bsup-12 4+ bsup-G1+12-1) )8 )

The "$" is a delimuter telling EQN what to act on, and the "™ tells EQN to leave a little white
space

The problem now consists of implementing such formulae m a programming language
Also, great care must be taken that the code agree with the document describing it This
means that debugging such code (and formulae) must result in both the program and documen-
tation being changed correctly and simultaneously. Yet, there are more than 200 pages of such
formulae to implement!

4. The Solution

To attempt this by hand would be cosmic (and comuc) folly. Soon neither the document
nor the code would be correct, or in agreement with the other Actually, the author learned
this the hard way, but lets not dwell on dead-ends. The solution 1s quite simple Use an ED
script to convert the TROFF mput into EFL and use MAKE to keep the whole thing up to
date.

It 1s quite clear that the TROFF mput for 1)*1} given earlier rather resembles an EFL
program m structure (IF ... ELSE .}, but not m detail - indeed, it 1s a rare language that can
make sense of b~ '(14 5~ ) However, b-1(1+»7') can be converted into a form EFL can
recogmze - B(1}*(1+B()) - by a rather general ED script fragment

g/b sup [ P*/s/bsup \([* ]*\)/BQ\1)/¢g
g/) *(/sh) * (1 (/g
and we can easily construct an array B such that B(:) = ™. A complete ED script may be

constructed along the above lines It 1s a long (6 pages) but simple script  The ED script
appited to the TROFF mput for 1)*1) gives the EFL program fragment

Fh==2&11l==2&12==il)

{

E=0M= (B(1)+B({HiLo(®))
}
Else # No piling up

{
E =-1; M = (B(1)+B@1) +BG2) +B(HiLo (1+12-1)))

}

where HiLo is the statement function
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HiLo() = Max(0,Min(i,t+1))

used to get the left-hand end-pomnt of the smallest floating-pomnt interval contaming the exact
result Here ¢ is the number of base-b digits carried in the floating-point representation and the
array B has been extended to have B(0) = 0 == B(¢+1). There are 42 such EFL program frag-
ments They form the heart of the floating-point test, and the part with all the bugs in 1t - im-
tially, at least! There s a standard EFL drrver into which these fragments fit, via the EFL
INCLUDE mechamsm. The resulting 42 programs form the floating-point test

The above ED script mechanism produces the EFL code directly and automatically from
the TROFF mput Thus, only the TROFF input must be altered by hand, the EFL production
1s automatic Debugging was literally carried out at the TROFF (not the EFL) level

However, one great problem still remained The EFL depends on the TROFF mput for
1)*1) How can one be sure that both the EFL and the document for 1)*1) have been pro-
duced from the most recent version of the TROFF mput for 1)*1)? In all there are 42 such
dependencies which must be checked Here MAKE 1s invaluable. A file is created for MAKE,
giving the dependencies and desired command sequences Whenever the MAKE file 1s exe-
cuted (by saying simply "make"), any TROFF input which has been altered since the last
MAKE will be re-TROFFed, and any EFL file which has not besn updated since 1ts correspond-
ing TROFF file was altered, will be updated and listed
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THE AUGMENT PRECOMPILER AS & TOOL FOR THE
DEVELOPMENT OF SPECIAL FUREOSE ARITHMETIC PACKAGES

F. D Crary, The Boeang Company
Seattle, Washington 98124
J. M Yohe, Mathematics Research Center
University of Wisconsin - Madison
Madison, Wiscensin 53706

ABSTRAC1

We discuss the use of a FORTRAN precompiler in
the development of packages for nonstandard
araithmetics In pariicular, the use of the FORTRAN
precompiler, AUGMENT, renders the source code more
lucid, reduces the number of lines of code in a
nonstandard arithmetic package, facilitates modifi-
cation, and ameliorates the problems of
transporting such a package to ancther host system

1  INTRODUCTIOHN

With decreasing hardware ccsts and increasing
processor speeds, the cost of software development
1s becoming more and more a function of personnel
cost. Furthermore, with the explosion of applica-
tions of digital computers, an ever~higher percent-
age of wusers place mmplicit trust in the software
they use to support their applications.

For these reasons, it is essential to supply
the user with reliable, well-documented software
packages It 23 no longer profitable, or even fea-
sible in many cases, to re-invent support software.

These considerations have led to an rnereasing
emphasis on transporiable software If development
costs can be incurred just once for a package or
system that will work correctly and accurately on a
broad spectrum of eguipment, users are willing to
tolerate a reasonable amount of inefficiency in re-
turn for the convenience of having the development
work done for them and the confidence that they can
place in a quality product.

Increasingly, 1t 18 becoming practical to
build on exasting software rather than to develop
new packages from first pranciples, even vhen the
ex1isting software might not be just exactly tai-
lored to the application in guestion.

In order %o make the best use of existing
software, one must haveé the tools to make 1its
ineorporation 1n new programs reasonably easy, and
one must adopt a design philosophy which will make
the use of both the tools and the exasting software
natural and meomplicated.

In this paper, we describe one such tool -~
the AUGMENT precompiler for FORTRAN ([3]) -- and
11lustrate a design philosophy which has proved to
be a reasonable application of the above criteraa.
Briefly, we advoecate the abstraction of the data
type representations to the maximum possible degree
in the design and implementation of software pack-
ages, and subsequent application of the AUGMENT

Sponsored by the U. 5. Army under Contract No.
DAAG29-T5-C-0024.
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precompiler to bind the data type representations
and extend them throughout the package.

We 1llustrate this philoscphy with examples
drawn from the interval arithmetzce and traiplex
arithmetic packages developed by the second author

We also give an indication of several other
applications of AUGMENT which, while not necessari-
ly employing this philosophy, serve to indicate the
breadth of possible applications of AUGMENT.

2. BRIEF DESCRIPTION OF AUGMENT

AUGMENT 1s a program which allows the easy and
natural use of nonstandard data types ain Fortran.
With only a couple of exceptions, 1t places non-
standard types on the same basis as standard types
and allows the user to concentrate on his applica-
tion rather than on the details of the data type
wmplementation.,

AUGMENT gains 1ts power and ease of use
through several aspects of its design.
(1) Its input language 15 very much like FORTRAN.

The only changes are the addition of new Lype names
and operators, and the ability to define "func-
tions", naming parts ("fields") of variables, which
may appear on either side of the assignment opera-
tor.

{2) AUCGMENT 13 extremely portable Since 1t 1s
written in FORTRAN, AUGMENT can be amplemented on
almost any computer. The machine-dependencies of
AUGMENT are concentrated in eight subroutines which
can be aimplemented 21n less than 200 lines of
(machine-dependent) FORTRAN.

(3) AUGMENT's output is standard FORTRAN whach
makes 1t switable as a cross-precompirler, that is,
the AUGMENT translation may be performed on one
(large) machine and the results compiled on or for
some other machine which 1s unable to host AUGMENT.

There are three major steps in the use of AUG-
MENT -

Specification. The whole process begins with
the specificaticn of the properties of a nonstan-
dard type. The specification wrll need to consader
the following questions:

What information will the user see?
What operations will be made available?
How will this type interact with other types?

In many cases, the answers to these questions will
be available in previous research or obvious from
the nature of the new type. In other cases, con-
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si1derable research may be needed and even an an ap-
peal to personal preference may be made

AUGMENT gives lattle assistance to this part
of the process. The specifications will be guided
by the applications envisioned by the person pre-
paring the new type, by the operations known or
felt to wuseful in mamipulating the type, and
aesthetie cons:iderataons such as consistency with
similar types (4f any) already exasting in Fortran
or previcus extensions.

Banding ({(Implementation)}. The binding of the
abstract specafication of the new type to a repre-
sentation usable through AUGMENT 1= by means of a
"supporting package" of subroutines and funetions,
and through a "description deck" which tells AUG-
MENT about the supporting package. In this effort,
the implementor must consider the conventions ex-
pected by AUGMENT in terms of argument number and
order.

In addition to this, there may remain basic
questions of representation. For example, the data
structure whach the user sees may not necessarily
be the best way to implement the type.

Appliecation. The application of AUGMENT to
nreparation of a program which uses ohe or more
nonstandard data types is by far the easiest part
of the progess. Given that the supporting
package(s), deseription deck(s), and adequate docu-~
mentation have already been prepared, the use of
the package(s) through AUGMENT cons:sts of just
four steps:

(1
(2)
(3)
)

Wraite the program usang the new operators
and functrons.

Supply AUGMENT with your program and the
descraption deck(s)

Compile AUGMENT's output with the system
FORTRAN compiler.

Link-ed1t and run.

3. ABSTRACT DATA TYPES

In the planning of most computations, we do
not explicitly consider bthe architecture of the
computer that will be processing the program or the
specific representation that 1t will assign to real
numbers, for example In writing the code, howev-
er, most languages require that we make decisions
early in the coding about such questions as preci-
sion, data representation, and se forth.

We have found one of the major attractions of
AUGMENT in writing special-purpose arithmetic pack-
ages to be the ability to use abstract (unbound)
data types throughout the majority of the program-
ming, banding the data type to a speeific represen-
tation only in the instructions to AUGMENT and in a
few pramaitave modules of the package

Thus, for example, one might write a package
using the data type ETHEREAL, later instructing
AUGMENT to convert ETHEREAL to MULTIPLE PRECISION
or what have you. Other data types may then be de~
fined as vectors or matraices of ETHEREAL numbers,
and AUGMENT will be able to allocate the proper
amount of space when 21t knows the banding of
ETHEREAL. Moreover, the routines which manipulate
the arrays of ETHEREAL numbers may all be written
n terms of operations on ETHEREAL numbers; again,
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AUGMENT will put
time.

everything right at precompile

The following sectrons 1llustrate this philos-
ophy with conerete examples.

4, THE USE OF AUGMENT IN THE CONSTRUCTION OF THE

INTERVAL PACKAGE

The Inferval Arathmetic Package deseribed in
{7] was motaivated by interest in interval arithme-
tic on the part of several other universities with
different computer systems.

The package needed to be flexible enough to
accommodate a wide variety of different computer
archibectures, so we wanted to leave the represen-
tation of ainterval endpoants arbitrary throughout
the bulk of the package. But because of FORTRAN's
popularaty for scientifie computation, it was the
language of choice for implementing the package.
Needless to say, ANSI standard FORTRAN does not
have the flexibilaity we needed 1in order to acconm-
plish the goals we had set.

We wanted to make the interval arithmetie
package easily accessible from the user's point of
vieW. This naturally led us to design the package
to be mmterfaced wrth AUGMENT But the reguire-
ments for flexability and transpertability led us
to conclude that the package itselfl should be writ-
ten with the aid of AUGMENT

Before we discuss the role of AUGMENT in the
implementation of the package, 1t would be appro-
priate to include a very brief deseription of in-
terval arathmetic. The interested preader can find
more details in [5].

Interval arithmetic 1s a means for bounding
the error in computation by calculating with pairs
of real numbers, the first member of the pair being
a lower bound for the true result, and the =econd
an upper bound The foundations for interval math-
ematics have been carefully laid by Moore [5] and
others, so interval mathematies 1s on firm theoret-
1cal ground. There are closed-form formulae for
evalvating operations and functions on the space of
intervals, so that computation with intervals is
reasonably straightforward

In machine interval arighmetie, one naturally
represents an interval as a pair of approximate
real numbers. In most cases, the existing
hardware/software systems are not adequate, for one
important reason. in order to preserve the integ-
raty of the interval, calculations anvolving the
lower bound, or left endpoint of the inkterval, must
be rounded downward; those involvang the upper
bound (right endpoint) must be rounded upward. o
production system that we know of provides these
rowndings.

The design of the arithmetre pramatives for
the approximate real arithmetre was relatively
straightforward; we used the algorithms given in
[6] The special functions posed more of a prob-
lem: straightforward evaluation of these functions
can lead to unacceptably wide intervals. We decid-
ed to evaluate these functions in higher precision,
and use i1nformaticnh about the inherent error in the
higher precision procedures before rounding the re-



sults 3n th: proper directlon to obtaln tne desired
real asproximation.

In order fo preserve the desired degree of
flexibalaity, we introduced the nonstandard data
type EXTENDED %to designate the higher-precision
funetions, and the nonstandard data type BPA (mne-
monic for Best Possible Answer) to designate the
approximation to real numbers used for the interval
endpoints. The nonstandard data type INTERVAL was
then declared to be a BPA array of length 2.

The BPA portion of the package was wraitten 1in
terms of BPA and EXTENDED data types wherever pos-
sible. In only a few cases was A% necessary to
bind BPA to =2 standard data type in the package
modules: such functions as the replacement opera-
tor obviously need to be bound to a standard data
type fo avoid recursive calls.

We illustrate the implementation of the BPA
portion of the package with a sggment of the BPA
square root routine. For simplicity, we have omit-
ted declarations and COMMON blocks which are used
to communicate accuracy constants, rounding op-
tions, and obher information between package mod-
ules ACC 15 an integer variable which indicates
the number of accurate digits in the EXTENDED rou-
tines. The statement R = ER 1mplicitly anvokes the
conversion from EXTENDED to BPA, which includes ad-
dition or subtraction of an error bound computed
from ACC and reunding in the specified direction

BPA A, R
EXTENDED EA, ER
EA -4
ER = SQRT(EA)
ACC = IACC(17)
R = ER

Next, the INTERVAL portion of the package was
written in terms of INTERVAL, BPA, and EXTENDED da-
ta  types. Here, only three modules are
system-dependent.

Tne following simplified segment of the inter-
val square root routine 1llustrates the general
philosophy used in the implementation of this por-
tion of the package. Dgeclarations and code re—
quared for communication with the error-handling
routine have been cmitted for brevity. Note that
before uinvoking the BPA square root routine {im-
blicitly, twice, once for the right endpoant, or
SUP, of the anterval, and once for the 1left
endpoint, or INF, of the anterval), the variable
OPTION 1s set to specafy the desired directed
rounding (RDU for upward directed rounding, and RDL
for downward darected rounding).

INTERVAL A, R

OPTION = RDU
SUP{R) = SQRT(SUP(A))
OPTION = RDL
INF(R) = SQRT(INF(A))

Appropraate deseripbion decks were prepared
for AUGMENT, binding the nonstandard types EXTENDED
and BPA to representations in terms of standard da-
ta types The entire package was then processed
using AUGMENT to extend these bindings.

In order to adapt the resulting package to a
different host environment, or different precision,
or both, one writes the necessary primitive rou-
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tines, adjwsts the declaraiions in the deseription
deck as necessary, and reprocesses the package with
AUGMENT That this procedure 18 effective is
attested to by the relative ease wath which thas
package wWas adapted for use on the IBM 370, Honey-
well 600, DEC-10, PDP-i1, and CDC Cyber systems.

5. ADAPTATIONS OF THE INTERVAL PACKAGE

We discuss two adaptations of the INTERVAL
package the ~first of these 1s Tthe creaticon of a
package to perform triplex arathmetic, and the sec-
ond i1s a package to perform interval arithmetie in
multiple precision.

A. THE TRIPLEX PACKAGE:
of interval arathmetic

Triplex 15 a variant
1n which a main, or "most

probable”, value 1s carried in addation to the
endpoints.
The daifference between Eriplex and interval

arithmetic is conceptually quite simple: at the
same time one computes an operation or function on
the interval endpoants, using the interval mathe-
maties formulas, one evaluates the same operation
or function on the main values, using standard real
arithmetic, rounding the results to the nearest ma-
¢chine number.

In order to modafy +¢he INTERVAL package to
perform traplex arithmetic, we needed to add code
to all of the interval routines to compute the main
values, rename the modules of the package, adjust
the formats to accommodate the third value, and, of
course, change the representation of intervals to
accomnodate the main value.

The addition of the extra code was pedestrian;
we sanply added the appropriate lines of code to
sach routine fo compute the main value. We should
note, however, that this did not disturb the exist-
ing code, inasmuch as storage and retrieval of the
endpoint values had already been defined not in
terms of first and second array elements in the in-
terval number, but rather in terms of the [rield
functions INF and SUP respectively (AUGMENT allows
the use of such field functions, even when the host
FORTRAN compiler does not). .

The modules were renamed by suitable use of a
text-editing program on the INTERVAL file.

The representation problem was handled simply
by echanging the word INTERVAL 1n the type declara-
tion statements to TRIPLEX. No other changes were
necessary 1in the majoraty of the routines, since
AUGMENT automatically extended the new banding
throughout the package.

The portion of the triplex square root routine
below 1llustrates the types of changes to the in-
terval package that were necessary to rproduce the
triplex package:

TRIPLEX A, R

OPTION = RDU

SUP(R) = SQRT{SUP(A)}
OPTION = RDN

MAIN(R)} = SQRT(MAIN(A))
OPTION = RDL

INF(R} = SQRT(INF(A))



The modafication of the INTERVAL package to
produce a TRIPLEX package was accomplished in 1it-
tle more than one week of elapsed time, documenta-
tion ([11} excepted.

B. THE MULTIPLE PRECISION INTERVAL PACKAGE:
One of the goals of the original design of the IN-
TERVAL package was to facilitate inereasing the
precision in cases where that was desired. When
the multiple precision arithmetic package of Brent
[2] became available, 1t was only natural to con-
sider using that package as a basis for the multi-
ple precision version of INTERVAL

The first step 1n this process was to develop
an AUGMENT interface for Brent's package. This we
did in collaboration with Brent.

We are now at the point of developing the mul-
t1ple precision version of the interval package 1t-
self. The steps will be:

(1) Determine the representation to be used
for the real approximations. (Brent's package al-
lows a great deal of flexibility an this regard.)

(2) Write the pramitive arithmetic operations,
basing these on Brent!s routines, but providing di-
rected roundings.

(3) Use Brent's package as the EXTENDED arith-
metic package

(4) Wrate the BPA primitlives.

{5) Write an additional module which will set
the necessary constants based on .the run-time pre-
cision chosen for the BPA numbers,

(6)

sary.

Rewr:ite the

deseraption decks as neces-

{7) Reprocess the package wath AUGMENT,

6. OTHER APPLICATIONS OF AUGMENT

In the foregoing, we have 1llustrated the
flexzbilzty that may be gained by using abstract

data types. We now consider scme extensions of
this concept, and some other applications of AUG-
MENT .

{1) Recursive data type definitions:  AUGMENT
allows data types to be defined in terms of one an-
other, and this opens up some unique possibilities.
The first author once used AUGMENT to aid in the
writing of a program to sort multiply-layered in-
formation that was stored in the form of trees.
This problem was addressed by creating two data
types: TREE and NODE One field of a TREE was the
root NODE, and one field of a2 NODE was a TREE. The
development of the program using these new data
types was straxghtforward.

(2) Analytic dafferentiation of FORTRAN Ffunc-
tions: Thais package ([4]) allows one to obtain the
Taylor Seraes expansion or the gradient of a func-
tion which can be expressed as a FORTRAN program.

{3) Dynamic precision calculations: In cer-
tain types of applications, the precision required
for the caleulations 1s a function of the data.
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AUGMENT allows the definition of data types which
are li1sts, and by usaing this feature, precision can
be determined dynamically.

(%) Simulations: AUGMENT has been used to
samulate one computer on another. The technique
for doing this is straightforward; one defines a
nonstandard data type which repressnts the simulat-
ed machine, and prepares a nonstandard package
which copies the arithmetic characteristies and da-
ta formats of the target computer.

(5) Algorithm analysis: AUGMENT can be used
to provide information such as operation counts in
the running of programs or portions thereof Cne
simply defines a nonstandard data type which, in
addision fo performing the standard operation, 1in-
crements a counter.

(6) Image processing: The picture processaing
package developed by W. Fullerton of Los Alamos
Secientific Laboratory 1s one of the most unusual
applications of AUGMENT we have yet seen. Various
new operators allow the construction of ccmposite
pictures from smaller parts, and mathematical fune-
tions have even been defained on type PICTURE.

The above illustrations should serve to aindi-
cate that fthe role of AUGMENT in development of
mathematical software is limited primarily by the
user's imagination.

7. CONCLUSION

We have 1ndicated a number of ways in which
the AUGMENT precompiler for FORTRAN can be and has
been used to aid in the development of mathematiecal
software. Other applications will undoubtedly be
found for this precompiler, since it 1s both versa-
tile and powerful.
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INTRODUCTION

Over the past decade, mathematical software
libraries have matured from small, usually locally-
assembled, collections of subroutines to large,
commexcially-provided libraries which are approach-
i1ng the status of standards [Aird, Du Croz; Fox]#*.
Despate the high gquality of such libraries and the
obvious economic advantages of usang routines whose
development cost has been shared with many othex
users, applications programmers, when asked: "Why
don't you use routine XYZ from IMSL, or from NAG,
or from PORT?" frequently reply that library rou-
tines are too general, that they need a routine
which takes advantage of special features of their
problem, and that since they could not use a li-
brary routine without modifying at, they maght as
well wrate their own routanme from scratch.

In many, 1f not most, instances, the latter
assertion could be easily refuted by a simple com—
petition on selected test problems. However, the
need for a routine adapted, or tailored, to a
particular problem is more difficult to dismiss.

It usually arises from considerations of efficiency,
which may range from the percezved ineffacaency of
the presence of unused options in a routine to the
practical impossibality of using a routine whose
data representation is utterly incompatible with
that needed in the rest of the applications pro-
gram.

How, then, can mathematical software develop-
ers answer this need for mathematical algorithms
tailored te aindivadual applications® One approach
especially applicable to complicated problems, such
as solution of PDE's, 18 to preprocess z specifica—
tion of the problem into code which uses a particu—
lar software package, as is done in ELLPACK [Rice].
(In some sense, this approach tailors the problem
to the software.) For library routines in simpler
problem areas, however, it seems necessary to
tailor the routine to the problem, since such rou-
tines constitute only a small part of the applica-
tion program, and several routines with possibly
conflicting requirements may need to be included.
In order for this to be practical, tarloved ver-
swons of such routines must be econstructed mechan-
weally from very general library routines. Such
mechanical program generation is necessary both to
insure that the relisbility of the library routine
1s preserved in 1ts tallored versions and to 1msure
that their comstruction iz not prohabitively expen-—
sive [6].

For some time, the TAMPR system has been an
use teo construct multiple versions, or realazations,
of prototype programs for anclusion ain mathematical
software packages themselves [4,5]. For the
LINPACK package, a single prototype routine was
used to comstruct the eight versions representing
the combinations of eomplex or real arithmetac,
single or double precasion, and calls to Basic
Linear Algebra subroutines or in-line code replace-
ments for them [5]

Recent research with TAMPR has focussed on
determining the properties a prototype program
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should have in order to taximize the number and
diversity of realizations which can be constructed
from 1t.

ABSTRACT PROGRAMS

The most important property of a prototype
pProgram 15 its abstractness. Intuitively, an
abstract program captures the essence of a numer—
1cal algorithm without cluttering it with 1rvele-
vant detail. The presence of irrelevant detail in
a prototype program hampers the constructzon of
diverse realizaktions precisely because a great
deal of analysis must be done to verify that it
18 indeed irrelevant.

The research discussed here has not progressed
far enough to characterize abstract programs in
general, but examples from the area of linear
algebra have been studied suffieciently to illus—
trate the ideas involved. Consider the code frag-
ment (1):

for 1 = n,1,-1
for 31 = 1#+l,n
y(i) = y()-U(2, )%y ()
end
v{3) = y(2)/U(3,1)
end

and the code fragment (2):

for 1 = n,l1,-1
y(1) = yQ}/U(2,1)
for j = 1,2~1
y() = y(3)-U(5,1)*y ()
end
end

Now, both of these fragments actually perform the
same computation, the solution of an upper-triangu-
lar system of linear equations Uy=x (the final step
in the scolution of a general linear system whose
matrix has been factored anto triangular matrices
L and U). TFragment (1) 1s the usual method of
solving such a system; it refers to the matrix U
by rows. Fragment (2) refers to the matrix U by
columns, and 1s therefore more efficient than
fragment (1) on machines with virtual Wemory or
with buffer memory, when the language in which the
program 1s written stores matrices by columns (as
does Fortran), see Moler [8] and Swmith [10].
Considerable effort a1g required to see that
these two fragments actuzlly perform the same
computation; even more effort would be required
to devise a way to transform (1) into {(2) automa-
tically in order to be able to make the (possibly)
more efficient version available to a user. Thus

&Jork performed under the auspices of the U.S,
Department of Energy.
**Numbers in brackets designate References at
end of paper; names in brackets designate authors
of other abstracts ia thas Proceedings.



(1) 1s not a suitable prototype for tailoring,
since 1t contains dirfficult-to-discard information
about the row—oraented version of the program,
which has nothing to do with the gpecification of
the algorithm for the solution of the linear sys—
tem (see also Smath [10].)

At what level of abstraction, then, as such
ixrelevant information about how storage is
referred to absent from the specification of the
algorithm? It i1s absent when the algorithm is
specified in terms of matrax (rather than matrix
element) operations. Thus the abstract represen-
tation of this algorxithm is (3):

£ = U_ly

(Note that this representation of the algorithm
15 abstract not only with respect to row or
column orientation, but with respect to all as-
pects of the representation of the data; e g.,
the elements of U could be gaven by a funetion.)

TRANSFORMATIONAL SYNTHESES OF CONCRETE PROGRAMS

This abstract statement of the triangular
solution algorithm can be converted into a con-—
crete, executable program by first augmenting
it with a specification of the properties of the
concrete representations of U,x, and y. The
auvgmented abstract program can then be transformed
according to various program—algebraic rules which
incorporate the properties into the abstract pro-
gram and then simplify it where possible (see
Boyle [4] and Green [9]).

This process can be i1llustrated by a sketch
of the synthesis of fragment (2) from the abstract
program (3). Thais sketch omits numerous small
steps and to avoid introducing unfamiliar notation
15 presented in terms of quasi-programs. In the
actual TAMPR implementation, the transformations
are carried out on a representation of the program
in an applicative (1.e., expression) language
until the fanal stage, at which Fortran code 1s
generated. As discussed by Backus in has 1977
Turing Lecture [1] such applicative languages have
a richer and simpler associated "algebra" than
do conmventional languazges in part because the
scope of wvalues 1s indicated clearly by functional
application. (Experience with TAMPR strongly
supports thas simplicity of applicative languages,
which is also well known to LISP programmers.)

The synthesis of fragment (2} depends on some
1dentities from matrix algebra, including-

n
- T
4y 1 =% ee

=1 1

where e_i 1s the 1—th unit vector,
n 1

3B D+E Ule eT = 11 (T+De_ef-Te eTili'e eT)
2=l 171 i=n 1 11 11

where D is an nxn diagonal matrix and U' is upper
triangular with zero.diagonal; and

1 T
(6) T (T+De e‘i—Ie e +Ua ely
1=n 1 R 11

T

n 1T T _
=11 (I+Dele ~Ie e —U'e e D le eT)
171 11 11 11

2=1

The idea of a matrix A being "stored by columas"
18 thus expressed as
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n n
A=Al = AE(_e_e.T) = I (Cae del),
-1 I b3 -1 171

Aei 1s the 1-th column of A.

The synthesis begins with (3) augmented to
indicate that U 1 an upper—triangular nxn matrix
stored by columns, that y is an n-vector, and that
¥ 15 to be-identified with y:

Ukk_T*y

(d1ag{U) + uppersubtri(l))#*-1%y

¥
¥
now U 1s expanded by columns:
n
¥ = (diag(U) + Z (uppersubtrl(U)eieZ))**-1*y
i=1
(ﬁ(I+(d1ag(U)e )eT—Ie eT
i1 TTaia
l=n
+(uppersubtri(U)el)ez))**—l*y
T

n
T
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. T . T.
—(uppersubtrl(U)el)(el 1nvd1ag(U)e1)el)*y
—~> for 1 = n,1,-1
- T T
y =y + Gunvdaag(We ) (e y)-e, (e;y)
-(uppersubtri(U)ei)(e: 1nvd1ag(U)ei)(e§y)

end

(Note that the above program 1s the point of
departure for a "vector" solution of the triangular
system, although thas problem 1s not particularly
well suited to vector computation ) HNow expand

the remaining vectors to components (the assignment
i1s still a wvector one):

==> for 1=n,l1,-1

E e (eTy) = % e.(eTy) +e (eT 1avdiag(Ule )*
I N MR R it 1

T T n T
(ely) - ei(ely) -kigék(ek uppersubtrl(U)el)*

T
(al 1nvd1ag(U)el)(efy)]
end

After a number of steps whach anclude determining
that a vector temporary 1s not required in conver—
ting the vector assignment to a scalar one, the
component-Jlevel 1s reached-
=~> for i = n,1,-)

for 3 = 1,31

T
(EJY) = (E§Y) - (a§ uppersubtri(U)ei)*

T T
(e; 1nvdiag(U)el)(21Y)
end

T T T

(eiy) = (ei 1nvd1ag(u)el)*(e1y)-

(eT uppersubtri(l)e )*(eT invdiag{Ue X L
9 . , invdiag eQ 81Y)

for 3 = atl,n



(eTy) = (eTy) - (eT uppersubtri(e )}*
3 1 J t
T T
(ei 1avdiag{U}e,) (e]y)
end
end

Uppersubtri(U) implies ei uppersubtr1(ﬂ)e3= 0 for

k > 1, assiginments of the form x = x need not be
carried out, and common subexpressions can be
computed once, so that the program becomes:

-=> for a = n,L,-1
T T
t = (o] wnvdaag(Pe ) (e y)

for 3= 1,11
(efy) = (Q§Y) - (ef uppersubtrl(U)ei)*t

end
T
(e;y) = ¢
end

The temporary can be eliminated by reordering and
the component references converted to conventional
form to obtain fragment (2), above Thus the trans-—
formational synthesis of a program takes place in a
large sequence of small steps, each effected by a
transformation based on a relatively simple mathe—
matical theorem or axiom.

CORRECTNESS OF CONCRETE PROGRAMS

As discussed an [4], transformationally—
constructed concrete programs inherit the correct—
ness of the abstract prototype program provided the
transformations themselves are correct. A correct
transformation may add informatiom to the abstract
program, but this information must be consistent
with the properties assumed for the abstract pro-
gram, (In this sense, the process is rather like
constructing the integers as a "concrete" instance
of a ring, by augmenting the ring axioms with addai-
taonal axioms consistent with the original set.)
Thus anything provable about the abstract program
remains true for any of the concrete realizations
of it.

The proof that an arbitrary set of transforma-
tions 1s correct may be difficult in general. How-
ever, as discussed in [7], if each transformation
in the set is itself "semantics—preserving" (i.e.,
replaces a part of a program with program text
which does not contradict the meaning of the
original text), the correctness of the transfor-
mational process is guaranteed (if it terminates).
Usually 1t 15 quite easy to see that an individual
transformation is semantics-preservaing, especially
when it is based on a mathemataical property.

Finally, the fact that the abstract program
is closer to the mathematical formulation of a
problem than is an ordinary program means that its
correctness is much easier to prove. In the
present example (but not 1n general) .the abstract
program and its specification are almost identi-
cal; about the only thing which must be verified
1s that the product and assignment involve
consistently-dimensioned arrays.

Incidentally, the fact that the concrete
realazations of (3) do not cause out-of-bounds
subseraipt references when executed follows from
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the fact that (3) anvolves consastently dimension-
ed arrays and the fact that those transformations
which introduce subscripts also samultaneously
introduce the index sets for them based on the
array dimensions {See Backus [1], sectiom 5,

for some discussion of the significance of thas.)
This two-stage proof 1s much easier than showing
daireckly that (2) does not execute out-of-bounds
subscript references  The difference is even
more dramatic for an abstract Gaussian elimination
algorithm and a realizataon of it employing impli-
¢1t pavoting; the subscripts in the latter program
are themselves subscripted variables, and it 1s
very difficult to prove directly from the code
that they are always in bounds.

WHY TRANSFORMATIONS?

It is perhaps interésting to conclude by posing
the questions: Why use a program transformation
system to construct concrete realizations of
abstract programs? Why not simply devise an
extended language for specifying abstract programs
and a processor to translate it inte an existing
language (e.g., EFL [Feldman] and Bayer and
Witzgall's Complete Matrix Calculy [3]) or directly
into machine language? Or, why not implement by
hand a relatively fixed ensemble of routines for
different data representations and call them as
appropriate to a particular user's needs?

Clearly, these alternatives are not completely
dastinct, for the "processor" for an extended
language might consast of a collection of trans-
formations, while some transformations imsert code
which could be thought of as very small subrou—
tines. However, what T call a program tramsfor—
mation system is distinguished from the other two
approaches primarily because it provides a high-
level notation for specifying and applyaing source-
to-source program transformations and because 1t
can manipulate any programming-language construct
(not just subroutines and arguments). Transfor-
mation systems of this type include not only
TAMPR, but also those proposed by Bauer [2], and
by Loveman and Standish (see [6]).

In my experience, the idea of providing for
abstract program specification through a fixed
extended language is too static an approach to
be effective. The work discussed here is far from
complete, yet already a1t has undergone numerous
revisions. Had a particular notation been fixed,
or had the transformations been 1mplemented in a
fixed processor, they would have been very diffi-
cult to modify. Moreover, emphasis on Designing
a Language tends to cause one to get lost in a
tangle of language~related 2ssues which are not
very germane to abstract program specification;
indeed the expression and function notation
available in slightly modified Fortran or in Algol
seems quite adequate for experimentation. Finally,
even extensible languages, which permit the def-
anition of new data types and operators (e.g.,
Algol 68), do not usually provide a means for
easily specifying optimizations {especially global
ones) for these extensions. As we have seen, such
optimizations are both fundamental and rather
specific (e.g., the row amalog of (6), which shows
that n instead of n(u+l)/2 divisions suffice)} and
it 1s unreasonable to expect them to be built anto
a general-purpose language processor " Bpecifying
these optimizations by transformations not only
allows them to be easily tested and modified, 1t
also permits them to be selectively applied to
classes of programs which may reasonably be ex-
pected to use them.



Similarly, the implementation, by hand, of a
set of subroutines tailored to various properties
15 also static and mot very reliable; moreover,
the set needed is very large, being the product of
the number of variables, the number of representa-
tions of each, etec., In a transformational formu—
lation, the number of transformations needed be-
haves more lLike the sum (plus some initial over-
head), Thus, use of transformations enables one
to watage the coémplexity of the problem and there-
by greatly enhances reliabalaty.

CONCLUSTLON

I have sketched how various concrete executa—
ble programs can be constructed automatically from
an abstract prototype program by applying trans—
formations based on theorems of matrix algebra
and on "algebraic" properties of programming
languages. Although this research has just begun,
1t offers the hope of beaing able to provide a user
with haghly efficient programs tailored to his
environment while maintaining the advantages of
high reliability and low cost associated with
routines from the best mathematical software I1i-
braries. Moreover, the transformations which
produce such programs themselves represent a val-
uvable resource: a formal codification of rules for
writing linear algebra programs.

ACKNOWLEDGMENTS

Work on the derzvation of row and column
oriented programs from an abstract prototype was
begun by Brian Smith in conjunction with Janet
Bentley while Brian was on sabbatical at the
NAG Central 0Office, Oxford. This work was
supported by NAG; prelimimary results ave reported
in [10]. I am indebted to Brian for numerous
discussions whach helped the work discussed here
to evolve into its present form.

REFERENCES

1. J. Backus, Can Programming Be Liberated from
the von Neumann Style? A Functional Style and Its
Algebra of Programs, Comm. ACM 21, 8, Aug. 1978,
613-641.

2. F. L. Bawer, Programming as an Evoluticnary
Process, Proc. 2nd Int'l Conf. on Software
Engineering, San Francisco, 1976, 223-234,

3. R Bayer and C. Wxtzgall, Some Complete
Caleuli for Matrices, Comm. ACM 13, 4, April

1970, 223-237.

4. J M. Boyle, Mathematical Software Transporta-
bi1lity Systems —- Have the Vaviations a Theme? in
Portability of Numerical Software, Lecture Notes
in Computer Science, No. 57, Spranger-Verlag, 1977.
5. J. M. Boyle and K. W. Dritz, three papers on
the TAMPR system in J. R. Bunch, Ed., Cooperative
Development of Mathematical Software (available
from the authors).

6. J. M. Boyle, K. W. Dritz, 0. B. Arushanian,
and Y. V. Kuchevskiy, Program Generation and
Transformation —— Tools for Mathematical Software
Developement, Information Processing 77, North
Holland 1977, 303-308.

7. J. M. Boyle and M. Matz, Automating Multiple
Program Realizatilons, Proc. of the MRI Symposium,
XXIV: Computer Software Engineering, Polytechmic
Press, 1977, 421-456,

8. C. B. Moler, Matrax Computations with FORTRAN
and Paging, Comm. ACM 15, 4, April 1972, 268-270.

30

9. €. G, Green, The Design of the PST Program
Synthesis System, Proc. 2nd Tnt'l Conf. on
Software Engineering, San Francisco, 1976, 4-18.

10. B. T. Smith, Portability and Adaptability —-
What are the Issues? in D Jacobs, Ed., Humeraical
Software ~— Needs and Availability, Academic Press,

1978, 21-38.



FORTRAN TOOLS

Y

N79-12724

by

Leon Presser
S5cftool Corporataon
340 South Kellogg Avenue

Goleta,
ABSTRALT

Thais paper outlines an wintegrated set
of Fortran tools that are commercially
avarlable. The basic purpose of various
tools a5 summar:ized and their economlic 1m-
pact highlighted. The areas addressed by
these tools include: code auditing, erxor
detection, program portability, program in-
strumentation, documentation, clerical aids
and quality assurance.

THE PURPOSE OF THIS PRESENTATION 1s to out-—
line a number of powerful software tools
presently marketed by Softool Corporation.
Here we shall only discuss an integrated
set of Fortran tools, since the Fortran
language and the portabilaity of Fortran
programs 1s a key to the development of
numerical software. The i1ssues, however,
extend well beyond numeraical software, and
apply to software development in general.

A perspective 1s in order. The cuz-
rent cost of software development is exor-
bitant and the guality of the products gen-
erated leaves much to be desired. The
single most serious issue facing us today
1s the lack of coherent methodologires for
the construction of software. Such method-
ologies should address the entire construc-
tion process from requirement analysis to
maintenance. Furthermore, the absence of
explicit methodologies explains the lack of
sound software management disciplines, s0
necessary in a process of such complexaty
as the construction of software.

The key to methodology and management
are proper tools, Indeed, Webster's New
Collegiate Dictionary defines management
as: 'judicious use of means to accomplish
an end', and 1t defines tool as 'a means
to an end'. From these we deduce:
(software) management: 'judicious use of
{software) tools.'

FORTRAN TOCL SET

The avalilable Fortran tools apply prin—
cipally to the programming, testing and
maintenance phases of the software construc-
tion process. These tools consist of:
standard auditors
error detectors
portability aids
instrumenters
documenters
clerical aids
. gquality assurers

all of the Fortran tools are coded in
a highly portable subset of Fortran. HNext,
we highlight some of the exaisting Fortran
tools.
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1. ANSI FORTRAN CHECKER & ERROR DETECTOR

This tool accepts as input a Fortran
source program and outputs clear documenta-
tion pinpolnting:

. deviations from, ANSI (19%966)standard

. errors present in the source program

. portabilaity problems

. management indices

To substantiate the economic advan-—
tages that result from use of this tool let
us simply focus on 1ts error detection cap~
ability. Our experience 1indicates that
during software development this tool re-
duces the number of compilations necessary
to obtain a program ready £or execution by
a factor of 3 to 5, TUse of this tool for
the analysis of production programs (1.e.,
programs that have been running ‘correctly’
for vears) generates about 3 definite er-
rors per thousand lines analyzed! [1,2].

If we assume, guite conservatively, that a

person costs $20/hour and that each problem
present in the software will reguire 8 per-
son~hours for i1ts removal, we have:

3 problems x 8 hours x $20 _,
T000 lines 1 prob. T h™ $500/1000 lines

That 1s, use of this tool would save on the
ordex of $500 for each 1000 lines of Foriran
processed!

Concerning portability, this tool de-
tects and documents a large number of poten-
tial Fortran portability prcblems, such as:
statement orderings,—

. operations of equal precedence that

are not fully parenthesised,

. 1mplicit conversions,

. si1de effects, and many others

We have been moving software across
different computers ain a strairghtforward
manner with the aid of this tool.

Each Softool tool produces appropriate
management aindices that help concerned man-
agement obtain visibality over their soft-—
ware. For example, this tool generates
three dafferent andices:
average number of

statement
average number of
statement
average number of portability
problems per statement

EXrors per

Warnings per

2. FORTRAN INSTRUMENTER I

This tool accepts as input a Fortran
source program and execution time test data
sets for the program. Upon execution of
the source program it automatically gener—
ates routine level profiles. These pro-
files quantize testing and optimization
efforts ain detail. The information pro-
vided by the prcfiles includes: percent of



t+est coverage, time spent in each routine,
number of calls to each routine, test ef-
fectiveness index and an optimization in—
deX.

This tool has a major 1mpact in ex-
pediting and reducing the effort spent in
testing. In essence, 1t helps minimize
the test data reguired for a specified
coverage, which in turn resulis in de-
creaSed test data execution time and also
reduces the human time required to analyze
test results. Similarly, this tool 1s a
great aid in focusing optimization efforts.
Qur experience indicates that savings 1in
excess of 10% of the overall software de-
velopment effort are readily obtained with
the help of this tool.

This tool also serves as a valuable
adjunct to the ANSI FORTRAN CHECKER AND
ERROR DETECTOR during program portabailaty
efforts.

3. FORTRAN DOCUMENTER A

The main purpose of this tool s to
facilitate and expedite the uniform docu-
mentation of Fortran source program units.
Tn essence, mahagement provides to this
tool the definition of a documentation
template. Programmers write their code 1in
a simple and straightforward shorthand
format. The code wraitten by the program-
mers 1s input to this tool which outputs
fully commented units of source code, doc-
umented according to the predefined docu-
mentation template. Our experience indi-
cated that excellent, self-contained doc-
umentation can be consistently obtained
with the aid of this tocl. Moreover, the
keypunching and/or terminal entry work is
reduced by a factor of about 5!

Other members of our integrated set
of Fortran tools are a statement level ain-
strumenter and two other documenters that
accept as input a source program and gen—
erate extensive local and global cross-—
reference directories.

SUMMARY

The objective of this presentation
has been to ocutline a set of integrated
Fortran toocls available from Softool Corp-
oration. These tools have extensive and
highly cost-effective application in the
development, management and guality assur-
ance of Fortran based software. If we are
to conquer the ubiquitous software problem
we must promptly incorporate into our meth-
odology tools of the kind described here.
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I. Introduction

There has been consjderable 1nterest 1ately
1n methodologies for the production of high
quality computer software. Work in this area
has been carried out by researchers 1n a wide
variety of disciplines and covers an impressive
spectrum of approaches. Some of the more active
current 11nes of research include software
management techniques [1, 2], creation of error
resistant programming technigues [3, 4, 5]; and
%esigg of error resistant programming languages

6, 7

There has also been considerable activily
1n the creation of program testing, verification
and documentation tools. The work 1n this area
has been directed primarily towards two different
but related goals -- the detection and examination
of errors present 1n a program, and the determina-
tion that a given program has no errors of some
particuiar type. Among the diverse activities 1n
this area, this paper shall focus on four of the
major approaches -- namely dynamic testing, symbolic
execution, formal verification and static analysis
In this paper, the different patterns of strengths,
weaknesses and applications of these approaches will
be shown. It will, moreover, be demonstrated that
these patterns are 1n many ways complementary,
offering the hope that they can be coordinated and
unified into a single comprehensive program testing
and verification system capable of performing a
diverse and useful variety of error detection,
verification and documentation functions.

II. Four Error Detection
and Verification Techniques

In dynamic testing systems, [8, 9, 10, 11] a
comprehenstve record of a single execution of the
program 15 built. This record -- the execution
history -- 1s usually obtained by instrumenting
the source program with code whose purpose 15 to
capture information about the progress of the execu-
tion. Most such systems implant monitoring code
after each statement of the program. This code
captures such information as the number of the
statement just executed, the names of those varia-
bies whose values had been altered by executing
the statement, the new values of these varmables,
and the outcome of any tests performed by the

1Research supported by NSF Grant # MC577-02194.
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statement. The execution history 1s saved in a
f1le so that after the execution terminates 1t can
be perused by the tester. This perusal is usually
faci1l1tated by the production of summary tables
and statistics such as statement execution fre-
quency mistograms, and variable evolution trees.

Many dynamic testing systems aiso monitor
each statement execution checking for such error
conditions as division by zero and out-of-bounds
array references The monitors impianted are
usually programmed te automatically 1ssue error
messages 1mmediately upon detecting such condi-
tions in order to avoid having the errors concealed
by the bulk of a large execution mistory.

Some systems [9, 10] even atlow the tester
to create his own momiters, direct their mmplanta-
tion anywhere within the program, and specify where
and how their messages are to be displayed. The
greatest power of these systems is derived from
the possibility of using them to determine whether
a program execution 1S proceeding as intended.

The 1ntent of the program 15 captured by sets of
assertions about the desired and/or correct rela-
tion between values of program variables.

Dynamic testing systems provide strong error
recognition and exploration capabilities, but are
unable to determine the absence of errors. Their
results are narrowly applicabie, being valid only
for a single program execution. These results are
gquite extensive and detailed, however, providing
sufficient matertal for deep insight into the
program. These systems allow extensive human
interaction, and their power 15 most fully realized
when a skilled human tester 1s using them interac-
tively. They require as input a complete set of
actual program input data. The success of a
dynamic testing run as a vehicle for discovering
and exploring errors 1s largely dependent upon the
selection of revealing and provocative input data.
This usually presumes the involvement of a human
testeg who is knowledgabie about the program being
tested.

In symbolic execution, symbolic representa-
tion {1n the form of formulas) are kept for the
evolving values of variables instead of numeric
quantities. For a given path through the program,
the values of all the variables encountered are
maintained as formulas. The only unknowns in
these formulas are the input values to the program;
all other values of variables are functions of con-
stants and these nput values and, therefore, can



be removed by substitution. The formulas can be
examined by a human tester to see whether they
embody the intent of the program If so, then the
tester has determined that the program w111 y1eld
the desirad results for all executions which follow
the given program path. A number of symbolic exe-
cution systems have been produced [12, 13, 14, 15].

Clarke's system [12] 1s perhaps the most
interesting symbolic execution system 1n the con-
text of this paper, 1n that 1t 1ndicates better
than the others the range of error detection and
verification capabilities possibie with the sym-
bolic execution approach. In Clarke's system, the
execution path which 1s specified as input 15 used
to dictate the required outcome of all conditional
tests along the path. Hence, the path dictates a
set of constraints which must be satisfied in order
for execution to proceed along the given path.
These constraints are 1n terms of current values
of program variables, but through the use of sym-
bolic execution, they can more profitably be
expressed as relations in terms of current values
of program variables. The system of relations
obtained 1n this way 1s taken to be a set of simul-
taneous constraints, and 1s examined by Clarke's
system for consistency. A solution to a consistent
set of constraints 1s a set of values which, when
taken as 1nput to the program, w11l force execution
of the given path I the constraints are i1ncon-
sistant, then the path is unexecutable -- that 1s,
there exists no data which w11l effaect the execution
of the given path.

Clarke's system also creates additional,
temporary constraints for the purpose of error
detection and verification. Constraints are
created which test for the possibiiity of array
bounds violations, DO statement loop control varia-

ble errors and division by zero. Clarke's system will

attempt to solve the system of constraints to pro-
duce program 1nput data which forces the traversal
of the given 1nput path, followed by a zero-divide
error at the given point.

Symbolic execytion systems provide strong
error detection capabilities and some pathwise
verification capabilities which fall short of the
power of Tull verification Symboli¢ execution
systems provide diagnostic infermation which is
applicable to classes of executions rather than a
single execution. This 15 achieved by supplying
symbolic relationships between program values 1n
place of precise numeric data. These systems
require human intervention and evaluation 1n order
to carry out error detection, although the pathwise
validation capabilities require no human assistance.
Symbolic execution systems require that a test path
through the program be supplied. It is Important
that the path given be revealing and provocative,
thur requiring the skills of a knowledgable human
tester

In static analysis systems, the text of a
source program 15 examined in an attempt to deter-
mne whether the program 13 defective due to local
malformations, 1mproper combinations of program
events, or mmproper sequences of program events.

In order to make this determination, each statement
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of the program 15 represented by a small, carefully
selected set of characteristics., The static analy-
$1s system can then examine each characteristic
set on a statement-by-statement basis for malfor-
mations, and various combinations and sequences of
statements on a characteristic-by-characteristic
basis for faulty program structure or coordination.
No attempt 15 made at replicating the entire beha-
vior or functioning of the program Rather, static
analys1s attempts to examine the behavior of the
entire program only with respect to certain
selected features

The syntax checking of individual statements
of a program provides a good example of static
analysis. More interesting and valuable error
detection 1s obtained by examining the characteris-
t1es of combinations of statements. For example,
111egal combinations of types can be detected by
examinming declaration statements and then examining
the executable statements which refer to the varia-
bles named 1n the declarations Similarly, mis-
matches between argument 11sts and parameter 11sts
associated with the 1nvocation of procedures or
subroutines can also bhe made by static analysis
systems. Some of the types of static analysis
discussed above are available with most compilers.
Other types, such as argument/parameter list
agreement are far Tess common 1n compilers, but are
found 1n such stand-alone static analysis systems
as FACES F16] and RXVP [17].

The use of static analysis techniques to
examine sequences of program events enables the
detection of still other types of pregram errors.
In DAVE [18] each statement of a program 1s repre-
sented by two T1sts -- a Tist of all variables
used to supply values as 1nputs to the computa-
tion, and a Yist of all variables used to carry
away values produced as output by the computation.
The static analysis then examines sequences of
statement executions which are possible given a
program's control flow structure, and determines
such things as whether 1t 1s possible to reference
an unimtialized or otherwise undefined variable,
and whether 1t 15 possible to compute a value for
a variable and then never refer to the computed
value In such cases, the static analyzer deter-
mines and outputs the statement sequence for
which the anomalous pattern of references and
defimitions occurs. Simlarly, 1t would be possi-
ble to scan programs for other improper sequences
of events such as openings, writings, and closings
of fi1les; and enabiings and disablings of inter-
rupts. Paths along which these sequences could
occur would then also be determined. It should be
emphasized here that the most recent static analy-
sis systems which examne event sequences for
improprieties employ search technigques which enable
the examination of all sequences of statement
executions which are possible, given the flow of
control structure of the program. These search
techniques, first studied in connection with pro-
gram optimization [19, 20, 21, 22] are also guite
efficient, Unfortunately, the most efficient of
them w11l merely detect the existence of such
improper sequences. Somewhat iess efficient algo-
rithms are needed 1n order to determine the actual
sequences,



It can be seen from the preceding paragraphs
that static analysis systems offer a limited amount
of error detection, but are capable of performing
certain verification functions. Static analysis
only examines a few narrow aspects of a program's
execution, but the results of this analysis are
comprehensive and broadly applicable teo all possi-
bie executions of the program Here, as 1n the
case of symbolic execution, 1t 1S seen that the
verification capabilities are obtarned without the
need for human 1nteraction. A human tester 1s
required, however, 1n order to i1nterpret the
results of the analysis and pinpoint errors.
Finally, 1t is 1mportant to observe that static
analysis requires no Input from a human tester.

As output, 1t produces either paths along which
ancmalous program behavior is possible, or valida-
tion results indicating that no anomaly-bearing
paths exist

In formal verification, the code comprising
a program 1s compared to the total intent of the
program, as captured and expressed 1n the form of
assertions. Assertions are used to describe the
program output expected 1n response to specified
program 1nputs. The goal of the formal verifica-
tion is to prove & theorem stating that the program
code actually achieves this asserted 1nput/output
transformation. The proof of this theorem is
reduced to the proof of a coordinated set of
lemmas. The statements of these lemmas are derived
from a set of 1ntermediate assertions positioned n
specific locations throughout the program code
These assertions describe preciseiy the desired
status of program computations at the locations of
the assertions. Differences 1n status between
assertion sets separated 1n position by a body of
code embody the transformation which that code
segment 15 intended to perform. Proving that the
code segment achieves the transformation establishes
the lemma that the segment is corvect. A total
formal verification 1s achieved 1f the program 1s
also proven to always terminate.

It 15 quite significant to observe that
symbolic execution 1s the technique used to deter-
mine the transformation effected by & given code
segment. Hence, the symbolic execution technigue
is central to formal verification Formal verifi-
«cation can, 1n fact, be viewed as a formalized
framework for carrying out a rigorously complete
and coordinated set of symbolic executions and
comparisons to intended behavior.

Formal verification is the most rigorous,
thorough and powerful of the four techniques
presented here. There are s1zable problems 1n
carrying 1t out, however. The s1ze and intricacy
of the work make it costly. The need for exact
mathematical models of the desired and actual
behavior of a program 1nvite errors and weakening
inaccurate assumpfions. It 15 generally agreed,
however, that the discipline and deep perception
needed to undertake formal verification are useful
1n themselves  Anticipation of formal verification
seems to foster good program organization and
design  Attempts at formal verification 1nvariably
lead to mproved insight into both the goals and
mplementation of a program.
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II1. An Integrated Testing,
Analysis and Verification System

Recently, each of the four above techniques
has received considerable attention and 1nvesti-
ation. Stand-aione systems, implementing each

ave been constructed, and experience has been
gained in using each. Partly as a result of this
experience, there 15 a growing concensus that no
singlie technigque adequately meets all program
testing verification and analysis needs, but that
each contributes some valuable capabilities It
thus becomes clear then that the four techniques
should not be viewed as competing approaches, but
rather that each offers useful but di1fferent
capabilities. Attention then naturally turns to
the examnation of how the various -capabilnties
can be merged i1nto a useful total methodoiogy and
systent.

Such a methodology 1s described now. The
methodology makes provision for the progressive
detection and exploration of errors as well as
provision for selective verification of different
aspects of program behavior.

Both types of activities are begun with
static anaiysis of the source program using a
pathwise anomaly detecting analyzer. In the next
phase of the methodology, symbolic execution 1s
used to further the results of static apalysis.
The symbolic execution focuses on anomaly-bearing
paths detected by the static analyzer to further
the error detection and verification power of the
methodology. The methodology next calls for the
application of either dynamic testing or formal
verification. Dynamic testing 1s used to obtain
the most precise but restricted examination of
the nature and sources of errors and anomalies
whose existence has been determined during the
first two phases. Symbolic execution 1s used to
generate test data for the dynamic test of indivad-
ual cases Formal verification_1s used to obtain
the most definitive demonstration of the absence
of errors Extreme vrigor and thoroughness can be
appited at high cost in showing the absence of
errors,

A schematic diagram of the methodology is
shown 1n Figure 1

The above strategy organizes the four
techniques 1nto a progression of capabilities
which 1s natural in a number of mportant ways. It
begins with a broad scanning procedure and progress
to deeper and deeper probing of errors and anomaly
phenomena It initially requires no human inter-
action or 1nput. It progresses fo involve more
significant human 1nteraction as human 1nsight
becomes more useful in tracing errors to their
sources and constructing mathematical demonstra-
tions of correctness. It provides the possibility
of some primitive verification without human
intervention, and then allows error detection based
upon the negative results of the verification scan.
The flow of data 1s also most fortuitous. The
first phase static analysis requires no wnput. It
produces as output, however, paths through the pro-
gram which are deemed to be significant in error



output of the first phase. Finalily, the dynamic
testing phase requires actual program input data

it has been observed, however, that symbolic execu-
tion systems can be used to produce data sets

which are sufficient to force the execution of
their input paths Hence, the second phase can be
used to provide the input required by the dynamic
testing phase.

1t is also 1nteresting to observe that the
use of assertions provides a umifying influence 1n
1ntegrating the four techniques. A1l techmiques
except static analysis are explicit assertions to
demonstrate either the presence or absence of
errors  Static analysis uses implicit assumptions
of proper behavior as embodied in language seman-
ti1cs, but could also benefit from explicit asser-
tions  Seen in this light, the four techmiques
basically differ 1n the manner and extent to which
they perform assertion verification. Thus, 1t
seems reasonable to require that a program and
initial set of assertions be submitted. The adher-
ence of program to assertions would be examined at
every stage. The stages would test the adherence
1n different ways, progressively establishing
firmer assurances of adherence or focusing more
sharply on deviations.

Iv. Conclusion

The foregoing section has presented a rather
saguine view of the capabilities of an integrated
testing system combining the best features of
static analysis, symbolic execution, dynamc test-
ing, and formal verification Although software
systems implementing each of these techniques have
been produced, the task of constructing a usable
system 1s st111 far more formidable than simply
building software 1nterfaces between existing
systems  Significant research must be completed
before a useful system can be built.

The outlines of some of the longer range
outcomes of this research can be observed already.
It appears, Tor example, that this research will
show that many of the testing operations currentiy
performed by dynamic testing systems alone, can be
performed more effectively by some combination
with static analysis, symbolic execution and formal
verification. This would lessen the reliance of
testing upon chance and human interaction. It
also appears that this research will show that the
activities of program testing and formal verifica-
tion are more closely related than previously
generally thought. Some of the static analysis
techniques proposed here can reasonably be thought
of as techniques for producing proofs of the
correctness of certain restricted aspects of a
given program Moreover, certain proposed appli-
cations of symbolic execution are tantamount to
assertion verification over a limited range. It
15 expected that this research may provide some
1nsight 1nto some ways in which testing and prov-
ing activities can be utilized as complementary
activities The proposed research should confirm
these and other important conjectures.

36

V. Acknowledgments

The author would Tike to thank Lloyd D.
Fosdick for the many valuable and stimulating con-
versations which helped shape the ideas presented
here, as well as for his perceptive comments on
early versions of this paper. The ideas presented
here were also shaped by stimulating conversations
with Lor1 Clarke, Bi111 Howden, Jim King, Don Reifer,
Dick Fairley, Leon Stucki, Bob Hoffman, and many
others

VI. References
[1] F T Baker, “Chief Programmer Team Management
of Production Programming,"

IBM Systems
dournal (11} pp 56-73 (1972}.

D S. Aiberts, "The Economics of Software
Quality Assurance,” AFIPS Conference Proceed-
1ngs {45) pp. 433-44Z {1976 National Compufer
Conference}.

E W. Dizkstra, "Notes on Structured Program-
ming", 1n S$Structured Programming by 0.J Dahl,
E.W. Dijkstra and C.A.R. Hoare, Academic
Press, London and MNew York, 1972

N. Wirth, "Program Development by Stepwise
Refinement" CACM 14, pp. 221-227 {April 1971).

D.L. Parnas, "On the Criteria to be Used in
Decomnposing Systems 1nto Modules" CACM 15,
pp. 1053-1058 {December 1972).

N. Wirth, "An Assessment of the Programming
Language PASCAL" IEEE Transactions on Software
Engineering SE-1, pp 192-198 (June 19757,

J D. Gannon and J.J. Horming, “Language Design
for Program Reliability", IEEE Transactions on
Soft§are Engineering SE-1, pp. 179-191 (dJune
1975

R.A Balzer, "EXDAMS- Extendable Debugging
and Monitoring System", AFIPS 1969 SJCC 34
AFIPS Press, Montvale, New Jersey, pp. 567-580

R.E. Fairley, "An Experimental Program Testing
Faci1ity", Proceedings of the First National
Conference on Software Engineering, IEEE A
Cat. #75CH0992-8C, pp 47-52

L.G. Stucki and G.L. Foshee, "New Assertion
Concepts for Self Metric Software Validation“,
Proceedings 1975 International Conference on
Reliable Software, IEEE Cat. #75CH0940-7CSR,
pp. 59-71.

R. Grishman, "The Debugging System AIDS",
AFIPS 1970 SJCC 36 AFIPS Press, Montvale,
N.J., pp. 59-64.

L. Clarke, "A System to Generate Test Data
and SymboTically Execute Programs", IEEE

Transactions on Software Engineering SE-2,
pp. 216-222 {September 1976;
W.£. Howden, "Experiments with a Symbolic

Evaluation System”, AFIPS 1976 NCC 45, AFIPS
Press, Montvale, N.J , pp. 899-908.

J.C. King, “Symbolic Execution and Program
Testing", CACM 19, pp. 385-394 {(Juiy 1976).

[2]

L3l

[4]
£5]

[6]

(7]

L8l

[e]

o]

[l

(12l

[13]

[14]



[15] R.S. Boyer, B Elspas, and K.N. Levitt,

[16]

(17]

18]

f19]

f20]

[21]

[22]

"SELECT--A Formal System for Testing and
Debugging Programs by Symbolic Execution",
Proceedings 1975 International Conference on
Reliable Software, IEEE Cat +#75CH0%40-7C3R,
Pp. 234-245

C V Ramamoorthy and 5.8 F. Ho, "Testing

Large Software with Automated Software Evalua-
tion Systems", IEEE Transactions on Software
Engineering SE-1, pp. 46-58.

E.F. Miller, Jr., "RXVYP, Fortran Automated
Verification System", Program ¥alidation
Project, General Research Corporation, Santa
Barbara, Califormia {October 1974).

L.J. Osterweirl and L.D. Fosdick, "DAVE--

A Validation, Error Detection, and Documanta-
tion System for Fortran Programs", Software
Practice and Experience 6, pp. 473-486

£€.F. Allen and J. Cocke, "A Program Data Flow
Aralysis Procedure”, CACM 19, pp. 137-147
{March 1976).

K.W. Kennedy, "Node Listings Applied to Data
Flow Analysis", Proceedings of 2nd ACM Sym-
pos1um on Principles of Programming Languages,
Palo)ATto, talifornia, pp. 10-21 {January
1975).

M S. Hecht and J.D. Ullman, "A Simple Algo-
rithm for Global Data Flow Analysis Problems,"

SIAM J. Computing 4, pp. 519-532 (December
79757.

J.D. Ullman, "Fast Algorithms for the Elimi-
nation of Common Subexpressions", Acta Infor-
matica 2, pp. 1910213 (December 1973).

CORRECT PROGRAM OR ASSERTIONS

AGE I3

CORRECT PRGGRAM OR ASSERTIONS
CORRECT PROGRAM OR ASSERTIONS MORE INFORMATION NEEDED
CORRECT __ MORE INFORMATION NEEDED
agOGRAH
assermons| _ _  AssEATIONS_ ____{__ __ e I P
i |
ERRORS ERRORS! 1 ERRORS
START EoUND FOUND | X ! Eopno
|
SOURCE 1 ! | I HUMAN
PROGRAM | 1 L L INVOLVEMENT
A N H I R | | AUTOMATED
I ‘ * | i PROCESSING
. PATHS TO BE STUDIED | | TESTDATA FORFERRORPATHS
i STATIC SYMBOLIC NO ERRORS o] DYHAMIC
:“' ANALYSIS EXECUTOR | reer DATA FOR COVERINGIPATHS TESTER
k 77 g
| u & o Aug,
& O, Vg Me,
' 3 7 ) Bl e
e Fs LU 4 WX B Ay
EoQz & I 20 & "?fo”-.."_opg NO
! Lz i oy ol oy o S ERRORS
1 :g %hg— q‘-a-.” Qéf/i? @0\4‘0 S FOUND
1 E0RE & ¥ 5%
L R (?/ 1S A i PROOF
! L ! = FAILS
| ] PATH / \ PROGRAM
e = ona rLow GENERATOR PROVER [ e sTOP
DECISION FLOW SUCCEEDS
Figure 1. A Diagram of the Proposed System

37



A CASE FOR TOOLPACK

Webb Mrller, Department of Mathematics

University of Calafornia
Santa Barbara, California, U.S.A.

ABSTRACT

We propose a collaborative effort to develop a
systematized collection of software tools for
Fortran programming.

1. SOME SOFTWARE TOOLS

LET US PRY TO CLASSIFY some software tools in terms
of their applicability during the development of &
typreal Fortran progranm.
design
¥
codzng
4 .
testing
¥
distribution
¥ 4+

use maintenance

L ' i

DESIGN - At this phese the program's specifi-
cations are determined and algorithms and data
structures are selected. Software tools can assist
in the preparation and checking of design specifi-
cataions. (J2)* A much more specralized tool is
software for roundeff analys:is (1&,15) which can be
used to help design a program performing matrix
computations.

CODING - Text edrtors, compilers, skructured
Fortran preprocessors like RATFOR (1l) or EFL, ané
source—text formatters like POLISH (3) are useful.

TESTING — Debugging systems (8) help track down
program errors and profilers (10,22) can locate un-
tested code and code i1n need of serutiny for possible
manual optimization. The PFORT Verifier (20) and
DAVE {6,17,18) can dragnose certain kinds of errors.
Currently, much research (9,16,19,22} 1n software
engineering s focused on this phase of software
development.

DISTRTBUTTION — Distrrbution aids can assist in
preparing multiple versions {for different machine
murber systems or different machines) from the
"master version" of = program. (2, pp. 305-k23)

MAINTENANCE - Distribution asids can also be
used to keep track of the various releases of a
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program and to update collections of programs
stored on dape. (5,21) For maintaining a program
written by someone else, it may help to automatic-
ally convert Fortran into, say, well-struectured
Fortran T7 with & structurer. (1)

2 TOOLPACK

We feel that the time has arrived for a col-
laborative effort to develop a systematized collec-
tion of software tools for Fortran programming.
Since we envision an effort along the lines of the
YPACK series" (ETSPACK and its descendants) wve use
the name "TOOLPACK "

Probably the first and most crucial design de-
cision would be the selection of a Fortran exten-
sion, which we will call FE, wnth adequate control
structures and with data types sufficient to make
writing the software tools relatively painless (the
tools should be written an this language). Com-
patability with Fortran 77 seems extremely desir-
able, but perhaps other considerations will make,
say, EFL the proper choice A processor for FE
should be designed waith all of its possible uses in
tools (2)-(2v) 1n mind (we could also use 1t to up-
dete our minicompiler (1k 15))

The exact contents of TOCLPACK would have to be
dictated by the willingness and interests of con-
tributors One possibility is that TOOLPACK in:i-
t1ally contazn:

(1) a FE-to-PFORT translator,

(11} & FE source-text formatier which transforms
PFORT into PFORT,

{i11) a FE profiler,

(2v) daistribution and maintenance aids.

0f the candidates for eventual inclusion 1n
TOOLPACK, some are promising, e.g., DAVE {we hope
that improvements will make wide use economically
feasible) and program structurers (they are of in-
terest as much for insights into the programming
process gained during their development as for
therr usefulness as a tool). On the other hand,
some candidates are of doubtful value, e.g , aubo-
matic test data generators (we feel that our method
{13) 1s best in many cases, but even it does not
seem especially useful) =nd symbolic execution sys-
tems (9}, while some candidates seem to have no
immediate practical value, e.g., aubtomatic program
verifiers. (&)

3. JUSTIFICATION

We are convinced that TOOLPACK would easily pay
for itself in savings to Forbtran programmers. How-
ever, there are software development issues at
stake which are far more important

The PACK series is the prime example of the
spread of what might be called the "PACK paradigm"

*Nuubers in parentheses designate References at end
of paper.



of compubter science research  Characteristically,
(1) such endeavors take the form of collaboration
by research leaders to produce portable state-of-
the~art software and all lewvels of supporting decu-
mentation, (i1) federal funding provides partial
support and {111) the resuliing software and docu—
ments are placed in the public domain.

Consider the following map of the computer pro-
gramming milieu {1t is neither complete nor drawm
to scale). The approximete domain of the PACK
paradigm 1s shaded

noan-numerical programming

business programming
operating systems

compllers

Esgﬁmhlnaﬁorlal computaing
~.
- Tat} “ediputatitn.

- -
Fostatist cal-computation
’/7 o
ogﬁlﬂﬁiy differential eguations
"Partlal dafferential eguations

|

numerical programming

Actually, the exastence of the pretured beach-
head for the PACK paradigm in non-numer:ical terri-
tory 15 questionable. The examples we have 1n mind,
in particular the non-nuvmerical contributions in the
Collected Algorithms of the ACM, are not collabor-
ative on a scale even spproaching that of the PACK
serles.

There are numerous reasons why the PACK para-
drgm w1ll never be the universal model of software
development. Some of the difficulties are unavoird-
able. For :nstance, combinatorial computing resists
"black boxes" since typically it 1s hard to detach
general-purpose combinatorial programs from the ad
hoe data structures whrch are used.

Some of the impediments to the spread of the
PACK paradigm are less intrinsic. A major culprit
13 the reward system in both academic and business
sectors. Duplication of effort often results 1in
greater tobtal reward than does collaboration. More-
over, the spread of the paradigm to non—numerical
terrrtory 2s impeded by the scarcity {or complete
absence) of precedent-setting examples.

The PACK paradigm should be fostered an those
areas of software development where 1t 1s appropri-
ate. TOOLPACK would do much to encourage its spread
by producing programs which can be readily appreci-
ated by non-numer:cal programmers

k., PROPOSALS

If sufficient support materializes for TOOLPACK,
then by mid-November a proposal should be submitted
to the Depariment of Energy and the Nataional Science
Foundation to jointly fund s 2- or 3-day TOOLPACK
workshop to be held an, say, March. The proposal
might request expenses {(up to $500 per person) for
10-12 workshop pariicapants and $1000 overhead to
cover secretarial assistance (before and during the
workshop), Xeroxing, telephoning and postage.

Attendance at the,workshop should be limited to
persons likely to make & commitment to TOOLPACK,
either as principel investigators developing soft-
ware or as test site coordinators. The goal of the
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workshop should be to come as near as possible to
completing a package of propesals for construecting
and testing TOOLPACK, also to be submitted to the
Department of Erergy and the Nabional Science Foun-
dation jointly. Some dascussion of design questions
{e.g , the choice of FE) should take place, but only
until someone asstmes responsibility for a generzally
approved software tool so that a conerete proposal
can be made. Detailed design questions need not be
considered until TOOLPACK development is funded.
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Programmable Formatting of Program Text:
Experiences Drawn from the TAMPR System*

Kenneth W. Dritz, Applied Mathenmatices Division
Argonne National Laboratory
Argonne, Illinois, U.S5.A.

EXTENDED ABSTRACT

The TAMPR System originated as an approach to
the problem of automataing the routine modifications
of Fortran source programs required to adapt them
to a variety of uses ox enviromments [1]%*  Over-
all, the system accomplishes such modifications by
applying transformations to Fortran programs at the
source level. But the process differs markedly, in
detail, from string-based editing or macro expan—
sion. Three steps are involved:

{1) A Fortran source program 1s processed by the
TAMPR Recognizer, yielding essentially a parse
tree called the abstract form.

(2) The Transformation Interpreter applies IGT's
(Intragrammatical Transformations) to the
abstract form as tree operations [2]

(3) The abstract form 15 then reconverted to source
program form by the Formatter.

By ensuring that the transformations are applied

only to the correct syntactic entities and only in

the intended contexts, the use of the abstract form
greatly simplifies establashing the relaabalaty of
the overall process.

The Formatter, of course, is responsible for
meeting the requirements of the target language,
such as use of blanks, statement continuations,
etc. 1In addition, the formatting process 1is
charged with imparting to the resultant program a
certain degree of style. Areas of concern here are
spacing between symbols, choosing "logical" break-
peints in multi-line statements, and, at a higher
level, commenting and indentation to help reveal
program structure The expectation of variataion
of opinion among researchers as to what constitutes
good style plus the knowledge that our own criteria
for good style would evolve with experience led us
to reject the 1dea of a fixed formatting process,
such as that essentially used in Lang's STYLE
edator [3]. The Formatter, accordingly, was de-
signed to interpret an easily modified set of
formatting instructaionms.

Several alternative designs were possible for
the Formatter. For example, the approach of em-
bedding formatting directaives in the program to be
formatted, as in document formatting systems, was
rejected partly because it would have seraously
complicated the application of IGT's. More impor-
tantly, however, the idea of formatting instructions
separate from the programs appealed because it
would permit one set of instructions to be used for
the formatting of many Fortran programs. Pursuing
that idea, we next concentrated on the form of the
instructions. A tabular encoding in the manner cof
Koch and Schwarzenberger [4] suffered in our opain-
ion from being obscure, unnatural, and not suffi-
ciently expressive and was rejected. We chose
wnstead to develop a high-level procedural language,
Format Control Language, containing appropriate
application-oriented features as well as general
computational capability. The Formatter, then, 1is
programmed in FCL.

How does one write FCL programs that are
broadly applicable to the conversiom of a whole
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class of Fortran programs from abstract to concrete
form? We will answer this question by surveying
some of the features of FCL.

Since the trees to be formatted are essentaial-
ly parse trees, a first-order approxaimation to the
desared output can be obtained samply by traversing
the tree 1n canonical (left-to-raght, or recursave
descent) order producing output at the termanal
nodes. That behavior is in fact built zn to the
Formatter and does not require programming in FCL.
The automatic traverse falls short of providing all
the required behavior, however  For instance, no
special treatment would be provided for label def-
initions or for "end-of-statement," and spacing
between tokens would be fixed at some value, say
zero or one. Or there could be various reasons
(see [5]) for pruming the tree (1.e., for not
descending into certain subtrees) or for emitting
some computable function of the "print name" of
one or more terminal nodes rather than just the
print names themselves, in order and wath the fixed
spacing between them. These problems are addressed
by various features of FCL, some of whach are des-
cribed below.

In order to intercept the automatic traverse
at any desired point one employs a fundamental
FCL control structure called a production bloeck.

A production block 1s samalar to a procedure block
except that 1ts "name' 1s a representation of a
production in the grammar to which the tree con—
forms (an other words it is the representation of
a type of node which may occur in the abstract
form tree). Continuing the analogy, a production
block 1s invoked not by a CALL statement but by
arraval of the automatic traverse at a node of the
type descrabed by the production block's name

Within the body of a production block, the
individuzl components of i1ts name can be used to
refer symbolically to the actuzl node at which the
traverse was interrupted and to its immediate sub-
nodes. Two useful and essential functions derive
from this capability. First, thHe "print names" of
terminal subnodes may be used in EMIT statements
to produce fragments of textual output, or they
may be used 1n computations leading to such output,
for example, to construct and emat the nHiext
form of a Hollerith constant represented in the
tree by a terminal node whose prant name contains
just the fext part. Second, the automatic traverse
may be continued into a particular subtree headed
by a subnode of the node at which 1t was interrup-
ted by referring to the subnode in a FORMAT state-
ment.

Normal block structure rules, when applied to
the nestang of production blocks, yzeld another
useful and essential feature. Since a nested

*Work performed under the auspices of the U.S.
Department of Energy.

#**Numbers in brackets designate References at end
of paper.
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block 1s not "known" and cannot be invoked unless
1ts containing block 1s active, we are provided
with a sample and natural way to make the format-
ting of 2 particular type of node (e.g., phrase)
dependent on 1ts context. An example of the use
of this feature, in conjunction with SPACE stale-
ments, is to replace the default spacing of one
as 2t applies, for instance,on either side of an
arithmetic operator by zero when that operator
appears anside a subscript list. T
» The problem of breaking and continuing state-
ments that are too long to fit on one line has
received special attention Statements can in
general be thought of as composed of nested lisis.
For example, a logical-IF statement containing,
say, a CALL statement 1s a list of two items,

the IF-test and the CALL statement. The argument
list in the call is a list of expressions separ—
ated by commas. Each expression is a list of
terms separated by ™4" or "-", each term 1s a
list of factors separated by "*" or "/", etc. When
1t 1s determined that a statement must be broken,
it 1s broken at the rightmost breakpoint of the

shallowest (highest level) unclosed list that hasat
Ieast one breakpoint on the line, and 1t 1s con—

tinued on the next line im the column in whach the
broken list began. Since the beginnings, ends,
and breakpoints of lists do not always bear
constant relationships to the recursive phrase
structure of the grammar, we require that they be
marked in passing by the execution of FCL state-
ments provided for that purpose. For mnstance,
the beginning of an argument list is just inside
the left parenthesis, while its breakpoints are
just after the commas and 1ts end 2s just outside
the right parenthesis (by not closing the list
untrl after the right parenthesis, a possible
"dangling parenthesis" is avoxded 2f the line
should overflow by just that one character)
controversy surrounds the following question:
a list of terms or of factors, etc., 1s broken,
should the breakpoint be before ox after the
arithmetic operator? The programmability of the
Formatter gives the TAMPR user his choice

Early ain the design of the Formatter a more
general approach to choosing the breakpoxnts was
daiscussed, namely, that of buffering an entire
statement and then choosing all of its breakpoints
to minimize the overall badness of the result,
defined in some suitable way At the time we were
not prepared to deal with that much added complex-—
ity. Perhaps we will restudy that approach after
Knuth shares the results of implementing a similar
dynamic programming algorithm for the line divi-
sion of paragraphs in his technical text system,
TEX [6]. .

FCL contains also a standard assortment of
general control structures and declarative
and computational features for integer and
character straing data types. These have
proved of particular value in algorithms to
detect and preserve columnar relationships and
paragraph structure in blocks of comments that
are subjected to a variety of substitutions and
other minor transformations. A discussion of
other features of FCL, such as those for marking
labels and ends of statements, settang off
comments, and indenting, may be found in [5],
along with numerous 1llustrations of the use of
all the features mentioned in this abstract.

The Formatter's programmabilaty, particularly
its general computational and contrel capabila-
ties, has aided 1ts own evolution by permitting
new ideas to be simulated, at least, for evalua-

Some
if

42

tion before taking the decision to build them in
as primrtives. 1Lt has likewise made possible the
use of TAMPR 1n new application areas (see [7]),
such as a verification condition gemerator in a
program verification project. In that use, the
requirement to format ordinary infix logical

and arithmetic expressions as prefix output was
easily met.
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New Languages for Numerical Software
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1. Introduction

Existing languages for numerical software are not altogether satisfactory. Fortran, even
preprocessed, has troublesome hmutations Unfortunately, proposed replacements have been
discouragingly large, or omit essential features like variably dimensioned arrays and Fortran
compatibility

A new language has been designed to include such crucial features, but otherwise be as
small as possible This language, calied T, includes indention to indicate block structure, novel
loop syntax, and engineering format for real constants By preprocessing into PL/IL, implemen-
tation cost was kept low.

But this language can only be regarded as a stopgap. The next step 1s to deal with more
fundamental 1ssues, by more fully exploitmg arrays, by making pomters available 1n a controiled
way, and by arranging for better declaration and syntax for usmg subroutme libraries,

2. Defects of Existing L-anguages

Why do we need new languages? Consider how your favorite programmung language
deals with the followmng catalog of annoying features encountered in winting mathematical
software Though the list is long, a failing on even one issue can make life rather unpleasant.

Arithmetic
e Converting a program from smngle to double precision is a chore Vamables must be
declared, constants like 1EQ converted to 1D0, and function names changed

L Precision can easily be lost accidentally Intermediate results may be truncated, or
extended with garbage.

. One must remember a distinct name for each version of each routine that handle different
types and precisions of numbers.

e  Silent type conversions, as in I = J = 0, can give wrong answers without warmng.

Arrays and Pointers
. Subscript checking is not available.

®  Array bounds are fixed at compile time. Working with several datasets requires repeated
recompilation or the use of a clumsy stack mechanism

All lower bounds must be 1 If the natural origin s 0, off-by-one errors easily slip in.

Information about bounds must be explicitly passed in subroutine calls. This 1s so incon-
vement that fake bounds of 1 are used instead.



®  References are used in a fundamental but unnatural way, and therefore wind np being
hidden. (e g. real really means ref real)

®  QOperations like the sum of two vectors or the sum of all components of a vector are not
available, or only available by a somewhat unreadable subroutine call. Or the operations
are available, but their implementation 18 expensive enough that-one-1s advised not to-use
them.

Input-Output and Error-Handling
®  The underflow routine, as 1t properly sets the result to 0, loudly reports its activity.

®  When a fatal error occurs, the mnput-output buffers are not flushed No subroutine call
traceback is provided either

®  The free-format facilities are nonexistent or produce ugly output, so awkward format
spectfications must be prepared

Restrictions
®  The form of identifiers is severely limited
. Do loop bounds are restricted.

e  Modern control constructs, macros, procedure variables, and fully-supported structured
data types are missing

¢  The interface to Fortran routines is weak, particularly with arrays, input-output, and error
handling

® There are not enough restrictions to allow good optimization, particularly when function
calls are present

Clutter
L Quotation marks are required around keywords Semicolons must appear in specified
places.

Poor comment conventions make 1t tricky to comiment out biocks of code.
The reference manual 1s bulky, hard to read, and obsolete.
The compiler 1s slow, expensive, large, difficult to use, and contains many bugs

3. A Quick Fix

Each of these problems has been solved before, but not 1n a single language. So to show
1t could be done and to provide a useful tool, I drew up plans for a small language T [Grosse
1978] and, with the help of another numencal analysis student, implemented 1t tn about a
month.

We chose to preprocess mto PL/], following Kernighan and Plauger’s [1976] motto to "let
someone else do the hard work " By incorporating a macro processor to handle tasks like revers-
ing array subscripts for Fortran compatibility, we managed to avoid parsing most program text,
in the same spirit a5 RATFOR and other Fortran preprocessors At the same time we cleaned
up a few aspects of PL/I, for example converting 1 ( automatically to BINARY (1 00000000...)
so that precision and type troubles are avoided

In addition, we were able to include several unusual features For the ALGOL veteran,
perhaps the most striking 1s the complete absence of BEGINs and ENDs. Not only is the text
indented, but the mdention actually specified the block structure of the program. Such a
scheme was apparently first proposed by Landin [1966], except for an endorsement by Knuth
[1974], the idea seems to have been largely 1gnored

Ideally, the text editor would recognize iree-structured programs In practice, text editors
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tend to be line oriented so that moving lines about in an indented program requires cumber-
some manipulation of leading blanks. Therefore the current implementation of T uses BEGIN
and END hnes, translating to indention on output.

Whatever the implementation, the key 1dea 1s to force the block structure and the inden-
tion to be automatically the same, and to reduce clutter from redundant keywords.

In addition to normal statement sequencing and procedure cails, three control structures
ar¢ provided. The CASE and WHILE statements are illustrated m this typical program seg-
ment

WHILE(NORMYP > 1(-3) & 1< =IFLAG & IFLAG< =3)
TOUT =T - 10(-3)/NORMYP
ODE(DF,2,Y,T,TOUT,RELERR,ABSERR,IFLAG,0DEWORK,ODEIWORK)

CASE
2 = IFLAG
GDRAW (Y,PF)
3 = IFLAG

PUT("ODE DECIDED ERROR TOLERANCES WERE TOO SMALL.")
PUT CNEW VALUES")
PUT DATA (RELERR,ABSERR)
ELSE
PUT CODE RETURNED THE ERROR FLAG °)
PUT DATA (JFLAG)
FIRST
DF(T,Y,YP)
NORMYP = NORM2(YP)

The CASE statement 1s modelied after the conditional expression of LISP, the boolean expres-
sions are evaluated 1n sequence untii one evaluates to YES, or untii ELSE 1s encountered The
use of indention makes it easy to visually find the relevant boolean expression and the end of
the statement

One unusual feature of the WHILE loops is the optional FIRST marker, which specifies
where the loop 1s to be entered In the example above, the norm of the gradient, NORMYP, 1s
computed before the loop test is evaluated Thus the loop condition, which often provides a
valuable hint about the loop mvariant, appears promnently at the top of the loop, and yet the
commeon n-and-a-half-times-'round loop can still be easily expressed.

The FOR statement adheres as closely as practical to common mathematical practice

FOR(l1<=1<=3)
NORMSQ = (Y(1)-X{I1)**2 + (Y(2)-X(1,2))**2
Z = Z + H({)*EXP(-0 5*W(I) *NORMSQ)

Several years experience with these control constructs has demonstrated them to be adeqguately
efficient and much easier to maintain than the alternatives.

Begunners often find Fortran’s input/output the most difficult part of the language, and
even seasoned programmers are tempted to just print unlabelled numbers, often to more digits
than justified by the problem, because formatting 1s so tedious. PL/I’s list and data directed
170 1s s0 much easier to use that it was wholeheartedly adopted in T By providing procedures
for modifying the number of decimal places and the number of separating blanks to be output,
no edit-drected 1/Q 1s needed Special statements are provided for array I/0 so that, unhke
PL/1, arrays can be printed 1n orderly fashion without exphicit formatting

Since almost as much time 15 spent in scientific computation staring at pages of numbers
as at pages of program text, much though was given to the best format for displaying numbers.

In accordance with the "engineering format" used on Hewlett-Packard calculators and with
standard metrnic practice exponents are forced to be multiples of 3 This convention has a histo-
grammung effect that concentrates the information 1n the leading digit, as opposed to sphtting it
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between the leading digit and the exponent, which are often separated by 14 columns. the use
of parentheses to surround the exponent, like the legality of imbedded blanks, was suggested by
mathematical tables. This notation separates the exponent from the mantissa more distinctly
than the usual E format

4. A Longer-Term Solution

By building on a rather powerful host language, T goes a long way towards meeting the
standards implied in section 2 But there are certamn fundamental problems that will probably
stimulate a completely independent implementation.

Source-level opttmization is desirable because particular transformations can be performed
or analyzed by hand. To permut this and to clarify the use of "arbitrary" arguments for passing
information untouched through library routines, a controlled form of pointers can be intro-
duced By manipulating descriptor blocks, considerably more powerful array operations are
feasible. The increasing availability of computer phototypesetiing equipment has implications
for language syntax Declarations and statements ought to be able to be intermixed. With the
growing mmportance of subroutine libraries, provision must be made for language extensions to
support new data types and operators.

By using Fortran very carefully and invoking verification tools, 1t is now possible to write
programs that run, without any change whatsoever, on practically any computer This extreme
portability can probably never be achieved by any new language Even a portable Fortran
preprocessor requires some effort to bring up at a new site  But I believe that the advantages of
instant portability are overwhelmed by the expressiveness, efficiency, and clean environment
that new languages can provide
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The Programming Language EFL

S. I Feldman
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Murray Hill, New Jersey 07974

Introduction

EFL 15 a comprehensive language
designed to make 1t easy to write portable,
understandable programs It prowides a rich
set of data types and structures, a con-
venient operator set, and good controi flow
forms The lexical form 1s easy to type and
to read

EFL was ongmnated by A D Hall
The current author completed the design of
the language and wrote the current com-
piller Whenever possible, EFL uses the
same forms that Ratfor {1] does, in this
sense EFL may be viewed as a superset of
Ratfor EFL 1s a well-defined language, this
distinguishes 1t from most *‘Fortran prepro-
cessors’” which only add simple flow of con-
trol constructs to Fortran

The EFL compiler generates {posstbly
tallored) Standard Fortran as 1ts output
EFL should catch and diagnose all syntax
eITors

The following description will be brief
and informal Many details of the language
are omutted The reader is assumed to be
fammliar with Fortran, but not necessarily
with Ratfor

Syntax

EFL 1s line-ortented The end of line
terminates a statement unless the last token
on the line is an operator or 1s part of a test
or loop construct A sharp (#) starts a
comment, which continues till the end of
the line Statements may be terminated by a
semicolon, tn that case more than one state-
ment may appear on a line EFL uses
natural characters (&, <, ) rather than
Fortran’s multi-character identifiers { AND ,
LT, ) for operators Variable names
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begin with a letter, and may be followed by
any number of digits and letters Numeric
and Iogical constants follow the rules of For-
tran Character constanis are surrounded by
quotes

Program Form

Every procedure {main program, sub-
routing, function) begins with a procedure
statement and finishes with an end state-
ment

Macros may be given values in a
define statement

define EOF —4
define BUMP {1 +=1; j +=1)

A file may be read 1in with a line like

include filename

Data Types

The basic data types of EFL are
integer, logical, real, complex, long real
{(=double precision), and character The
first five are the usual Foriran data types
Character data are strigs of fixed length,
represented in Hollerith strings EFL also
has homogeneous aggregates (arrays) and
inhomogeneous  aggregates  (structures)
Arrays may have more than one dimension,
and lower bounds need not be 1 In declara-
tions, attributes may be factored, and more
than one attribute may be declared on a line
Initial values may also be given on the
declaration line

character(8) greeting = "hello”
Integer size = 549

The following single statement declares a
common block



common (x)
{
logscal firsttime
character (7} name
array(0 99)
{

integer flag
complex value

)
j

The block contains a logical vanable, a char-
acter variable, and two arrays, each contam-
g 100 elements

Structures may be made up of objects
of different types A structure may be given
a tag, that tag acts as a type name (analo-
gous to integer) 1t the rest of the program
Thus,

struct point

mteger color
real x,y

declares a shape. Later declarations might

be

pomt p, z(50)
struct

integer ptr
point p

buffer(100)

The latter declares a wvariable with an
unnamed shape buffer 1s an array of struc-
tures containing points as elements An ele-
ment of an array 1s selected by the usual
subscript notation; subscripts may be arbi-
trary integer expressions

a(t,) = b max(,j))

Elements of structures are specified by giv-
ing the element names

xcoord = buffer(5) p.x

Structures may be passed to procedures
There 1s also a mechanism for dynamic loca-
tion of structures.
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Operators

The usual arithmetic operators (+, -,
=, /, **) logical operators (&, |, ), and refa-
tional operators (<, <=, >, >=, ==,
~=) are provided Quantities of different.
types may be mixed within expressions In
addition to ordinary assignment (=), there
are a number of operating assignment opera-
tors

k +=1
q&=p
are equivalent to the Fortran statements
k=k++1
qg=gq and p

Assignments are expressions
assignments are expressed directly

Multuple

a=b=c¢
18 equivalent to

b=c¢
a="h

Assignment expressions are very uselul for
capturing values’

if ( (k = inchar(unit)) == "x")

invokes the function inchar, stores its value
in k, then compares it to the letter x.

In addition te the usual logical opera-
tors, there are two sequentially evaluated
ones, &% and || The expression E; && E,
1s evatuated by first evaluating £, only 1f 1t
15 true 15 £, evaluated Thus, these opera-
tors guarantee the order of evaluation of
logical expressions

EFL provides generic functions and a
general type conversion mechanism EFL
chooses the correct version of the ntrinsic
functions depending on the argument types
sin{5 1d1) generates a call to the dsin func-
tton

Flow of Control

EFL statements are normally executed
In sequence Statements may be grouped
within braces This 1s the only grouping
mechamism, The testing and looping con-
structs usually operate on a single statement;
a braced group acts as a single statement
The usual if forms are permitied



if(a < b)

a=o>m
if(a < b)
{
X=a
y=b
}
else
{
XxX=Db
y=a
}

There 15 also a switch statement for branch-
ing on many values

switch{ inchar(umt) )

case 0
eof =1
done()
case 1
letter = nval
case 2
} digit = nval

For looping, a Fortran de, a conventional
while and repeat until, and a general
for loop are provided The do 1s unneces-
sary but very convenient

do1= 1,n
a() = b() + (@

while( (k = inchar(unit)) '= EOF)

{
a{l) = inval
1+=1
}
repeat
x += deita

until( ( delta = pta(x)} < epsilon)

The for statement 15 borrowed from the
C[2] language It has three clauses an 1mi-
tial value, a test, and a step rule The loop

for(p=first, node(p) ptr>0, p=node{p) ptr)
out( node(p) value )

will outiput every element of a linked list

struct

integer ptr
real value

}
node(100)

Statements may be labeled and reached
by a goto Labels are alphabetic identifiers
There are {optignally multilevel) break and
next statements for leaving a loop, or going
to the next iteration These statements are
needed only rarely, but very convenient
occasionally

The return statement exits from a pro-
cedure It may have a function value as
argument

return( sin{x+1) )

Miscellaneous

The discussion above touches on most
of the features of the languages There are
also input/output statements in the language
that give access to Foriran’s [/O, but 1 a
somewhat more convenient form.

A number of statement forms are
mcluded to ease the conversion from
Fortran/Ratfor to EFL These atavisms
mclude numeric labels, computed goto state-
ments, subroutine and function statements,
and the atlity to use the AND , etc forms
under compiler option.

Compiler

The current version of the compiler 1s
wriften in C Its output s readable Fortran
To the extent possible, variable names are
the same as m the EFL text Statement
numbers are consecutive, and the code 1s
indented (This is possible because of the
two-pass nature of the compiler)

There are EFL compiler options for
tailoring the output for a particular machine
or Fortran comptler Implementation of
character vanables requires knowledge of
the packing factor (number of characters per
integer) The default output formats are
machine-dependent, as 15 the handling of
mput/output errors Except for issues of
these sorts, the output 1s machine-
independent The EFL compiler worries
about generating Standard Fortran, following



1ts restrictions on line format, subscript
form, DO statement syntax, type agreement,
and so on; the EFL programer need know
nothing of these rules
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ABSTRACT

The Bell Laboratories Mathematical
Subroutine Library, PORT, has been under
development at Bell Laboratories for the
past few years The design of PORT
stemmed from the basic principles of porta-
bility and ease of use. The attributes and
mechanisms used i the library to support
this philosophy include the use of a portable
subset of Fortran, and the use of (machine-
dependent) functions to supply the neces-
sary environment parameters. Abbreviated
calling sequences are made possible by a
simplified error-handiing techmque, and by
the use of a portable stack allocator for tem-
porary workspace. Our experience to date
with these approaches, and our plans for the
future are reviewed here

BELL LABORATORIES MATHEMATICAL
SUBROUTINE LIBRARY, PORT, is a
library of portable Fortran programs for
numerical computation An article describ-
ing the hbrary appeared in a recent issue of
TOMS [1] together with CACM Algorithm
528 [2] contamning the basic utilities for the
Iibrary - the functions defining the machine
constants, the error handling and the storage
stack  structure Our rallying points
throughout the development of the library
have been portability, modularity and econ-
omy of structure, all of which lead to
simplified calling sequences.

PORTABILITY

The rules of the game for programs
acceptable to PORT require that (1) the
program pass the PFORT Vernfier [4], which
guarantees that it is written 1n a portable
subset of ANSI Fortran (1966 version), and
(2) any machine-dependent quantities used
in the program be obtained by invoking the
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appropriate one of the three PORT func-
tions that return integer, real or double-
precision values

The machine-dependent values for the
constants in these functions are set when
the hibrary 1s installed on the computer. The
same tape 1s sent to all computer sites; the
recipient simply removes the C’s in column
1 from the data statements defining the con-
stants for the computer at hand, and com-
piles the hbrary Values are defined on
the PORT tape for the Burroughs
5700/6700/7700  systems, the CDC
6000/7000 series, the Cray 1, the Data Gen-
eral Eclipse $/200, the Harris SLASH 6 and
SLASH 7, the Honeywell 600/6000 series,
the IBM 360/370 series, the Interdata 8/32
the PDP-10 (KA or XI processor), the
PDP-11 and the UNIVAC 1100 seres
PORT has been installed on each of these
computers

ERROR HANDLING

The design of PORT’s error-handling
has been described elsewhere (eg. [11).
Briefly, two types of errors are specified -
fatal and recoverable. Errors which can be
checked a priori by the user, such as the
length of a vector not being negative, are
typed fatal. All others are recoverable, but
revert to fatal unless the user specifically
elects to enter the "recovery" mode and deal
with the errors as they occur. The method
has proved to be safe for the inexperienced
user, but to allow flexibility and leeway for
the expert.

The error handler 1s heavily used
within the library itself As a matter of pol-
icy, outer level routines called by the user
reinterpret any errors occurring at lower lev-
els, Thus the user never sees an error mes-
sage from a mysterious lower-level routine
Everything is aboveboard

—
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STORAGE STACK

The concept of a dynamic storage
stack, as implemenied in a labeled COM-
MON region n the PORT library is also
described in [1]. Each program that needs
scratch space, allocates space on the stack
for the computation, and then returns the
space when it is done The stack-handling
routines are, of course, available to the user
as well, and have been found to provide
efficiencies of space usage for all concerned

(Note that the design of the error-
handling and of the stack means that neither
error flags, nor scratch vector designators
appear 1n the calling sequences to PORT
routines.)

A stack dump routine, written by Dan
Warner, has been tremendously useful m
debugging; it will be included in a future
edition of PORT

CURRENT ACTIVITY

PORT is now installed at 15 sites
within Bell Laboratories, its use at Murray
Hili on the Honeywell computer fluctuates
between about 160 and 200 accesses par day
It has been sent to 29 external sites includ-
1ng locations in Austria, Belgium, Egypt and
the Netherlands, and several requests are
currently in process.

One of the more interesting uses to
which the Library has been put in the last
few months has been in computer bench-
marking using a set of computationally
intensive programs The benchmarking pro-
grams are based on the PORT library, so
that once the library is installed, they run
easily without adaptation It has been reas-
surmg to find that at those sites where the
library was not already nstalled, it could be
put up in about an hour.

An on-going task 1s the development
of various categories of test programs for
the library We have recently developed a
collection of the example programs listed
the documentation m the PORT Users
Manual [3], These will be included on the
tape when PORT is sent out to requesting
sites. On another front, Norm Schryer has
developed very probing and exacting tests of
the PORT utilities; these are included on
the Algorithm 528 tape [2). Finally, tests
for all the routines in the hbrary are being
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developed or assembled (In most cases
they already exist and have been 1n use for
some tyme )

Our primary activity, however, still
centers around the construction of high
quality portable numerical software. Linda
Kaufman is providing the hibrary with rou-
tines 1n the areas of linear algebra and
least-squares fitting In the pde direction
PORT will acqure Norm Schryer’s PEST
package for one-dimensional  partial
differential equations coupled with ordinary
differential equations, and Jim Blue‘s
Laplace equation program based on a boun-
dary integral equation formulation will be
incorporated into the Library Dan Warner
has a good linear programming program,
and other things are coming along You
mught say - the future looks bright on the
port side

REVIEW OF DESIGN PRINCIPLES

In developing a program to go into
PORT we consider 1t a matter of pride as
well as principle to "pipe" 1t through a
sequence of processes untouched by human
hands (if not minds) The original 1s prob-
ably written 1n the langusge, EFL, discussed
by Stu Feldman elsewhers 1n these proceed-
ings. The EFL wversion is automatically
transiated wnto Fortran, and then 15 put
through the PFORT Vernfier to check for
language. Then after a, shall we say variable
amount of ume required for debugging, the
double-precision version of the program is
automatically twinned to a single-precision
version and both are put on the tape The
tnitial comment section of the program must
contain a detailed description which can be
transcribed into the file contaiming the pho-
totypeset original for the program reference
sheets for the Users Manual An example
program, ilustrating the use of the subrou-
tine, 1s developed, tested, and automatically
added to the reference sheet file as weli as
to the set of example programs on tape
Admittedly, at the moment, the transerip-
tion from program comuments to reference
sheets is done somewhat manually, but the
macros used to form this phototypesetting
version make the process very quick We
intend to increase the level of automation

Historically, we have found it best to
€Xercise our programs on a number of prob-



lems within Bell Laboratories before issuing
them outside. Dunng this period any
difficulties that come up get incorporated
into a growing set of tests for the programs.

SUMMARY OF DESIGN PHILOSOPHY

Our current thinking about mathemat:-
cal program libraries leads us to wonder
whether a new kind of duplication of effort
won’t occur 1f the several libraries now
extant try to become all things to all people
We may not wish to make PORT an all-
inclusive library covering the multiple facets
of numerical and statistical computation, but
rather to maximize our result/resource ratio
by collecting our best software in clean
modular structures inte our hibrary

PORT, having been carefully designed
to be an instrument for program develop-
ment, provides a good foundation and
framework for this work
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ABSTRACT

IMSL has developed a set of macros and a file
naming comvention that automates the subroutine
development and testing process over ten computer
types. The IMSL software development system is
implemented on a Data Gemeral Eclipse C330 computer
with 256K bytes of central memory and 192M bytes
of dask storage using the A0S Operating System.
RJE activity s handled by a Data 100 communica-
tions computer, The system allows the programmer
to work with basis decks. Dastribution decks are
generated, by the IMSL Fortran converter, as they
are needed for testing and whenever the basis deck
has been modified.

THE IMSL LIBRARY consasts of approxamately 450
Fortran subroutines in the areas of mathematics
and statistics., At this time IMSL serves ovexr 650
subscribers. The library is available on the com—
puters of ten manufacturers as follows:

IBM 360/370 seraes

Xerox Sigma series

Data General Eclipse seriles

Daigital Equapment series 11

Hewlett Packard 3000 series

Unaivac 1100 series

Honeywell 6000 series

Digatal Equapment series 10 & 20

Burroughs 6700/7700 series

Control Data 6000/7000 and

Cyber 70/120 series

Each subroutine has an associated minimal test
routine which executes the manual example of usage
and an exhaustave test program designed to exer—
cise the various types of usage for each routine
and the range of input data which might be employ-
ed. This amounts to over 9,000 individual programs
which IMSL must produce and support (subroutines
and minimal tests). These programs, together wath
the exhaustive test programs for each subroutine,
constitute over 10,000 total programs which must
be managed efficiently. In addition, each one of
these subroutines must be tested on at least ome
of each of the ten computers.

At best, the production and support of the
library is a very complicated task. But IMSL has
developed a set of macros and a file naming con-
ventaon that automates the subroutine development
and testing process on these ten computer types.
The IMSL software development system is imple-
mented on a Data General Eclipse €330 computer
with 256K bytes of central memory and 192M bytes
of disk storage using the A0S Operating System.
This machaine 1s also used for the testing of the
Data General Labraxry. The testing on the nine
other supported machines is done by remote job
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entry via a Data 100 computer which can be pro-
grammed to emulate the environments necessary for
job entry to the wvarious computer types.

The file naming convention used by IMSL 1s

designed

to clearly distinguish the different types

of files used in the development of the library.
The naming convention consists of the follow-
rng:
name = <IMSL routine name. 6 characters or
less>
prog = <IMSL test program or associated
subprogram name. 6 characters or less>
computer = <IBM|XEROX|DGC|DECLL|UNIVAC|HIS|DEC1O|
BGH{CDC|HP 3000 [H32 |H36 [H48 [HE0 | ALL>
ALL => portability across eatire
computer set.
H32=> portability across H32 computer
set (ete. for H36, H48, and H60).
The H32 computer set consists of
IBM, XERCX, DGC, DEC11 and HP3000,
The H36 set consists of UNILIVAC,
HIS and DEC10. The H48 set con—
sasts of BGH., The H60 set com-
sists of CDC.
File Name Description
name.BD Basis deck for IMSL
routine "name
name.computer Distribution deck source
file
name.DGC.0B DGC object files
Ezzz:ﬁg.gg BGC program files

RJE.name.ET. computer
RIE.name.MT. computer

name.ET.DGC.LISTFILE
name.MT.DGC.LISTFILE

nawme.ET.prog.BD
name.ET.prog. computer

name,ET.LL computer

name.ET.DD.computer

name.MT. prog.B8D
name .MT.prog. computer

name .MT.LL.computer

name MT.DD. computer

RJE jobfile as produced
by the system

Output lastfile as produced
by the system for DGC

Exhaustive test program
or subprogram

Required programs and
routines list for the
exhaustive test

Data for exhaustive test

Minimal test program
or subprogram

Required programs o¥
routines list for the
minimal test

Data for minimal test


http:name.MT.prog.BD
http:name.ET.LL
http:name.ET.prog.BD
http:RJE.name.MT
http:name.MT.PR
http:name.DgC.OB

This naming convention gives & unlque name to
each file which enables identification of the file
type by the programmer and the system.

The development system makes use of the Data
General conventaion of logically splattang disk
space into independent sections called directories.
Each programmer has his/her own ditectory called a
working directory where all modifications to IMSL
programs take place. Modification is not permit-
ted elsewhere. The main directory in the develop-
ment system 1s called DEV. This directory con—
tains all of the programs used by the system as
well as the subdirectories used. There are four
subdirectories of DEV, Each of these directories
1s write-protected to insure that someone cannot
unknowaingly alter their contents. The faxrst as
called PRODUCT. This directory contains eleven
subdireciories, one for each of the computer types
and one for the basis decks. Each of these sub-
directories contains the source distribution files
for each of the distraibuted programs (subroutines
and minimal tests) for that computer. The DGC sub-—
directory also contains the compiled object files
of the Data General product set. The second
subdirectory in DEV as called EDITION. This sub-
directory contains all of the files for new programs
and modified current programs which wall be released
in the next edxtion of the library. The third sub-
directory of DEV 1s called MAINT. This subdirectory
contains the files for the versions of the programs
which have been modified and are scheduled for re-
lease at the next maintenance of the library. The
final subdirectory is called TESTS. This directory
contains the source files for all versions of the
exhaustive test programs, their associated sub-
routines, and the data. It also contains the re-
quired programs and routine lists for the exhaus-
tive tests and the minimal tests,

PRODUCT

At the heaxt of the development system is the
Fortran Converter. This is a program which performs
automatic conversion of Fortran programs and sub-—
programs from one computer-compiler enviromnment to
another., This conversion is done automatically via
built-in features of the converter and specifically
via converter instructions inserted in the program
by the programmer. Thus the code for all versions
(computer types) of a program are contained an one
file called a basis deck, The programmer makes
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modifications to the basis deck only. Distrzbution
decks are generated by the converter as they are
needed for testing and whenever the basis deck has
been modified. This general approach to handling
portability problems is explained im (1) and (2).
The programmer works at a CRT console and uses
the development system by executing the command
RUN.DEV  When the target computer is Data General,
thas command will run a2 job iIncluding all necessary
basis deck conversions, compailatirons, binding, and
execution of the program file. For all other com-—
puters, a job will be set up (with appropriate job
control language) for running at a remote site and
submitted to the appropriate remote job entry site
queue. The command 1s issued in the following way-*

RUN,DEV/C=computer[/other optional
switches] mame.ET {or name.MT)

where computer 1s one of the ten distribution en-
vironments and name 1s the name of the IMSL routine
to be testad. The development system begins the
execution of the command by locating the appro-
priate list of the required routaines contained 1n
an LL file. The system then determines which

{(1.f any) basis decks located in the programmers
working directory must be converted by examining
the time last modified. If the time last modified
of a basis deck is later than the tame last modi-
fied of zts correspondang dastribution file, con-
version must take place. Next, for all computers
other than Data General, a job i1s built consisting
of the routines requaired for running and the ap-
propriate job control language. For every computer,
there 1s a default site for running. Unless
specified otherwise by the programmer via a
JCOMPILER=type switch, the default job control
language 1s used. The JCL 15 contained in files
named

computer.compiler.cc

These files contain the commands necessary for
compilation, binding, and execution of a Fortran
job at the job saite After the job 1s bualt, it
1g submitted (unless otherwise specified) to the
default site queue for that particular computer

or to a specific queue via the /OUEUE=site switch
From here, an operator copies the job to magnet:c
tape and places the tape on the DPata 100 for input
to the remote site. For Data General, after con—
version, the required source files are compiled,
1f necessary. This determination 1s made in the
same manncr as the determination for conversion.
This is followed by binding and execution of the
program file. The programmer is informed upon
completion of the job (execution for Data Gemeral,
queue submission for other computers). The system
monitoxrs itself during the execution of a RUN.DEV
command and, if at any time durang the executiom
an error occurs, the system will terminate execu—
tion of the command and send the user an appropri-
ate error message. In addation, by specifying the
/D switch, the system will place certain vital
communications files in the working directory to
help the user in debugging has problem.

The system wall perform conversions, ccmpiles,
binds, and execution only in the working directory
(that is, the directory from which the programmer
gave the command)., If a basis deck or 1its corres—
ponding distribution file is not found in the
working directory, the system will try to locate
the file by seaxching the TEST directory, the


http:compiler.cc

MAINT directory, the EDITION directory, and fimally
the appropriate directory of PRODUCI. This enables
the programmer to run a test without necessarily
having all of the required routines in the working
directory. The programmer can alter which direc-
tories are seaxrched by specifying the /SL switch
and setting up his own list of directories. In
addition, the programmer can specify the /CURRENT
switch which negates the search of MAINT and
EDITION. This is particularly useful if the pro-
grammer is trying to verafy a problem which occurred
1n the current release of the library because it
uses the version of the library which is out in

the field at that time.

Both the Fortran converter and the development
gystem are written in modular form to insure easy
readabaility and debugging of the code. The system
itself was designed in such a way as to easily
facilitate the addition of a new computer into the
product set. It also allows the programmer un—
limited flexability in varying his/her specific
runs. The command generally requires 30 to 60
seconds of CPU time and takes between 15 and 20
minutes of elapsed time to execute ko completion.
Therefore, the programmer usuzlly issues the com—
mand f£rom one of four batch streams, freeing has/
her termimal for other uses.

The production and support of a multi-environ-
ment subroutine library ais a complacated task, re-
guiring many tedious details, The IMSL development
system makes life much easier for the programmers
undertaking this task, Through the fissuance of a
simple, one line command, the programmer can cause
the execution of 3 job, freeing him/her from annoy-
ing but necessary details such as obtaining the
right version of a required code or unintentionally
modirfying a code. This enables the programmer to
concentrate on the task at hand: supporting and
enhancing 2 state-of-the—art subroutine libraxry.

Other software tools available through the
IMSL software development system are listed below:

Name Purpose

HEL?P Provide on-line documentation for
all system commands

RUR.CVT Execute the Fortran converter to
produce a specific distribution deck

RJE Submit a job for execution at one of
the RJE sites

RJE.S Status of RJE activity

MAGCARD Send computer readable documentation
to an IBM mag card typewriter

CLEAN Reformat source code according to
IMSL conventions — runs on a CDC
computer

REVIEW Review a code and list deviatrons
from TMSL conventions

PFORT Submit a code to be run through
the PFORT verifier - runs on an
IBM computer

BRNANL Submit a code to be run through the

branch analysis program — runs on
a CDC computer
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SEQUENCE Sequence a deck

STRIP Remove sequence numbers and
trailing blanks from a deck

SPLIT Split a file into separate program
units

COMPARE Compare two codes and iist
differences

EDIT Edit a file via Data General's
text editor SPEED
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Transportabirlity ain Practice - Recent

‘Bxperience with the NAG Library

J.J. Du Croz

Numerical Algorithms Group Laimited
7 Banbury Road

Oxford OX2 6NN

England

ABSTRACT

Two guiding principles for the development of the NAG Library are:
a) the algorithms must be adaptable to the
characteristic of the computer on which

they are being run;

b) the software must be transportable

(These concepts have been discussed in detail elsewhere.)

The purpose of this talk is to discuss how these prainciples have stood the
test of practice over the past two years and how NAG's approach to library
development has been xefined in the light of experience.

The adaptability of algorithms i1s achieved with the aid of machine-dependent
parameters, available through calls of library functions. The initial set
of parameters was concerned only with the arithmetic properties of the
computer. A new parameter 1s now being introduced, concerned with storage
organizations: 1t will enable algorithms for certain operations of lanear
algebra to adapt, when run on a paged machine, to the approximate amount of
real store avallable, and hence to achieve a dramatic reduction in page-
thrashang.

The transportability of the software is proven by the fact that the NAG Libraxy
has now been implemented on 25 different computer systems — including

several minicomputers, which required no fundamental change of approach. The
talk will discuss various interesting problems which have arisen in the

course of implementation. Freguently 1t has been deficiencies in the compiler
and associated software that have caused the problems, rather than defects

in the NAG routines. HNAG's test software (though not always ideally suited

to the task) has proved remarkably effective at detecting these problems

before the Labrary is released to sites. This justifies NAG's policy of

always distributing a tested compiled library (in addition to the source-text).
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ABSTRACT

The software portability problem 1s examined
from the viewpoint of experience gained in the oper-
ation of a software exchange and information center,
First, the factors contributing to the program
interchange to date are identified, then major
problem areas remalning are noted. The ifmport of
the development of programming language and docu-—
mentation standards i1s noted, and the program pack-
aging procedures and dissemination practices
employed by the Center to facilitate successful
software transport are described. Organization, or
installation, dependencies of the computing environ-
ment, often hidden from the program author, and data
interchange complexities are seen as today's primary
1ssues with dedicated processors and network
communications offering an alternative solytion.

THE NATTIONAL ENERGY SOFTWARE CENTER (NESC) 1s the
successor to the Argonne Code Center, originally
established in 1960 to serve as a software exchange
and information center for U §. Atomic Energy
Commission developed nuclear reactor codes. The
Code Center program was broadened to an agency-wide
program in 1972, and the scope of the activity
expanded furxther with the organization of the Energy
Research and Development Administration (ERDA) and
then the Department of Energy (DOE). The Center's
goal 1s to provide the means for sharing of software
among agency contractors, and for tramsferring com-—
puting applications and technology developed by the
agency to the information-processing community.

To achieve these objectaives the NESC:

1. Collects, packages, maintains, and
distributes a library of computer programs
developed in DOE research and technology
programs,

2. Prepares and publishes abstracts describing
the NESC collection.

3. Checks labrary contributions for complete-~
ness and executes sample problems to
validate their operation in another
environment.

4. Consults waith users on the availability of
software and assists them in implementing
and using library software.

3. Compiles and publishes summaries of ongoing
software development efforts and other
agency-sponsored software not included an
the collection because 1t is felt to be of
limited interest.

6. Maintains communications and exchange
arrangements with other U.8. and foreagn
software centers.

7. Coordinates acquisition of non-government
software for the Department of Energy.
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8. TInitrates and participates in the develop-
ment of practices and standards for
effective interchange and utilization of
software.

About 850 computer programs covering subject
classifications such as mathematical and computer
system routines; radiological safety, hazard, and
accident analysis; data management; environmental
and earth sciences, and® cost analysis and power
plant eccnomics make up the current collection.
Each year over 1000 coples of library software
packages or authorizations for their use are dis-
seminated In response to requests from DOE offices
and contractors, other government agencies, uni-
versities, and commercial and aindustrial organi-
zatzons. Over 500 organizations are registered as
participants in the program. Of these 333 are
registered as contractors, or under exchange
arrangements. The remainder pay the cost of the
materials and services requested.

It 15 clear from the enumeration of NESC
activities that the major portion of the Center's
program 1s devoted to the task of making it
possible for individuvals, other than the program
aythor, to use the computer program 1n their own
computing environment, which is different from the
environment in which the author developed the
software. The Center's dissemination statistics
attest to a measure of success in the task. Thas
success is due in part to the DOE sponsors of
program development projects who, recognizing the
need for software sharing, have encouraged authors
to attempt to develop portable software, and to the
authors who, self-motivated, entered the initial
development stage with the avowed intent of pro-
ducing a transferrable product. But success must
be attributed in large part, too, to the avalla-
bilaty of programming language and program doc-
umentation standards, and to the program review
and evaluation procedures and disseminataon
practices established by the Center.

STANDARDS

In 1964 when the first FORTRAN language
standards were published, program developers
welcomed them enthusiastically as the means by which
programs, developed for today's environment, could
be readaly transferred to tomorrow's, or moved to
someone else's, quickly and with minimzl cost. In-
stallations attempting to achieve this promised
portability, however, were frustrated by the variety
of implementations produced by the compiler writers,
each claiming conformity with the standard, but
offering, in addition, specilal enhancements
exploiting their particular hardware.

At the time a standards committee of the Amera-
can Nuclear Society sent a letter to the Editor of
the Communications of the Association for Computing
Machainery urging the computing community to exert
pressure on the compiler developers to implement
the standard, and where deviations existed to flag



accepted non-standard statements and standard state-
ments implemented 1n a non~standard fashion,
descraibang these variations an the compiler documen—
tation. The computing community not only failed to
endorse thas early plea for .z standard that could be
used to achieve software portability, but the Editor
held up publication of the letter for six months
because FORTRAN was mentioned explacitly and the
ACM might appear to be showang a preference for
FORTRAN over other programming languages

While programming language standards have not
proved to be the ready remedy to the portability
problem first envisioned, they have provided the
necessary first step  Authors pursuing the goal of
producing portable software have, by restricting
themselves to a "portable" subset of the standard
language, common to nearly all compilers, been able
to produce am easily transferrable preduct. Program
verification tools, such as PFORT, have proved
helpful in thas activity.

Over the past decade the American Nuclear
Society's ANS-10 standards commpttee has produced &
seriles of standards to assist authors and developers
of scientific and engineering computer programs in
preparing software to be used by colleagues at other
anstallations. These include ANSY N413-1974
entatled "Guidelines for the Documentation of
Digital Computer Programs" and ANS-STD.3-1971,
"Recommended Programming Practices to Facailitate the
Interchange of Digatal Computer Programs”, both of
which were adopted by the AEC'sS Reactor Physics
Branch, along with the ANSI FORTRAN standard, for
its program development projects. Recently, thas
committee completed another guidelines document,
this one titled "Guidelines for Considering User
Heeds in Computer Program Development". It is
presently under review by the parent committee

PACKAGING PROCEDURES

The Center's software package 1s defined as the
aggregate of all elements required for use of the
software by another organrzation, or its implementa-
tion 1n & dafferent computing environment It 1s
intended to anclude all material, associrated with a
computer program, necessary for its modification and
effective use by andrviduals other than the author,
on a computer system different from the one on which
1t was developed. The package 1s made up of two
basic components: the computer-media material and
the traditional printed material or hard-copy
documentation. The material may include all of the
following:

1. Source decks: source language program

decks or card-image records.

2. Sample problems test case input and
output for use im checking out installatzon
of the software

3. Dperating system coantrol znformation:
operating system control language records
required for successful compilation of the
software and execution of the sample
problems 1n the author's computing environ—
menv. This element includes device assign-
ment and storage allccation anformation,
overlay structure defimitions, etec.

Run decks: object decks or load modules
prepared by the language processors prelim-
inary to execution of the software. Thas
element 1s redundant when included in con-
junction with the equivalent source decks
for interchange between users of lake
systems
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Data libraries  external data files
required for program operation, e.g.,
cross section libraries, steam table data,
material properties. To provide for
exchange across machane-lines a decimal or
alphanumeric form i1s recommended. Routines
for transforming the data to the more
efficaent binary or machine-dépendent
representatzon should be included as
auxiliary routines.
Auxiliary routines or information
supplementary programs developed for use
in conjuction with the packaged software;
e.g., to prepare or transform input data,
to process or plot program results, edit
and maintain assocrated data libraraes.
Documentation: traditional reference
material associated with the development of
the software and its application If
documentation is provided in machine-read—
able form 1t 1s classified as auxiliary
information. This i1tem may be a single
report or several independent documents.
Mot all seven elements are required for every
software package; however, atems 1,2,3, and 7 are
rarely absent from scientific and engineering
applications which make up the bulk of our library.
In our review process the package elements are
examined for consistency and completeness. Whenaver
possable, source decks are compiled and test cases
and run decks executed to ensure the output gener-
ated in another environment agrees with that
produced at the developer's installation. 'Thys
evaluation process provides a good check also, of
the adequacy of the documentation elements. If the
submitted documentation proves inadequate for our
staff to evaluate the software additional informa-—
tlon s sought and incorpeorated in the package
documentation. TFrequently an NESC Note is written
for this purpose. If data libraries are present
an effort as made to include these in machine-inde—
pendent form. This 1s especially amportant for the
farst, or original, version of a program. When
conversions to other computer systems, 1.e. addi~
tional machine versions, are considered, machine
dependencies reflecting sagnificant convenience to
the users of that system are accepted. An attempt
15 made to retain in the collection one version of
each library program in a form amenable to transfer.
Speciral software tools have been developed to
ver1fy that all routines called are included i1n the
package, to perform rudimentary checks for unin-
i1tialized or multiply-defined variables, unrefer—
enced statement numbers, active variables in common
and equivalence blocks together with block names
and addresses, etc., and to convert between a
variety of character codes such as IBM EBCDIC, CDC
Display Code, and UNIVAC Fieldata.

DISSEMINATION PRACTICES

The computer-media portion of the pregram
package is generally transmitted on magnetic tape,
however, card decks will be supplied for card-image
material upon request The tape recording format
to be used in fillang a request can be specified by
the potenktial user te suit his computing environ-
ment, and, whenever possible, the Center will
provide the format, character code, density, and
blocking requested.

The Center maintains records of all package
transmittals and, should an error be detected or a
new edition be received, all recipients of the
affected program package are notaified,



PROBLEMS

A large number of problems encountered today
in software sharing are traceable to in-house
modaifications of vendor-supplaied systems, locally-
developed libraries and utilaty routines, and
installation conventizons Recognizing the problem
of reproducing the performandé ¢f a pTogram at
another installation independent of the "local
system, the ANS-10 standards committee introduced
the concept of an installation-environment report in
its "Code of Good Practices for Documentation of
Digatal Computer Programs”, ANS-STD.2-1967. The
idea was that this report would document those
timing, plotting, special funection, and other local
system routines which would have to be transferred
with locally-developed software, oxr replaced with
their counterparts at another site before the
software could be successfully executed. It was
suggested that each program-development installation
package their collection of the documented routines
as a library package so that users of, for example,
the XYZ Laboratory's software would be able to
create the necessary XYZ environment either by
wmplementing these environmental routines or with
acceptable alternative routines. Several packages
in the Center collectaon are of this nature; the
Bettas Environmental Labrary and the NRTS Environ-—
mental Routines are two of them.

Most computer centers, however, have never
attempted to define such a2 package Program
developers are frequently unaware of the routines
automatically supplied by the local system and
seldom informed when changes or modifications to
such routines are effected.

Proprietary software can magnify installatiom
dependency problems, and programs utilizing graph-
ical output are always a challenge to exchange. In
most cases the Center, and each receiving organiza-
tion, 1s required to insert the equavalent local
plotting routines before the test cases can be run
Even when organizations have the same commercial
software product, they will probably have drfferent
plotting devices, and, if not, you can bet each
locataon chose to implement its own unique enhance-
ments——after all, graphics is an art!

One—of~a-kind compilers and parochral operating
systems used at some installations have proved to be
a significant deterrent to program interchange. Of
growing concern with the increasing use of database
systems 1s data exchange. A DOE Interlaboratory
Working Group has committed its members to working
with the ANSI Technical Committee X3L5 to develop
specifications for an Information Interchange Data
Descraiptive File.

ARPANET and the Magnetic Fusion Energy Computer
Center offer a different solution to the software
portability problem. Instead of developing portable
software and making 1t generally available such
facilities encourage the development of centers of
excellence which provide and maintain the latest and
best software for a particular application on a
dedicated processor, accessible to the user commun-
ity. That is the other end of the spectrum.
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A TRANSPORTABLE SYSTEM FOR MANAGEMENT AND EXCHANGE
OF PROGRAMS AND OTHER TEXT

W. V. Snyder

Jet Propulsion Laboratory
4800 Oak Grove Drive

Pasadena, Califormia

ABSTRACT

Computer software 1s usually exchanged between
different computer facilities via punched cards or
magnetic tape. For up to about 1000 images, cards
are cheaper and probably easier to deal with than
tape. The primary problem with cards 1s the variety
of punch codes. Frequently, one also has the minor
nuisance of repunching cards damaged an transat.
For larger amounts of data, tape is cheaper, but
there are so many tape formats in use that the re-
cipient frequently has trouble reading a tape, aven
1f the format is simple and well defined. Occasion-
ally, one has the problem of parity exrxors, which,
make a tape essentzally worthless. When test data,
modules in several languages, computer output or
documentation are included, the lack of organization
1n the material can cause a substantral amount of
unnecessary human labor,

This paper presents a system for exchanging
information on tape, that allows information about
the data to be included with the data. The system
1s designed for portability, but requires a few
sample machine dependent modules. These modules
are available for a variety of machines, and a
bootstrapping procedure is provided. The system
allows content selected reading of the tape, and a
simple text editing facility as provaded. Although
the system recognizes 30 commands, information nay
be extracted from the tape by using as few as three
commands. In addition to its use for information
exchange, we expect the system to find use in
maintaining large libraries of text.

THE MOTIVE FOR DEVELOPING THLS PROGRAM was the ex-
perience of receiving tapes from many correspondents.
We dealt with most correspondents only once or twice.
We received tapes written in every possable density,
both paraty modes, several character codes, and
having a variety of block and xrecord lengths. Ve
see three solutions to this problem. Most computer
centers have access to a program that can handle
fixed length records, written in fixed length
blocks, using a popular code such as ASCIT or

EBCDIC. When the characteristics of the medium

were correctly provaded, we had good success with a
program of this type*. Unfortunately, this infor—
mation was not always provided, and was sometames
incorrect. Another solution is for some organi-

*We used two programs, known as BLOCK and UNBLOCK,
written in Univac-1100 assembler language at the
University of Maryland Computer Science Center.
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zation to promulgate a standard for record lengths,
block lengths, codes and parity modes. Then if
such information is not provided, the standard is a
reasonable guess. WNeither approach can cope with
disorganization of the data, or with parity errors.
We chose therefore to write a transportable program
te enforce a standard recording format, organize
the data and provide for error recovery. Thais
relieves the gender of the responsaibility for
sending information sbout character ecodes, record
lengths and block lengths with the tape. He must,
of course, still tell the receiver the tape density,
and whether it is a seven- or nine-track tape.

Since seme baipary numeric information 1s racorded,
only odd parity tapes may be used with this program.

RECORDING FORMAT

Most computer systems can deal wrth ASCLIL infor-
mation in a natural way. In order to use nine—
track tape conveniently, we represent the seven-bit
ASCIT code using eight bits, with the high-order
bit zero. The program dves not, however, enforce
this convention rigidly. Certain informztion must
be enceded in this way, but the textual ainformation
may be encoded in any way that may be represented
by a string of eight—bit units. It 1s preferable
that all information be encoded in some standard
form, and we hope that all implementations of the
program will use ASCIT code for the textual
information.

Some computers can read or write tapes con-
taining blocks consisting of an integral number of
words, and can read tape blocks of arbitrary length
only with difficulty. TFor example, a tape con—
taining dlocks comnsasting of ten 80-character
records could be read only with difficulty on a
Univac—1l100, which expects nine-track tapes to
contain blocks consisting of a multiple of nine
characters, and could not be wraitten on a Univac-
1100. We therefore selected a block size having
factors of nine (for 36-bit words), fifteen (for
60-bit words) amd four (for 32-bit words). These
factors also guavantee that the block will be an
integral number of words if it is written on a
seven-track tape. The program uses data the same
for seven- and nine-track tapes.

Since ainformation may be recorded on magnetic
tape 1n blocks of arbitrary length, separated by
gaps of fixed length, one can use less space on the
tape to record a given amount of data by writing
longer, and therefore fewer blocks. We chose to
write information in blocks of 7200 characters.
This bloek size allows efficient use of space on
tape, and usually fits anto a2 minicomputer memory.
A 180-character label is the first bloek written on
every tape. Information in the label ancludes the
block size. 1If the progran dees not £it in
available memory, smaller blocks may be written.
The program can read the smaller blocks automati-
cally. This was required In one minicomputer



implementation of the program. We recommend that
all amplementations retain the capability to read
7200 character blocks. Further conservation of
space on the tape 1s achieved by compressing the
data. To compress the data, consecutive
occurrences of blanks (or another character if
desired) are removed, and replaced with an encoded
representation requiring less space. A compressed
Fortran program usually occupies about one third
the space otherwise required.

DATA MANAGEMENT FACILITY

Although the problem of dealing with variable
and frequently uncertain physical characteristics
of the transmission medium was irritating, the
problem that consumed most of our time was the
uniform lack of organization of the information on
the tape. We received programs in several
languages, subprograms with several test drivers,
multiple versions of a program, test data, computer
output and documentation, with no indicatron of
what was to be done with the information. In such
situations, much effort was spent organizing the
information before it could be used. We therefore
developed not only a program to read and write tape,
but also a transportable data management system
for textual informatiom.

Our data management scheme consists of re-
cording each program, subprogram, listing or data
group as a separate module of text. Helpful
information about the module is recorded with the
module, The minimum information required with each
module 1s a name. For more complete identification
of the module, one may record the data type
(language for modules that are programs), machine
type, authors' names and addresses, and biblio-
graphic references. To facilitate management of
programs consisting of several modules, one may
record the names of groups of which the module is a
member, and keywords related to the module. To
control changes to modules, a simple but flexible
updating mechanism 1s provided, and the updataing
history is recorded. To record information that
does not fall into any of the specified categories,
one may include comments. We call this information
control information. All control information is
recorded with the text of the module. The text and
control information can be examined and updated
separately, but they remain together on the tape.

A data management system requires a command
language. 1In specifying the command language for
the Exchange Program, our goals were samplicaty
and cemprehensive flexibility. The use of the
program s oriented primarily toward the receiver
of the tape. Although the program acts on 30
commands, information may be extracted from the
tape with as few as three commands-*

INTAPE = Fortran unit number of input tape

OUTPUT = Fortran unit number of native format

file

COPY = Last of module numbers.

To create a new tape requires, at a minimum, the
following commands:

TITLE = Title of tape

SITE = Site at which the tape is being
written

OUTAPE = Fortran unit number of the tape

DATE = Date written (YYMMDD) [May be provided
automatically.]
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Each module of the text must then be preceeded by
INSERT = Name of module
TEXT
and followed by an end of text signal. If more in-
formation about the module than ats name is to be
provided, more commands are required.

ERROR. DETECTION AND CORRECTION

The program currently contains two error de-
tection mechanisms. First, it uses the error
detection mechanism of the supporting operating
system. Second, 1t records a sequence number in
each block, and checks it during reading. It also
records in each block the location of the farst
record that starts in the block, the number of the
text module of which it 1s a member, and the lo-
cation of the first record of the first text module
that begins an the block, 1f any. We plan to use
this information for partial error recovery. We
also plan a more ambitious error control algorithm,
capable of detecting and correcting up to 72
consecutive erroneous characters, at up to four
different places in each block. It can be imple-
mented in a transportable way, requiring only a
machine sensitive exclusive-or primitive operation.
For the 7200 character block chosen as the standard
for the Exchange Program, only 113 characters of
error control information are requared. The
design of the block format includes provision for
this information.

EXPERLENCE

The program has been used at JPL to manage the
collection of algorithms submitted to ACM TOMS, for
weekly exchange of data between a DEC PDP-11/55 and
a Univac-1108, and occasional exchange of data
between a Univac 1108, Sperry (formerly Varian) 72,
and a DEC PDP-11/55. The program was used to
transmit the JPL mathematics 1ibrary to a DEC PDP-10
at the California Institute of Technology, and 1s
currently used there to retrieve modules of the JPL
mathematics library from the ezchange tape. It was
also used to transmit information to a CDC-6600 at
Sandia Laboratories. Experience in implementing
the program on the DEC PDP-11/55 and on the DEC
PDP-10 indicated that changes in the interface
between the portable and non—portable parts of the
program are desirable. In particular, the DEC
Fortran environment requires that data files be
explicitly opened (with a non—portable statement)
before they are used. Thus, a subprogram thought
to be portable does not work on DEC machines. We
expect to change the interface between the portable
and non-portable parts of the program to concentrate
potentially non-portable requirements in fewer
places. When we make that change, we wall also add
a few commands.

SUMMARY

We have developed a transportable program for
exchange of textual information that provides
several advantages over previous methods. The
program enforces the use of a standard tape format,
uses tape efficiently, organizes the information om
the tape, provides for simple retrieval of infor-
mation from the tape, and provides for error
recovery. Since the program is transportable, it
is used similarly‘on all computer systems. Thus,
once one learns to use the program, one may use the
program on many computer systems with lattle
addaitional effort.
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ABSTRACT

The data structures and control
structures of Pascal enhance the coding
abi1lity of the programmer. Recent proposed
extensions to the language further increase
1ts usefulness in wraittlng numeric programs
and support packages for numeric programs.

PASCAL HAS THE ADVANTAGE of being a highly
structured langusge, In addition, 1t was
specifically desaigned "to make available a
language suitable to teach programming as a
systematic discipline based on certain
fundamental concepts clearly and naturally
reflected by the language."[2]1* It has been
noted by R. Block [1] and others that
structured appreoaches to algorithms reduce
programming time. It has been the
experience of the UCSD Pascal project that
students quickly learn the structures of
the language and are rap:idly able to
maintain and modify programs of
considerable complexity. For example the
code 1in the UCSD Pascal system 18 the work
of student programmers. The majority of
those programmers are undergraduates,
Maintainablility and verification of
programs are made easler 1n Pascal because
the structure of the program closely
resembles the structure of the algorithm 1t
represents.

The popularity of the language Pascal
1S growling. Work 1is progress:.ng to remove
remaining deficiencies 1n the languvage. The
Institute for Information Systems at UCSD
(4] has developed aznd 1$ continuing to
1mprove a machine independent Pascal system
for small computers. Also this summer the
Workshop on Extensions to Pascal for
Systems Programming {3] bhas recommended
extensions which will enhance the
applications of Pascal to numeracal
analys:is. parallel to the work of the

workshop, an international group of Pascal
experts is attempting to construct a
standard for Pascal and 1ts extensions,

PROGRAMMING IN PASCAL
In this section we will describe
certain features of Pascal which are useful
in writting support packages for numerical
programs as well as the numerical programs

themselves,

DATA STRUCTURES IN PASCAL - Data
handling is simple end efficient because
the Pascal Language supports the
declaration of data structures. The
programmer may use the base types of the
language to build structured types and may
even create files of user declared types.
These complex types may be menipulated,
ei1ther as wunits or by their various parts.
For example to exchange two rows of a
maktrix, rows cen be treated as single
entlties.

TYPE ROW=ARRAY{0..6} OF INTEGER;
MATRIX=ARRAY[0..5] OF ROW;
VAR A:MATRIX;
R:ROW;
BEGIN
Re=p[1];
Af11:=a[2];
A[2] :=R;
END:

This reduces the deta:ils of coding required
to do data handling and simultaneously
reduces the possibility of programmer
error, Data structures can be declared to
be PACKED causing the maximum number of
vartables to be i1n each word. This provides
considerable space savings for any non-
numeric data which must be associated with
numeric computations,

To further enhance the potential space
savings variant records are allowed.
Dynamlc variables may be vatriant records,
in which case only the space necessary for
the variant declared is needed, Strong type
checking 1s maintained as a tool to
validate data handling and thereby minimize
progranming errors.

*Numbers in parentheses designate references at
end of paper
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Thus the language 1s extremely -
convenient as a data handler, with a
simplicity exceeding COBOL and =a
flexibility exceeding FORTRAN and ALGOL.
The availability and ease of using files
make 1t an excellent language to use as a
preprocessor for numerical data. The
compactness of ats representations has the
consequence of yreguiring smaller amounts of
source code.

Dynamic variables called pointers
permit the explicit expression of linked
structures such as sparse matrices.

TYPE ARRAYENTRY=
RECORD
DATA: REAL;
ROWLINK:” ARRAYENTRY;
COLUMNLINK : “ARRAYENTRY
END;

Note that these structures, as well as
arrays of any data structure, have the
advantage that pieces of logically grouped
information are represented as components
of & logical structure, rather than as
entrles 1n parallel structures,

CONTROE STRUCTURES - Pascal 18 a
highly structured, recursive language with
a design which encourages top~down
programming, With i1ts 3 looping
{(WHILE,REPEAT-UNTIL,FOR)} 2 branching
{CASE,IF-THEN-ELSE) there are a limited
number of control constructs to understand,
yet they are sufficient to express any
algorithm, In large numerical programs a
"9p-10" rule appears to hold. Particularly
in the interactive environment, the bulk of
the source code represents the control
structures and user interface of the
program, with intense numeric calculations
representing a small fraction source code.
The block structure, the simplicity of the
input and Qutput commands make these easy
to code.

Syntax has been specified for type
secure compllation of external modules and
their inclusion into Pascal programs.[4] In
addition UCSD Pascal permits the inclusion
of procedures from native code modules 1nte
Pascal programs. This will permit the
writing of small pieces of highly used code
i1n assembly language thereby increasing
speed. It wirll also permit linking user
written data gathering, or hardware
monitoring routines into Pascal programs.

MACHINE INDEPENDENCE - One cof the
goals of Pascal 1s machine independence. By
adhering to standard Pascal i1t should be
possible tc compile and run a program on
any 1mplementation., Validation suites are
being made avallable for the purpose of
comparing a given implementation with the
standard. UCSD Pascal 1s designing machine
independence into 1its numerical
calculations by converting its numerical
package to the proposed IEEE standard.
Using this standard 1t 1s possible to gain
machine independent results to floating-
point calculations, that 1s, the same
calculation performed on two machines (of
equal word length) will produce bit
eguivalent results,
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INTERPRETIVE ADVANTAGES - Interpretive
implementation, packing of data, and
compactness of source code combine to allow
a larger portion of the avairlable memory to
be zllocated to data storage.

NUMERICAL PROGRAMMING IN PASCAL

This section provides a description of
those features of Pascal which are
particularly relevent to numerical
analysis, We wi1ll be describing both
features which affect only program style as
well as those which can cause significant
executlon differences between FORTRAN and
Pascal implementat:ions of the same
algeorathm,

ARBITRARY ARRAY INDICES -~ Let us
assume an algorithm which works on 3
vectors in synchronization. & FORTRAN
programmer could declare 3 vectors:

INTEGER RED(10) ,GREEN(10) ,BLUE(10)

or if he was worr:ied about page faults and
confident that his installation's FORTRAN
storeg arrays by celumns he would declare:

INTEGER COLORS(3,10}

totally obscuring the separate 1dentities
of the three vectors.

In contrast a Pascal preogrammer faced
with the same problem could declare:

TYPE COLOR = (RED,GREEN,BLUE);
VAR COLORS: ARRAY [1..10] OF ARRAY [COLGR]
OF INTEGER;:

using array 1ndex constants which preserve
readabirlity without sacrificing the abality
to loop through the colors since:

FOR C:=RED to BLUE DO .,.....
1s a legal Pascal loop statement.

NUMERICAL ARRAY INDICES - The Pascal
programmer also has the freedom to use any
desired lower lamit for numeric {1integer)
array indices. OUnfortunately, 1t is not
possible to have arbritrary spacing of
rndices,

ADJUSTABLE ARRAY PARAMETERS - The
current definition of Pascal allows a
procedure which takes arrays as argquments
to be called only with actual arguments of
one fixed size., That restriction has,
however, been recognized as a mistake, and
allowing procedure headings of the form
shown in the example given below has been
proposed [3]1:
PROCEDURE P(2: ARRAY [LOW..HIGH:INTEGER]
OF INTEGER}

When procedure P 15 called, the local
variables LOW and HIGH will be
automatically assigned the index limits of
the array used as the actval argument.
Passing the array size as a separate
argoment to the function as i1s done in
FORTRAN will not be required.

COMPLEX ARITHMETIC - The current
definition of Pascal does not provide for
complex arithmetic., However, adding that



facirlity has been proposed [3]. The
proposed extension includes a predefined ;
type COMPLEX, the functions necessary to
take complex numbers apart (RE, IM ,ARG),
and a way of creating complex constants and
values. The standard mathematical
functions will also be extended to handle
complex numbers.

LONG INTEGERS - The UCSD Pascal system
now provides the capability of declaring
the minimum number of digits that must be
contained in each integer number declared.
all arithmetic operations involving large
range nurbers can generate intermediate
results of at least the specified saze
without causing overflow.

SHORT INTEGERS ~ The Pascal sub-range
feature allows the user to declare that a
given variable can have only a very small
range of values. This can lead to
cons:derable savings i1n storage as shown 1in
the feollowing example:

VAR PACKED ARRAY {1,.16] OF 0..3

which uses only 2 bits for each array
element.

REAL NUMBERS -~ Pascal currently
defines one floating point precision, and
thet as machine dependent. However, the
UCSD Pascal system will incorporate the
IFEE floating point standard as soon as 1t
15 finalized (at least for 32 and 64 bits).
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ABSTRACT

The purpose of this talk i1s to summarize
proposed specifications for floating-poant arithme-—
trc and elementary functions. The topies considered
are: the base of the number system, precision con-
trol, number representation, arithmetic operations,
other basic operations, elementary functicns, and
exception handling. The peossibllity of doing with-
out fixed-point arithmetic i1s also mentioned.

The specifications are antended to be entirely
at the level of a programming language such as
Fortran. The emphasas 15 on convenience and simpla-
city from the user's point of view, Conforming to
such specifications would have obvious beneficizl
wmnplications for the portabality of numerical soft-
ware, and for proving programs correct, as well as
attempting to provide facilaties which are most
suitable for the user. The specifications are not
complete 1n every detail, but it is aintended that
they be complete "in spirit™ -~ some further details,
especially syntatic details, would have to be
provided, but the proposals are otherwise relatively
complete.

THERE HAS BEEN A GREAT DEAL OF PROGRESS durang
recent years in the development of programming
languages. Howvever, almost all of this progress has
been undex the gemeral bammer of "“structured program-
mLng" and almost no attention has been paid to those
aspects, such as the semanties of floating—poant
operations, that are of special interest to practi-
tioners who are interested an numerical computation.

The purpose of this talk ie to propose some
specificatrons for floating-~point arithmetic and
elementary functions. The main design goal 1s to
produce a set of specifications vhich 1s most
desirable from a wser's point of view. There 15 of
course no claim that the set is unique. In faect,
many details, especially syntatic details, have
been omitted because there are obviously so many
possible variations that would be equally acceptable.

It should be emphasized that the specifications
are intended to be entirely at the level of a
programming language such as Fortran. For example,
in discusaing arithmetic operations, our concern is
entirely with the syntax ard semantics of the
programming language expressions.

We feel that 1t 1s important to consider such
specrfications for floating-point arithmetic and
elementary functions. Indeed, users who are
interested in mumerical computation have an obliga-
tion to try to reach 2 consemsus on such specifica-
tions, unless they are prepared to put up forever
with whatever facilities the manufacturers and
language designers happen to provade. If some sort
of consensus became possible, at could evolve
towards a standard. And with the technology chang-
aing as rapidly as it is, such a standard may not be
too difficult to achieve, or at least to approach
much more closely than is the case at present. In
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any event, with a language standard agreed upon, we
would at least have a basis against which we could
Judge the appropriateness of various trade-offs, and
to judge the surtability of any new hardware

designs that are being proposed,

The ugsefulness of a stzndard ain terms of port-
ability of numerical software, and particularly in
terms of portability of proofs about what the soft-
ware does, is obvious.

An 1deal arithmetic system should be complete,
simple and flexable. Completeness means that the
programner knows what will happen under any carcum-—
stance  Simplicity leads us te conclude, for
example, that the base should be 10. For simplicity
we also argue for a particular way of determining
the precision at which calculations are performed.
We choose a flexable way of controlling precaision,
and also a flexible mechanism for coping wath
exceptions such as overflow and underflow.

An 1deal system for elementary functions is
more difficult to agree upon. Completeness, in the
sense of always producing the same results whenever
the precisions are the same, would be desirable
here too, but probably not practical. However, what
is more to the polnt at this stage i1s that we
emphasize simplicaty, and thas leads us to require
only a single simply-stated accuracy requirement
for 211 elementary functions. In particular, we
argue against insisting that a long list of addi-
tional special properties be required to hold,

The following 1s only a summary of what 1s
proposed. Most of the justification for these
recommendations has had to be omitted because of
space limitations.

BASE

Much has been written about different number
bases, and thedir relative merits with respect to
efficiency of storage, roundoff behavior, and so on.
We believe that simplicity and convenience for the
user should be the primary consideration and this
means that

the choice of base 15 10.
With this choice, a number of annoying problems
disappear immediately. For example, the "constant"
0.1 will really be exactly one tenth, The compiled
value for a number will not differ from its input
value, and input-output will be simplified in general.

Programmer efficiency wall improve 1f the pro-
grammer does not have to keep in mand the peculiari-
ties of other number bases. It may even happen
that a base-10 system, ineluding a basa-10 internal
representation, would turn out to be, overall, the
most efficient, besides being the simplest and most
convenient for the user.

0

PRECISION

Earlier versions of what is proposed in this
section, including the description of a preprocessor
for implementing the main ideas, have been discussed
elsewhere by Hull and Hofbauer (2,3)% .

#Nos. 1n { ) designate References at end of paper,



It is important thet the user have control over
the precision. In an ideal system, we believe that

ihe wsen should be able Zo specify
sepanately the numben of digits %o be
used fon the exponent of hes floating-
point vafues, and the number of digats
1o be used for iher fraction part.

Tdeally he should be sble to make a declaration such
ag FLOAT(2,12) X and as a result have the value of
X composed of a 2-digit exponent part along with
a 12-digit fractionm part.

It should also be possible that

vaniables on expresscons, as well as
constants, be allowed .n the declarations.

For example, FLOAT(2,I+1) X would have the obvious
meaning.

The most important part of our proposal with
respect to precision is that

the user should be able Lo specify the
preciscon of the operations to be canried
out on the operands, quife aparnt from,
and {ndependently of the precision of
the openands themselues,

For example, he should be able to write something
Iike

2

(3}

(4

BEGIN PRECISION(3,14)

Y =X+ .51 % SIN(X)

END
and mean that every operation in the expression 1s
to be carried out imn (3,1&)-precasion arithmetie,
the result of the calculation finally being adjusted
to fit the precision of ¥, whatever the precision of
Y has been declared to be, before the result ie
assigned to Y.

It 1s of course intended that

the precisaon oﬁlﬁuah Ypreelston blocks™
be allowed to change befween one execu-
Lion of a block and the next.

Examples are given in the references by Hull and
Hofbauer referred to earlier; however, the pre-
processor mentroned there handles only the special
czse 1n which only the fraction parts (of the varia-
bles and precision blocks) are declared, and their
values denote numbers of word lengths rather than
numbers of decimal digits.

The specifications we propose for precision
control provide a considerable degree of flexibilaky.
In particular, they allow the user to carry out
1ntermediate calculations in higher precision (as
may be required, for example, in computing scalar
products, or in computing residuals), and they allow
for the repetition of a particular calculation in
different precisions (as 1s requared, for example,
in some iterative procedures, or in attempting to
measure the effect of roundoff error).

The proposed specafications are also simple.
For example, separating the precision of the opera-
tions from the preciszons of the quantities entering
into the calculations avoids having to remember a
lot of rules about how quantities of different
precigions combine. (No satisfactory rules for such
calculations can be devised in any event, for
example, ne such rules would ematle us to compare
the results of doing a particular calculation twice,
at two different precisions.)

It must be acknowledged that very high precaision
calculations would be used only rarely. This means
that all precisions up to something 1ike (2,12) or

(5)

perhaps (3,15) should be done very efficiently, but,
beyond that, a substantial reduction in efficiency
would be quite acceptable.

One point is worth emphasizing. It 1s intended
that precision 12, say, means exactly precasion 12,
and not at least precision 12, We carnot measure
roundoff error 1f precision 12 and precision 15
give the same results.

One further point is perhaps worth mentioring.
OQur fequirements for precision control could lead
to thinking of the machine as being designed to
handle character strings, a number being just a
special case in which most of the characters in
a string are decimal digits. However, as aindicated
earlier, we are concerned here praimarily with the
functional specificatiors, and not with any details
about how those specifications are tc be implemented.

REPRESENTATION

Quite independently of how the base ais
specafied, or of what sort of flexability is allowed
with the precision, it s possible to state specific
requirements about the representation of floating-
point numbers. We will describe what we consider
to be desirable requirements 1n terms which may
appear to be hardware specirfications but the propo-
sal 1s mot meant to restrict the details of the
hardware representation in any way except in se far
as the results appear to the user.

The proposal is that

a Aégn and magnitude representation be
used fon both the exponent part and the
fractior part, and that the fraction
part be nonmalized.,

The reason for propesing a sign and magnitude
representation is that it 1s simple, and prcbably
ecasiest to Feep in mind. The reason for allowing
only normalized numbers is so that the fundamental
rule regarding error bounds that i1s discussed in the
next section can then be relatively simple.

We deliberately do not propose any axioms,
such as "if ¥ 18 in the system then so 1s -x'", to be
satisfied by the numbers in the system. Any such
statements that are valid are easily derived, and
there is no need to state them explicitly. In fact,
1t might be sorewhat misleading to begin with state-
ments of this sort and perhaps give the impression
that one might be able to derive the system from a
collection of such desirable properties.

Besides the normalized floatinmg-point numbers
proposed above

L well be neeuaaﬁz to atlow a few oiher
values as welf, such as OVERFLOW, UNDER-
FLOW, ZERQDIVIDE, INDETERMINATE, and
UNASSIGNED fo be used in spectal
avrcumsiances.

(6)

N

We will return to this question im a later sectiom
when we discuss the requirements for exception
handling.

Although what we have proposed as allowed
values for floating-point numbers 1s, for the purpose
of simplicity, very restricted, the hardware can
carry much more in the way of extended regilsters,
guard digits, sticky bits, and so on, 1f that should
be convenient for meeting the requirements of the
following sections However, if this 1s done, it
will ordinarily be only for temporary purposes, and,
1n any event, the user would under no crrcumstances
have access to such information. (We are continuing
to think of the user as programming :n a bigher
level language such as Fortran.)


http:p'teci6.on

ARTITHMETIC OPERATIONS

Whatever the base or method of representation,
we can stnll be precise about the kind of arithmetac
that 1s most desirable. For various reasons we
propose thatz

+n the absenee of overflow, undekﬁﬂow,
andeterminate, and zeno-devide, the
resulits of all auithmetic cperations
be property nounded fo Zhe nearest
representable numben, (Some furnther
detail «s needed fo make this require~
ment completfely precese. 1In edase of
a te, we meght as well have Zhe
noamalized fraction part aounded fo
the nearesit even value. )

(8}

There are several reasons for preferring this

specification*
(a2) It 1s simple, and easy to remember.
{b) Since unnormalized numbers are not allowed, the
basic rule required for error analysis 1s easy
to derive and, in the absence of overflow,
underflow, indeterminate, znd zero-divide,
takes the simple form:

fRh{xey) = (xoy) (I+£),
where ° is an operation and |E] < u, u being
the relataive roundoff error bound for the
precasion that 1s currently in effect.
Rounding 1s better than chopping, not because
the value of u 1s smaller (although that
happens to be the case), but pramarily because
of the resulting lack of bias in the erxors.
There 15 a considerable advantage to stating
directly what outcome onme 1s to expect from an
arithmetic operation, and then deriving any proper-
ties that one needs teo use, rather than to start
off wath a list of desirable properties. For
example, from the simple specafication we have given,
1t 15 a straightforward matter to prove that (sign
presexvation):

(-x)*y = -(xxy),
oz that (monotonicity).

X £y and z = 0 1mplies X%z £ y%2.

It is misleading to write down a list of such
desirable properties and to suggest that rules might
be derived from them. (After all, 1f we did write
down all of the most desirable properties we would
of course want to include associativaty!l)

It 15 undesirable to allow any excepticns to
the specafications - even such small ones as the
exception to true chopprng arithmetic that occurs
with IBM 360/370 computers. Nor should we tolerate
the i1nclusazon of tricks, such as evaluating AHB#*C
with at most one rounding error The reason is
that at is important for the user to know what
happens under all circumstances. A simple rule,
that 1s easy to remember and to which there are no
exceptions, 15 a good way to ensure this knowledge.

To complete the programming language specifica-
tions with regard to floating-peint arithmetic, we
also require that

some conventions be adopted, such as the

Logt to night nufe forn reselving ambi-

guities in expressions such as A+B+C,

(e)

(9

A further discussion of overflow, underflow, etc.,
1s also requared, but that will be postponed to the
section on exception handling.

OTHER BASIC OPERATIONS

Besides the arithmetic operations, a program—
ming language must of course alse provide various
other basic operations. These should include such
standard operations as
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absofute valfue
the {Eoon functeon,

quoicent, remaindet, (102
max, mon,

as well as
the nefational operatons. an

With the latter it 1s essential that they work pro-
perly over the entire domain, and that, for example,
nothang ridiculous happen such as allowing IF(A > B)
to cause overflow.

There would also be a need for functions to
perform special rounding operations, such as

round the result of an ancthmetic operation
e a speecfied numben of places in the
fraction part,

found up, or hound down, simiarly,

round a hesubt to a specified numben of
places aften the point

and to carxy out other special operations, such as
get prectscon of fraction part,
get precisdion of exponent part.

Finally, a specaal operation may be needed to
denote

nepeaied mubtiplication. (14)

The purpose of this operation is to distinguish xn,
where n 1s an integer and it 1s imtended that x be
multiplied by itself n-1 times, from the case where
it is intended that x® be approximated by fixst

n log x

(123

(13)

determining log % and then computing e
Beang able to make this dastinction would be helpful

in caleulating expressions such as (—1)n, or (3.1)3.
But whether this part of the proposal s accepted
depends to some extent on how strongly one feels
about dropping the fixed-point or integer type, as
mentioned in a later section.

ELEMENTARY FUNCTIONS
For the elementary functioms, such as SQRT(X},
EXP(X), SIN(X), etec., we propose some simple but
uniform reguirement such as
§214(x)) = (1ene)§lx(T+n,el)
over appropriate nanges of x, where "y
and n, are smatl infegesrs. (04 counse,

each ¢ satisgies |e| < u, and the value
of w depends on the prectscon. )

It would be a mice feature if the n's were relative-
ly easy to remember. For example, it might be
possible to require ny, = 2 for each funection, and

(15)

n, = 0 for at least most of the functions of

interest. Unfortunately, the "appropriate ranges"
will differ, although they will be obvious for some
functions (for example, they should contain all
possible non-negative values of x for the square
root function).

There 1s a temptation to require more restric-—
tions on the approximations to the elementary
functions, such as

SIN(0) = 0, cos(0) = 1

Loc(1l} = 0, ABS(SIN(X)) =1
or that some relations be satisfied, at least close-
ly, such as

SORT(x2) = X,

(SQRT (N2 = X,

SIR(ARCSIN(X)) = X,

SIN?(x) + cos?(X) = 1,
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or that some monmotonicity properties be preserved,
such as

0 £ X =Y implies SQRT(X) < SQRT(Y)

A few such properties follow from the proposed
requirement (for example, STN(0)} = 0), but we
propose not regquiring anything beyond what can be
derived from the origanal specification. This
proposal 1s made in the interests of simplicity. The
original specification is easy to remember, and any
procfs about what programs do should depend only on
a relatrvely few "axioms™ about floating-point arith-—
metic and the elementary functions. No one is re-
quaired to remember a potentially long list (and
perhaps changing list!) of special properties of the
elementary function routines.

In those cases where something special 15 re-
quired, one possibilaity is that the programmer take
appropriate measures. For example, 1f it appears
that we might want to require that |sin(x)] < 1, as
we might an trying to approximate the integral

7
SV 1-sin x dx, we can simply replace l-sin x with

?1—31n x|. Alternatively, separate function sub-
routines can always be developed in order to provide
function approximations that satisfy special proper—
ties; for example, there could be a special sine sub~
routine, say SSIN, which produces approximations to
sin(x) with special properties such as beang guaran—
teed not to exceed 1 in absolute value.

EXCEPTION HANDLING

Overflow, underflow, indeterminate, and zero-
divide have already been mentioned. (It may be that
one would like to make further distinetions here,
between positive and negative overflow, for example )
It should be pornted out that overflow and underflow
can oceur when precision is changed, especrally if
the user can change the exponent range. Other
exceptions that can arise include trying to compute
with an as yet wnassigned value, or using a func—
tion argument that is out of range.

The first rule should be that,

if an exception arises and the programmen
makes no speelal provision for handling 4%,
Lhe compuiation should be stopped, along
with an appropriate message about where
and why.

If the user i1s aware that an exception might
arise, and knows what he wants to do about 1t, he
can often “program around" the difficulty. One
example has already been mentioned i1n connection
with an argument getting out of range in vl-sin x.
Another arises in trying teo calculate min(|y/x[,2)
where y/x might overflow. However, such strategies
are often quite confusing and sometimes not even
available Some kind of general capability for hand-
ling exceptions is needed.

Our second rule with regard to exception hand-
ling 1s therefore that

Zhe usen should be abfe io specify the scope
over which he 45 prepared fo sfate what i3
Zo be done, and that he be able to detect
the cause of the inferwpt, in a way such
as 14 suggesied in the foflowing-

(16)

BEGIN (17
ON{OVERFLOW)
} what Lo do in case of over-
[UNDERF LOW) filow
—
END )
END seope
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Besides OVERFLOW and UNDERFLOM, the other
posscble causes of antervwpts are ZERD-
DIVIDE, INDETERMINATE, UNASSIGNED, and
OUTOFRANGE {i.e., argument of a function
out of nangel.

Third, it is to be understood that

control wmll be refurned Xo the point of
interuption, agten the specifeed antion

has been faken, unfBss Lhe proghammer has (18}
provaded fon an alternateve fo be foflowed,
such as sfopping the ealeulations alio-
gethen, on perhaps making an exid from
that bfock of instructions.
Fourth, 1t 1s also proposed that
the programmer be ablfe to assdign a value
Lo RESULT as part of the action fo be
taken. For example, he could wiite (19)

ON{OVERFLOW) RESULT = 10%**50
(UNDERFLOW]) RESULT = 0

END
Not allowing the user to have access to the operands,
other than through his access to the program vari-
ables themselves, has been deliberate. In particu-
lar, af the operands that caused the interrupt were
"temporaries"”, it is diffaicult to see how he could
make use of them.

FIXED-POINT ARITHMETIC

In conclusion, we would like to comment that,
at least to us, it arpears that we do not need to
have any type of arithmetic in our programming
language other than the floating-point arithmetic
descrabed in the preceding sections (except, of
course, for complex arithmetic). Im particular,
there does not appear to be any compelling need for
fixed-point or integer arathmetic.
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Handling of Floating Point Exceptions

Thomas W.
Judscn S.
Mary H.

Equgers
Leonard
Payne

Digital Equipment Corporat:ion
Maynard, Massachusetts

SUMMARY

An IEEE subcommittee on the
standardization of microprocessor
floating point arithmetic has a
proposal under discussion. Part of
that proposal concerns overflow and
under flow exceptions.

The proposal calls for a
"gradual® underflow implemented with
denormalized numbers. For a sequence
of addition/subtraction operations,
the gradual underflow works very well:
1t almost has the effect of a machine
with infinite range numbers. But :f
an addition/subtraction sequence 1s
interrupted by a multiply or divaide,
things don't work nearly as well, and
a fallback to symbolic information is
likely. The proposal helps overflow
hardly at all.

The Payne alternate proposal
handles overflow, underflow,
addaition/subtraction, and
multiplacation/divasion egually well.
It relies on a pointer scheme that 1is
invoked when an overflow or underflow
exception occurs. The excepted result
1s replaced by & reserved operand.

The reserved operand encodes
information about the exception,
stores the "excess exponent," and
peints to a second word which stores
the correct number less the excess
exponent factor. Whenever a reserved
operand 1% encountered during
execution, a trap occurs and an
interpreter performs the operation
using the excess exponent for extended
range.
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The second words that are created
on an overflow or underflow exception
are held in a table which dynamically
changes 1in size. The table can be
managed with traditional storage
allocation technigues., It can grow to
a maxaimum size egual to the number of
floating point variables in the
program. The expected size and access
rate of this table are being
investigated.

The authors believe that the
Payne pointer scheme offers an
improvement in both functionality and
simplicity over the gradual underflow
mechanism.
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“PROGRAMMING EFFORT" ANALYSIS OF THE ELLPACK LANGUAGE
Johnn R. Rice
Division of Mathematical Sciences
Purdue University

ELLPACK s a problem statement language and system for elliptic partial
differential equations (PDEs) which is impiemented by a Fortran preprocessor.
ELLPACK's principal purpose is as a tool for the performance evaluation of
software. However, we use it here as an example with which to study the
"orogramming effort" required for problem solving. It is obvious that
problem statement languages can reduce programming effort tremendously; our
goal is to quantify this somewhat. We do this by analyzing the lengths and
effort (as measured by Halstead's "software science" technique) of various
approaches to solving these problems.

A simple ELLPACK program is shown below to illustrate the nature of
the ELLPACK language. Space does not allow a description of the Tanguage
but it is somewhat self explanatory. See [2] and [3] for further details.

* ELLPACK 77 — EXAMPLE 4 FOR SIGNUM CONFERENCE
EQUATION. 2 DIMENSIONS
UXX$ +B.UYY$ —4.UY$ +(DUBSCX)—3.)U = EXP{X+Y)*DUBS(X)*(2./(1,+X)-1.)

BOUND. K = 0.0 + U = TRUECQ.D,Y)
Y =1.0 + UY= EXP(1,+X)*5ART(DUBI(K) 2.)
X = EXP(1.) » U = TRUE(2.71828182846,Y)
Y = 0.0 r MIXED = (L.+XJU (1.+X)UY = 2.%EXP(X)
GRID. UNIFORM X = 5 % UNIFORM ¥ = 7
*
DISCRETIZATIONC(1).  S-~POINT STAR
DIS(2). P3-C!1 COLLOCATION
INDEX(1). NRTURAL
INDEX(2). COLLOCATE BAND
SOL. BAND SOLUE
CUTPUT(B). MAX-ERROR  $  MAX-RESIDUAL
QUTPUT(S9) . TABLE(S,5)-U
SEAUENCE. DIS(1) $ TNDEX(1) $ SOLUTION $ OUTPUT(B
DIS(2) $ INDEX(2) $ SOLUTION $ OUTPUT(E?
BUTPUT(33)
OPTIONS. MEMORY $ LEUVEL=2
FORTRAN.

FUNCTION TRUEC(XsY)
TRUE = EXP(X+¥)/(1.0+X)
RETURN
END
FUNCTION DUBS(T)
DUBT = 2. /(1.+T)=x2
RETURN
END

END.
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A problem solution with the ELLPACK system goes through three principal
stages: (1) the ELLPACK Tanguage input is vead by a Fortran preprocessor which
writes a Fortran Control Program, (2) the Control Program is compiled, and
(3) the Control Program object deck is loaded along with modules from the ELLPACK
library which implement steps in the solution of the PDE. We compare the programming
effort for each of these steps, i.e., (1) an ELLPACK statement of the PDE problem
to be solved and method to be used, (2) preparation of the Control Program, assuming
famjliarity with the module library and (3) programming the entire solution in
Fortran,

Three measures of programming effort are used: T1lines of code, total number of
operators and operands and "effort" measured by thousands of elementary mental
discriminations. The latter two measures are part of Halstead's "software science"
presented in [1]. This is an empirical method to define and relate various program
parameters to the effort required to write the programs. While we do not attempt to
explain this method, it is very plausible that the total number of operators and
operands in a program js more directly related to the complexity of a program than
the number of lines of Fortran. Two short-comings of the method for this application
are (1) that it ignores declarations and I/0 statements and {2) the mechanism for
estimating the effort for a set of tightly integrated subroutines is inadequate.
However, the measurements are good encugh for the present purposes where only rough
accuracy is needed.

We consider 10 example problems and present the data N=total number of operators
and operands, L=total 1ines of code {including comments in the Fortran modules, most
of which are well commented), C=code complexity measured by number of operators and
operands per line, and E=programming effort in 1000's of elementary mental discrimin-
ations as defined by Halstead. For each problem we have data for the ELLPACK language
(labeled ELPK), the Control Program (labeled Control) and the set of library subroutines
used (labeled Modules).

PROBLEM 1 PROBLEM 2 PROBLEM 3 PROBLEM 4
ELPK Control Modules]|ELPK Control Modules|ELPK Control Modules|ELPK Control Modules
NP 187 1793  14,349] 103 1331 6632] 147 182  14,203| 134 1354 12,671
Lf 33 381 3,852 22 295 1330 27 363 5,348 29 314 3,402
C
E

5.7 4.7 3.7 4.7 4.5 5.0 5.4 4.4 2.7 4.6 4.3 3.7
27 1076 6,425 5 371 4804] 14 852 4,232t 12 614 5,881
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PROBLEM 5 PROBLEM 6 PROBLEM 7 PROBLEM 8
FLPK Control Modules|ELPK Control Modules{ELPK Control Modules]ELPK Control Modules
NI 173 12317 11,198] 125 1368 15,113] 125 1366 8500 102 1238 7,261
Ly 40 303 2,018] 42 336 5,435] b1 311 2561 29 303 2,145
cl| 2.8 4.1 3.8; 3.0 4.0 2.6} 2.5 4.4 3.3 3.5 4. 3.4
E 8 385 5,306 12 587 3,784 11 444 2771 6 394 2,211
PROBLEM 9 PROBLEM 10
ELPK Control Modules| ELPK Control Modules
Nf 112 1283 14,1347 87 1716 7997
Ll 38 315 3,937; 110 3656 2517
cl 2.9 4.1 3.6f .8 4.7 3.2
£ 6 503 6,739 4 390 3243

There are considerable variations among these examples but there is also an obvious
trend of greatly increased "length" from stage to stage, no matter how it is

measured.

but it does not always do so because of the inability of the sofiware science

The programming effort E should increase faster than the number of lines,

method to completely account for the use of modularity in implementing an algorithm.

Comparing the Control and Modules data should be representative of the compari-

son of using or not using a library of powerful subroutines.

We see that the ratios

of effort range from & to 15 with 10 as an average, the ratios of lines range from

6 to 17 with 11 as an average.

Thus we conclude that,at least in the context of

solving PDEs, the use of a 1ibrary increases programming productivity by a factor

of 10.

It may well increase it more and the quality of the results will be

improved if the library is good.

Comparing the ELPK and Contrel data

statement language compared to using a Yibrary.

should measure the value of a problem
The ratios of effort range from

40 to 100 with 60 as an average and the ratios of lines range from 3 to 13 with 9

as an average.
programming productivity by a factor of 10 to 50.

We thus conclude that using an ELLPACK type preprocessor increases

We also conclude that using this preprocessor instead of writing the programs
from scratch reduces programming effort by a factor of between 100 and 500.
This work is partially supported by NSF Grant MCS76-10225.

[1] M. H. Halstead, Elements of Software Science, Elsevier North-Holland,

[21 Jd.

New York, 1977.
R. Rice, ELLPACK:

A Research Tool for Elliptic Partial Differential

Equations Software in Mathematical Software III (J. R. Rice, ed.)
Academic Press, 1977, pp. 319-341.

[3] J. R. Rice, ELLPACK 77 User's Guide, CSD-TR 226, Computer Science Dept.,
Purdue University., September 1978.
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Notes from the Second Department of Energy Library Workshop
by

Eirby W. Fong — Naticnal Magnestic Fusion Energy Oamputer Oenter
at the Lawrence Livemwore Laboratory

and

Rondall E. Jonss - Bandia Laboratories Albuquerigue

Part I — A General Review of the Workshop

The U & Atemie Energy Commission (AEC) and One problem regarded with varying degrees of
\ts successors, first the U.S Energy Research and concern by the participants 1s the proliferation
Development Administration and now the of min1 computers While some min1 computers are
U S Department of Energy (DOE) and Nuclear limited by small amounts of memory or inaccurate
Regulatory Commission, has been and continues to elementary functions, these appear not to be the
be one of the nation’s major purchasers and users principal problems The problem 1s that there are
of large scale scientific computers potentially so many brands and models at any given
Historically, each of the more than dozen computer site, each being used for scientific computation.
centers at different laboratories evolved Consequently, the mathematical software librarian
independentiy of the others so that each was has the taesk of supplying many vers:ions of his or
self-contained In particular, each  computer her library — one for each mini computer.
center developed mathematical scoftware libraries
according to 1ts own needs In 1975, At the opposite end of the spectrum 1s the
representatives for the mathematical software super computer with unconventional architecture
libraries at the various AEC computer centers met, At this time, the only DOE computer centers
with Argonne National Laboratory as the host, to acquiring such machines already have computers
hold the first Workshop on the Operational Aspects with long word lengths. This means extensive
of Mathematical Software Libraries. Among the converstion between single and double precision has
purposes of the first Workshop were: (1) to meet not yet been needed The basic problem 1s that
colleagues doing similar work - at other AEC standard Fortran codes on Lhe existing large
computer centers, (2} to share experiences 1in the computers may be unable to take full advantage of
management of mathematical software libraries, and the new architecture of the super computers Thts
(3) to discuss 1deas and 1ssues 1n the operation problem 1s currently felt to be handled best by
of libraries The first Workshop was sufficiently increased modularization (e g the Basic Linear
rewarding that the participants ' feit 1t Algebra Subroutines or BLAS) so that only a
appropriate to hold a second Workshop in three limited number of key modules need to be rewritten
years, an 1nterval that would encompass sufficient {(presumebly 1n assembly language) for a new super
progress 1n library operation that new experiences computer. Conspicuous by 1tz absence was any
and 1deas could be discussed. mention of programming languages other than

Fortran  Apparently, no DOE computer center

The Second DOE VWorkshop on the Operational expects to use any language other than Fortran or
Aspects of Mathematical Software Libraries was a limited amount of assembly language mn
hosted by the National Magnetic Fusion Energy mathematical software libraries be they libraries
Computer Center at the Lawrence Livermore for min1 computers, conventional large computers,
Laboralory in August 1878 It was attended by or super computers
thirty—five participants representing fifteen DOE
computer centers. Representatives from three Participants were asked to mention
non-DOE computer centers were also 1nvited A mathematical areas i whieh current libraries
major new development in DOE computer centers, the seemed to lack sufficient coverage. In many
use of commerciael mathematical software libraries, cases, the areas mentioned below reflect a single
led to 1nviting representatives from three major user at a single =site asking for a capability
commercial library companies. rather than a wide spread need. (1) Sparse linear

algebra routines of all types are in demand This

The Werkshop included both individual was not an 1solated occurrence. (2) Certain areas
presentations and group discussions., We will deal of physies require high accuracy quadrature
here with only the group discussions because they routines n up to twelve dimensions. {3) One
reflect the problems and 1ssues that all of us, 1n computer center reported a need for Fortran
or out of DOE, face 1n the management of callable subroutines to perform symbolic algebra

mathematical software libraries.
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and produce Fortran compilable output. (4) There
15 a modest need {or multi—-dimensional surface
fitting and approximation routines where data are
given at co—ordinates that do not constitute a
rectanguiar mesh — i1.e. randomly distributed data
points. (5) There 1= no end to the special
functions that users request Users are asking
for functions of two and three parameters with
fractional or even complex degree, order, or
argument. {8} Users are starting Lo encounter
more multi—point boundary value problems Ve
anticipate greater demand for routines in this
area.

The statistics software area 1s one 1n which
the responsibilities of the mathematical software
librarian are not well defined. It appears that
the practitioners of statistical analysis prefer
to use self—contained tools ~— i.e. programs that
handle input, output, and graphies as well as
analysis Many such complete programs exist and
are commercially avallable. Each 1s designed to
handle some reasonable subset of problems. A
library of statisties subroutines 1s therefore
needed only when a statistician musi construct a
new tool for a new class of problem, and then he
or she will also need input, output, and graphics
routines as well as statisties routines. We
believe 1t fair to say the discussion of this
topiec was 1nconclusive.

The era 1n which each computer center could
afford to write and maintain :ts own complete
mathematical software library 1s now generally

acknowledged to be past. The continuing expansion
1n numerical analysis precludes having experts in
every area of numerical analysis on the staff, and
DOE 1s also sensitive to the duplication of effort
implied by having 1ndependent library efforts at
many computer centers. Thus commercial libraries
are seen as playing a larger reole n DOE computer
centers. They can provide and support high
quality, standard, general purpose numerical
software while allowing the staff at each computer
center to specralize in mathematical software
unique to the needs of wusers at each computer
center. The second Workshop therefore 1nvited
three of the majer commercial library companies
(IMSL, NAG, and PORT) to =send representatives.
The representatives were asked to give informal
descriptions of the:ir current activities and
plans

From the viewpoint of DOE participants,
probably the most 1mpertant beneiit from having
the commercial representatives was the chance to
tell them how DOE perce:rved their roles and to
state specifically what services the DOE computer
centers would be needing. The commercilal
libraries play a role somewhat analogous to the
scholarly journal They are increasingly being
viewed as the vehicle through which the author of
mathematical subroutines presents his or her
software to the world just as a )ournal is used
for presenting research to the world We expect

that software will be refereed jJust as journals
articles are refereed in order to achieve a
uniformly high quality of content. Specific needs
of computer”™  centers focus primarily on
documentation. As the completely home grown
library recedes 1inte history, g0 will the
completely home grown library document. It will
be necessary for commercial libraries to supply

documentation that 18 conven:ent to use and can
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fit into the great variety of procedures which
different computer centers use to maintain
documentation Most DOE computer centers are

stall relying on hardcopy (e.g. paper) documents
to some extent, bui the cest or i1nconvenience of
printing new manuals or inserting revision pages
1s pushing computer centers 1n the direction of
machine readable, on=line documentation. Typing a
document into a form suitable for processing by a
report editer 1s not vasily more expensive than
typing a camera ready master, and 1t means the
document 1s stored in & form that permiis
revisions to be made easily and quickly [f the
document 1s kept on—line, the user can interrogate

it i1nteractively or print a copy of the current
write—up on some ouiput device The on-line
document 1s not free of problems however One 1s
that on—line storage (e.g. disks) 1s expensive.
We await a decrease 1n hardware costs combined
with the 1nevitable 1ncrease 1n labor costs and
inconventence 1n maintarning paper documents to

t1lt the balance 1i1n favor of on—-line documenis

Computer networks with users who are
geographically dispersed have already had to shift
away from a dependence on hardcopy manuals A
second reason 18 that Iimited character sets in
various output devices (e.g. printers or
terminals) prevent writing mathematiecal
expressions 1n the natural way. The commercial
library company faces exacily the same problems as
1ts customers 1in  producing and maintaining
documentation Just as business offices have
resorted to word processing equipment to control
the cost of producing correspondence, so the
commercial libreries will have te turn to the
compyter for assistance in  producing and
maintaining documentation. Their problem 1s more
difficult than that of any 1ndividual computer
center 1n that they must furnmish portable, machine

readable documentaticn that can be 1ntegrated
eas1ly inte each customer’s system and set of
output devices. Currently, they furnish a

finished, hardcopy manual The problem 15 not the

content of the manual: 1t 1s the format. The
current form makes 1t 1mpractical for computer
centers to furmish a copy to every user Also,

few users really need to own a complete manual.
Rather they need to be able to extract and print a
subset of the manual appropriate for their needs.
It 18 now generally recognized that documentation
1s an ntegral part of mathematical software
{software without documentation 1s nearly useless)

but that construetion, maintenance, and
distribution of the library document 1s perhaps a
more 1ntractable problem than construction,
malntenance, and distribution of the library
1tself. With commercial libraries now containing
hundreds of subroutines come manuals containing
thousands of pages. The sheer bulk of

documentation, while 1t suggests automation 1s now
1n order, also means the companies must choose a

documenation system carefully because they can
afford to type such large documents only once.
Thereafter, the companies must be able to
transform their machine readable master documents
inte various "documentation system ranges” as
needed by their customers.

Numerous other topics received  varying
amounts of attention at the Workshop (1)
Participants were asked to mention any
mathematical software packages which might
supplement general purpose libraries. {2)
Participants were asked to describe any tools or



preprocessors that they had
preparing, testing,

found useful 1n
and documenting mathematical
software. (3) One of the Workshop participants 1s
also a member of the DOE Advanced Computing
Committee Language Working Group He spoke about
the activities and plans of the group and answered
questions about why DOE was so 1nterested in
desi1gning a Fortran which would be an extension of
ANSI 1977 Fortran. (6) Scveral DOE computer
centers related their experiences and observations
in monitoring the use of mathematical libraries

(8} The concept of a core library was advanced as
a response tc some of the consiraints now being
encountered A core library 1s of manageably
small si1ze and includes routines from any source,
local or outside, to provide coverage of most of
the mathematical algorithms needed by users A
core library 1s small enough to be supported by a

small staff and does not require a massive manual

The staff 1s free to adopt for the core library
the finest routines from commerc:al libraries,
outside authors, or , local authors {7)
Participants reviewed briefly the means for
exchanging i1nformation or software. The ARPA net
1s not avarlable to all computer centers, but 1t
does allow trensmission of messages and files
between some of the DOE computer centers The
magnetic tape formats recommended by the Argonne

Code Center were agreeable to most participants
although some thought that seven track tapes
should be blocked instead of unblocked (8)

Finally, the Workshop gave librarians a chance to
express their advice for authors who would write
mathematical sofiware for libraries. This 1s 1n

Part Il - Suggestions for Authors of Mathematical Software

In this part of the
views about the format for Fortran software to be
admitted to libraries. Most of these 1deas were
presented at the DOE Library Workshop; however, we
do not wish to 1mply that they were endorsed by
the Workshop Most of these 1deas come from the
discussions between Sandia Laboratories, the Los
Alamos Scientific Laboratory, and the A41r Force
Weapons Laboratory about the feasibility of
constructing a common mathematical library from
ex1sting software These discussions were
organized under  SLATEC, a commlttee with
representatives from the three laboratories, which

paper we present our

co—ordinates technical exchanges among the three
members.
The programming environment for the

development of mathematical software 1s 1nfluenced
to some extent by what the author perceives as the
manner 1n which the software will ultimately be
used. In particular, a mathematical package that
1s destined for stand alone use will be written to
be self-contained, that 15, 1t will use no
externals other than the basie (Fortran) externals
and will try to avoid any input/output or system
dependence Such attention to portability 1s
commendable, for 1t eases the recipient’s task of
installing the package; yet, a librarian may
nevertheless be unhappy because the package adds
yet another linear system solver or error message
printing routine to the library From the
librarian‘s point of view, a collection of
completely independent routines 1s not a library.
A collection of software cannot really be elevated
to the status of Iibrary until redundancy 1s
minimized, error conditions are handled 1n a
systematic way, and the routines and their
documents are presented in a fairly uniform way

Let us be more specific about the attributes the
librari1an values

(1) Whenever possible, the arguments for a
subroutine should be 1n this order* (1} input,
(2) input/output, (3} output, (4) work arrays 4n
exception 18 that array dimensions should
immediately follow the array name. Work arrays
should be limited to no more than one of each
needed type, 2.e, one single precision array, one

contrast to mathematical sof tware packages
intended for stand aloene use
double precision array, one complex array, one

integer array, and one
implies user callable
nothing more than

logical
routines may
interface

array. This
actually he
routines whieh carve

the work arrays 1nto smaller pieces for use by
other subroutines.

(2) Each subprogram should have a block of
information called a  prologue. The prologue
should 1mmediately follow the subprogram
declaration. The first part of the prologue

should be an abstract in the {form of comment cards
which describes the purpose of the subprogram and

gives the author, history, or references for the
subprogram  The second part should be a
description of each argument in the calling

sequence, and each argument should be described 1in
the order 1in which 1t appears 1n the calling
sequence It has been found that users will code
a call by reading the argument description, thus,
such a description should not mislead the user
into writing actual arguments 1n an 1ncorreect
order The third part of the prologue should be
array declarations These may be actual
declarations or comment cards deseribing arrays
and their sizes The fourth part of the prologue
should be a comment card

C »** END OF PROLOGUE

which signals the end of i1nformation for the user.
This type of sentinel 1s of great use 1in the
automatic preparation of wuser manuals A string
processor or other texl ediling program can take
the cards from each subprogram up to the sentinel
to construct a library manual. The prologue
should contain sufficient 1nformation that 1t
could be used as the primary user document

(3) If at all possible, any  separate
documentation should be supplied in machine
readable form Hardcopy documentation may be
suitable when a complete package 1s supplied to a
single user, but library routines are available to
all users. Hence a document for a library routine
should be 1n a form where 1t can be edited easily
to fit 1n & manual or 1in a form where users can
easily print as many copies as they need, Since



meny output devices are not capable of printing
integral or summation signs and other mathemat:ical
notation, considerable 1ngenuity may be required
to write the document wusing only the ASCII or
EBCDIC character set. We furthermore recommend
that authors restrict themselvs to the
intersection of the ASCIT and EBCDIC character
sets At this time we are nclined to accept
mixed upper and lower case documentation, however,

authors who are dedicated to distributing their
software may wish to confine themselves to the
forty—seven characters in standard Fortran. Line

machine readable documents should not
exceed 80 columns as most terminals will print
only 80 columns. If the document describes the
arguments of a subprogram, 1t, like the prologue,
should describe them 1n the same order 1n which
they occur in the calling sequence The names of
any arguments or 1internal variables deseribed in
the document should be exactly the same as the
names 1n the Fortran subprogram. This assists the
user who 1s symbol:ically debugging his program whe
may ask by name for the values of arguments or key

lengths for

internal variables inside the library routine.
For example, 1:f EPSLON i1s an argument, it should
be referred to as EPSLON, not EPSILON, 1n any

separate document
(4)
C *** FIRST EXECUTABLE STATEMENT

A comment card of the feollowing type

should be placed between the last declaration or

artthemtic statement funetion and the first
executable statement This assists string
processing programs 1o 1nserting CALL statements

to system routines that monitor the use of library
routines

(5) Input/output (I/0) should be localized
1f 1t 18 present at all. READ and WRITE
statements should be confined to one subprogram

and not be scattered throughoult a package This
mekes modification of any [/0 much simpler. We do
not consider the penalty of going through another
level of subroutine call to perform I/0 a serious
penalty.

(8) We recommend that authors use the PCORT
Library or SLATEC error message packages rather
than write their own routines for printing error
messages {A description of the latter may be
found in  Sandia  report SAND 78-1188 ) Both
packages are portable. The packages are (by
design) very similar in approach, with the SLATEC

package differing from the PORT package in some
features to reflect the production computing
environment in which the SLATEC l:ibrary 1s to be

used. We suggest that authors choose the package
which better suiis their philosophy Use of these
peckages then relieves the author of the burden of
desi1gning and coding his or her own error handling
procedures

(7} There 1s some controversy whether
machine constants should be computed internally or
data loaded 1n library routines. We prefer that
authors use similar 1f not 1dentical routines to
those 1n the PORT Library. These routines return
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machine constants which are data loaded inside
these routines. This minimizes the number of data
statements that must be changed 1n moving a
library from one machine +to another. It also
precludes the pessibility that some new optimizing
compiler or architecture might invalidate a tricky
algorithm for computing a machine constant

(8) We encourage authors to use reputable,
ex1sting software as building bloeks for their
packages  Examples are EISPACK, FUNPACK, LINPACK,
IMSL, NAG, and PORT. We alsc encourage the use of
the Basie Linear Algebra  Subroutines (BLAS)
because they are a small enough set of routines
that we can reasonably expect to provide an
optimal set for each machine This i1n turn means
that higher level routines calling the BLAS can be
made more efficient just by improving the BLAS

We thus minimize confliets between portability and
efficiency by 1solating efficiency dependent parts
of a program 1nto small modules which can be
recoded easily

(9} Unti1l some portable subset of ANSI 1977
Fortran becomes recognized, mathematical software
should be written 1n a portable subset of ANSI
1966 Fortran as defined by the PFORT Verifier

Authors of routines that do not pass the PFORT
Verifier should offer good reasons why their
routines should not be modified te de so

(10} Aveid using common blocks because users
may accidentally invent program or block names
that conflict [f common blocks or subroutines

internal to a package (not called by users) are
used, pick highly wunusual names 1in order to
minimize the chance that they will conflict with

names existing elsewhere. User callable routines
should also have very distinctive names, possibly
names that are obviously related to the package,
that are not likely to cause conflicts. Examples
of bad choices are START, TIME, F, OPEN, CLOSE,
FFT, INTEG, SOLVE, SORT, SECOND, INIT, and QUIT.
These all have a high probability of confliecting
with user or system library names Authors should
also avord names used 1n widely available sofiware
such as IMSL, NAG, PORT, EISPACK, FUNPACK,
LINPACK, BLAS, and DISSPLA.

We believe the DOE computer centers are not
alone 1n meving from libraries consisting solely
of locally written software to libraries inciuding
externally written software We wurge scoftware
authors whe are proud ¢f their preducts and wish
to see them widely used, to comsider putting their
software 1n a form that may more easily be
integrated into l:ibraries. Not only are computer
centers becoming more receptive to outside
software 1n their libraries, they tend to promote
their library software more vigorously than
sof tware which exists separately on some tape
somewhere in the machine room. The "“official”
library, for example, is usually readily available
to the linkage editor 1n an on—-line disk file.
Librarians quite naturally will prefer to accept
sof tware that fits 1nto libraries easily and has
documentation that can easi1ly be transformed into
the local canonical form



Activities of the
DOE Advanced Computing Committee Language Working Group

Rondall E.

ABSTRACT

The Language Working Group 1s a
technical arm of the DOE Advanced
Computing Committee. The ourpose of the
Group is to work toward providing a

compatible Fortran environment at the ACC
sites. A brief history of the efforts of
the Group is given, and the general
features of the Ilanguage the group will
recommend are discussed. This language 1is
a multi-level Fortran with Fortran 77 as

the core.
HISTORY

The Advanced Computing Committee
(ACC) is a committee of representatives
from the management of the scientific
computer rescources at the large DOE
research and development laboratories.

The function of this committee is to help
guide various aspects of the use of large
sclentific computers at the laboratories
represented in the ACC. The ACC Language
Working Group (ACCLWG, or IWG) 1s a
subcommittee reporting to the ACC, made up
of one or two technical personnel from
each site, plus representatives from two
closely related non—-DOE sites.
Approximately twelve persons are currently
serving on the LWG. The LWG was formed by
the ACC in QOctober 1976, as a technical
arm to advise ACC in matters concerning
programming languages.

Specifically, the major assignment of
the LWG 1is to advise on how to provide a
"compatible Fortran environment®" at all
the ACC sites. This requirement was
motivated by the current situation in
which many large programs written at one
site cannot be used at other ACC sites
because of the considerable differences in

the versions of Fortran in use at the
various sites. Indeed, it is sometimes
not possible to run the same or similar

program on two different computers at the
same site. It should be pointed out that
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these differences did not come about
casually, but rather were the result of
each laboratory’s attempt, over the years,
to deal most effectively with the advanced
computer hardware of which they were often
the first reciplents.

of the

During the first year LWG’s

existence, the aimportant capabilities of
the Fortran languages in use at the ACC
laboratories were distilled, and the
concept of a multi-level Fortran lLanguage

based on the new ANSI standard, Fortran
77, was refined. In thls multi-level
Fortran, the core, or "Level O", of the
language would be precisely Fortran 77
(1.e., X3.9-1978). Level 1 would consist
of Level 0 plus features which were ‘de
facto standard®" at all the laboratories,

or which were clearly desirable by all the
laboratories and did not involve any
technical questions of implementation.
Level 2 would consist of Level 1 plus all
the other functional capabilities deemed
necessary by the LWG (as determined from
the survey of features in use) which were
technically feasible for a language usable
on a broad class of scientific computers.
Level 3 would consist of Level 2 plus
necessary features which for some reascn
could not be placed 1in Level 1| or 2.
Thus, Level 3 features would probably not
be applicable to some computers. Thas
concept of a completely nested series of
three levels of Fortran, with the current
ANSI standard as the core, was presented
to the ACC by the LWG at its fifth meeting
in November, 1977.
LEVEL | FORTRAN

Once the multi-level approach to
achieving a compatible Fortran environment
was approved, the first business of the
LWG was to agree on a detailed description

of the Level | features. Such ‘“detailed
descriptions” do not include a choice of
exact syntax to be used, but rather
discuss the functional capability itself.
Such descriptions were usually made
difficult by the fact that the "de facto



in current use were
pased on features an the previous ANSI
Fortran standard. It was often necessary
to revamp these features significantly to
base them on Fortran 77. Briefly, the
features defined to be in Level | are as
follows.

standard® features

i. An

feature,

asynchronous 1nput foutput
similar 1n capablility to
the well known BUFFER IN/BUFFER
OUT feature, but built on Fortran
77?s expanded READ/WARITE/INQUIRE
features.

much
wide

NAMELIST input/output,
the same form currently
use.

in
in

Timing funct:ions, including the
capability to determine elapsed,
CPU time as well as time of day,
date, and remaining job time left
before time limit.

Input stream compiler directives
to control listing. list
suppression, and page ejecting.

UBit-by-bit data manipulat fon"
features including octal and
hexadecimnal constants and format
descriptors, word oriented
shifting and masking operations,
and pit-by-bit Boolean
operations.

The functional description of Level |
was completed by the LAG’s seventh
meeting, and was presented to the ACC by
the officers of the LWG in May 1978.

LEVEL 2 FORTRAN

The next order of business of the LWG
was to develop detailed functional
descriptions of the features to be in
Level 2. This was a harder task than for
Level | because the features:were in less
common use than lLevel 1 features, and were
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more technically difficult to fully
describe. In addition, it was desired to
add fairly detatled examples using
illustrative syntax to demonstrate the
feasibility of the feature. (Note we do
not mean examples of the syntax chosen for

a feature, put an example syntax which
might or might not eventually be
selected.?}

At the time of this writing, it
appears that all, or almost all, of the

features chosen for Level 2 will indeed be
written up in detail by the committee’s
tenth meeting in October 1978, which is
the goal which has been ss2t. Briefly, the
main features likely to be in Level 2 are
as follows. (A more definitive listing

should be avallable by the time of the
presentation of this paper.)

1. Array processing, including
referencing of whele arrays in
assignment statements without the
use of subscrints, referencing
sections of arrays, array valued
conditional assignment
statements, and both elemental

and transformational array valued
functions.

Dynamic array allocation,
including dynamic array renaming
and sectioning, a COMMON-~like
feature for dynamic arrays, and
appropriate environmental inquiry
features.

A macro
macro can
EXPression,

capability, in which a
be invoked as an

a statement, or
out s1de a subprogram. The
simplest form of a statement
macro would be equivalent to an
INCLUDE feature. Macro libraries
are allowed, and facilitlies are
included to allow generation of

unique statement labels and
variables within the body of the
macro.



"structured"
for looping

4, More general,
control structures
and case selection.

5, Various provisions for improving
program form, possibly including
such items as a larger character
set, tralling comments on a line,
longer varianle names, multiple
assignment statements, and
optional automatic indentation.

6. COMPLEX
declaration,
extensions to
function set.

DOUBLE PRECISION type
with appropriate
the intrinsic

7. An environment inquiry feature
probably implemented through
inclusion of a substantial family
of intrinsic functions which
provide information on the
details of the machine’s
arithmetic and related matters.

8. A data structuring capability,
centered on the concept of a
tyacord" which consists of fields
and subfields which are
accessible as an aggregate or
individually. Among other
things, this feature allows very
easy acess to part of a word.

9. Expansion of certain features In

Level [N such as extended
NAMELIST features.

LEVEL 3 FORTRAN

Clearly, the Level 2 language will be
a considerable extension beyond Level 1.

Level 3, on the other hand, will probaoply
contain ne features beyond Level 2
initially. Rather, a careful definition

will be given as to what kinds of features
would be included in Level 3 1if such a
need arises at a later date.
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SUMMARY

In summary, the concept of a
multi-level Fortran language, with Fortran
77 as 'Level O" was developed in resoonse
to the need for a compatible Fortran
environment for the ACC sites. A fairly
detailed description of the recommended
language, including 1illustrative syntax,
but not including final syntax choice, was
developed in only about a vyear from the
time the decision was made to go ahead
with that development. More detailed
language specification will hopefully be
performed by a much smaller cowmittee
working more intensively for several
months. The result of that effort will
then be examined py the LWG. It should be
enphaslzed that this effort is orlented to
eventually greatly imoroving the computing
environment for the ACC laboratories: it
is not an attempt to usurp any function of
the ANSI Foriran committee, though the LWG

certainly communicates with that
committee. Indeed, the philosophy of the
LWG would be to restructure 1ts
multi-level Fortran to aincorporate any
future standard as the core of the

language,



