
JPL PUBLICATION 78-92

Proceedings

Conference on the
Programming Environ)ment
for Developiment of Numerical

Software

Cosponsored by

JPL and ACM-SIGNUM

Hilton Hotel

Pasadena, California

October 18-20, 1978

17-12715(N-ASA-CR-157933). CONFERENCE ON THE
THRU

PROGRAM ING ENVIRONMENT FOR DEVELOPMENT OF
 N79-1273 6 ,

NUMERICAL S'OFTW'AIRE (Jet Propulsion Lab.)

linclas
CSCL 09B
86 p HC A05/IF A01

33812G3/59

October 18, 1978

National Aeronautics and

Space Administration

Jet Propulsion Laboratory

California Institute of Technology,

Pasadena, California R D

NATIONAL TECHNICAL

INFORMATION SERVICE

OFCOMMERCE
SPRINGFIELD.

U.S.DEPARTMENT
VA.22161

JPL PUBLICATION 78-92

Proceedings

Conference on the
Programming Environment
for Development of Numerical
Software

Cosponsored by
JPL and ACM-SIGNUM

Hilton Hotel
Pasadena, California
October 18-20, 1978

October 18, 1978

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology,
Pasadena, California

This publication was prepared by the Jet Propulsion
Laboratory, California Institute of Technology, under NASA
Contract NAS7-1 00

o •

CONFERENCE OVERVIEW p'G -- pAGErNSOeiR QUALI'Y
C L. Lawson, Conference Chairman

THE NUMERICAL SOFTWARE COMMUNITY, especially in

North America, has predominately used the Fortran

language In the late 60's, there may have been

thoughts that some other language might soon re-

place Fortran for scientific computing. By the

early 70's, however, this appeared much less likely

and a number of people began developing prepro

cessors and other software tools that would make

some of the newer systematic approaches to software

development and testing more readily available in

Fortran environments,

The 1974 SIGNUM Workshop on Fortran Preproces-

sors for Numerical Software held at the Jet Propulsion significance of this project for numerical software.

Laboratory, Pasadena, spotlighted this developing

area and initiated closer communication between

SIGNUM and the ANSI Fortran Committee X3J3. Contacts

established at the 1974 Workshop led to the organi-

zation of two Fortran Forum meetings in 1976, one in

California and one in New York, providing early

public discussion of the emerging Fortran 77

standard

The Workshop and the two Forums gave added

impetus to a changing mood within X3J3. There was

increased willingness to deal with significant

additions to the language. In particular, itseems

likely that the eventual decision to add the

structured IF into Fortran 77 was strongly influ-

enced by the considerable interest instructured

Fortran evidenced at the Workshop.

For the present conference we have carried the

SIGNUM-X3J3 communication a step further by

arranging for a half-day joint meeting of the two

groups Brainerd and Schenk will speak on the

current directions of X3J3 and Lawson, Brown, and

Smith will present some views from the mathematical

software community for consideration by X3J3. An

extended discussion period is scheduled for more

general interaction between the SIGNUN conference

attendees and the members of X3J3.

Boyle, Dritz, Schryer, Crary, and Presser will

describe a variety of software tools applicable to

the development of numerical software. Rice gives

an analysis of the increased programming efficiency

attainable by use of a very high order problem

oriented language for solving PDE's Miller

presents a case for an EISPACK-type research and

development project in the area of software tools.

Osterweil speaks on strategies for making the best

use of software tools,

The organizations with the most pressing

necessity to make systematic and efficient use of

tools for dealing with mathematical software are

the vendors of commercial mathematical libraries.

We will hear from Fox of the PORT library, Aird of

IMSL, and du Croz of NAG on their methods and

experiences

Approaches to the technical problems associated

with the exchange of mathematical software between

different facilities will be treated intalks by

Butler and Van Snyder.

New preprocessor-based languages will be
presented by Grosse and Feldman. PASCAL, which has

been regarded mainly as a teaching language has

achieved a new burst of popularity among micro

computer users, due in large part to PASCAL compiler

developments at UCSD. Volper of that group will

discuss PASCAL's relevance to the mathematical

software community.

The DoD High Order Language Working Group is in

the midst of one of the largest efforts ever under

taken by a user organization to create and promote

the use of an entirely new language The talk by

Fisher on this project will give conference

attendees an opportunity to begin to assess the

Hull will discuss language and hardware features

that would give the numerical analyst new levels of

control and confidence innumerical computations.

Kahan and Eggers are both presently active on

an IEEE committee to specify a standard for

floating-point arithmetic hardware. They will

present two different proposals on this subject.

Fong will report on the recent DoE Workshop on

Mathematical Libraries Jones will report on the

DOE Advanced Computing Committee Language Working

Group which isdeveloping guidelines for Fortran

extensions to meet DoE needs.

It is a pleasure to thank Tom Aird, Jim Boyle,

and Norm Schryer for working with me inorganizing

the technical program for this conference John

Rice provided valuable assistance incoordination

with ACM Headquarters, publicity, and budgetary

guidance.

The Jet Propulsion Laboratory has supported the

conference by permitting me and my secretary,

Kay Cleland, to carry through the preparation, and

by publishing the conference schedule and pro

ceedings for distribution at the conference I

wish to personally thank Kay for her sustained

dedication to the success of the conference.

The members of the ANSI Fortran Committee X3J3

will be making a very generous effort on behalf of

the conference in travelling thirty miles across

Los Angeles from their own meeting site to Pasadena

for the Wednesday morning sessions I thank

Jeanne Adams, Chairman of X3J3, and James Matheny,

local arrangements Chairman fo X3J3's Oct 16-19
meeting inLos Angeles for their unstinting
cooperation inarranging for X3J3's participation

in this conference

I wish to express appreciation to all of the

speakers and their home institutions for their

outlay of t hme,
funds, and energy to bring their

recent work to the podium of this conference. The

Session Chairmen and attendees at the conference

encompass a wide range of experience in mathematical
software and we look forward to stimulating ex
changes of information during the discussion periods.
We believe this conference will provide a useful
snapshot of the current state-of-the-art intools
and techniques for development of mathematical
software and we hope this will lead to more wide
spread use of systematic methods inthis field.

ii

O ,00 	 CONTENTS

AUTHOR

W S Brainerd

Los Alamos

Scientific Laboratory

W. Sckenk

Xerox Corp

C. 	 L Lawson
Jet Pxopulsion
Laboratory

..........

...........

li.S. Brown and S. I. Feldman
Bell Laboratories

B. T. Smith

Argonne National

Laboratory

N. L. Schryer

Bell Laboratories

F. D. Crary

Boeing Computer

Services

J 1. Yone
Mathematics

Research Center

J. Boyle

Argonne National

Laboratory

L. Presser

Softool Corp

L. J. Osterweil

University of Colorado

I. Miller
University of California,
Santa Barbara

K. IV.Dritz

Argonne National

Laboratory

E Grosse
Stanford University

S I Feldman

Bell Laboratories

D. Fisher

Institute for

Defense Analysis

P. A Fox

Bell Laboratories

...........

...........

............

............

..........

............

............

............

.......

............

............

T. J. Aird and D. G Kainer
International
Mathematical and
Statistical Library (IMSL)

J. J. Du Croz

Numerical Algorithms

Group (NAG), England

TITLE 	

A "Core + Modules" Approach to
Fortran Standardization

Numerical Precision and Data

Structures

The IfIP lG 2 5 Propcsals on
Fortran

Environmental Parameters and

Basic Functions for Floating-

Point Computation

A Comparison of Two Recent

Approaches to Machine Parameter

ization for Mathematical Software

UNIX as an Environment for

Producing Numerical Software

The Augment Precompiler as a

Tool for the Development of

Special Purpose Arithmetic

Packages

Extending Reliability:

Transformational Tailoring of

Abstract Mathematical Software

Fortran Tools 	

Using Tools for Verification,

Documentation, and Testing

A Case for Toolpack 	

Programmable Formatting of

Program Text: Experiences Drawn

from the TAMPR System

New Languages for Numerical

Software

The Programming Language EFL

The DoD HOLWG Language Project

Design Principles of the PORT

Library

The IMSL Environment for Software

Development

Transportability in Practice -

Recent Experience with the NAG

Library

PAGE

1

3

7

11

15

18

23

27

31

33

38

41

43

47

No

paper

51

54

57

Preceding page blank I

CONTENTS (cont.)

AUTHOR TITLE PAGE

M. Butler Portability and the National 58
- Argonne National

Laboratory
. -EergySbftiare Cb-nte " -

IV.V. Snyder
Jet Propulsion
Laboratory

........... A Transportable System for
Management and Exchange of
Programs and Other Text

61

D Volper
University of

............ Using Pascal for Numerical
Analysis

64

California, San Diego

T. E. Hull
University of Toronto

............ Desirable Floating-Point
Arithmetic and Elementary
Functions for Numerical

67

Computation

IV. M. Kahan
University of
California, Berkeley

............ Specifications for a Proposed
Standard for Floating-Point
Arithmetic

No
paper

T W. Eggers, J. S. Leonard and M. H. Payne Handling of Floating-Point 71
Digital Equipment Corp Exceptions

J R. Rice "Programming Effort" Analysis 72
Purdue University of the ELLPACK Language

K W Fong
Lawrence Livermore

............ Notes from the Second Department
of Energy Library Workshop

75

Laboratory

R E. Jones
Sandia Laboratories Albuquerque

R. B Jones Activities of the Department of 79
Sandia Laboratories Albuquerque Energy Advanced Computing

Committee Language orking Group

Vi

mGINAL PAGE N79=n12716
QF pOOp, QUALITY

A "CORE + MODULES" APPROACH

TO FORTRAN STANDARDIZATION

Walt Brainerd

Los Alamos Scientific Laboratory
Los Alamos; NM 87544

ABSTRACT

The ANSI FORTRAN standards committee X3J3 has

adopted a "core + modules" approach to specifying

the next revision of the standard. The motivation

for and the projected benefits of this approach

are discussed.

In 1978 January, ANSI X3,3 voted to adopt a frame-

work consisting of a "core" and "modules" for

developing the next revision of the ANSI Fortran

standard. Of course, this is a decision which

could be reversed if the approach appears to be

unsuitable or technically unsound after some exper-

imentation. However, the approval of this procedure

is an indication that the committee wants to invest

considerable effort in an attempt to make this ap-

proach work.

There are at least three reasons for adopting

the "core + modules" approach:

1) to provide a mechanism to interface with

collateral standards and implementations in

major applications areas

2) to provide a mechanism for having optional

functional areas described within the stan-

dard

3) to specify a smaller, more elegant, language

than Fortran 77 without decreasing the

status of Fortran 77 as a standard language.

Each of these reasons is now discussed in more

detail.

One of the major concerns of X3J3 is the de

velopment of collateral standards in areas such as
data base management, real time process control,
and graphics. X3J3 does not have the resources to
do the technical development of standards in all of

these areas; in some cases X3J3 may not even be in-

volved directly in the approval of such a standard,

Therefore, it is important that X3J3 provide a

scheme whereby collateral standards in these appli-

cations areas can be regarded as modules in the

language that are "attached" to the core of the

language in a standard way. The only mechanism

considered so far for interfacing with these modules

is through the CALL statement, extended to allow

the arguments to be identified by key words. This

topic is covered in more detail in another paper

and is an area that can use more good ideas, be-

cause it is a very difficult and important problem.

A second kind of extension might be called a

"language feature module." This sort of module

would include a collection of related language

features that might not be appropriate to include

in the core, but which should have its form spec
ified so that all extensions to the core in this
area will be the same. Example candidates for such
modules are array processing, a bit data type, and

specification of numerical precision. Fortran 77

should be considered to be such a module.

It may be quite inappropriate to add some of
these language features to Fortran 77. For example,
it would be rather messy to add a bit data type or
REAL*ll (indicating at least 11 digits of precision)
on top of the Fortran 77 equivalencing mechanism.

For these reasons it is important to design a

core that is sufficiently trim that new language

features can be added in a natural way.

Since Fortran 77 will be one of the modules,

the core need not be constrained to contain all

archaic features of Fortran. One of the design

objectives is to eliminate those features Ce.g.,

the arithmetic IF statement) that are no longer

necessary, due to the addition of better equivalent

features or those features (e.g., storage asso

ciation) that actually stand in the way of adding
features recognized as contributing to high quality

programming practices.

To provide just one example illustrating how

the storage association concept impedes the addition

of useful features, consider the possibility of a

conditional array assignment.

REAL A(90), B(90), C(90), D(90)

A(*) = 0

B(-) = 0

WHERE (A(*) .LT. 2) DO

CC*) = B(*) + 1
END WHERE

If no equivalencing is allowed, the assignment

may be implemented as
DO 9 I = 1, 90

9 IF (ACT) .LT. 2) C(I) = B(I) + I
However, if the program may contain the state

ment
EQUIVALENCE (C(l), B(2))

the loop above will set C(I) = I for I = 1 to 90

instead of setting each element to 1. The imple

mentation will be more complex on most machines.

In 1978 August, X3J3 approved a proposal to

create a first cut at a core language by starting

with Fortran 77 and making the following changes.

Of course, this list is not final, but is given to

provide a flavor of the final result. When reading

the list of changes, it is important to keep in

mind that Fortran 77 will be one of the modules, so

any compiler that contains the Fortran 77 module

will be able to process programs containing any of

the features of Fortran 77.

The following two paragraphs are excerpted

from the X3J3 proposal to indicate some of the ob

jectives of the approach

1

The general philosophy governing this core

design is that the core should be comprehensive,

containing virtually all of the generally useful

features of Fortran and that it should form a

practical, general-purpose programming language.

Modules would be used largely for special-purpose

language features that entail high implementation

costs or are used primarily in special-purpose

application areas. The number of such modules
-should remain small in order to-mjnimize-roblems
of program portability. Three examples might be
(1)a module providing comprehensive array process

ing facilities, (2)one providing data base manage

ment facilities, and (3)one providing features of

Fortran 77, and possibly certain other isolated

special-purpose features, not contained in the core.

Another goal is to produce a more elegant lan

guage by moving redundant features and including

features which lend themselves to modern program

ming practices.

The net effect of these changes is the

following

i)Subroutine linkage facilities are enhanced

to improve the interface with applications

modules written in Fortran.

2) Archaic control structures are replaced
with modern ones.

3) The concept of storage association is re
moved.

4) Fixed-form source is replaced with free
form source.

There are two kinds of changes: features

added to Fortran 77 and features remaining in
Fortran 77 but not included in the core.

To be added

Free-form source

Larger character set

Longer names

Simple data structures

Some array processing

Global data definition

Bit data type

A length (digits) for REAL

Enhanced looping

Case construct

Internal procedures

Subroutine linkage

To be moved to Fortran 77 module

Column 6 continuation
C for comment

EQUIVALENCE

COM4ON and BLOCK DATA
Passing an array element or

substring to a dummy array

Association of ENTRY names

DOUBLE PRECISION

Arithmetic IF

Computed GO TO

Alternate RETURN

ASSIGN and assigned GO TO

Statement functions

ERR = and END = specifiers

H, X, and D edit descriptors

Specific names for antrinsics

2

NUMERICAL PRECISION AND DATA STRUCTURES

Werner 	 Schenk, Xerox Corporation

Rochester, New York

ABSTRACT

Group T9 of the ANSI Fortran

Committee X3J3 has been assigned

to study the areas of numerical

precision, storage and data

structures, with a goal of devel-

oping technical proposals and

recommendations for future re-

visions of the Fortran stan-

dard. Developers and users of

numerical software have proposed

the addition of various functions

to return the base of a computer

system's number representation.

Also desirable are features to

enhance Fortran portability,

such as single and double pre-

cision wbrd lengths, and expo-

nent ranges. Structured types

proposed include arrays, re-

cords, sets and files.

INTRODUCTION

Soon after completing work on

Fortran 77, the X3J3 Committee

began the task of identifying

technical issues to be considered

for future revisions of the

Fortran standard. As a first

approach, the Committee reviewed

all comments which had been re-

ceived during the public review

period of the proposed standard

(Fortran 77), especially all of

the comments which had been

referred to the "future develop-

ment" subcommittee.

This rough list of desirable

features was sorted and cate

gorized, resulting in the current

X3J3 Committee organization of

technical subgroups, such as T9,

to investigate and propose speci

fic changes. For the past year,

group T9 has been gathering in

formation about the issues of

Numerical Precision and Data

Structures.

NUMERICAL PRECISION FEATURES

L. D. Fosdick (1) * addressed

the X3J3 Committee at their

October 1977 meeting proposing a

set of environment parameters and

intrinsic functions to enhance

computations and portability of

numerical software. Since that

time, group T9 has received pro

posals from W. S. Brown and

S. I. Feldman (2) H. P. Zeiger

(3), G. M. Bauer (4) outlining

similar sets of desirable fea

tures. Additionally, group T9

has reviewed the discussions of

B. Ford (5) (6) on transportable

numerical software.

Fosdick's proposed features

address portability, reliability,

and efficiency of the Fortran

language, with an automatic

adjustment to changes in the

environment. Examples cited are

those of IMSL of Houston, Texas,

and NAG of Oxford, England, who

adjust their mathematical soft

ware libraries to a specific

environment by removing coded

records which do not apply to

the environment from the source

file. 	 Environmental parameters

identified include the following:

* Numbers in parenthesis
designate References at end of paper.

3

1. 	 Base of floating

point representa-

tion.

2. 	 Largest positive

real number, expo-

nent and integer,

3. 	 Largest negative

real number, expo-

nent and integer,

4. 	 Number of signifi-

cant digits.

5. 	 Exponent Bias.

Fosdick suggests that these

parameters would be made availa-

ble to a Fortran program with a

set of intrinsic functions pro-

posed by IFIP WG2.5 (EPSLN (a),

INTXP (a), SETXP (a1a2)).

Ford proposes three sets of

parameters to make software trans-

portable and adaptable to an en-

vironment. The arithmetic set,

including the radix (same as

Fosdick's base of a floating

point representation)F the Input/

Output set, defining such en-

tities as the standard units

for input and output; and a mis-

cellaneous set, to define number

of characters per word, page

size, and number of decimal di

gits.

Brown and Feldman present

a language2 independent proposal

for environment parameters and

basic functions for floating-

point computation with specific

representation in terms of gener-

ic functions. Their basic para-

meters include the base, the

precision, the minimum exponent,

and the maximum exponent. To

provide access to precise and

efficient numerical computation

tools, Brown and Feldman suggest

analysis and synthesis functions,

such as exponent (x) and frac

tion x); as well as precision

functions to aid in iterational

computations. Seven generic

and six computational procedures

are suggested, with specific

illustrations of implementation

for Univac 1100, Honeywell 6000,

and Interdata 8/32 systems.

Group T9 expects to soli

cit additional proposals in the

area of numerical precison from

users and designers of numerical

software. It is clear, that the

above authors agree on a certain

set of basic necessary parameters,

although a wide range of nomen

clature and specific function

names have been proposed. With

in the next year, group T9 will

incorporate these suggestions

into position papers and spe

cific Fortran language proposals.

The intent is to maintain close

liaison with groups such as

IFIP WG 2.5 to assure compati

bility with language development

and numerical computation prac

tices.

DATA STRUCTURES

At the August 1978 meeting

of X3J3, M. Freeman conducted a

tutorial on "Data Structures: A

Language Comparison." Feedback

from committee members yielded

the need for a glossary and

definition of terms in this area.

A survey questionnaire has been

designed and will be mailed to

X3J3 participants to reach some

consensus as to the types of

structures which should be con

4

sidered for future Fortran revi-

sions.

R. Oldehoeft and R. Page (7)

have examined PASCAL data types

as a possible model for Fortran.

These types include arrays, re-

cords, sets and files. B. Lampson

hnd others (8) describe the pro-

gramming language EUCLID with its

structures, arrays, records, and

modules. In addition to defining

the types of structures to be in-

cluded in Fortran, group T9 will

develop and propose necessary

functions to operate on structures.

Currently identified operations

include: Read, Write, Assign,

Initialize, and Compare. The

array processing features are a

separate issue being studied by

group T6 of X3J3.

SUMMARY

Group T9 is nearing the con-

clusion of a period of information

gathering. The next phase of

technical work will be-the iden-

tification of common features

which have been proposed for

numerical computation and data

structures, followed by the de-

velopment of Fortran language

proposals for X3J3 committee con

sideration.

ACKNOWLEDGEMENT

The following members of

X3J3 deserve credit for their

participation'in the technical

work of group T9: L. Campbell,

D. Rose, M. Freeman, L. Miller,

and R. Page. In addition,

Mr. Edward Nedimala of Xerox

Corporation, provided valuable

assistance in reviewing the

various technical reports.

REFERENCES

1. L. D. Fosdick, "On

Knowing the arithmetic environ

ment in FORTRAN," A talk pre

sented in con3unction with the

X3J3 meeting, October 3, 1977.

2. W. S. Brown and

S. I. Feldman, "Environment Para

meters and Basic Functions for

Floating-Point Computation,"

Bell Laboratories, Murray Hill,

New Jersey.

3. H. P. Zeiger, Department

of Computer Science, University

of Colorado at Boulder. Letter

to W. Schenk and X3J3, August 1,

1978.

4. G. M. Bauer, "Functions

to Manipulate Floating-Point Data,"

Letter to X3J3, Group T9, August

29, 1978.

5. B. Ford et al, "Three

Proposed Amendments to the Draft

Proposed ANS Fortran Standard,"

FOR-WORD Fortran Development

Newsletter, Vol. 2, No. 4,

October 1976.

6. B. Ford editor, "Para

meterization of the Environment

for Transportable Numerical Soft

ware," SIGPLAN Notices, Vol. 13,

No. 7, July 1978.

7. R. Oldehoeft and R. Page,

"PASCAL data types and data struc

tures," a report presented to

X3J3 at Jackson, Wyoming, August 2,

1978.

5

8. B. W. Lampson et al, "Report
on the Programming Language
Euclid," SIGPLAN Notices, Vol. 12,
No. 2, February 1977.

2

N79-12718

THE IFIP WG 2.5 PROPOSALS ON FORTRAN

Charles L. Lawson

Jet Propulsion Laboratory

Pasadena, California

ABSTRACT

This paper is one of three'to he presented at a

joint meeting of SIGNUM and the ANSI X3J3 Fortran

Committee October 18, 1978, for the purpose of

communicating suggestions arising in the mathemati-

cal 	 software community to the X3J3 Committee. A

summary is given of language problem areas and

possible solutions that have been discussed by the

IFIP Working Group 2.5 on Numerical Software. Also

included are some thoughts on control structures

due 	 to the author.

THE MATHEMATICAL SOFTWARE COMMUNITY has given

serious and continuing attention to portability and

black-box modularity. This is evidenced by the

existance of extensive and widely used libraries

and other systematized collections of portable or

transportable mathematical subprograms which are

ready for use in applications without need for

modification or recompilation.

We feel this approach has had large payoffs in

injecting,good quality subroutines into innumerable

applications programs. There is a great deal of

room for improvement, however, and some of this

improvement could be facilitated by enhancements in

programming languages. Following are three general

concepts that are often among the goals in designing

and programming mathematical software and which

could be better handled with the aid of appropriate

language enhancements.

1. Long argument lists are to be avoided. The
user should not be burdened with declaring,

dimensioning, and assigning variables that

are inessential to his or her functional

concept of the task to be done by the

subprogram.

Portability. Ideally it should be possible

to move the source code to different

machines with no changes. Next best is code
that can be ported by systematic changes
effected by a processor designed for that
purpose. Since a library may involve
hundreds of subprograms, manual changes that
would be acceptable in porting an individual
subprogram do not provide a reliable
approach.

3. 	 A library subprogram should be useable with-

out the need to make changes dependent on

the application. The user has enough

concerns without also being asked to reset

dimensions in a set of library subprograms

and 	 recompile them.

TOPICS IN LANGUAGE ENHANCEMENT CONSIDERED BY WG2.5

The topics listed in this section have been

discussed by WG2.5 [see Appendix A for information

on WG2.5]. Some of these have only been briefly

considered by WG2.5 while others have been the

subject of a substantial amount of effort including

the 	 solicitation of comments via the SIGNUM

Newsletter and the formulation of detailed proposals

for 	 language enhancements. I believe it is fair to

say that the mathematical software community,

including WG2.5, is more concerned that some viable

solutions be worked out for these problem areas than

that any particular suggested solution be adopted.

DOUBLE COMPLEX. There are significant classes

of problems in engineering and science for which

complex numbers provide the most natural and con

venient mode of expression. If it is agreed that a

programming language for scientific computation

must support complex arithmetic, then it should also

provide a choice of precisions for complex arithme

tic for the same reasons that such a choice is

provided for real arithmetic. See Ref [].

ARRAYS OF WORK SPACE IN LIBRARY SUBROUTINES.

Many subroutines in a mathematical library require

one or more arrays of temporary work space of sizes

depending on the problem parameters. Suppose for

example, a library subroutine SUB requires two

temporary integer arrays of length N and one of

length M where N and M are dummy arguments of SUB.

How 	 should this work space be provided to SUBI

One possibility is to include the three arrays

as distinct dummy arguments. This is objectionable

as it leads to long argument lists which, among

other things, can discourage a potential user

considering the use of SUB. When libraries are

modularized so that SUB may call lower level library

subroutines which in turn call others, etc., this

approach can lead to some very long argument lists

since temporary arrays needed only by some lower

level subprogram will appear in the argument lists

of all higher level subprograms.

Use of COMMON storage as specified in Fortran 66
and 77 is not suitable since the lengths of arrays
in COMMON in a set of precompiled library sub
programs cannot adjust to the problem variables
M and N.

A frequently used approach is to require one

array of length 2*N+M as an argument to SUB and then

make use of this array as two arrays of length N

and one of length K. WG2.5 has proposed in some

detail a "MAP" statement, Ref [1], to provide

dynamic renaming of subsets of dummy arrays to

7

facilitate this approach. This capability is also

supported efficiently by the "DEFINE" statement in

Univac Fortran V.

Another approach to this problem could
be through

changes to the concept of COMMON. For example,

there could be two types of COMMON declaration,

primary and secondary. A primary declaration

establishes absolute amounts of storage needed just

as the present COMMON declaration does whereas a

secondary declaration may contain array names with

adjustable dimensions. Each distinct named COMMON

block would have to be declared by a primary decla-

ration in at least one program unit of a complete

executable program but could also be declared by

secondary declarations in other program units.

This concept appears to be convenient and
efficient for sets of library subprograms that are
always used together. It may not be convenient for
a library subprogram that is sometimes called by
other library subprograms and sometimes directly
by users,

Yet another approach would be truely dynamic

arrays that a black-box subroutine could fetch from

and release to the operating system as needed,

CALLS FROM A LIBRARY SUBPROGRAM TO USER CODE.

Certain mathematical subprograms require access to

user-provided problem-dependent code. For example,

a subprogram for numerical integration (quadrature)
requresaccsso te uer'scod fo evluaion
requires access to the user's code for evaluation

of the integrand. Analagous situations arise with

library subprograms for differential equations,

nonlinear equations, optimization, sparse matrix

algorithms, etc.

The approach supported by Fortran and most other

languages would be typified by a user main program

MAIN calling a library subprogram, say QUAD, which

in turn calls a user-coded function evaluation

subprogram FUNG.

It is not uncommon that a need arises for a

direct data path between MAIN to FUNO. For example,

one may need to integrate a number of functions, in

which case quantities which are input or computed

FONG to select

by MAIN need to be communicated

to

or parameterize the function to be computed.

In Fortran this can be handled by inserting a

The user is then
COMMON block in MAIN and FUNC.

required to write a number of things twice - the

COMMON statements and possibly some type and

dimension statements.
 This double writing and

maintenance could be alleviated, however, if an

INCLUDE feature were available.

An alternative approach sometimes called

"reverse communication" has been used in some

library software. In this approach there is no

separate FUNC subprogram. The code that would

have been in FUNC is in MAIN. When QUAD needs a

havcben inalN iseadin Mai n UAD nte s

function value instead of calling FLING it returns

to cause MAIN

to MAIN with a branching index set

to branch to the function evaluation code and then

call QUAD again. In this approach the user needs

to write and maintain only one program unit, MAIN,

instead of two, MAIN and FUNG. Furthermore, there

is no need for COMMON to establish a data path

between the main driver and the function evaluation

code.

Reverse communication can be confusing to a user

and may involve more linkage overhead since it will

involve just one call to QUAD and many calls to FUNG.
Generally, FUNG would be a simpler code than QUAD in
ways that might cause its linkage overhead to be
less.

If internal procedures are added to Fortran, as

for instance was done in Univac Fortran V, then FUNO

could be written as an internal procedure within

MAIN and one could have the more easily understood

structure of QUAD calling FUNG and still have only

one program unit for the user to write and maintain,

and have data accessible to the driver and FUNC.

To support this usage it must be possible to pass

the name of the internal procedure FUNC to QUAD in

the call from MAIN so that QUAD can call FUNG.

DECOMOSITION AND SYNTHESIS OF FLOATING-POINT

NUMBERS. There are situations in which it is

desirable to decompose a floating-point number into

its exponent and mantissa parts or conversely to

construct a floating-point number from these two

parts. One application would be the scaling of a

vector by an exact power of the machine's radix in

order to avoid introducing rounding errors in the

scaling operation. Another application would be in

writing portable subprograms for certain special

functions such as SQRT, EXP, and LOG.

Let b denote the radix of the system used to

rernThloati non numberon a pricul

computer. Then each nonzero number x, representable
on this computer, can be associated uniquely with a
pair of numbers (e,f) by the requirement that

x fbe, b- Iflt<l, and e is an integer.

WG2.5 has suggested the following two functions

1. Integer exponent: INTXP(x)

This function returns the integer value e if

x#O and x is associated with the pair (e,f).

The result is undefined if x"O.

2. Set exponent: SETXP(x,N)

If x=O the result is zero. If x0O and x is

associated with the pair (e,f) then the result

N
fbNvalue

overflow. otherwise the result is undefined.
or

As examples of usage, suppose x#O and x is associated
with the pair (e,f). Then e and f can be obtainedby:

INTEGER a
e = INTXP(x)

f = SETXP(xO)

and x can be constructed from e and f by

x = SETXP(f,e)

The machine radix b can be obtained by

b = SETXP(l.0,2)

It is further proposed that these functions be

generic to deal with both single and double precision

floating-point numbers.

ENVIRONMENT PARAMETERS. One of the key

hinderances to portability in Fortran has been the

need to include machine dependent parameters in

programs. For example, after strenuous effort to

achieve portability in the EISPACK eigenvalue codes,

it remained that a number representing the arithmetic

precision needed to be reset in certain subroutines

to adjust the code to different machines.

A quite thorough discussion of this problem with

reasonable approaches to its resolution was given

8

by Redish and Ward Ref [2] in 1971. Redish and Ward

noted that the problem had previously been discussed

by Naur Ref [3] in 1964

The approach to defining and naming the set of

environment parameters used in the IISL library was

reported in Aird et al Ref [4]. This paper stimu-

lated an ad-hoc meeting on the subject by T. Aird,

G. Byrne, B. Ford, and F. Krogh during a SIGNUM

conference in Pasadena, Nov 9, 1974 Ref [5]. The

draft produced by this ad-hoc meeting was used as

a working paper at the first meeting of WG2.5 i

January, 1975, and after further exposure and

discussion, particularly at the Oak Brook Porta-

bility meeting, June 1976, evolved to the paper

approved by WG2.5 and the parent IIP Committee TC2

and published in Ref [6] and elsewhere.

This paper proposed definitions and names for

three clases of quantities as follows:

Arithmetic Set

Radix, mantissa length, relative precision,

overflow threshold, underflow threshold,

and symmetric range.

Input-Output Set

Standard input unit, standard output unit,

standard error message unit, number of

characters per standard inputrecord, and

number of characters per standard output

record,

Miscellaneous Set

Number of characters per word, size of a

"page" in a virtual storage system, and

number of decimal digits useful to the

compiler in numeric constants.

PRECISION FUNCTION. WG2.5 has proposed a

function to be used to determine the resolution of

a computer's number system in the vicinity of a

given floating-point number. The set P of all real

numbers that can be represented as valid floating-

point numbers of a particular precision, e.g.,

single precision, in storage in a given computer

forms a linearly ordered set. Let a denote the

underflow threshold, i.e , the smallest positive

real number such that both G and -o are members of

P. The proposed precision function is EPSLN(x)

whose value is maxfx-x',x"-x,a}
where v

='Ther one.x' hepedecessor of x in P if there is on.

x if x is the least member of P.

and
"The successor of x in P if there is one.

= x if x is the greatest member of P.

OPTIONAL ARGUMENTS FOR SUBPROGRAMS. For some
mathematical subprograms it is desirable to provide
the userwith the choice of a simple calling sequence
with a minimal number of parameters or a longer
calling sequence giving the user more detailed
control of the subprogram This is presently ac
complished by providing different "front-end" sub
programs or by "option-vectors" which are arrays in
the calling sequence the elements of which
essentially play the role of arguments in a variable
length or keyworded calling sequence.

The concept of keyworded calling sequences

currently being considered by X3J3 may be a very

useful mechanism for this situation.

VIEWS OF THE AUTHOR ON CONTROL STRUCTURES

For the purpose of this discussion "structured

programing" will be defined to mean programming

using some specified set of control structures

designed to encourage and support the production of

programs whose control logic has a high degree of

human comprehensibility. The author's opinions on

structured programming are strongly influenced by

his use of JPL's structured Fortran preprocessor

SFTRAN, Ref [7], over the past three years.

Since human comprehension of a program listing

is a major goal of structured programming, the

format of a listing and the suitability of the

control structures for being formatted in a

rational way are important issues.

*
* * * Suggestion 1: Each control structure should *

* have explicit beginning and ending statements.,
*

For example, the IF(p)THEN and ENDIF play these

roles for the structured IF of Fortran 77 and of

SFTRAN. In contrast, there is no explicit ending

statement for the IF of ALGOL 60 or PASCAL and this

leads to the necessity of special nonintuitive

rules to match ELSE's with the correct IF's in

cases of nested IF's. Furthermore, the lack of an

explicit ending statement for the WHILE in PASCAL,

and the presence of one (the UNTIL) for the REPEAT,

leads to the peculularity that the segment of code

controlled by the WHILE is a simple statement or a

BEGIN-END block, whereas the code controlled by the

REPEAT is a sequence of statements.

The presence of explicit beginning and ending

statements also suggests a natural rule for

indenting listings: The explicit beginning and

ending statements of the same structure are listed

at the same indentation level. Lines between

these two statements are further indented with the

exception of certain secondary keyword lines, such

as ELSE, that are listed at the same level as the

associated beginning and ending statements.

.*...*** ******** ****
*

Suggestion 2: A compiler for structured *

* Fortran should be required to produce a * .cononically indented listing.

* *
 i listing.

The problem of a syntax for special exits from

structures has appeared in minutes of recent X3J3

meetings. The troublesome case of a special exit

from a looping structure that is to skip past some

code that follows the exited structure can be

represented as an exit from an enclosing structure.

In order to be able to place an enclosing structure

where it is needed to serve this purpose, it is

useful to have an essentially null structure such

as DO BLOCK ... END BLOCK.

9

As an example consider:

DO BLOCK

DO FOR I = Nl,N2

f

IF~p) EXIT BLOCK

g

END FOR

h

END BLOCK

It seems very likely that a programmer having a

general acquaintance with control structures would

correctly guess the control flow of this example,

corectaly gues the codntoflw othisn,e6. h

especially with the indentation as shown, which

should always be supplied by the compiler.

I do not feel that this quality of self-evident

semantics is shared by alternative approaches that

have appeared in recent X3J3 minutes and use a

single, but more complicated, control structure to

express what has been represented in this example

by a nesting of two elementary control structures.

An unconditional looping structure permitting

one or more exits from anywhere in the loop is

desirable. With such a structure one could do with-

out special looping structures for the cases of

testing at the begning or testing at the end,

however, I think these special cases occur so

frequently that special structures should be

provided for them.

When keywords are selected, I hope real words

will be used rather than reversed words as in

ALGOL68.

ACKNOWLEDGEMENTS

The account in this paper of language problem

areas discussed by WG2.5 was greatly aided bj WG2.5

working papers written by J. Reid and 1G2.5 minutes

written by S. Hague and B. Ford. The present paper

is solely the responsibility of the author. It has

not been reviewed before publication by other

members of WG2.5 and nothing in it should be quoted

solely on the authority of this paper as being the

view of WG2.5.

Other speakers at this SIGNUM meeting, W. S.

Brown, B. T. Smith, and T. E. Hull, will also be

presenting material that has been discussed by

WG2.5.

This paper presents the results of one phase of

research carried out at the Jet Propulsion

Laboratory, California Institute of Technology,

under contract No. NAS 7-100, sponsored by the

National Aeronautics and Space Administration.

REFERENCES

1. Ford, B., Reid, J., and Smith, B., Three

Proposed Amendments to the Draft Proposed ANS FORTRAN

Standard, SIGNUM Newsletter, 12, No. 1, (1977),

pp 18-20.

i Redish, K. A., and-Ward, -W., Environment

Enquiries for Numerical Analysis, SIGNUM Newsletter,

6, No. 1, (1971), pp 10-15.

3. Naur, P., Proposals for a new language,

Algol Bulletin, 18, (Oct. 1964), pp 26-31.

4. Aird, T. J., et al, Name Standardization

and Value Specification for Machine Dependent

Constants, SINUM Newsletter, 9, No. 4, (1974),

pp 11-13.

5. Editorial, SIGNUM Newsletter, 10, No. 1,

(1975), p 2.

Ford, B., Parameterlation for the Environ

ment for Transportable Numerical Software, ACM TOMS,

4, No. 2, June, 1978, pp 100-103.

7. Flynn, J. A , and Carr, G. P., User's Guide

to SFTRAN II, JPL Internal Document 1846-79, Rev A,

October, 1976.

APPENDIX A

The IFIP Working Group 2.5 on Numerical Software

currently consists of sixteen people as follows:

E. L. Battiste, W. S. Brown, L. D. Fosdick,

C. W. Gear, C. L. Lawson, J. C. T. Pool, J. R. Race,

and B. T. Smith of the U.S.A., and T. J. Dekker,

The Netherlands; B. Einarsson, Sweden; B. Ford,

U.K.; T. E. Hull, Canada; J. K. Reid, U.K.;

C. H. Reinsch, West Germany, H. J. Stetter, Austria,

and N. N. Yanenko, U.S.S.R. The group has met at

approximately one year intervals since its initial

meeting in January, 1975.

10

N79-12719

Environment Parameters and Basic Functions for Floating-Point

Computation

W S Brown and S I Feldman

Bell Laboratories

Murray Hill, New Jersey 07974

1. 	 Introduction
This paper presents a language-independent proposal for environment parameters and

basic functions for floating-point computation, and suggests a specific representation in terms of
generic functions for Fortran 77. The environment parameters were originally introduced in
1967 by Forsythe and Moler [1], who attributed the essentials of their theory to Wilkinson [2].
These parameters are also used in the PORT mathematical subroutine library [3], with precise
definitions in terms of a more recent model of floating-point computation [4], and a similar set
has been proposed by the IFIP Working on Numerical Software [51 Three of the basic func
tions are taken from a proposal by Ford, Reid, and Smith [61, but redefined in terms of the
parameters and the model to provide a firm theoretical foundation. The other three basic func
tions can be expressed in terms of these, but we feel they should be provided separately for
convenience

The stated purpose of the model is to capture the fundamental concepts of floating-point
computation in a small set of parameters and a small set of axioms In this paper we extend
the earlier work by proposing basic functions to analyze, synthesize, and scale floating-point
numbers, and to provide sharp measures of roundoff error.

Using the proposed parameters and functions, one can write portable and robust codes
that deal intimately with the floating-point representation Subject to underfiow and overflow
constraints, one can scale a number by a power of the floating-point radix inexpensively and
without loss of precision. Similarly, one can take an approximate logarithm of a floating-point
number very cheaply by extracting the exponent field, and one can readily implement algo
rithms (e.g., those for logarithmic, exponential, and nth root functions) that operate separately
on the exponent and fraction-part. The convergence of iterations is extremely important in
numerical computation While one often wants to relate the termination conditions to the accu
racy of the host computer, it is essential to avoid demanding more accuracy than the computer
can provide Although a termination criterion can be formulated in terms of the environment
parameters alone, it may be desirable to use the roundoff-measuring functions for finer control,
especially when the floating-point radix is greater than 2.

We view it as essential to provide mechanisms for accomplishing these goals in any
language that is used for scientific computing Ideally, to facilitate translations from one
language to another, these mechanisms ought to be provided m a similar manner m all such
languages Therefore, we present our proposal in a language-independent form, beforeosuggest
ing a specific representation for Fortran

2. 	 Environment Parameters

In this section we present the environment parameters of the model, and review other key
properties First, for any given real number x 0, we define the (integer) exponent, e, and the
(real) fraction-part,f relative to a specified (integer) base b > 2, so that

11

x = fbe

b- < IfI < 1. (1)

Next, we introduce the parameters of the model - four basic integer parameters and three
derived real parameters3 all constants for a given floating-point nuiber system. If a computer
supports two or more such systems (e.g., single- and double-precision), then each has its own
parameters. The basic parameters are

1 The base, b > 2.

2. The precision,p >2

3. The minimum exponent, emn<O.

4. The maximum exponent, emax >0.

These must be chosen so that zero and all numbers with exponents in the range

emIn < e < emax (2)

and fraction-parts of the form

f =±(f 1 b- 1 + - + fvb-P)

f= 1. b-I

f, =0. b-, =2. p (3)

are possible values for floating-point variables. These model numbers are a subset of all the
machine numbers that can occur in floating-point computation.

Returning to (1), it is evident that the model numbers with a given exponent e are
-equally spaced, a change in f of one unit in the last place implies a change in x of be P. It fol

lows that the maximum relativespacing is
-
e = b1 (4)

Also of interest are the smallest positive model number

a" = be' (5)

and the iargest model number

X= bem.(1-b-P). (6)

From the point of view of the model, the integer parameters b, p, emm, and e.ax are funda
mental, a practical programmer is more likely to want the real parameters o-, X, and e

3. Analysis and Synthesis Functions
As noted in Section 1, it is often necessary in numerical computation to scale a number

by a power of the base, to break a number into its exponent and fraction-part, or to synthesize
a number from these constituents. To provide convenient access to precise and efficient ver
sions of these operations, we propose the following functions

exponent(x) returns the exponent of x, represented as an integer; if x=O, the result is
undefined

12

fraction (x) returns the fraction-part of x; if x=0, the result is 0

synthesize (x,e) returns fraction(x) be if possible, otherwise the result is undefined

scale(x,e) returns xbe if possible, otherwise the result is undefined However, if
0< IxbeI<G., then any numerical result must be in the interval [0,o-] if x > 0
or in the interval [-o-,0] if x < 0

4. 	 Precision Functions
To attain sharp control over the termination of an iteration, one needs to know-the abso

lute or relative spacing of model numbers in the vicinity of a given number x If x = fbi, we
have already shown (see Section 2) that the absolute spacing is be-P , and it follows that the
relative spacing is b-P/ If I Unfortunately, if Ix I < o-/e = be'mn+p - 2 , then the absolute spacing
is less than a-, and hence too small to be represented in the model. This suggests defining the
absolute-spacingfunction

-Jbe , if IxI > oE
(X)= O, if IxI < E (7)

and the relative-spacingfunction

b-P/If[, if x 0,
p(x) = [undefined, if x=0 (8)

Instead of including p (x) in the basic set, we favor the reciprocal-relative-spacingfunction

P(x) 	 = 1lp(x) = If ibp , 	 (9)

because its definition is simpler, its evaluation is faster and involves no roundoff, and it is more
often wanted.

5. 	 Implementability
Each of the seven environment parameters is a well defined constant for any given

floating-point number system. Although it may be convenient to express these parameters as
functions (see Section 6), the compiler should substitute the correct values rather than produc
ing code to fetch them at run-time

Each of the six basic functions is simple enough to permit a short in-line implementation
on most machines. Furthermore, the definitions are meaningful for all real x, except that
exponent (0) is undefined Finally, each function can be evaluated without error whether or not
x is a model number, provided only that the result is representable; however, if x is initially in
an extra-long register, it may be rounded or chopped before the computation begins.

6. 	 Fortran Representation
In all of the above, we have carefully ignored the distinction between single- and double

precision numbers. The Standard Fortran language specifically has floating-point variables of
these two precisions; some compilers recognize a third. There is talk of adding a mechanism to
Fortran to permit specifying the number of digits of accuracy, rather than the number of
machine words To avoid difficulties in this area, we propose using generic functions, for which
the compiler chooses the operation to be performed and/or the type of the result from the type
of the first argument Like the conversion functions in Fortran 77, the proposed functions
need not have specific names for the different types. The only restriction on such generic func
tions isthat they cannot be passed as actual arguments.

The following seven generic functions (m which the prefix "EP" stands for "Environ
ment Parameter") would provide the necessary parameters

13

EPBASE(X) = b
EPPREC(X) = p
EPEMIN(X) = eran
EPEMAX(X) - emax
EPTINY(X) -
EPHUGE(X) = X
EPMRSP(X) =

The first four of these functions return integers related to the precision of X. The last three
return floating-point values with the same precision as X. The functions EPBASE, EPPREC,
and EPtHUGEshould also be defined for integer arguments; an appropriate model of integer
computation is outlined in [31

For the six computational procedures, we suggest

FPABSP(X) = a(X)
FPRRSP(X) = P3(X)
FPEXPN(X) = exponent (X)
FPFRAC (X) = fraction X)
FPMAKE(X,E) - fraction (X)b E

E

-Xb
FPSCAL(X,E)

where the prefix "FP" stands for "Floating Point". FPEXPN returns the (integer) exponent
of X, the other five functions return floating-point values with the same precision as X

7. 	 Acknowledgments
We thank R H. B othur for his assistance with the Univac codes in the appendix We also

thank the participants in stimulating discussions at the Los Alamos Portability Workshop (Los
Alamos, New Mexico, May 1976), the Argonne National Laboratory Workshop on the Portabil
ity of Numerical Software (Oak Brook, Illinois, June 1976), the Mathematics Research Center
Symposium on Mathematical Software (Madison, Wisconsin, March 1977), and two meetings
of the IFIP Working Group 6n Numerical Software Finally, we are indebted to numerous col
leagues at Bell Laboratories for helpful comments on several earlier drafts

References
1. 	 G. E Forsythe and C 'B Moler, Computer Solution of Linear Algebraic Systems, p 87,

Prentice-Hall, Englewood Cliffs, N.J, 1967.

2. 	 J. H. Wilkinson, Rounding Errors in Algebraic Processes,Prentice-Hali, Englewood Cliffs,
NJ, 1963.

3. 	 P. A. Fox, A. D Hall, and N L Schryer, "The PORT Mathematical Subroutine
Library," ACM Transactionson MathematicalSoftware 4, pp 104-126, June 1978

4 *W S Brown, "A Realistic Model of Floating-Point Computation," MathematicalSoftware
III,ed John R Pice, pp 343-360, Academic Press, New York, 1977

5 	 Brian Ford, "Parametrisation of the Environmentfor Transportable Numencal Software,"
ACM Transactionson MathematicalSoftware 4, pp 100-103, June 1978.

6. 	 B Ford, J. K Reid, and B T. Smith, "Three Proposed Amendments to the Draft Pro
posed ANS Fortran Standard," ACM SIGNUM Newsletter 12, pp 18-20, March 1977.

14

P20

A Comparison of Two Recent Approaches to Machine

Parameterization for Mathematical Software N 79 wJ1 W
Brian T. Smith*, Applied Mathematics Division

Argonne National Laboratory
Argonne, Illinois, U.S A.

INTRODUCTION relative precision parameter.

Recently, there have been published two different At first sight, the latter parameters seem to be
proposals for expressing the dependence of numerical simply related to the former set, however, such
software on the environment. One proposal, which is relations are not machine independent in general.
essentially described in two papers [1,2] **
characterizes the dependence of the software on the To complement this set of parameters, three
machine architecture essentially in terms of the functions were defined which permitted access to the
representation of floating point entities in the size and representation of any floating point
machine. The second, more recent proposal, number. Briefly, one function determined the
described in [3] characterizes the dependence of the integer exponent of an entity X, when expressed in a
software on the environment in terms of models both standard exponent-fraction form, another determined
of the floating point numbers and of the behavior of a number that was small relative to X (that is, the
the arithmetic unit of the machine, largest positive number X which could be considered

negligible when involved with X in additive
The purpose of this paper is to expose and operations), and a third function formed a floating

clarify the differences and similarities between point entity from an integer exponent and another
these two approaches. It is the author's opinion entity containing the fractional part,
that the two approaches interpreted in their
strictest sense serve two distinct purposes. When The above definitions were designed to make the
each is interpreted imprecisely, their roles parameterization of the environment dependent as
overlap, much as possible on the representation of floating

point entities. This is not strictly adhered to in
In order that the comparisons briefly discussed terms of the detailed definitions in at least two

below are fully understood, we need to briefly instances. The relative precision parameter and the
summarize the separate approaches Since our negligible number function are defined in terms of
interest here is in the parameterization of the the additive operations and so depend on the
numerical aspects of the environment, the non- arithmetic unit This anomoly could be avoided by
numerical parameters discussed in [l] and the defining these items in terms of the number of radix
considerations of implementation discussed in [2,3] digits in the representation. The second instance
will not be considered here where a defintion was not tied to the representatron of

entities is that the integer exponent functi6n is
PARAMETERIZATION IN TERMS OF THE defined in terms of a canonical exponent-fraction
REPRESENTATION representation of numbers instead of the

representation of the machine. This was done for
In [1], there is described and defined a collection uniformity of the returned result on different

of parameters which characterizes the set of all machines for the same numbers and at the same time
floating point numbers in terms of their permits floating point numbers to be decomposed and
representations on current machines. The assumption synthesized without the introduction of rounding
underlying this characterization, which is not errors
explicitly stated, is that all machines use a
positional notation with a fixed radix and fixed One goal of the above approach was to define the
length to represent floating point entities Thus, parameters and functions basically in terms of the
quantities such as the radix of the representation, representation. As the above discussion
the number of radix digits in the significand, the illustrates, such definitions may cofflict with
smallest and largest positive numbers in the set of other important considerations such as portability,
floating point numbers (denoted "representable" and here the definition of. the exponent-fraction
numbers) such that both the number and its negation manipulation functions was modified to satisfy the
are representable, are defined. These parameters, more important consideration of portability.
then, characterize the salient properties of the
representable floating point numbers. This goal may also conflict with the desire to

obtain suitable and precise definitions for all
Other parameters are included which have more hardware. A case in point is the definition of the

relevance to preparing mathematical software. For relative precision parameter where the definition
example, the relative precision parameter, known in given in [1] breaks down on unusual hardware. This
various papers as MACHEP, is defined so that it can parameter is defined in [1] as the smallest number
be used to determine negligible numbers compared to e such that for the computed and stored quantities
one in additive operations. Another such parameter 1-e and 1+e,l-e<1<1+e. This definition is not
is the symmetric range parameter which is the
largest positive representable number such that its *Work performed under the auspices of the U.S
negation, its reciprocal, and its negative Department of Energy.
reciprocal each can be approximated by a "Numbers in brackets designate references at the
representable number within a relative error of the end of the abstract.

15

suitable for a machine with a large number of guard
digits whose rounding strategy is to round to the
nearest odd significand. The resulting e for such a
machine is not suitable for the relative precision
parameter as it cannot be used to measure negligible
numbers in additive operations with numbers near 1
as well as 1 itself. One other common definition
for e is the radix raised to a power of 1 minus the
number of radix digits in the representation but
this is-not-completely satisfactory for-processors
that perform proper rounding.

Consequently, we see a major disadvantage with
this approach in constraining the definitions of the
parameter and functions to the representation of
floating point numbers. It appears to be very
difficult to define the parameters in a portable yet
reliable manner for all machines. For this approach
to be workable as an implemented feature in a
language, the definitions may need to be adjusted to
each environment to satisfy the intent of the
original definitions

These difficulties with this approach lead one
naturally to the second approach [2]. Rather than
treating directly the diverse computing
environments, it might be better to define a model
of a computer, and then state the definitions of the
parameters and functions in terms of the model.

THE MODEL APPROACH

Recently in [2), Brown et al describe a
characterization of the environment in terms of a
parameterized model of the floating point number
system and arithmetic unit. The model characterizes
the representation of floating point numbers in a
signed magnitude notation in terms of 4 parameters,
and specifies the behavior of the arithmetic unit in
terms of a small number of axioms. Numbers
representable within the model are called model
numbers; the model numbers for a specific machine
may be a proper subset of the machine representable
numbers, The parameters which characterize a
particular environment are defined in terms of the
specific values of the 4 parameters which determine
the particular model. The environment functions
which manipulate floating point entities are also
defined in terms of the specific values of the 4
parameters.

The four parameters of the general model are: 1)
the radix of the model numbers, 2) the effective
number of base radix digits; 3) the maximum exponent
for model numbers, and 4) the minimum exponent for
model numbers. The environment parameters include
these four parameters plus three others; 1) a large
positive number near the overflow threshold, set
equal to the radix raised to the power of the
maximum exponent minus 1;2) a small positive number
near the underflow threshold, set equal to the radix
raised to the minimum exponent, and 3) a number
considered negligible when compared to 1, set equal
to the radix raised to the effective number of base
radix digits in the model minus 1.

The three basic analysis and synthesis functions
are: 1) a function to extract the exponent of a
floating point entity interpreted as a number within
the model, 2) a function to extract the fraction of
a floating point entity interpreted as a number
within the model, and 3) a function to form a
floating point entity from an integer exponent and

the fractional part of a given floating point
entity. Also, two basic precision functions are
defined: 1) a function to determine the maximum
absolute spacing in the model near a given floating
point entity, 2) a function to determine the
reciprocal of the maximum relative spacing in the
model near a given floating point entity.

The key to understanding the approach is the
speciflcation if the effective number of base radix
digits. The choice of this parameter is determined
by the behaviour of the arithmetic unit. The idea is
to penalize the specific model of the machine by
reducing this number until a specified set of axioms
and conditions characterizing the behavior of the
arithmetic unit are all satisfied.

This approach now has three major advantages over
the earlier approach. First, the definitions of the
environment parameters are in terms of the general
model and so can provide clean unambiguous
definitions. Second, the intended use of the
parameters can be specified clearly in terms of the
model. And third, statements that specify the
behavior of the software in terms of the model can
conceivably be proven by relying on the axioms
characterizing the model's arithmetic.

But it is just these axioms that make the model
approach very difficult to use in practice. The
difficulty comes in determining the effective number
of radix digits. To be sure of your choice, one
must carefully and thoroughly analyze the algorithms
which implement the arithmetic operations on a
specific machine. With straightforward arithmetic
units, such verification is tedious but possible.
With the more unusual arithmetic units, such
verification can be very difficult indeed.

USES OF EACH APPROACH

We have referred to some of the advantages and
disadvantages of each approach in terms of the ease
with which the parameters and functions are defined
In this section, we compare the uses of each
approach.

In the first approach, the intent of the
definitions is to constrain the parameters and
functions to be dependent on the representation of
the floating point numbers alone. None of the
parameters (except for convenience and ease of
definition) depend critically upon the behavior of
the arithmetic unit. Consequently, the
characterization of the machine environment using
the first approach is most appropriate where the
dependence of the software on the environment is in
terms of the representation.

The second approach, on the other hand, applies
to situations where the dependence of the software
on the environment involves the behavior of the
arithmetic unit. For example, algorithms that
depend upon the size of rounding errors in each
operation can thus be written in terms of the model
parameters, thereby yielding reliable portable
software Also, as the model guarantees a regular
and controllable behavior for the arithmetic
operations as specified by the axioms, and the
precision functions as well, algorithms can more
readily be analyzed and may be proven correct within
the model.

16

Because of the manner in which the effective
number of base radix digits is determined, the model
is deteriorated by the least accurate arithmetic
operation. Thus, a specific program which does not
use such imprecise arithmetic operations may be
unduly penalized.

Whereas the parameters and functions for the
first approach are determined in general by the
representation alone, some of the functions defined
in the second approach are determined by both the
model and the representation. For example, the
function (x) returns the fraction
determined by the model but is as precise as the
machine; that is, the returned fraction may not be
the fraction of any model number. The maximum
absolute spacing function returns a number that is
determined by the model alone and not the
representation of the argument The maximum
relative spacing, on the other hand, may return a
number that is not a model number. Consequently,
the algorithms that use the precision functions must
be analyzed in terms of the possibly less precise
model rather than the precision of the machine,
despite the fact that the precision functions seem
to address the representation of floating point
entities on the machine.

CONCLUSION

Upon considering the two approaches to
parameterization of the environment for floating
point computation, there emerges two distinct uses
for environment parameters. On one hand, the
parameterization permits machine wide analysis of
the algorithms, and on the other hand, permits
machine wide control and formulation of algorithms
for numerical software.

In the past, we have performed the analysis under
the assumption that our algorithms would be executed
on a well-behaved hypothetical arithmetic unit that
satisfied some straightforward and useful axioms for
floating point arithmetic. When implementing such
algorithms, we had two choices, either machine
constants were suitably adjusted where the constants
were critical for the reliable behavior of the
software so that the resulting software was safe, or
machine constants were used directly where there was
no danger of producing incorrect or misleading
results.

Ideally, we are striving for a machine
environment that makes this final choice

unnecessary. Such an ideal requires the general
availability of the perfect hardware. However, it
is not clear that the perfect hardware is forthcoming
in the near future. Thus, it seems inappropriate at
this time to implement one parameterization of the
environment to the exclusion of the other.
Possibly, the two approaches can be merged so that
we can have the best of both approaches.

REFERENCES

Ford, B., "Parameterization of the Environment for
Transportable Software," ACM TOMS 4, June 1978.

Ford, B., Reid, J.K., Smith, B.T ., "Three Proposed
Amendments to the Draft Proposed ANS Fortran
Standard," ACM SIGNUM Newsletter 12, pp. 18-20
March, 1977.

Brown, W.S., Feldman, S 1., "Environment
Parameters and Basic Functions for Floating-Point
Computation," June 1978, private communication, also
presented at ACM/SIGNUM Conference on The
Programming Environment for Development of
Numerical Software

17

UNIX as an Environment for Producing Numerical Software

N. L. Schryer
Be Laboratories

Murray Hill, New Jersey 07974

1. Introduction
The UNIXoperating system [1] supports a number of software tools which, when viewed

as a whole, are an unusually powerful aid to programming.
The 	 design, implementation, documentation and maintenance of a portable FORTRAN

test of the floating-point arithmetic unit of a computer is used to illustrate these tools at work
The result of this effort was a program created automatically from the paper describing the test.
Thus, only the documentation had to be written, the program was automatically produced from
it Also, changes in the document (debugging) were automatically reflected in the program.

The second section briefly describes the UNIX tools to be used The third section out
lines 	 the basic problem and the fourth section shows how the tools can help solve the problem.

2. 	 Tools

This section lists and briefly describes the UNIX tools to be used

EQN - A mathematical equation-setting language [2].
When y6u want to say a, you simply type a sub ij sup k A general rule of thumb for

EQN is that you type at it the words you would use-in describing the object to a friend on the
telephone The output of EQN is TROFF

TROFF- A phototypesetting language 11,pp2115-21351

This processor lays out text according to user given commands and built-rn rules.
 For

example, the subheading for this paragraph was produced by typing

.SH
TROFF-
A phototypesetting language

where the SH command tells TROFF to underline the following input lines. TROFF also left
and right justifies the text on the page, does hyphenation, and generally produces a tidy docu
ment from free-form input This paper is an example of its output.

EFL - A FORTRAN pre-processor language 141.
This pre-processor has an Algol-like input syntax, portable FORTRAN [31 as output, and

provides a language of considerable power and elegance It has the usual control-flow construc
tions (IF ELSE .. , WHILE, FOR, etc.), as well as data structures and a macro facility. A
useful feature of EFL is the ability to take input while inside one program file from another file
during compilation, via the INCLUDE statement.

MAKE 151
A UNIX command which makes sure that if A and B are two files, and B can be derived

from A by a command sequence, then that command sequence is executed if and only if the
date of A is later than the date of B Thus, MAKE is often used to keep object libranes up to
*UNIX is a trademark of Bell Laboratories.

18

N79-12721

date with respect to their source code

ED - The UNIX text editor 11, pp2115-21351

For example, the ED command

g/b sup [-]*/s/b sup \(P]*\)/Bl)/g
(don't worry, its easier to type than to read one of these!) changes all occurrences of b sup
String into B(String), where String is any string of non-blank characters

SHELL - The UNIX command interpreter [1, pp1971-19901
Each process on UNIX has a standard input and a standard output These standard i/o

"devices" may be files, teletypes, or even other processes Thus, for example, the editor ED
may take its editing commands from a file (script) Also, the output from one process may be
input directly to another process This connection is called a "pipe" and is denoted by a "I'. A
typical use of a pipe is to create a document with the aid of EQN and TROFF, as m

EQN files ITROFF
where EQN produces TROFF input which is then shipped directly to TROFF to make the docu
ment.

3. 	 The Problem
As part of the installation of the PORT library [6] it is necessary that the PORT machine

parameterization be dynamically correct That is, it is not enough to simply read the owners
manual for the host machine and conclude that it has a base-2 floating-point architecture with
48 bits in the mantissa The manner in which the the floating-point arithmetic units operate on
their data must also be taken into account. For example, if the result of a+b is only good to
24 bits in some cases, many algorithms aren't going to behave well if they believe that a round
ing error is 2-48

In order to test the accuracy of the floating-point arithmetic unit of a computer, we chose
to compute

x op y

where x and y are one of

be (b 1+b) 1)

-
be 	 b J 	 2)
J-1

0 	 3)
i

be (b-I) tb- 4)
J-i

-'+ b
be (b-1) (b ') 	 5)

and op is any of +,-, *and I The test basically consists of finding the analytically correct
value of x op y and companng it to what the machine gets for fl (x op y)

The fly in this ointment is that the exact result of x op y must be found Take, for
example, the product of two elements of pattern 1), denoted as 1)1) We desire a bRM
representation for the result The exponent of the result is trivial to compute The mantissa of
the result can be rather simply computed as in

--(b-lb) . (b-+b 2) b-'(b-lwb-'1+b-,2+b-01+i2-1))

This 	 may be put into normalized form as follows

19

If (b=2 & il=2 & i2= 1)
-

I b(b-l'+b
4) }

Else # No piling up
I b-1 (b-l+b-'1+b-t2+b-('1+,2-1))}

This 	 is a rather simple example since most x op y derivations run from 6 to 8 TROFF output
pages, but it does illustrate the -technique. The prolem here is that there are 42 separate
x op y cases to be resolved, none of which is particularly complex individually, but which taken
together represent a major effort - more than 200 TROFF output pages.

There is a grand ideal to which paper writers aspire - Document what you want to do, and
then do it! Believing this, the author wrote the paper before writing any code A typist entered
the text into a file, transcribing mathematical formulas into the notation of EQN, using the edi
tor ED. As an example, the preceding display for the result of 1)*1) was entered as

If $(b=2~&-il=2-&-i2=il)$

{ $b sup 0 (b sup-1 + b sup -4)$ I

Else # No piling up

{ $b sup -1 (b sup -1 + b sup-il

+ b sup -12 + b sup -(il+i2-1))$ }

The $" is a delimiter telling EQN what to act on, and the .' tells EQN to leave a little white
space

The problem now consists of implementing such formulae in a programming language
Also, great care must be taken that the code agree with the document describing it This
means that debugging such code (and formulae) must result in both the program and documen
tation being changed correctly and simultaneously. Yet, there are more than 200 pages of such
formulae to implement!

4. 	 The Solution
To attempt this by hand would be cosmic (and comic) folly. Soon neither the document

nor the code would be correct, or m agreement with the other Actually, the author learned
this the hard way, but lets not dwell on dead-ends. The solution is quite simple Use an ED
script to convert the TROFF input into EFL and use MAKE to keep the whole thing up to
date.

It is quite clear that the TROFF input for 1)*l) given earlier rather resembles an EFL
program in structure (IF ... ELSE .), but not in detail - indeed, it is a rare language that can
make sense of b-(l+ b- ') I However, b-(1+b- ') can be converted into a form EFL can
recognize - B(1)*(I+B ()) - by a rather general ED script fragment

g/b sup r]*/s/b sup -\([-]*\)/B \l)/g
g/) *(/s/) *(/)*(/g

and we can easily construct an array B such that B(t) = b- ' . A complete ED script may be
constructed along the above lines It is a long (6 pages) but simple script The ED script
applied to the TROFF input for)*I) gives the EFL program fragment

If(b--- 2& - -- 2&2 = -il)

E = 	 0, M = (B(1)+B(HiLo(4)))

Else # No piling up

E =-1; M = (B(1)+B(il)+B(2)+B(I-hLoil+i2-1)))
I

where HiLo is the statement function

20

HiLo() = Max(O,Min(i,t+l))

used to get the left-hand end-point of the smallest floating-point interval containing the exact
result Here t is the number of base-b digits carried in the floating-point representation and the
array B has been extended to have B(O) = 0 = B(t+l). There are 42 such EFL program frag
ments They form the heart of the floating-point test, and the part with all the bugs in it - ini
tially, at least' There is a standard EFL driver into which these fragments fit, via the EFL
INCLUDE mechanism. The resulting 42 programs form the floating-point test

The above ED script mechanism produces the EFL code directly and automatically from
the TROFF input Thus, only the TROFF input must be altered by hand, the EFL production
is automatic Debugging was literally carried out at the TROFF (not the EFL) level

However, one great problem still remained The EFL depends on the TROFF input for
1)*1) How can one be sure that both the EFL and the document for 1)1) have been pro
duced from the most recent version of the TROFF input for 1)1)? In all there are 42 such
dependencies which must be checked Here MAKE is invaluable. A file is created for MAKE,
giving the dependencies and desired command sequences Whenever the MAKE file is exe
cuted (by saying simply "make"), any TROFF input which has been altered since the last
MAKE will be re-TROFFed, and any EFL file which has not been updated since its correspond
ing TROFF file was altered, will be updated and listed

21

Bibliography

W[1]"UNIX Tiffl-Sharin Systeri", 1HSTJ57,S897-i312(1978)

[21 	 B W Kernighan and L L Cherry, "A System for Typesetting Mathematics", Comm. ACM
18, 151-157(1975).

[3] 	 B.G Ryder, "The PFORT Verifier", Software-PracticeandExperience 4, 359-377(1974)

[4] 	 S I. Feldman, "EFL, an Extended FORTRAN Language", in preparation

[5] 	 S I Feldman, "Make - A Program for Maintaining Computer Programs", Bell Labora
tories Computing Science Technical Report #57, 1977

[6] 	 P A. Fox, A.D Hall and N L Schryer, "The PORT Library Mathematical Subroutine
Library", TOMS, 4, 104-126(1978)

22

1

N79-12722

THE AUGMENT PRECOMPILER AS A TOOL FOR THE

DEVELOPMENT OF SPECIAL PURPOSE ARITHMETIC PACKAGES

F. D Crary, The Boeing Company

Seattle, Washington 98124

J. M Yohe, Mathematics Research Center

University of Wisconsin - Madison

Madison, Wisconsin 53706

ABSTRACI precompiler to band the data type representations

and extend them throughout the package.

We discuss the use of a FORTRAN precompaler in

the development of packages for nonstandard We illustrate this philosophy with examples

arithmetics In particular, the use of the FORTRAN
 drawn from the interval arithmetic and triplex

precompiler, AUGMENT, renders the source code more arithmetic packages developed by the second author

lucid, reduces the number of lines of code in a
nonstandard arithmetic package, facilitates modifi- We also give an indication of several other
cation, and ameliorates the problems of applications of AUGMENT which, while not necessari

transporting such a package to another host system ly employing this philosophy, serve to indicate the
breadth of possible applications of AUGMENT.

INTRODUCTION

With decreasing hardware costs and increasing 2. BRIEF DESCRIPTION OF AUGMENT

processor speeds, the cost of software development

is becoming more and more a function of personnel AUGMENT is a program which allows the easy and

cost. Furthermore, with the explosion of applica- natural use of nonstandard data types in Fortran.

tions of digital computers, an ever-higher percent- With only a couple of exceptions, it places non

age of users place implicit trust in the software standard types on the same basis as standard types

they use to support their applications, and allows the user to concentrate on his applica

tion rather than on the details of the data type

For these reasons, it is essential to supply implementation.
the user with reliable, well-documented software

packages It is no longer profitable, or even fea- AUGMENT gains its power and ease of use

sible in many cases, to re-invent support software, through several aspects of its design.

These considerations have led to an increasing (1) Its input language is very much like FORTRAN.

emphasis on transportable software If development The only changes are the addition of new type names

costs can be incurred just once for a package or and operators, and the ability to define "func
system that will work correctly and accurately on a tions", naming parts ("fields") of variables, which

broad spectrum of equipment, users are willing to may appear on either side of the assignment opera

tolerate a reasonable amount of inefficiency in re- or.
turn for the convenience of having the development (2) AUGMENT is extremely portable Since it is
work done for them and the confidence that they can writtEN TRAN AUGmeNT cabe Sante on
place in a quality product. written in FORTRAN, AUGMENT can be implemented on

almost any computer. The machine-dependencies of

Increasingly, it is becoming practical to AUGMENT are concentrated in eight subroutines which

build on existing software rather than to develop can be implemented in less than 200 lines of

new packages from first principles, even when the (machine-dependent) FORTRAN.

existing software might not be just exactly tai
lored to the application in question. (3) AUGMENTts output is standard FORTRAN which

makes it suitable as a cross-precompiler, that is,

In order to make the best use of existing the AUGMENT translation may be performed on one

software, one must havd the tools to make its (large) machine and the results compiled on or for

incorporation in new programs reasonably easy, and some other machine which is unable to host AUGMENT.

one must adopt a design philosophy which will make
the use of both the tools and the existing software There are three major steps in the use of AUG
natural and uncomplicated. MENT"

In this paper, we describe one such tool -- Specification. The whole process begins with

the AUGMENT precompiler for FORTRAN ([3J) -- and the specification of the properties of a nonstan

illustrate a design philosophy which has proved to dard type. The specification will need to consider

be a reasonable application of the above criteria, the following questions:

Briefly, we advocate the abstraction of the data

type representations to the maximum possible degree What information wall the user see?

in the design and implementation of software pack-
 What operations will be made available?

ages, and subsequent application of the AUGMENT How Will this type interact with other types?

In many cases, the answers to these questions will

Sponsored by the U. S. Army under Contract No. be available in previous research orte aecn
tentr ftenwtp.I obvious from

DAAG29-75-C-0024. the nature of the new type.
 In other cases, con

23

siderable research may be needed and even an an ap-

peal to personal preference may be made

AUGMENT gives little assistance to this part
of the process. The specifications will be guided
by the applications envisioned by the person pre
paring the new type, by the operations known or
felt to useful in manipulating the type, and

aesthetic considerations such as consistency with

similar types (-if any) already existing in Fortran
or previous extensions.

Binding (Implementation). The binding of the
abstract specification of the new type to a repre
sentation usable through AUGMENT is by means of a
"supporting package" of subroutines and functions,
and through a "description deck" which tells AUG-
MENT about the supporting package. In this effort,
the implementor must consider the conventions ex
pected by AUGMENT in terms of argument number and
order,

In addition to this, there may remain basic

questions of representation. For example, the data

structure which the user sees may not necessarily

be the best way to implement the type.

Aplication. The application of AUGMENT to
preparation of a program which uses one or more
nonstandard data types is by far the easiest part

of the process. Given that the supporting

package(s), description deck(s), and adequate docu-

mentation have already been prepared, the use of

the package(s) through AUGMENT consists of just

four steps:

(1) Write the program using the new operators
and functions,

(2) Supply AUGMENT with your program and the

description deck(s)

(3) Compile AUGMENT's output with the system

FORTRAN compiler.

(4) Link-edit and run.

3. 	 ABSTRACT DATA TYPES

In the planning of most computations, we do

not explicitly consider the architecture of the

computer that will be processing the program or the

specific representation that it will assign to real

numbers, for example In writing the code, howev

er, most languages require that we make decisions

early in the coding about such questions as preci-

sion, data representation, and so forth.

We have found one of the major attractions of

AUGMENT in writing special-purpose arithmetic pack-

ages to be the ability to use abstract (unbound)

data types throughout the majority of the program-

ming, binding the data type to a specific represen-

tation only in the instructions to AUGMENT and in a

few primitive modules of the package

Thus, for example, one might write a package

using the data type ETHEREAL, later instructing

AUGMENT to convert ETHEREAL to MULTIPLE PRECISION

or what have you. Other data types may then be de
fined as vectors or matrices of ETHEREAL numbers,
and AUGMENT will be able to allocate the proper
amount of space when it knows the binding of
ETHEREAL. Moreover, the routines which manipulate
the arrays of ETHEREAL numbers may all be written
in terms of operations on ETHEREAL numbers; again,

AUGMENT will put everything right at precompile

time.

The following sections illustrate this philos

ophy with concrete examples.

4. 	 THE USE OF AUGMENT IN THE CONSTRUCTION OF THE

INTERVAL PACKAGE

The Interval Arithmetic Package described in

[7] was motivated by interest in interval arithme
tic on the part of several other universities with
different computer systems.

The package needed to be flexible enough to
accommodate a wide variety of different computer
architectures, so we wanted to leave the represen
tation of interval endpoints arbitrary throughout
the bulk of the package. But because of FORTRAN's
popularity for scientific computation, it was the
language of choice for implementing the package.
Needless to say, ANSI standard FORTRAN does not
have the flexibility we needed in order to accom
plish the goals we had set.

We wanted to make the interval arithmetic
package easily accessible from the user's point of
view. This naturally led us to design the package
to be interfaced with AUGMENT But the require
ments for flexibility and transportability led us
to conclude that the package itself should be writ
ten with the aid of AUGMENT

Before we discuss the role of AUGMENT in the
implementation of the package, it would be appro
priate to include a very brief description of in
terval arithmetic. The interested reader can find
more details in [5].

Interval arithmetic is a means for bounding

the error in computation by calculating with pairs

of real numbers, the first member of the pair being

a lower bound for the true result, and the second

an upper bound The foundations for interval math

ematics have been carefully laid by Moore [51 and

others, so interval mathematics is on firm theoret

ical ground. There are closed-fom formulae for

evaluating operations and functions on the space of

intervals, so that computation with intervals is

reasonably straightforward

In machine interval arithmetic, one naturally

represents an interval as a pair of approximate

real numbers. In most cases, the existing

hardware/software systems are not adequate, for one

important reason. in order to preserve the integ

rity of the interval, calculations involving the

lower bound, or left endpoint of the interval, must

be rounded downward; those involving the upper

bound (right endpoint) must be rounded upward. No

production system that we know of provides these

roundings.

The design of the arithmetic primitives for
the approximate real arithmetic was relatively
straightforward; we used the algorithms given in
(6] The special functions posed more of a prob
lem: straightforward evaluation of these functions
can lead to unacceptably wide intervals. We decid
ed to evaluate these functions in higher precision,

and use information about the inherent error in the

higher precision procedures before rounding the re

24

sults 3rltha proper direction to obtain the desired
real doproxr'ation.

In order to preserve the desired degree of

flexibility, we introduced the nonstandard data

type EXTENDED to designate the higher-precision

functions, and the nonstandard data type BPA (mne

monic for Best Possible Answer) to designate the

approximation to real numbers USed for the interval
endpoints. The nonstandard data type INTERVAL was

then declared to be a BPA array of length 2.

The BPA portion of the package was written in

terms of BPA and EXTENDED data types wherever pos-

sible. In only a few cases was it necessary to

band BPA to a standard data type in the package

modules: such functions as the replacement opera-

tor obviously need to be bound to a standard data

type to avoid recursive calls,

We illustrate the implementation of the BPA

portion of the package with a segment of the BPA

square root routine. For simplicity, we have omit
ted declarations and COMMON blocks which are used

to communicate accuracy constants, rounding op
tions, and other information between package mod.

ules AC is an integer variable which indicates

the number of accurate digits in the EXTENDED rou
tines. The statement R = ER implicitly invokes the
conversion from EXTENDED to BPA, which includes ad
dition or subtraction of an error bound computed
from AC and rounding in the specified direction

BPA A, R

EXTENDED EA, ER

EA = A
ER = SQRT(EA)

ACC = IACC(17)
R E

Next, the INTERVAL portion of the package was

written in terms of INTERVAL, EPA, and EXTENDED da-

ta types. Here, only three modules are

system-dependent,

The following simplified segment of the inter-

val square root routine illustrates the general

philosophy used in the implementation of this por-

tion of the package. Declarations and code re-

quired for communication with the error-handling

routine have been omitted for brevity. Note that

before invoking the EPA square root routine (im-

plicitly, twice, once for the right endpoint, or

SUP, of the interval, and once for the left

endpDoint, or INF, of the interval), the variable

OPTION is set to specify the desired directed

rounding (RDU for upward directed rounding, and RDL

for downward directed rounding).

INTERVAL A, R

OPTION = RDU

SUP(R) = SQRT(SUP(A))
OPTION = EDL

INF(R) = SQRT(INF(A))

Appropriate description decks were prepared

for AUGMENT, binding the nonstandard types EXTENDED

and EPA to representations in terms of standard da-

ta types The entire package was then processed
using AUGMENT to extend these bindings.

In order to adapt the resulting package to a

different host environment, or different precision,

or both, one writes the necessary primitive rou

tines, adjists the declarations in the description
deck as necessary, and reprocesses the package with
AUGMENT That this procedure is effective is
attested to by the relative ease with which this
package was adapted for use on the IBM 370, Honey
well 600, DEC-10, PDP-11, and CDC Cyber systems.

5. ADAPTATIONS OF THE INTERVAL PACKAGE

We discuss two adaptations of the INTERVAL

package the first of these is the creation of a

package to perform triplex arithmetic, and the sec

ond is a package to perform interval arithmetic in

multiple precision.

A. THE TRIPLEX PACKAGE: Triplex is a variant

of interval arithmetic in which a main, or "most

probable", value is carried in addition to the

endpoints.

The difference between triplex and interval

arithmetic is conceptually quite simple: at the

same time one computes an operation or function on

the interval endpoints, using the interval mathe

matics formulas, one evaluates the same operation

or function on the main values, using standard real

arithmetic, rounding the results to the nearest ma

chine number.

In order to modify the INTERVAL package to

perform triplex arithmetic, we needed to add code

to all of the interval routines to compute the main

values, rename the modules of the package, adjust

the formats to accommodate the third value, and, of

course, change the representation of intervals to

accommodate the main value.

The addition of the extra code was pedestrian;

we simply added the appropriate lines of code to

each routine to compute the main value. We should

note, however, that this did not disturb the exist

ing code, inasmuch as storage and retrieval of the

endpoint values had already been defined not in

terms of first and second array elements in the in

terval number, but rather in terms of the field

functions INF and SUP respectively (AUGMENT allows

the use of such field functions, even when the host

FORTRAN compiler does not).

The modules were renamed by suitable use of a

text-editing program on the INTERVAL file.

The representation problem was handled simply

by changing the word INTERVAL in the type declara

tion statements to TRIPLEX. No other changes
 were

necessary in the majority of the routines, since

AUGMENT automatically extended the new binding

throughout the package.

The portion of the triplex square root routine

below illustrates the types of changes to the in
terval package that were necessary to produce the

triplex package:

TRIPLEX A, R
OPTION = RDU

SUP(R) = SQRT(SUP(A))

OPTION = RDN

MAIN(R) = SQRT(MAIN(A))

OPTION = RDL

INF(R) = SQRT(INF(A))

25

The modification of the INTERVAL package to AUGMENT allows the definition of data types which

produce a TRIPLEX package was accomplished in lit- are lists, and by using this feature, precision can

tle more than one week of elapsed time, documenta- be determined dynamically.

tion ([1]) excepted.

 (4) Simuations:
 AUGMENT
 has been used to

B. THE MULTIPLE PRECISION INTERVAL PACKAGE:

One of the goals of the original design of the IN-

TERVAL package was to facilitate increasing the

precision in cases where that was desired. When

the 	 multiple precision arithmetic package of Brent

[2] became available, it was only natural to con-

sider using that package as a basis for the multi

ple precision version of INTERVAL

The first step in this process was to develop

an AUGMENT interface for Brent's package. This we

did in collaboration with Brent.

We are now at the point of developing the mul

tiple precision version of the interval package it-

self. The steps will be:

(1) Determine the representation to be used
for the real approximations. (Brent's package al
lows a great deal of flexibility in this regard.)

(2) Write the primitive arithmetic operations,
basing these on Brent's routines, but providing di
rected roundings.

(3) Use Brent's package as the EXTENDED arith-

metic package

(4) 	 Write the BPA primitives.

(5) Write an additional module which will set
the necessary constants based on the run-time pre
cision chosen for the BPA numbers,

(6) Rewrite the description decks as neces-

sary.

(7) Reprocess the package with AUGMENT.

6. 	 OTHER APPLICATIONS OF AUGMENT

In the foregoing, we have illustrated the

flexibility that may be gained by using abstract

data types. We now consider some extensions of

this concept, and some other applications of AUG-

MENT.

(1) Recursive data type definitions: AUGMENT

allows data types to be defined in terms of one an-

other, and this opens up some unique possibilities,

The first author once used AUGMENT to aid in the

writing of a program to sort multiply-layered in

formation that was stored in the form of trees.

This problem was addressed by creating two data
types: TREE and NODE One field of a TREE was the
root NODE, and one field of a NODE was a TREE. The
development of the program using these new data
types was straightforward.

(2) Analytic differentiation of FORTRAN func
tions: This package ([4]) allows one to obtain the
Taylor Series expansion or the gradient of a func
tion which can be expressed as a FORTRAN program.

(3) Dynamic precision calculations: In cer-

tain types of applications, the precision required

for the calculations is a function of the data.

simulate one computer on another. The technique

for doing this is straightforward; one defines a

nonstandard data type which represents the simulat

ed machine, and prepares a nonstandard package

which copies the arithmetic characteristics and da

ta formats of the target computer.

(5) Algorithm analysis: AUGMENT can be used
to provide information such as operation counts in
the running of programs or portions thereof One
simply defines a nonstandard data type which, in
addition to performing the standard operation, in
crements a counter.

(6) Image processing: The picture processing
package developed by W. Fullerton of Los Alamos
Scientific Laboratory is one of the most unusual
applications of AUGMENT we have yet seen. Various
new operators allow the construction of composite

pictures from smaller parts, and mathematical func

tions have even been defined on type PICTURE.

The above illustrations should serve to indi

cate that the role of AUGMENT in development of

mathematical software is limited primarily by the

user's imagination.

7. 	 CONCLUSION

We 	 have indicated a number of ways in which
the AUGMENT precompiler for FORTRAN can be and has

been used to aid in the development of mathematical

software. Other applications will undoubtedly be

found for this precompiler, since it is both versa

tile and powerful.

REFERENCES

1. 	 K. Boehmer and J. M. Yohe, A triplex arithme

tic package for FORTRAN, The University of

Wisconsin - Madison, Mathematics Research Cen

ter, Technical Summary Report (to appear).

2. 	 Richard P. Brent, A FORTRAN multiple-precision
arithmetic package, Assoc. Comput. Mach.
Trans. Math. Software 4 (1978), 57-70.

3. 	 F. D. Crary, A versatile precompiler for non
standard arithmetics, Assoc. Comput. Mach.

Trans. Math. Software (to appear).

4 	 G Kedem, Automatic differentiation of comput
er programs, Assoc. Comput. Mach. Trans.
Math. Software (to appear).

5. 	 Ramon E. Moore, Interval Analysis, Prentice -

Hall, Inc., Englewood Cliffs, NJ, 1966.

6. 	 J. M. Yohe, Roundings in floating-point arith

metic, IEEE Trans. Computers -2 (1973),

577-586.

7. 	 J. M. Yohe, Software for interval arithmetic.
a reasonably portable package, Assoc. Comput.

Mach. Trans. Math. Software (to appear).

26

N79,.12723

Extending Reliability:

Transformational Tailoring of Abstract Mathematical Software*

James H. Boyle

Applied Mathematics Division

Argonne National Laboratory

EXTENDED ABSTRACT

INTRODUCTION

Over the past decade, mathematical software

libraries have matured from small, usually locally-

assembled, collections of subroutines to large,

commercially-provided libraries which are approach

xng the status of standards [Aird, Do Croz; Fox]**.

Despite the high quality of such libraries and the

obvious economic advantages of using routines whose

development cost has been shared with many other

users, applications programmers, when asked- "Why

don't you use routine XYZ from IMSL, or from NAG,

or from PORT?" frequently reply that library rou-

tines are too general, that they need a routine

which takes advantage of special features of their

problem, and that since they could not use a li-

brary routine without modifying it, they might as

well write their own routine from scratch,

In many, if not most, instances, the latter

assertion could be easily refuted by a simple com-

petition on selected test problems. However, the

need for a routine adapted, or tailored, to a

particular problem is more difficult to dismiss.

It usually arises from considerations of efficiency,

which may range from the perceived inefficiency of

the presence of unused options in a routine to the

practical impossibility of using a routine whose

data representation is utterly incompatible with

that needed in the rest of the applications pro-

gram.rHow, then, can mathematical software develop-

ers answer this need for mathematical algorithms

tailored to individual applications9 One approach

especially applicable to complicated problems, such

as solution of PDE's, is to preprocess a specifica-

tion of the problem into code which uses a particu-

lar software package, as is done in ELLPACK [Rice].

(In some sense, this approach tailors the problem

to the software.) For library routines in simpler

problem areas, however, it seems necessary to

tailor the routine to the problem, since such rou-

tines constitute only a small part of the applica
tion program, and several routines with possibly

conflicting requirements may need to be included.

In order for this to be practical, tatZored ver
stons of such routines mut be constructed mechan
tcalty from very generaZ tvbrary routines. Such
mechanical program generation is necessary both to

insure that the reliability of the library routine

is preserved in its tailored versions and to insure

that their construction is not prohibitively expen-

sive [6].

For some time, the TAIPR system has been in

use to construct multiple versions, or realizations,

of prototype programs for inclusion in mathematical

software packages themselves [4,5]. For the

LINPACK package, a single prototype routine was

used to construct the eight versions representing

the combinations of complex or real arithmetic,

single or double precision, and calls to Basic

Linear Algebra subroutines or in-line code replace-

ments for them [5]

Recent research with TAMPR has focussed on

determining the properties a prototype program

should have in order to maximize the number and
diversity of realizations which can be constructed

from it.

ABSTRACT PROGRAMS

The most important property of a prototype

program is its abstractness. Intuitively, an

abstract program captures the essence of a numer

ical algorithm without cluttering it with mrrele

vant detail. The presence of irrelevant detail in

a prototype program hampers the construction of

diverse realizations precisely because a great

deal of analysis must be done to verify that it

is indeed irrelevant.

The research discussed here has not progressed

far enough to characterize abstract programs in

general, but examples from the area of linear

algebra have been studied sufficiently to illus

trate the ideas involved. Consider the code frag

ment (1):

for i = n,l,-l
for j - i+l,n

y(i) = y(i)-U(i,j)*y(j)

end

y(m) = y(i)/U(i,i)

end

and the code fragment (2):
for i = n,l,-l

y(i) y63/U(ii)
for j = l,i-1

Y(J) - y(j)-U(j,i)5 y(i)
end

end

Now, both of these fragments actually perform the

same computation, the solution of an upper-triangu

lar system of linear equations Uy-x (the final step

in the solution of a general linear system whose

matrix has been factored into triangular matrices

L and U). Fragment (1) is the usual method of

solving such a system; it refers to the matrix U

by rows. Fragment (2) refers to the matrix U by

columns, and is therefore more efficient than

fragment (1) on machines with virtual memory or

with buffer memory, when the language in which the

program is written stores matrices by columns (as

does Fortran), see Molar [8) and Smith [10).

Considerable effort is required to see that

these two fragments actually perform the same

computation; even more effort would be required

to devise a way to transform (1) into (2) automa

tically in order to be able to make the (possibly)

more efficient version available to a user. Thus

AWork performed under the auspices of the U.S.

Department of Energy.

**Numbers in brackets designate References at

end of paper; names in brackets designate authors

of other abstracts in this Proceedings.

27

n n
(1) is not a suitable prototype for tailoring, A = AT = AZ(e a) = I ((AeI)e)

since it contains difficult-to-discard information i=1 i i=1

about the row-oriented version of the program,

which has nothing to do with the specification of Aei as the x-th column of A.

the algorithm for the solution of the linear sys- The synthesis begins with (3) augmented to

tem (see also Smith (10].)

At what level of abstraction, then, is such indicate that U is an upper-triangular nxn matrix
irrelevant information about how storage is stored by columns, that y is an n-vector, and that
referred to absent from the specification of the x as to be-identified with y:

algorithm? It is absent when the algorithm is
specified in terms of matrix (rather than matrix y

element) operations. Thus the abstract represen- --> y = (diag(U) + uppersubtri(U))**-l*y

tation of this algorithm is (3): now U is expanded by columns:

-l
 n I

U y--> y = (diag(U) + Z (uppersubtri(U)e.e))**-l*Y

(Note that this representation of the algorithm i=l

T
is abstract not only with respect to row or -- > y = (c(I+(diag(U)ei)eT-Iee

column orientation, but with respect to all as- iI
pects of the representation of the data; e g., n
the elements of U could be given by a function.) +(uppersubtri(U)e)e))**-l y

nT T
T
TRANSFORMATIONAL SYNTHESIS OF CONCRETE PROGRAMS --> y = l(+(invdiag(U)e)eT-e e
This abstract statement of the triangular i=1 ii ii

solution algorithm can be converted into a con

crete, executable program by first augmenting -(uppersubtri(U)e)(e invdiag(U)e)eT)*y

it with a specification of the properties of the
concrete representations of U,x, and y. The --> for i = nl,-l
augmented abstract program can then be transformed T

according to various program-algebraic rules which Y y + (invdiag(U)e)(eiy)-ei.(eY)

incorporate the properties into the abstract pro- T T

gram and then simplify it where possible (see -(uppersubtri(U)e)(e invdiag(U)ei)(ely)

Boyle [4] and Green [9]).

This process can be illustrated by a sketch end

of the synthesis of fragment (2) from the abstract (Note that the above program is the point of
program (3). This sketch omits numerous small (.
steps and to avoid introducing unfamiliar notation departure for a "vector" solution of the triangular
is presented in terms of quasi-programs. In the system, although this problem is not particularly
actual TAMPR implementation, the transformations well suited to vector computation) Now expandthe remaining vectors to components (the assignment

are carried out on a representation of the program til a vector one):

in an applicative (i.e., expression) language is still a vector one):

until the final stage, at which Fortran code is

generated. As discussed by Backus in his 1977

Turing Lecture [1] such applicative languages have n T n T T

a richer and simpler associated "algebra" than = ey) = Z e.(e y) + e (e invdiag(U)el)*

31 J 3 3
 1i

do conventional languages in part because the

scope of values is indicated clearly by functional T - n
application. (Experience with TAMPR strongly (eLY) ed(e y) - I (ekCek uppersubtri(U)e,)*
supports this simplicity of applicative languages, k=1
which is also well known to LISP programmers.) T T

The synthesis of fragment (2) depends on some (e1 Invdiag(U)ej)(e y)
)

identitles from matrix algebra, including- end

n

(4) 1 - S e eT

After a number of steps which include determining
i-i that a vector temporary is not required in conver

heeis the -th unit vector, ting the vector assignment to a scalar one, the

where component-level is reached

, T I (I+De l
(5) D + Z Ue e =11 eT-Te eTlteT)

sl I i=n a I i -- > for i=n,l,

where D is an nxn diagonal matrix and U' is upper for 3 = li-I
triangular with zero.diagonal; and (eUy)3 (eUy) - T
1ey) =ey - (e. uppersubtri(U)ee)*

(6) 11(I+De e-e T+ e)leIa + eIa) (e i nvdiag(Ube)(eTy)
i=ni

n -1lT U -1 T end

-H (+De e -IeTUe eTD- e) e

i=l 1 1 1 1 i I 1(ely) = (e i nvdag(U)eI)*(ey)_

T T
The idea of a matrix A being "stored by columns" (e uppersubtri(U)e)*(eT invdiag(U)e?(e y)

is thus expressed as I i

for j = i+l,n

28

T T - T
(ey) (eJy) - (e J uppersubtri(U)e1)*

eTInvdag(U)ei)(eTY)

end

end

Uppersubtri(U) implies ekTppersubtri(l)e3= 0 for

k=more

k > j, assignments of the form x = x need not be

carried out, and common subexpressions can be

computed once, so that the program becomes:

-- > for a = n,l,-l

t = (eT invdiag(U)e)(ey)

for 3 = l,i-l

(T y) = (T uppersubtrm(U)e.)*t
e3y) (e

end

(eT t
iY

end

The temporary can be eliminated by reordering and

the component references converted to conventional

form to obtain fragment (2), above Thus the trans-

formational synthesis of a program takes place in a

large sequence of small steps, each effected by a

transformation based on a relatively simple mathe-

matical theorem or axiom,

CORRECTNESS OF CONCRETE PROGRAMS

As discussed in [4], transformationally-

constructed concrete programs inherit the correct-

ness of the abstract prototype program provided the

transformations themselves are correct.
 A correct

transformation may add information to the abstract

program, but this information must be consistent

with the properties assumed for the abstract pro-

gram. (In this sense, the process is rather like

constructing the integers as a "concrete" instance

of a ring, by augmenting the ring axioms with addi
tional axioms consistent with the original set.)
Thus anything provable about the abstract program

remains true for any of the concrete realizations

ofThe proof that an arbitrary set of transforma-

tmons is correct may be difficult in general. How-

ever, as discussed in [7], if each transformation

in the set is itself "semantics-preserving" (i.e.,

replaces a part of a program with program text

which does no t ontrict the meaning of the

original text), the correctness of the transfor-

mational process is guaranteed (if it terminates),

Usually it is quite easy to see that an individual

transformation is semantics-preserving, especially

when it is based on a mathematical property.

Finally, the fact that the abstract program

is closer to the mathematical formulation of a

problem than is an ordinary program means that its

correctness is much easier to prove.
 In the

present example (but not in general) the abstract

program and its specification are almost identi-

cal; about the only thing which must be verified

is that the product and assignment involve

is aallows

consistently-dimensioned arrays.

Incidentally, the fact that the concrete

realizations of (3) do not
 cause out-of-bounds

subscript references when executed follows from

the fact that (3) involves consistently dimension
ed arrays and the fact that those transformations
which introduce subscripts also simultaneously

introduce the index sets for them based on the

array dimensions (See Backus [1], section 5,

for some discussion of the significance of this.)

This two-stage proof is much easier than showing

directly that (2) does not execute out-of-bounds

subscript references The difference is even

dramatic for an abstract Gaussian elimination

algorithm and a realization of it employing mmpl

cit pivoting; the subscripts in the latter program

are themselves subscripted variables, and it is

very difficult to prove directly from the code

that they are always in bounds.

WHY TRANSFORMATIONS?

It is perhaps interesting to conclude by posing

the questions: Why use a program transformation

system to construct concrete realizations of

abstract programs' Why not simply devise an

extended language for specifying abstract programs

and a processor to translate it into an existing

language (e.g., EFL [Feldman] and Bayer and

or directly
Witzgall's Complete Matrix Calculi [3])

into machine language' Or, why not implement by

hand a relatively fixed ensemble of routines for

different data representations and call them as

appropriate to a particular user's needs?

Clearly, these alternatives are not completely

distinct, for the "processor" for an extended

language might consist of a collection of trans

formations, while some transformations insert code

which could be thought of as very small subrou

tines. However, what I call a program transfor

mation system is distinguished from the other two

approaches primarily because it provides a high

level notation for specifying and applying source

to-source program transformations and because it

can manipulate any programming-language construct

(not just subroutines and arguments). Transfor

mation systems of this type include not only

TAMPR, but also those proposed by Bauer [2], and

by Loveman and Standish (see [6]).

In my experience, the idea of providing for

abstract program specification through a fixed

extended language is too static an approach to
be effective. The work discussed here is far from

complete, yet already it has undergone numerous

revisions. Had a particular notation been fixed,

or had the transformations been implemented in a

fixed processor, they would have been very diffi

cult to modify. Moreover, emphasis on Designing

a Language tends to cause one to get lost in a

tangle of language-related issues which are not

very germane to abstract program specification;

indeed the expression and function notation

available in slightly modified Fortran or in Algol

seems quite adequate for experimentation. Finally,

even extensible languages, which permit the def

initlon of new data types and operators (e.g.,

Algol 68), do not usually provide a means for

easily specifying optimizations (especially global

ones) for these extensions. As we have seen, such

optimizations are both fundamental and rather

specific (e.g., the row analog of (6), which shows

that n instead of n(n+l)/2 divisions suffice) and

it is unreasonable to expect them to be built into

a general-purpose language processor Specifying

these optimizations by transformations not only

them to be easily tested and modified, it

also permits them to be selectively applied to

classes of programs which may reasonably be ex

pected to use them.

29

Similarly, the implementation, by hand, of a

set of subroutines tailored to various properties

is also static and not very reliable; moreover,

the set needed is very large, being the product of

the number of variables, the number of representa-

tions of each, etc. In a transformational formu-

lation, the number of transformations needed be-

haves more like the sum (plus some initial over

head). Thus, use of transformations enables one

to manage the complexity of the problem and there

by greatly enhances reliability.

CONCLUSION

I have sketched how various concrete executa

ble programs can be constructed automatically from

an abstract prototype program by applying trans

formations based on theorems of matrix algebra

and on "algebraic" properties of programming

languages. Although this research has just begun,

it offers the hope of being able to provide a user

with highly efficient programs tailored to his

environment while maintaining the advantages of

high reliability and low cost associated with

routines from the best mathematical software li

braries. Moreover, the transformations which

produce such programs themselves represent a val

uable resource: a formal codification of rules for
writing linear algebra programs.

ACKNOWLEDGMENTS

Work on the derivation of row and column

oriented programs from an abstract prototype was

begun by Brian Smith in conjunction with Janet

Bentley while Brian was on sabbatical at the

NAG Central Office, Oxford. This work was

supported by NAG; preliminary results are reported

in [10]. I am indebted to Brian for numerous

discussions which helped the work discussed here

to evolve into its present form.

REFERENCES

1. J. Backus, Can Programming Be Liberated from

the von Neumann Style? A Functional Style and Its

Algebra of Programs, Comm. ACM 21, 8, Aug. 1978,

613-641.

2. F. L. Bauer, Programming as an Evolutionary

Process, Proc. 2nd Int'l Conf. on Software

Engineering, San Francisco, 1976, 223-234.

3. R Bayer and C. Witzgall, Some Complete

Calculi for Matrices, Co.mm ACM 13, 4, April

1970, 223-237.

4. J M. Boyle, Mathematical Software Transporta

bility Systems -- Have the Variations a Theme' in

Portability of Numerical Software, Lecture Notes

in Computer Science, No. 57, Springer-Verlag, 1977.

5. J. M. Boyle and K. W. Dritz, three papers on

the TAMPR system in J. R. Bunch, Ed., Cooperative

Development of Mathematical Software (available

from the authors).

6. J. M. Boyle, K. W. Dritz, 0. B. Arushanian,

and Y. V. Kuchevskiy, Program Generation and

Transformation -- Tools for Mathematical Software

Developement, Information Processing 77, North

Holland 1977, 303-308.

7. J. M. Boyle and M. Matz, Automating Multiple

Program Realizations, Proc. of the MRI Symposium,

XXIV: Computer Software Engineering, Polytechnic

Press, 1977, 421-456.

8. C. B. Molar, Matrix Computations with FORTRAN

and Paging, Comm. ACM 15, 4, April 1972, 268-270.

9. C. C, Green, The Design of the PSI Program

Synthesis System, Proc. 2nd Int'l Conf. on

Software Engineering, San Francisco, 1976, 4-18.

10. B. T. Smith, Portability and Adaptability --

What are the Issues9 in D Jacobs, Ed., Numerical

Software -- Needs and Availability, Academic Press,

1978, 21-38.

30

-D9

N79- 12724FORTRAN TOOtS

by

Leon Presser

Softool Corporation

340 South Kellogg Avenue

Goleta, Calif. 93017

ABSTRACT 1. ANSI FORTRAN CHECKER & ERROR DETECTOR

This tool accepts as input a Fortran
This paper outlines an integrated set

source program and outputs clear documenta
of Fortran tools that are commercially

tion pinpointing:
available. The basic purpose of various

deviations from.ANSI (1966)standard
tools is summarized and their economic im-

errors present in the source program
pact highlighted. The areas addressed by .

these tools include: code auditing, error . portability problems

detection, program portability, program in- management indices
To substantiate the economic advan
strumentation, documentation, clerical aids

and quality assurance. tages that result from use of this tool let

us simply focus on its error detection cap

ability. Our experience indicates that

during software development this tool re

duces the number of compilations necessary
THE PURPOSE OF THIS PRESENTATION is to out-

to obtain a program ready for execution by
line a number of powerful software tools
 presently marketed by Softool Corporation. a factor of 3 to 5. Use of this tool for

Here we shall only discuss an integrated the analysis of production programs (i.e.,

set of Fortran tools, since the Fortran
 programs that have been running 'correctly'

language and the portability of Fortran for years) generates about 3 definite er

programs is a key to the development of rors per thousand lines analyzed! [1,2].

The issues, however, If we assume, quite conservatively, that a
numerical software.

person costs $20/hour and that each problem
extend well beyond numerical software, and

apply to software development in general. present in the software will require 8 per-

A perspective is in order. The cur- son-hours for its removal, we have:

rent cost of software development is exor- 3 problems x 8 hours x $20

bitant and the quality of the products gen- 1000 lnes 1 prob. $500/1000 lnes

erated leaves much to be desired. The

That is, use of this tool would save on the
single most serious issue facing us today

order of $500 for each 1000 lines of Fortran
is the lack of coherent methodologies for

Such method- processed!
the construction of software.

ologies should address the entire construc- Concerning portability, this tool de

tion process from requirement analysis to tects and documents a large number of poten

tial Fortran portability problems, such as:
maintenance. Furthermore, the absence of

. statement orderings,
explicit methodologies explains the lack of

sound software management disciplines, so . operations of equal precedence that

necessary in a process of such complexity are not fully parenthesised,

. implcit conversions,
as the construction of software.

and many othersThe key to methodology and management . shde effects,

are proper tools. Indeed, Webster's New We have been moving software across

Collegiate Dictionary defines management
 different computers in a straightforward

'judicious use of means to accomplish manner with the aid of this tool.
as:
Each Softool tool produces appropriate
an end', and it defines tool as 'a means

to an end'. From these we deduce: management indices that help concerned man

(software) management: 'judicious use of agement obtain visibility over their soft

ware. For example, this tool generates
(software) tools.'

three different indices:

. average number of errors perFORTRAN TOOL SET

statement
The available Fortran tools apply prin-

. average number of warnings percipally to the programming, testing and

statement
maintenance phases of the software construc-

. average number of portabilitytion process. These tools consist of:

problems per statement
standard auditors

error detectors

portability aids 2. FORTRAN INSTRUMENTER I

instrumenters This tool accepts as input a Fortran

documenters source program and execution time test data

clerical aids sets for the program. Upon execution of

quality assurers the source program it automatically gener-

All of the Fortran tools are coded in ates routine level profiles. These pro

a highly portable subset of Fortran. Next, files quantize testing and optimization

we highlight some of the existing Fortran efforts in detail. The information pro

tools. vided by the prefiles includes: percent of

31

test coverage, time spent in each routine,

number of calls to each routine, test ef

fectiveness index and an optimization in

dex.

This tool has a major impact in ex

pediting and reducing the effort spent in

testing. In essence, it helps minimize

the test data required for a specified

coverage, which in turn results in de

crelsed test data execution time and also

reduces the human time required to analyze

test results. Similarly, this tool is a

great aid in focusing optimization efforts.

Our experience indicates that savings in

excess of 10% of the overall software de

velopment effort are readily obtained with

the help of this tool.

This tool also serves as a valuable

adjunct to the ANSI FORTRAN CHECKER AND

ERROR DETECTOR during program portability

efforts.

3. FORTRAN DOCUMENTER A

The main purpose of this tool is to

facilitate and expedite the uniform docu

mentation of Fortran source program units.

In essence, management provides to this

tool the definition of a documentation

template. Programmers write their code in

a simple and straightforward shorthand

format. The code written by the program

mers is input to this tool which outputs

fully commented units of source code, doc

umented according to the predefined docu

mentation template. Our experience indi

cated that excellent, self-contained doc

umentation can be consistently obtained

with the aid of this tool. Moreover, the

keypunching and/or terminal entry work is

reduced by a factor of about 51

Other members of our integrated set

of Fortran tools are a statement level in

strumenter and two other documenters that

accept as input a source program and gen

erate extensive local and global cross

reference directories.

SUMMARY

The objective of this presentation

has been to outline a set of integrated

Fortran tools available from Softool Corp

oration. These tools have extensive and

highly cost-effective application in the

development, management and quality assur

ance of Fortran based software. If we are

to conquer the ubiquitous software problem

we must promptly incorporate into our meth

odology tools of the kind described here.

REFERENCES

1. A Comparative Analysis of the

Diagnostic Power of Commercial Fortran

Compilers. Softool Corporation, Report

No. F001-10-77, October 1977.

2. A Comparative Analysis of Program

ming Methodologies with the Aid of the

Ansi Fortran Checker and Error Detector.

Softool Corporation, Report No. F002-2-78.

February 1978.

32

N79- 12725

USING TOOLS FOR VERIFICATION, DOCUMENTATION AND TESTING1

Leon J. Osterweil

Department of Computer Science

University of Colorado

Boulder, Colorado 80309

I. Introduction

There has been considerable interest lately

inmethodologies for the production of high

quality computer software. Work in this area

has been carried out by researchers in a wide

variety of disciplines and covers an impressive

spectrum of approaches. Some of the more active

current lines of research include software

management techniques [1, 2], creation of error

resistant programming techniques [3, 4, 5]; and

design of error resistant programming languages

[6, 7]

There has also been considerable activity

in the creation of program testing, verification

and documentation tools. The work in this area

has been directed primarily towards two different

but related goals -- the detection and examination

of errors present in a program, and the determina-

tion that a given program has no errors of some

particular type. Among the diverse activities in

this area, this paper shall focus on four of the

major approaches -- namely dynamic testing, symbolic

execution, formal verification and static analysis

In this paper, the different patterns of strengths,

weaknesses and applications of these approaches will

be shown. Itwill, moreover, be demonstrated that

these patterns are in many ways complementary,

offering the hope that they can be coordinated and

unified into a single comprehensive program testing

and verification system capable of performing a

diverse and useful variety of error detection,

verification and documentation functions,

II. Four Error Detection

and Verification Techniques

In dynamic testing systems, [8, 9, 10, 11] a

comprehensive record of a single execution of the

program is built. This record -- the execution

history -- is usually obtained by instrumenting

the source program with code whose purpose is to

capture information about the progress of the execu-

tion. Most such systems implant monitoring code

after each statement of the program. This code

captures such information as the number of the

statement just executed, the names of those varia-

bles whose values had been altered by executing

the statement, the new values of these variables,

and the outcome of any tests performed by the

IResearch supported by NSF Grant # MCS77-02194.

statement. The execution history is saved in a

file so that after the execution terminates it can

be perused by the tester. This perusal is usually

facilitated by the production of summary tables

and statistics such as statement execution fre

quency histograms, and variable evolution trees.

Many dynamic testing systems also monitor

each statement execution checking for such error

conditions as division by zero and out-of-bounds

array references The monitors implanted are

usually programmed to automatically issue error

messages immediately upon detecting such condi

tions in order to avoid having the errors concealed

by the bulk of a large execution history.

Some systems [9, 10] even allow the tester

to create his own monitors, direct their implanta

tion anywhere within the program, and specify where

and how their messages are to be displayed. The

greatest power of these systems is derived from

the possibility of using them to determine whether

a program execution is proceeding as intended.

The intent of the program is captured by sets of

assertions about the desired and/or correct rela

tion between values of program variables.

Dynamic testing systems provide strong error

recognition and exploration capabilities, but are

unable to determine the absence of errors. Their

results are narrowly applicable, being valid only

for a single program execution. These results are

quite extensive and detailed, however, providing

sufficient material for deep insight into the

program. These systems allow extensive human

interaction, and their power is most fully realized

when a skilled human tester is using them interac

tively. They require as input a complete set of

actual program input data. The success of a

dynamic testing run as a vehicle for discovering

and exploring errors is largely dependent upon the

selection of revealing and provocative input data.

This usually presumes the involvement of a human

tester who is knowledgable about the program being

tested.

Insymbolic execution, symbolic representa

tion (inthe form of formulas) are kept for the

evolving values of variables instead of numeric

quantities. For a given path through the program,

the values of all the variables encountered are

maintained as formulas. The only unknowns in

these formulas are the input values to the program;

all other values of variables are functions of con

stants and these input values and, therefore, can

33

be removed by substitution. The formulas can be

examined by a human tester to see whether they

embody the intent of the program If so, then the

tester has determined that the program will yield

the desired results for all executions which follow

the given program path. A number of symbolic exe-

cution systems have been produced [12, 13, 14, 15].

Clarke's system [12] is perhaps the most

interesting symbolic execution system in the con-

text of this paper, in that it indicates better

than the others the range of error detection and

verification capabilities possible with the sym

bolic execution approach. In Clarke's system, the

execution path which is specified as input is used

to dictate the required outcome of all conditional

tests along the path. Hence, the path dictates a

set of constraints which must be satisfied in order

for execution to proceed along the given path.

These constraints are in terms of current values

of program variables, but through the use of sym-

bolic execution, they can more profitably be

expressed as relations in terms of current values

of program variables. The system of relations

obtained in this way is taken to be a set of simul-

taneous constraints, and is examined by Clarke's

system for consistency. A solution to a consistent

set of constraints is a set of values which, when

taken as input to the program, will force execution

of the given path If the constraints are incon-

sistant, then the path is unexecutable -- that is,

there exists no data which will effect the execution

of the given path.

Clarke's system also creates additional,

temporary constraints for the purpose of error

detection and verification. Constraints are

created which test for the possibility of array

bounds violations, DO statement loop control varia-

ble errors and division by zero. Clarke's system will

attempt to solve the system of constraints to pro-

duce program input data which forces the traversal

of the given input path, followed by a zero-divide

error at the given point,

Symbolic execution systems provide strong

error detection capabilities and some pathwise

verification capabilitieswhich fall short of the

power of full verification Symbolic execution

systems provide diagnostic information which is

applicable to classes of executions rather than a

single execution. This is achieved by supplying

symbolic relationships between program values in

place of precise numeric data. These systems

require human intervention and evaluation in order

to carry out error detection, although the pathwise

validation capabilities require no human assistance.

Symbolic execution systems require that a test path

through the program be supplied. It is important

that the path given be revealing and provocative,

thur requiring the skills of a knowledgable human

tester

In static analysis systems, the text of a

source program is examined in an attempt to deter-

mine whether the program is defective due to local

malformations, improper combinations of program

events, or improper sequences of program events.

In order to make this determination, each statement

of the program is represented by a small, carefully

selected set of characteristics. The static analy

sis system can then examine each characteristic

set on a statement-by-statement basis for malfor

mations, and various combinations and sequences of

statements on a characteristic-by-characteristic

basis for faulty program structure or coordination.

No attempt ismade at replicating the entire beha

vior or functioning of the program Rather, static

analysis attempts to examine the behavior of the

entire program only with respect to certain

selected features

The syntax checking of individual statements

of a program provides a good example of static

analysis. More interesting and valuable error

detection is obtained by examining the characteris

tics of combinations of statements. For example,

illegal combinations of types can be detected by

examining declaration statements and then examining

the executable statements which refer to the varia

bles named in the declarations Similarly, mis

matches between argument lists and parameter lists

associated with the invocation of procedures or

subroutines can also be made by static analysis

systems. Some of the types of static analysis

discussed above are available with most compilers.

Other types, such as argument/parameter list

agreement are far less common in compilers, but are

found in such stand-alone static analysis systems

as FACES [16] and RXVP [17].

The use of static analysis techniques to

examine sequences of program events enables the

detection of still other types of program errors.

InDAVE [18] each statement of a program is repre

sented by two lists -- a list of all variables

used to supply values as inputs to the computa

tion, and a list of all variables used to carry

away values produced as output by the computation.

The static analysis then examines sequences of

statement executions which are possible given a

program's control flow structure, and determines

such things as whether it is possible to reference

an uninitialized or otherwise undefined variable,

and whether it is possible to compute a value for

a variable and then never refer to the computed

value In such cases, the static analyzer deter

mines and outputs the statement sequence for

which the anomalous pattern of references and

definitions occurs. Similarly, it would be possi

ble to scan programs for other improper sequences

of events such as openings, writings, and closings

of files; and enablings and disablings of inter

rupts. Paths along which these sequences could

occur would then also be determined. It should be

emphasized here that the most recent static analy

sis systems which examine event sequences for

improprieties employ search techniques which enable

the examination of all sequences of statement

executions which are possible, given the flow of

control structure of the program. These search

techniques, first studied in connection with pro

gram optimization [19, 20, 21, 22] are also quite

efficient. Unfortunately, the most efficient of

them will merely detect the existence of such

improper sequences. Somewhat less efficient algo

rithms are needed in order to determine the actual

sequences.

34

It can be seen from the preceding paragraphs

that static analysis systems offer a limited amount

of error detection, but are capable of performing

certain verification functions. Static analysis
only examines a few narrow aspects of a program's

execution, but the results of this analysis are

comprehensive and broadly applicable to all possi-

ble executions of the program Here, as in the

case of symbolic execution, it is seen that the

verification capabilities are obtained without the

need for human interaction. A human tester is

required, however, in order to interpret the

results of the analysis and pinpoint errors.

Finally, it is important to observe that static

analysis requires no input from a human tester,

As output, itproduces either paths along which

anomalous program behavior is possible, or valida-

tion results indicating that no anomaly-bearing

paths exist

In formal verification, the code comprising

a program is compared to the total intent of the

program, as captured and expressed in the form of

assertions. Assertions are used to describe the

program output expected in response to specified

program inputs. The goal of the formal verifica

tion isto prove a theorem stating that the program

code actually achieves this asserted input/output

transformation. The proof of this theorem is

reduced to the proof of a coordinated set of

lemmas. The statements of these lemmas are derived

from a set of intermediate assertions positioned in

specific locations throughout the program code

These assertions describe precisely the desired

status of program computations at the locations of

the assertions. Differences in status between

assertion sets separated in position by a body of

code embody the transformation which that code

segment is intended to perform. Proving that the

code segment achieves the transformation establishes

the lemma that the segment is correct. A total

formal verification is achieved if the program is

also proven to always terminate.

It is quite significant to observe that

symbolic execution is the technique used to deter-

mine the transformation effected by a given code

segment. Hence, the symbolic execution technique

is central to formal verification Formal verifi-

-cation can, in fact, be viewed as a formalized

framework for carrying out a rigorously complete
and coordinated set of symbolic executions and
comparisons to intended behaior.

Formal verification is the most rigorous,

thorough and powerful of the four techniques

presented here. There are sizable problems in

carrying it out, however. The size and intricacy

of the work make it costly. The need for exact

mathematical models of the desired and actual

behavior of a program invite errors and weakening

inaccurate assumptions. It is generally agreed,

however, that the discipline and deep perception

needed to undertake formal verification are useful

in themselves Anticipation of formal verification

seems to foster good program organization and

design Attempts at formal verification invariably

lead to improved insight into both the goals and

implementation of a program.

IllI.An Integrated Testing,

Analysis and Verification System

Recently, each of the four above techniques

has received considerable attention and investi

gation. Stand-alone systems, implementing each

have been constructed, and experience has been

gained in using each. Partly as a result of this

experience, there is a growing concensus that no

single technique adequately meets all program

testing verification and analysis needs, but that

each contributes some valuable capabilities It

thus becomes clear then that the four techniques

should not be viewed as competing approaches, but

rather that each offers useful but different

capabilities. Attention then naturally turns to

the examination of how the various ,capabilities

can be merged into a useful total methodology and

ystem.

Such a methodology is described now. The

methodology makes provision for the progressive

detection and exploration of errors as well as

provision for selective verification of different

aspects of program behavior.

Both types of activities are begun with

static analysis of the source program using a

pathwise anomaly detecting analyzer. Inthe next

phase of the methodology, symbolic execution is

used to further the results of static analysis.

The symbolic execution focuses on anomaly-bearing

paths detected by the static analyzer to further

the error detection and verification power of the

methodology. The methodology next calls for the

application of either dynamic testing or formal

verification. Dynamic testing is used to obtain

the most precise but restricted examination of

the nature and sources of errors and anomalies

whose existence has been determined during the

first two phases. Symbolic execution is used to

generate test data for the dynamic test of individ

ual cases Formal verification-is used to obtain

the most definitive demonstration of the absence

of errors Extreme rigor and thoroughness can be

applied at high cost in showing the absence of

errors.

A schematic diagram of the methodology is

shown in Figure I

The above strategy organizes the four

techniques into a progression of capabilities

which is natural in a number of important ways. It

begins with a broad scanning procedure and progress

to deeper and deeper probing of errors and anomaly

phenomena It initially requires no human inter

action or input. It progresses to involve more

significant human interaction as human insight

becomes more useful in tracing errors to their

sources and constructing mathematical demonstra

tions of correctness. Itprovides the possibility

of some primitive verification without human

intervention, and then allows error detection based

upon the negative results of the verification scan.

The flow of data is also most fortuitous. The

first phase static analysis requires no input. It

produces as output, however, paths through the pro

gram which are deemed to be significant inerror

35

output of the first phase. Finally, the dynamic

testing phase requires actual program input data

It has been observed, however, that symbolic execu-

tion systems can be used to produce data sets

which are sufficient to force the execution of

their input paths Hence, the second phase can be

used to provide the input required by the dynamic

testing phase.

It is also interesting to observe that the

use of assertions provides a unifying influence in

integrating the four techniques. All techniques

except static analysis are explicit assertions to

demonstrate either the presence or absence of

errors Static analysis uses implicit assumptions

of proper behavior as embodied in language seman-

tics, but could also benefit from explicit asser-

tions Seen in this light, the four techniques

basically differ in the manner and extent to 	 which

they perform assertion verification. Thus, it

seems reasonable to require that a program and

initial set of assertions be submitted. The adher-

ence of program to assertions would be examined at

every stage. The stages would test the adherence

in different ways, progressively establishing

firmer assurances of adherence or focusing more

sharply on deviations.

IV. Conclusion
IV.Cocluo

The foregoing section has presented a rather

saguine view of the capabilities of an integrated

testing system combining the best features of

static analysis, symbolic execution, dynamic test-

ing, and formal verification Although software

systems implementing each of these techniques have

been produced, the task of constructing a usable

system is still far more formidable than simply

building software interfaces between existing

systems Significant research must be completed

before a useful system can be built.

The outlines of some of the longer range

outcomes of this research can be observed already.

It appears, for example, that this research will

show 	that many of the testing operations currently

performed by dynamic testing systems alone, can be

performed more effectively by some combination

with static analysis, symbolic execution and formal

verification. This would lessen the reliance of

testing upon chance and human interaction. It

also 	appears that this research will show that the

activities of program testing and formal verifica-

tion 	are more closely related than previously

generally thought. Some of the static analysis

techniques proposed here can reasonably be thought

of as techniques for producing proofs of the

correctness of certain restricted aspects of a

given program Moreover, certain proposed appli-

cations of symbolic execution are tantamount to

assertion verification over a limited range.omeTransactions on Software Enineering SE-2,
is hisreserchmayprovde
epeced tat 	 It

p.215-222 (September 1976)
is expected that this research may provide some

insight into some ways inwhich testing and prov

ing activities can be utilized as complementary

activities The proposed research should confirm

these and other important conjectures.

V. Acknowledgments

The author would like to thank Lloyd D.

Fosdick for the many valuable and stimulating con

versations which helped shape the ideas presented

here, as well as for his perceptive comments on

early versions of this paper. The ideas presented

here were also shaped by stimulating conversations

with Lori Clarke, Bill Howden, Jim King, Don Reifer,

Dick Fairley, Leon Stucki, Bob Hoffman, and many

others

VI. References

[1] 	 FT Baker, "Chief Programmer Team Management

of Production Programming," IBM Systems

Journal (11) pp 56-73 (1972).

[2] 	 D S. Alberts, "The Economics of Software

Quality Assurance," AFIPS Conference Proceed

ings (45) pp. 433-442 (1976 National Computer

Conference).

[3] 	 E W. Dijkstra, "Notes on Structured Program

ming", in Structured Programming by O.J Dahl,

E.W. Dijkstra and C.A.R. Hoare, Academic

Press, London and New York, 1972

[4] 	 N. Wirth, "Program Development by Stepwise

Refinement" CACM 14, pp. 221-227 (April 1971).

[5] 	 D.L. Parnas, "On the Criteria to be Used in

Decomposing Systems into Modules" CACM 15,

pp. 1053-1058 (December 1972).

[6] 	 N. Wirth, "An Assessment of the Programming

Language PASCAL" IEEE Transactions on Software

Engineering SE-l, pp 192-198 (dune 1975).

[7] 	 J D. Gannon and J.J. Horning, "Language Design

for Program Reliability", IEEE Transactions on

Software Engineering SE-l, pp. 179-191 (June

19757

Balzer, "EXDAMS- Extendable Debugging
[8] 	 R.A

6-CC
and Monitoring System", AFIPS 1969 34

AFIPS Press, Montvale, New Jersey, pp. 567-580

[9] 	 R.E. Fairley, "An Experimental Program Testing

Facility", Proceedings of the First National

Conference on Software Engineering, IEEE

Cat. #75CH0992-8C, pp 47-52

[10] L.G. Stucki and G.L. Foshee, "New Assertion

Concepts for Self Metric Software Validation",

Proceedings 1975 International Conference on

Reliable Software, IEEE Cat. #75CH940-TCSR,'

Rlb S a E t C 7

pp. 59-71.

[11] 	 R. Grishman, "The Debugging System AIDS",

AFIPS 1970 SJCC 36 AFIPS Press, Montvale,

N.J., pp. 59-64.

[12] L. Clarke, "A System to Generate Test Data

and Symbolically Execute Programs", IEEE

[13] 	 W.E. Howden, "Experiments with a Symbolic

Evaluation System", AFIPS 1976 NCC 45, AFIPS

Press, Montvale, N.J , pp. 899-908.

[14] J.C. King, "Symbolic Execution and Program

Testing", CACM 19, pp. 385-394 (July 1976).

36

[15] 	 R.S. Boyer, B Elspas, and K.N. Levitt,

"SELECT--A Formal System for Testing and

Debugging Programs by Symbolic Execution",

Proceedings 1975 International Conference on

Reliable Software, IEEE Cat #75CH0940-7CSR,

pp. 234-245

[16] 	C V Ramamoorthy and S.B F. Ho, "Testing

Large Software with Automated Software Evalua

tion Systems", IEEE Transactions on Software

Engineering SE-l, pp. 46-58.

[17] E.F. 	 Miller, Jr., "RXVP, Fortran Automated

Verification System", Program Validation

Project, General Research Corporation, Santa

Barbara, California (October 1974).

[18] L.J. 	 Osterweil and L.D. Fosdick, "DAVE--

A Validation, Error Detection, and Documanta

tion System for Fortran Programs", Software

Practice and Experience 6, pp. 473-486

[19] E.F. Allen and J. Cocke, "A Program Data Flow

Analysis Procedure", CACM 19, pp. 137-147

(March 1976).

[20] 	 K.W. Kennedy, "Node Listings Applied to Data
Flow Analysis", Proceedings of 2nd ACM Sym- -OI /
posium on Principles of Programming Languages, G
Palo Alto, California, pp. 10-21 (January OZ POOR QUALITy
1975).

[21] 	 M S. Hecht and J.D. Ullman. "A Simple Algo

rithm for Global Data Flow Analysis Problems,"

SIAM J. Computing 4, pp. 519-532 (December

1975.

[22] 	 J.D. Ullman, "Fast Algorithms for the Elimi

nation of Common Subexpressions", Acta Infor

matica 2, pp. 1910213 (December 1973).

CORRECT PROGRAM OR ASSERTIONS

CORRECT PROGRAM OR ASSERTIONS

CORRECT PROGRAM OR ASSERTIONS MOREINFORMATION NEEDED

CORRECT MORE INFORMATION NEEDED
PROGRAM
OR

RaQONS
II

ASSERTIONS
I I ERRORS

START ERRORSFOUND' ERFRSFOUND 4N ND

oCEHUA

POGRAMI INVOLVEMENT

PROCESSING

pA ._S 1O BE I TuDIE D .TEST DATA F O OPATHS

STATIC SYBLCNO ERRORS I YAI
ANALYSIS EXECUTOR TEST DATA FOR COV ERINGIPATHS -TEsTER

-oO&34j ERRORS
w~~u.I 04IFUND

POROOF

_----- - - PATH 	 FPROVR FILI

DATAFLOW GENERATOR
-- DECISION FLOW

Figure 1. A Diagram of the Proposed System

37

A CASE FOR TOOLPACK

Webb Miller, Department of Mathematics

University of California

Santa Barbara, California, U.S.A.

ABSTRACT

We propose a collaborative effort to develop a

systematized collection of software tools for

Fortran programming.

1. SOME SOFTWARE TOOLS

LET US TRY TO CLASSIFY some software tools in terms

of their applicability during the development of a

typical Fortran program.

design

+

coding

+

testing

+

distribution

+ +

use maintenance

DESIGN - At this phase the program's specifi
cations are determined and algorithms and data
structures are selected. Software tools can assist
in the preparation and checking of design specifi
cations. (JO) A much more specialized tool is
software for roundoff analysis (14,15) which can be
used to help design a program performing matrix
computations.

CODING - Text editors, compilers, structured

Fortran preprocessors like RATFOR (11) or EFL, and

source-text formatters like POLISH (3) are useful.

TESTING - Debugging systems (8) help track down

program errors and profilers (10,22) can locate un

tested code and code in need of scrutiny for possible
manual optimization. The PFORT Verifier (20) and

DAVE (6,17,18) can diagnose certain kinds of errors.

Currently, much research (9,16,19,22) in software

engineering is focused on this phase of software

development.

DISTRIBUTION - Distribution aids can assist in

preparing multiple versions (for different machine

number systems or different machines) from the

"master version" of a program. (2, pp. 305-423)

MAINTENANCE - Distribution aids can also be

used to keep track of the various releases of a

program and to update collections of programs

stored on tape. (5,21) For maintaining a program

written by someone else, it may help to automatic

ally convert Fortran into, say, well-structured

Fortran 77 with a structurer. (1)

2 TOOLPACK

We feel that the time has arrived for a col

laborative effort to develop a systematized collec

tion of software tools for Fortran programming.

Since we envision an effort along the lines of the

"PACK series" (EISPACK and its descendants) we use

the name "TOOLPACK "
Probably the first and most crucial design de

cision would be the selection of a Fortran exten

sion, which we will call FE, with adequate control

structures and with data types sufficient to make
writing the software tools relatively painless (the

tools should be written in this language). Com

patability with Fortran 77 seems extremely desir

able, but perhaps other considerations will make,

say, EFL the proper choice A processor for FE

should be designed with all of its possible uses in

tools (i)-(iv) in mind (we could also use it to up

date our minicompiler (14,15))

The exact contents of TOOLPACK would have to be

dictated by the willingness and interests of con

tributors One possibility is that TOOLPACK ini

tially contain:

(i) a FE-to-PFORT translator,

(ii) a FE source-text formatter which transforms

PFORT into PFORT,

(iii) a FE profiler,

(v) distribution and maintenance aids.

Of the candidates for eventual inclusion in

TOOLPACK, some are promising, e.g., DAVE (we hope

that improvements will make wide use economically

feasible) and program structurers (they are of in

terest as much for insights into the programing

process gained during their development as for

their usefulness as a tool). On the other hand,

some candidates are of doubtful value, e.g , auto
matic test data generators (we feel that our method

(13) is best in many cases, but even it does not

seem especially useful) and symbolic execution sys

tens (9), while some candidates seem to have no

immediate practical value, e.g., automatic program
verifiers. (4)

3. JUSTIFICATION

We are convinced that TOOLPACK would easily pay

for itself in savings to Fortran programmers. How
ever, there are software development issues at

stake which are far more important

The PACK series is the prime example of the

spread of what might be called the "PACK paradigm"

'Numbers in parentheses designate References at end

of paper.

38

N79-12726

of computer science research Characteristically, 	 workshop should be to come as near as possible to

(1) such endeavors take the form of collaboration completing a package of proposals for constructing

by research leaders to produce portable state-of- and testing TOOLPACK, also to be submitted to the

the-art software and all levels of supporting docu-	 Department of Energy and the National Science Foun
mentation, (ii) federal funding provides partial dation jointly. Some discussion of design questions
support and (III) the resulting software and docu- (e.g , the choice of FE) should take place, but only
ments are placed in the public domain. until someone assumes responsibility for a generally

Consider the following map of the computer pro- approved software tool so that a concrete proposal

gramming milieu (it is neither complete nor drawn can be made. Detailed design questions need not be

considered until TOOLPACK development Is funded.
to scale). The approximate domain of the PACK

paradigm is shaded

ACKNOWLEDGMENT

non-numerical programming We would lake to thank Stan Brown, Don Johnson
and especially Fred Krogh for their helpful

business programming comments
operating systems

REFERENCES
omlers

natorial computing 1. B maker, "An Algorithm for Structuring
Flowgraphs." JACM 24, 1977, pp. 98-120

2. W. Cowell (ed.), "Portability of Numerical

Software." Springer Lecture Notes in Computer

tat~i~ld~isutaionScience #57, 1977.

tation 3. J Dorrenbacher et al., "POLISH, a Fortran

ory differential equations Program to Edit Fortran Programs." Dept. of Com
puter Science Report CU-CS-050-74, University of

partial differential equations Colorado, 1974.

4. B. Elspas et al., "An Assessment of Tech

numerical programming niques for Proving Program Correctness " Computing
Surveys 4, 1972, pp. 97-147.

Actually, the existence of the pictured beach- 5. S. Feldman, "Make--a Program for Maintain

head for the PACK paradigm in non-numerical terri- Ing Computer Programs." Computer Science Technical
tory is questionable. The examples we have in mind, 	 Report 57, Bell Labs , 1977.

in particular the non-numerical contributions in the 6. L. Fosdick and L. Osterweil, "Data Flow
Collected Algorithms of the ACM, are not collabor- Analysis in Software Reliability." Computing Sur

ative on a scale even approaching that of the PACK veys 8, 1976, pp. 305-330
series. 	 7. A. Hall, "SEDIT--a Source Program Editor

There are numerous reasons why the PACK para- Computing Science Technical Report 16, Bell Labs.,

digm will never be the universal model of software 1974.

development. Some of the difficulties are unavoid- 8. A. Hall, "FDS a FORTRAN Debugging System,

able. For Instance, combinatorial computing resists Overview and Installer's Guide." Computing Science

"black boxes" since typically it is hard to detach Technical Report 29, Bell Labs. , 1975.

general-purpose combinatorial programs from the ad 9 W. Howden, "An Evaluation of the Effective

hoc data structures which are used. ness of Symbolic Testing." Software--Practice and

Some of the impediments to the spread of the Experience 8, 1978, pp. 381-397
PACK paradigm are less intrinsic. A major culprit 10. D. Ingalls, "The Execution Time Profile as
is the reward system in both academic and business a Programming Tool." In R. Rustin (ed.), "Design
sectors. Duplication of effort often results in and Optimization of Compilers." Prentice-Hall,
greater total reward than does collaboration. More-	 1972, pp. 107-128.

over, the spread of the paradigm to non-numerical 11 B Kernighan, "RATFO--a Preprocessor for
territory is impeded by the scarcity (or complete a Rational Fortran." Software--Practice and Exper
absence) of precedent-setting examples. ience 5, 1975, pp. 395-406

The PACK paradigm should be fostered in those 12. H. Kleine, "Software Design and Documenta
areas of software development where it is appropri- tion Language." JPL Publication 77-24, Jet Propul
ate. TOOLPACK would do much to encourage its spread sion Laboratory, 1977.
by producing programs which can be readily appreci- 13. W. Miller and D. Spooner, "Automatic Gener
ated by non-numerical programmers ation of Floating-Point Test Data " IEEE Trans. on

Software Engineering SE-2, 1976, pp. 223-226.

4. 	 PROPOSALS 14. W. Miller and D. Spooner, "Software for

Roundoff 'Analysis II." TOMS, 1978.
If sufficient support materializes for TOOLPACK, 15. W. Miller and C. Wrathall, "Software for

then by mid-November a proposal should be submitted Roundoff Analysis of Matrix Computations." 1979.
to the Department of Energy and the National Science 16. L. Osterweil, "A Proposal for an Inte-
Foundation to jointly fund a 2- or 3-day TOOLPACK grated Testing System for Computer Programs."

6
workshop to be held in, say, March. The proposal Dept. of Computer Science Report CU-CS-093-7 , Uni
might request expenses (up to $500 per person) for versity of Colorado, 1976
10-12 workshop participants and $1000 overhead to 17. H. Osterweil and L. Fosdick, "DAVE--a Vai
cover secretarial assistance (before and during the dation, Error Detection and Documentation System for
workshop), Xeroxing, telephoning and postage. Fortran Programs." Software--Practice and Exeri-

Attendance at theworkshop should be limited to ence 6, 1976, pp. 473-486.
persons likely to make a commitment to TOOLFACK, 18. L. Osterweil and L Fosdick, "Some Experi
either as principal investigators developing soft- ence with DAVE--a Fortran Program Analyzer." Proc.
ware or as test site coordinators. The goal of the National Computer Conference, 1976, pp. 909-915

39

O A
Q

6

0

0 riA 4

19. C. Ramamoorthy and S.B. Ho, "Testing Large
Software wA£h Automated Software Evaluation Systems."
IEEE Trans. on Software Engineering 1, 1975, pp. 46
58.

20. B. Ryder, "The PFORT Verifier." Software--
Practice and Experience 4, 1974, pp. 359-377

21. W.V. Snyder, "A Transportable System for
Management and Exchange of Programs and Other Text."
Talk at this conference.

- 22. L.- Stucki. and A. Foshee, -"New Assertion
Concepts for Self-Metric Software Validation."
In IEEE Proc. International Conf. on Reliable
Software, 1975, pp. 59-65.

40

N79-s 12727

Programmable Formatting of Program Text:

Experiences Drawn from the TANER System*

Kenneth W. Dritz, Applied Mathematics Division

Argonne National Laboratory

Argonne, Illinois, U.S.A.

EXTENDED ABSTRACT

The TANPR System originated as an approach to

the problem of automating the routine modifications

of Fortran source programs required to adapt them

to a variety of uses or environments fl]** Over-

all, the system accomplishes such modifications by

applying transformations to Fortran programs at the

source level. But the process differs markedly, in

detail, from string-based editing or macro expan-

sion. Three steps are involved:

(1) A Fortran source program is processed by the

TAMPR Recognizer, yielding essentially a parse

tree called the abstract form.

(2) The Transformation Interpreter applies IGT's

(Intragramatical Transformations) to the

abstract form as tree operations [2]

(3) The abstract form is then reconverted to source

program form by the Formatter.

By ensuring that the transformations are applied

only to the correct syntactic entities and only in

the intended contexts, the use of the abstract form

greatly simplifies establishing the reliability of

the overall process.

The Formatter, of course, is responsible for

meeting the requirements of the target language,

such as use of blanks, statement continuations,

etc. In addition, the formatting process is

charged with imparting to the resultant program a

certain degree of style. Areas of concern here are

spacing between symbols, choosing "logical" break-

points in multi-line statements, and, at a higher

level, commenting and indentation to help reveal

program structure The expectation of variation

of opinion among researchers as to what constitutes

good style plus the knowledge that our own criteria

for good style would evolve with experience led us

to reject the idea of a fixed formatting process,

such as that essentially used in Lang's STYLE

editor [3]. The Formatter, accordingly, was de-

signed to interpret an easily modified set of

formatting instructions,

Several alternative designs were possible for

the Formatter. For example, the approach of em-

bedding formatting directives in the program to be

formatted, as in document formatting systems, was

rejected partly because it would have seriously

complicated the application of IGT's. More impor-

tantly, however, the idea of formatting instructions

separate from the programs appealed because it

would permit one set of instructions to be used for

the formatting of many Fortran programs. Pursuing

that idea, we next concentrated on the form of the

instructions. A tabular encoding in the manner of

Koch and Schwarzenberger [4] suffered in our opin-

ion from being obscure, unnatural, and not suffm-

ciently expressive and was rejected. We chose

instead to develop a high-level procedural language,

Format Control Language, containing appropriate

application-oriented features as well as general

computational capability. The Formatter, then, is

programmed in FCL.

How does one write FCL programs that are

broadly applicable to the conversion of a whole

class of Fortran programs from abstract to concrete

form? We will answer this question by surveying

some of the features of FOL.

Since the trees to be formatted are essential

ly parse trees, a first-order approximation to the

desired output can be obtained simply by traversing

the tree in canonical (left-to-right, or recursive

descent) order producing output at the terminal

nodes. That behavior is in fact built in to the

Formatter and does not require programming in FCL.

The automatic traverse falls short of providing all

the required behavior, however For instance, no

special treatment would be provided for label def

initions or for "end-of-statement," and spacing

between tokens would be fixed at some value, say

zero or one. Or there could be various reasons

(see [5]) for pruning the tree (i.e., for not

descending into certain subtrees) or for emitting

some computable function of the "print name" of

one or more terminal nodes rather than just the

print names themselves, in order and with the fixed

spacing between them. These problems are addressed

by various features of FCL, some of which are des

cribed below.

In order to intercept the automatic traverse

at any desired point one employs a fundamental

FCL control structure called a production block.

A production block is similar to a procedure block

except that its "name" is a representation of a

production in the grammar to which the tree con

forms (in other words it is the representation of

a type of node which may occur in the abstract

form tree). Continuing the analogy, a production

block is invoked not by a CALL statement but by

arrival of the automatic traverse at a node of the

type described by the production block's name

Within the body of a production block, the

individual components of its name can be used to

refer symbolically to the actual node at which the

traverse was interrupted and to its immediate sub

nodes. Two useful and essential functions derive

from this capability. First, tile "print names" of

terminal subnodes may be used in EMIT statements

to produce fragments of textual output, or they

may be used in computations leading to such output,

for example, to construct and emit the nrtext

form of a Hollerith constant represented in the

tree by a terminal node whose print name contains

just the text part. Second, the automatic traverse

may be continued into a particular subtree headed

by a subnode of the node at which it was interrup

ted by referring to the subnode in a FORMAT state

ment.

Normal block structure rules, when applied to

the nesting of production blocks, yield another

useful and essential feature. Since a nested

*Work performed under the auspices of the U.S.

Department of Energy.

**Numbers in brackets designate References at end

of paper.

41

block is not "known" and cannot be invoked unless
its containing block is active, we are provided
with a simple and natural way to make the format-

ting of a particular type of node (e.g., phrase)

dependent on its context. An example of the use

of this feature, in conjunction with SPACE state-

ments, is to replace the default spacing ofne

as it applies, for instance,on either side of an

arithmetic operator by zero when that operator

appears inside a subscript list.

. The problem of breaking and continuing state

ments that are too long to fit on one line has

received special attention Statements can in

general be thought of as composed of nested Zssts.

For example, a logical-IF statement containing,

say, a CALL statement is a list of two items,

the IF-test and the CALL statement. The argument

list in the call is a list of expressions separ-

ated by commas. Each expression is a list of

terms separated by "+" or "-", each term is a

list of factors separated by "*" or "", etc. When

it is determined that a statement must be broken,

it is broken at the rightmost breakpoint of the

shallowest (highest level) unclosed list that has at

least one breakpoint on the line, and it is con-

tinued on the next line in the column in which the

broken list began. Since the beginnings, ends,

and breakpoints of lists do not always bear

constant relationships to the recursive phrase

structure of the grammar, we require that they be

marked in passing by the execution of FCL state-

ments provided for that purpose. For instance,

the beginning of an argument list is just inside

the left parenthesis, while its breakpoints are

just after the commas and its end is just outside

the right parenthesis (by not closing the list

until after the right parenthesis, a possible

"dangling parenthesis" is avoided if the line

should overflow by just that one character) Some

controversy surrounds the following question: if

a list of terms or of factors, etc., is broken,

should the breakpoint be before or after the

arithmetic operator? The programmability of the

Formatter gives the TAMPR user his choice

Early in the design of the Formatter a more

general approach to choosing the breakpoints was

discussed, namely, that of buffering an entire

statement and then choosing all of its breakpoints

to minimize the overall badness of the result,

defined in some suitable way At the time we were

not prepared to deal with that much added complex

ity. Perhaps we will restudy that approach after

Knuth shares the results of implementing a similar

dynamic programming algorithm for the line divi

sion of paragraphs in his technical text system,

TEX [6].

FCL contains also a standard assortment of

general control structures and declarative

and computational features for integer and

character string data types. These have

proved of particular value in algorithms to

detect and preserve columnar relationships and

paragraph structure in blocks of comments that

are subjected to a variety of substitutions and

other minor transformations. A discussion of

other features of FCL, such as those for marking

labels and ends of statements, setting off

comments, and indenting, may be found in [5],

along with numerous illustrations of the use of

all the features mentioned in this abstract.

The Formatter's programmability, particularly

its general computational and control capabili

ties, has aided its own evolution by permitting

new ideas to be simulated, at least, for evalua

tion before taking the decision to build them in
as primitives. It has likewise made possible the

use of TAMPR in new application areas (see [7]),

such as a verification condition generator in a

program verification project. In that use, the

requirement to format ordinary infix logical

and arithmetic expressions as prefix output was

easily met.

REFERENCES

1. J. M. Boyle and K. W. Dritz, An Automated

Programming System to Facilitate the Development

of Quality Mathematical Software, Information

Processing 74, 542-546, North-Holland Publishing

Company, 1974.

2 J. M. Boyle and M. Matz, Automating Multiple

Program Realizations, Proceedings of the M.R.I.

International Symposium XXIV: Computer Software

Engineering, 421-456, Polytechnic Press, Brooklyn,

N.Y., 1977.

3 D. E Lang, STYLE Editor: User's Guide,

Department of Computer Science Report CU-CS-007-72,

University of Colorado, Boulder, Colorado, 1972.

4. K. Koch and F. Schwarzenberger, A System for

Syntax-Controlled Editing of Formula Text,

Proceedings of the Newcastle Seminar on Automated

Publishing, 1969.

5. K. W. Dritz, An Introduction to the TAMPR

System Formatter, in J. R. Bunch (ed.), Coopera

tive Development of Mathematical Software, 89-103,

Department of Mathematics Technical Report, Univer

sity of California, San Diego, California, 1977.

6. D. E. Knuth, Mathematical Typography (Gibbs

Lecture, AMS), Report STAN-CS-78-648, Computer

Science Department, Stanford Univ , February 1978.

7. K. W. Dritz, Multiple Program Realizations

Using the TAMPR System, in W. R. Cowell (ed.),

Proceedings of the Workshop on the Portability

of Numerical Software, 405-423, Springer-Verlag,

Berlin, 1977.

42

N79-12728

New Languages for Numerical Software

Eric Grosse

Stanford University

Stanford, California

1. 	 Introduction

Existing languages for numerical software are not altogether satisfactory. Fortran, even
preprocessed, has troublesome limitations Unfortunately, proposed replacements have been
discouragingly large, or omit essential features like variably dimensioned arrays and Fortran
compatibility

A new language has been designed to include such crucial features, but otherwise be as
small as possible This language, called T, includes indention to indicate block structure, novel
loop syntax, and engineering format for real constants By .preprocessing into PL/I, implemen
tation cost was kept low.

But this language can only be regarded as a stopgap. The next step is to deal with more
fundamental issues, by more fully exploiting arrays, by making pointers available in a controlled
way, and by arranging for better declaration and syntax for using subroutine libraries.

2. 	 Defects of Existing Languages

Why do we need new languages? Consider how your favorite programming language
deals with the following catalog of annoying features encountered in writing mathematical
software Though the list is long, a failing on even one issue can make life rather unpleasant.

Arithmetic

* 	 Converting a program from single to double precision is a chore Variables must be
declared, constants like 1EO converted to 1DO, and function names changed

* 	 Precision can easily be lost accidentally Intermediate results may be truncated, or
extended with garbage.

* 	 One must remember a distinct name for each version of each routine that handle different
types and precisions of numbers.

* 	 Silent type conversions, as in I = J = 0, can give wrong answers without warning.

Arrays and Pointers

* 	 Subscript checking is not available.
* 	 Array bounds are fixed at compile time. Working with several datasets requires repeated

recompilation or the use of a clumsy stack mechanism

* 	 All lower bounds must be 1 If the natural origin is 0, off-by-one errors easily slip in.

* 	 Information about bounds must be explicitly passed in subroutine calls. This is so incon
venient that fake bounds of 1 are used instead.

43

* 	 References are used in a fundamental but unnatural way, and therefore wind up being
hidden. (e g. real really means ref real)

* 	 Operations like the sum of two vectors or the sum of all components of a vector are not
available, or only available by a somewhat unreadable subroutine call. Or the operations
are available, but their implementation is expensive enough that-one-is advised not to-use
them.

Input-Output and Error-Handling
* 	 The underflow routine, as it properly sets the result to 0, loudly reports its activity.
* 	 When a fatal error occurs, the input-output buffers are not flushed No subroutine call

traceback is provided either
* 	 The free-format facilities are nonexistent or produce ugly output, so awkward format

specifications must be prepared

Restrictions
* 	 The form of identifiers is severely limited
* 	 Do loop bounds are restricted.
" 	 Modern control constructs, macros, procedure variables, and fully-supported structured

data types are missing
* 	 The interface to Fortran routines is weak, particularly with arrays, input-output, and error

handling
* 	 There are not enough restrictions to allow good optimization, particularly when function

calls are present

Clutter
* 	 Quotation marks are required around keywords Semicolons must appear in specified

places.
* 	 Poor comment conventions make it tricky to comment out blocks of code.
* 	 The reference manual is bulky, hard to read, and obsolete.
* 	 The compiler is slow, expensive, large, difficult to use, and contains many bugs

3. 	 A Quick Fix
Each of these problems has been solved before, but not in a single language. So to show

it could be done and to provide a useful tool, I drew up plans for a small language T [Grosse
1978] and, with the help of another numencal analysis student, implemented it in about a
month.

We chose to preprocess into PL/I, following Kernighan and Plauger's [1976] motto to "let
someone else do the hard work" By incorporating a macro processor to handle tasks like revers
ing array subscripts for Fortran compatibility, we managed to avoid parsing most program text,
in the same spirit as RATFOR and other Fortran preprocessors At the same time we cleaned
up a few aspects of PL/I, for example converting 1 0 automatically to BINARY (1 00000000...)
so that precision and type troubles are avoided

In addition, we were able to include several unusual features For the ALGOL veteran,
perhaps the most striking is the complete absence of BEGINs and ENDs. Not only is the text
indented, but the indention actually specified the block structure of the program. Such a
scheme was apparently first proposed by Landin [1966], except for an endorsement by Knuth
[1974], the idea seems to have been largely ignored

Ideally, the text editor would recognize tree-structured programs In practice, text editors

44

tend to be line oriented so that moving lines about in an indented program requires cumber
some manipulation of leading blanks. Therefore the current implementation of T uses BEGIN
and END lines, translating to indention on output.

Whatever the implementation, the key idea is to force the block structure and the inden
tion to be automatically the same, and to reduce clutter from redundant keywords.

In addition to normal statement sequencing and procedure calls, three control structures
are provided. The CASE and WHILE statements are illustrated m this typical program seg
ment

WHILE(NORMYP > 1(-3) & 1<=IFLAG & IFLAG<=3)
TOUT T + 10(-3)/NORMYP
ODE(DF,2,Y,T,TOUT,RELERR,ABSERR,IFLAG,ODEWORK,ODEIWORK)
CASE

2 = IFLAG
GDRAW (YPF)

3 = IFLAG
PUT ('ODE DECIDED ERROR TOLERANCES WERE TOO SMALL.')
PUT 	 ('NEW VALUES')
PUT DATA (RELERR,ABSERR)

ELSE
PUT 	 ('ODE RETURNED THE ERROR FLAG')
PUT DATA (IFLAG)

FIRST
DF(T,Y,YP)
NORMYP = NORM2(YP)

The CASE statement is modelled after the conditional expression of LISP, the boolean expres
sions are evaluated in sequence until one evaluates to YES, or until ELSE is encountered The
use of indention makes it easy to visually find the relevant boolean expression and the end of
the statement

One unusual feature of the WHILE loops is the optional FIRST marker, which specifies
where the loop is to be entered In the example above, the norm of the gradient, NORMYP, is
computed before the loop test is evaluated Thus the loop condition, which often provides a
valuable hint about the loop invariant, appears prominently at the top of the loop, and yet the
common n-and-a-half-times-'round loop can still be easily expressed.

The FOR statement adheres as closely as practical to common mathematical practice

FOR 	 (I <= I <= 3)

NORMSQ = (Y(1)-X(I,1))**2 + (Y(2)-X(I,2))**2

Z = Z + H(I)*EXP(-O 5*W(I) *NORMSQ)

Several years experience with these control constructs has demonstrated them to be adequately
efficient and much easier to maintain than the alternatives.

Beginners often find Fortran's input/output the most difficult part of the language, and
even seasoned programmers are tempted to just print unlabelled numbers, often to more digits
than 	 justified by the problem, because formaiting is so tedious. PL/I's list and data directed
I/0 is so much easier to use that it was wholeheartedly adopted in T By providing procedures
for modifying the number of decimal places and the number of separating blanks to be output,
no edit-drected I/O is needed Special statements are provided for array I/O so that, unlike
PL/I, 	 arrays can be printed in orderly fashion without explicit formatting

Since almost as much time is spent in scientific computation staring at pages of numbers
as at pages of program text, much though was given to the best format for displaying numbers.

In accordance with the "engineering format" used on Hewlett-Packard calculators and with
standard metric practice exponents are forced to be multiples of 3 This convention has a histo
gramming effect that concentrates the information in the leading digit, as opposed to splitting it

45

between the leading digit and the exponent, which are often separated by 14 columns, the use
of parentheses to surround the exponent, like the legality of imbedded blanks, was suggested by
mathematical tables. This notation separates the exponent from the mantissa more distinctly
than the usual E format

4. 	 A Longer-Term Solution
By building on a rather powerful host language, T goes a long way towards meeting the

standards implied in section 2 But there are certain fundamental problems that will probably
stimulate a completely independent implementation.

Source-level optimization is desirable because particular transformations can be performed
or analyzed by hand. To permit this and to clarify the use of "arbitrary" arguments for passing
information untouched through library routines, a controlled form of pointers can be intro
duced By manipulating descriptor blocks, considerably more powerful array operations are
feasible. The increasing availability of computer phototypesetting equipment has implications
for language syntax Declarations and statements ought to be able to be intermixed. With the
growing importance of subroutine libraries, provision must be made for language extensions to
support new data types and operators.

By using Fortran very carefully and invoking verification tools, it is now possible to write
programs that run, without any change whatsoever, on practically any computer This extreme
portability can probably neyer be achieved by any new language Even a portable Fortran
preprocessor requires some effort to bring up at a new site But I believe that the advantages of
instant portability are overwhelmed by the expressiveness, efficiency, and clean environment
that new languages can provide

5. References

E Grosse, Software Restylng in Graphicsand ProgrammingLanguages,Stanford University,
STAN-CS-78-663, [1978].

B. W. Kermighan, and P Plauger, Software Tools, Addison Wesley, [1976].

D. Knuth, Structured Programming with Goto Statements, Computing Surveys 6, 261-301,
[1974].

P Landin, The Next 700 ProgrammingLanguages,Comm ACM 9, 157-166, [1966].

46

N79-12729

The Programming Language EFL

S. L Feldman

Bell Laboratories

Murray Hill, New Jersey 07974

Introduction
EFL is a comprehensive language

designed to make it easy to write portable,
understandable programs It provides a rich
set of data types and structures, a con
venient operator set, and good control flow
forms The lexical form is easy to type and
to read

EFL was originated by A D Hall
The current author completed the design of
the language and wrote the current com
piler Whenever possible, EFL uses the
same forms that Ratfor [1] does, in this
sense EFL may be viewed as a superset of
Ratfor EFL is a well-defined language, this
distinguishes it from most "Fortran prepro
cessors" which only add simple flow of con
trol constructs to Fortran

The EFL compiler generates (possibly
tailored) Standard Fortran as its output
EFL should catch, and diagnose all syntax
errors

The following description will be brief
and informal Many details of the language
are omitted The reader is assumed to be
familiar with Fortran, but not necessarily
with Ratfor

Syntax
EFL is line-oriented The end of line

terminates a statement unless the last token
on the line is an operator or is part of a test
or loop construct A sharp (#) starts a
comment, which continues till the end of
the line Statements may be terminated by a
semicolon, in that case more than one state
ment may appear on a line EFL uses
natural characters (&, <,) rather than
Fortran's multi-character identifiers (AND ,
LT,) for operators Variable names

47

begin with a letter, and may be followed by
any number of digits and letters Numeric
and logical constants follow the rules of For
tran Character constants are surrounded by
quotes

Program Form
Every procedure (main program, sub

routine, function) begins with a procedure
statement and finishes with an end state
ment

Macros may be given values in a
define statement

define EOE -4
define BUMP { i +=1 ; j+=1)

A file may be read in with a line like

include filename

Data Types
The basic data types of EFL are

integer, logical, real, complex, long real
(=double precision), and character The
first five are the usual Fortran data types
Character data are strings of fixed length,
represented in Hollerith strings EFL also
has homogeneous aggregates (arrays) and
rnhomogeneous aggregates (structures)
Arrays may have more than one dimension,
and lower bounds need not be 1 In declara
tions, attributes may be factored, and more
than one attribute may be declared on a line
Initial values may also be given on the
declaration line

character(8) greeting = "hello"
integer size = 5*9

The following single statement declares a
common block

common(x)
I
logical firsttime
character(7) name
array(0 99)

I
integer flag
complex value

The block contains a logical variable, a char
acter variable, and two arrays, each contain
ing 100 elements

Structures may be made up of objects
of different types A structure may be given
a tag, that tag acts as a type name (analo
gous to integer) in the rest of the program
Thus,

struct point

integer color
real x,y

declares a shape. Later declarations might
be

point p, z(50)

struct

I
integer ptr
point p

buffer(100)

The latter declares a variable with an

tures containing points as elements An ele
ment of an array is selected by the usual
subscript notation; subscripts may be arbi
trary integer expressions

a(ij) b(max(ij))

Elements of structures are specified by giv
ing the element names

xcoord = buffer(S) p.x

Structures may be passed to procedures
There is also a mechanism for dynamic loca
tion of structures.

Operators
The usual arithmetic operators (+, -,

*,/, **) logical operators (&, j, -, and rela
tional operators (<, <=, >, > =,
-=) are provided Quantities of different
types may be mixed within expressions In
addition to ordinary assignment (=), there
are a number of operating assignment opera
tors

k ±=1

q &= p

are equivalent to the Fortran statements

k = k + 1
q = q and p

Assignments are expressions Multiple
assignments are expressed directly

a b =c

is equivalent to
b c
a b

Assignment expressions are very useful for
capturing values*

if((k = inchar(unit)) == "x")

invokes the function inchar, stores its value
in k, then compares it to the letter x.

In addition to the usual logical opera
tors, there are two sequentially evaluated
ones, &&and II The expression El && E2

is evaluated by first evaluating El, only if it
is true is E2 evaluated Thus, these operators guarantee the order of evaluation of
logical expressions

EFL provides generic functions and a
general type conversion mechanism EFL
chooses the correct version of the intrinsic
functions depending on the argument types

sin(5 ldl) generates a call to the dsin func
tion

Flow of Control

EFL statements are normally executed
in sequence Statements may be grouped
within braces This is the only grouping
mechanism. The testing and looping con
structs usually operate on a single statement;
a braced group acts as a single statement
The usual if forms are permitted

48

if(a < b)

a=b

if(a < b)
{
x =a

y=b

else

x b

y =a

There is also a switch statement for branch
ing n may vauesThe

switch(inchar(unit))

case 1

done 0
case 1

letter = inval
case 2

digit = inval

For looping, a Fortran do, a conventional
while and repeat - until, and a general
for loop are provided The do is unneces
sary but very convenient

do i = 1,n
a(i) = b(i) + c(i)

while((k = inchar(unit)) EOF)

a(i) = inval
i += 1

repeat

x + = delta

until((delta = phi(x)) < epsilon)

The for statement is borrowed from the
C[2] language It has three clauses an mi
tial value, a test, and a step rule The loop

for(p=first, node(p) ptr>O, p=node(p) ptr)
out(node(p) value)

will output every element of a linked list

struct
{
integer ptr
real value
I

node(100)

Statements may be labeled and reached
by a goto Labels are alphabetic identifiers
There are (optionally multilevel) break and
next statements for leaving a loop, or going
to the next iteration These statements are
needed only rarely, but very convenient
occasionally a oT rt n ae t xs o

return statement exits from a pro
cedure It may have a function value as

argument

return(sin(x+l))

Miscellaneous
The discussion above touches on most

of the features of the languages There are
also input/output statements in the language
that give access to Fortran's I/O, but in a

somewhat more convenient form.
A number of statement forms are

included to ease the conversion from
Fortran/Ratfor to EFL These atavisms
include numeric labels, computed goto state
ments, subroutine and function statements,
and the ability to use the AND , etc forms
under compiler option.
Compiler

The current version of the compiler is
written in C Its output is readable Fortran
To the extent possible, variable names are
the same as in the EFL text Statement
numbers are consecutive, and the code is
indented (This is possible because of the
two-pass nature of the compiler)

There are EFL compiler options for
tailoring the output for a particular machine
or Fortran compiler Implementation of
character variables requires knowledge of
the packing factor (number of characters per
integer) The default output formats are

machine-dependent, as is the handling of
input/output errors Except for issues of
these sorts, the output is machine
independent The EFL compiler worries
about generating Standard Fortran, following

49

its restrictions on line format, subscript
form, DO statement syntax, type agreement,
and so on; the EFL programer need know
nothing of these rules

References
I B W Kernighan and P. J Plauger,

Programming Tools, Prentice-Hall,
1976

2. B. W Kernighan and D M Ritchie,
The C Programming Language,
Prentice-Hall, 1978

50,

N79- 12730

DESIGN'PRINCIPLES OF THE PORT LIBRARY

Phyllis Fox

Bell Laboratories

Murray Hill, New Jersey 07974

ABSTRACT

The Bell Laboratories Mathematical
Subroutine Library, PORT, has been under
development at Bell Laboratories for the
past few years The design of PORT
stemmed from the basic principles of porta
bility and ease of use. The attributes and
mechanisms used in the library to support
this philosophy include the use of a portable
subset of Fortran, and the use of (machine
dependent) functions to supply the neces
sary environment parameters. Abbreviated
calling sequences are made possible by a
simplified error-handling technique, and by
the use of a portable stack allocator for tem
porary workspace. Our experience to date
with these approaches, and our plans for the
future are reviewed here

BELL LABORATORIES MATHEMATICAL
SUBROUTINE LIBRARY, PORT, is a
library of portable Fortran programs for
numerical computation An article descnb
ing the library appeared in a recent issue of
TOMS [1] together with CACM Algorithm
528 [21 containing the basic utilities for the
library - the functions defining the machine
constants, the error handling and the storage
stack structure Our rallying points
throughout the development of the library
have been portability, modularity and econ
omy of structure, all of which lead to
simplified calling sequences.

PORTABILITY
The rules of the game for programs

acceptable to PORT require that (1) the
program pass the PFORT Verifier [4], which
guarantees that it is written in a portable
subset of ANSI Fortran (1966 version), and
(2) any machine-dependent quantities used
in the program be obtained by invoking the

appropriate one of the three PORT func
tions that return integer, real or double
precision values

The machine-dependent values for the
constants in these functions are set when
the library is installed on the Computer. The
same tape is sent to all computer sites; the
recipient simply removes the C's in column
1 from the data statements defining the con
stants for the computer at hand, and com
piles the library Values are defined on
the PORT tape for the Burroughs
5700/6700/7700 systems, the CDC
6000/7000 series, the Cray 1, the Data Gen
eral Eclipse S/200, the Harris SLASH 6 and
SLASH 7, the Honeywell 600/6000 series,
the IBM 360/370 series, the Interdata 8/32
the PDP-10 (KA or KI processor), the
PDP-11 and the UNIVAC 1100 series
PORT has been installed on each of these
computers

ERROR HANDLING
The design of PORT's error-handling

has been described elsewhere (e g. [1]).
Briefly, two types of errors are specified
fatal and recoverable. Errors which can be
checked a priori by the user, such as the
length of a vector not being negative, are
typed fatal. All others are recoverable, but
revert to fatal unless the user specifically
elects to enter the "recovery" mode and deal
with the errors as they occur. The method
has proved to be safe for the inexperienced
user, but to allow flexibility and leeway for
the expert

The error handler is heavily used
within the library itself As a matter of pol
icy, outer level routines called by the user
reinterpret any errors occurring at lower lev
els. Thus the user never sees an error mes
sage from a mysterious lower-level routine
Everything is aboveboard

51

STORAGE STACK

The concept of a dynamic storage
stack, as implemented in a labeled COM-
MON region in the PORT library is also
described in [1]. Each program that needs
scratch space, allocates space on the stack
for the computation, and then returns the
space when it is done The stack-handling
routines are, of course, available to the user
as well, and have been found to provide
efficiencies of space usage for all concerned

(Note that the design of the error
handling and of the stack means that neither
error flags, nor scratch vector designators
appear in the calling sequences to PORT
routines.)

A stack dump routine, written by Dan
Warner, has been tremendously useful in
debugging; it will be included in a future
edition of PORT

CURRENT ACTIVITY
PORT is now installed at 15 sites

within Bell Laboratories, its use at Murray
Hill on the Honeywell computer fluctuates
between about 160 and 200 accesses per day
It has been sent to 29 external sites includ
ing locations in Austria, Belgium, Egypt and
the Netherlands, and several requests are
currently in process.

One of the more interesting uses to
which the library has been put in the last
few months has been in computer bench
marking using a set of computationally
intensive programs The benchmarking pro
grams are based on the PORT library, so
that once the library is installed, they run
easily without adaptation It has been reas
suring to find that at those sites where the
library was not already installed, it could be
put up in about an hour.

An on-going task is the development
of various categories of test programs for
the library We have recently developed a
collection of the example programs listed in
the documentation in the PORT Users
Manual [3], These will be included on the
tape when PORT is sent out to requesting
sites. On another front, Norm Schryer has
developed very probing and exacting tests of
the PORT utilities; these are included on
the Algorithm 528 tape [2]. Finally, tests
for all the routines in the library are being

developed or assembled (In most cases
they already exist and have been in use for
some time)

Our primary activity, however, still
centers around the construction of high
quality portable numerical software. Linda
Kaufman is providing the library with rou
tines in the areas of linear algebra and
least-squares fitting In the pde direction
PORT will acquire Norm Schryer's PEST
package for one-dimensional partial
differential equations coupled with ordinary
differential equations, and Jim Blue's
Laplace equation program based on a boun
dary integral equation formulation will be
incorporated into the library Dan Warner
has a good linear programming program,and other things are coming along You
might say - the future looks bright on the
port side

REVIEW OF DESIGN PRINCIPLES
In developing a program to go intoPORT we consider it a matter of pride as

well as principle to "pipe" it through a
sequence of processes untouched by human
hands (if not minds) The original is prob
ably written in the languag, EEL, discussed
by Stu Feldman elsewhere in these proceed
ings. The EFL version is automatically
translated into Fortran, and then is put
through the PFORT Verifier to check for
language. Then after a, shall we say variable
amount of time required for debugging, the
double-precision version of the program is
automatically twinned to a single-precision
version and both are put on the tape The
initial comment section of the program must
contain a detailed description which can be
transcribed into the file containing the pho
totypeset original for the program reference
sheets for the Users Manual An example
program, illustrating the use of the subrou
tine, is developed, tested, and automatically
added to the reference sheet file as well as
to the set of example programs on tape
Admittedly, at the moment, the transcrip
tion from program comments to reference
sheets is done somewhat manually, but the
macros used to form this phototypesetting
version make the process very quick We
intend to increase the level of automation

Historically, we have found it best to
exercise our programs on a number of prob

52

lems within Bell Laboratories before issuing
them outside. During this period any
difficulties that come up get incorporated
into a growing set of tests for the programs.

SUMMARY OF DESIGN PHILOSOPHY
Our current thinking about mathemati-

cal program libraries leads us to wonder
whether a new kind of duplication of effort
won't occur if the several libraries now
extant try to become all things to all people
We may not wish to make PORT an all
inclusive library covering the multiple facets
of numerical and statistical computation, but
rather to maximize our result/resource ratio
by collecting our best software in clean
modular structures into our library

PORT, having been carefully designed
to be an men, poviesgod fundtio
developinstrument for program an
ment, provides a good foundation and
framework for this work

ACKNOWLEDGEMENT

The members of the advisory board of
the PORT Library are W Stanley Brown and
Andrew D Hall; the editor is P A Fox,
and the board of editors has as members,
James L Blue, John M Chambers, Linda C
Kaufman, Norman L Schryer and Daniel D.
Warner The work all these people have put
into PORT is beyond measure Thanks
must also be given to Stu Feldman for pro
viding the language, EFL, and to our users
who make it all worthwhile

REFERENCES

1. P. A. Fox, A D. Hall, and N L
Schryer, "The PORT Mathematical Subrou
tine Library." ACM Transactions on
Mathematical Software, Vol 4, No. 2, June
1978, pp. 104-126

2 P A Fox, A D Hall, and N L
Schryer, "ALGORITHM 528, Framework
for a Portable Library [Z]," ACM Transac
tlions on Mathematical Software, Vol 4, No
2, pp. 177-188

Bl Lo ,1977.
Bell Laboratories, 1977,

4. B G. Ryder, "The PFORT verifier,"
-Software-eracT end E eri erVSoftware - Practice and Experience, Vol
4(9),p39-7
40974), pp 359-377

53

~N79-=12731

VkG9G LE ISL ENVIROMENT FOR SOFTWARE DEVELOPMENTORGU{AD
OF pOOR 	 QUALITY1

T. 	 J. Aird and D. G. Kainer

124SL
Houston, Texas

ABSTRACT

IMSL has developed a set of macros and a file
naming convention that automates the subroutine
development and testing process over ten computer
types. The INSL software development system is
implemented on a Data General Eclipse C330 computer
with 256K bytes of central memory and 192M bytes
of disk storage using the AOS Operating System.
RJE activity is handled by a Data 100 communica
tions computer. The system allows the programmer
to work with basis decks. Distribution decks are
generated, by the INSL Fortran converter, as they
are needed for testing and whenever the basis deck
has been modified.

THE IMSL LIBRARY consists of approximately 450

Fortran subroutines in the areas of mathematics

and statistics. At this time IMSL serves over 650

subscribers. The library is available on the com-

puters of ten manufacturers as follows:

IBM 360/370 	 series

Xerox Sigma 	 series

Data General 	 Eclipse series

Digital Equipment series 11

Hewlett Packard 3000 series

Univac 1100 	 series

Honeywell 6000 series

Digital Equipment series 10 & 20

Burroughs 6700/7700 series

Control Data 	 6000/7000 and

Cyber 70/120 	 series

Each subroutine has an associated minimal test

routine which executes the manual example of usage

and an exhaustive test program designed to exer-

cise the various types of usage for each routine

and the range of input data which might be employ

ed. This amounts to over 9,000 individual programs
which INSL must produce and support (subroutines
and minimal tests). These programs, together with
the exhaustive test programs for each subroutine,
constitute over 10,000 total programs which must
be managed efficiently. In addition, each one of
these subroutines must be tested on at least one
of each of the ten computers.

At best, the production and support of the
library is a very complicated task. But IMSL has
developed a set of macros and a file naming con
vention that automates the subroutine development
and testing process on these ten computer types.
The IMSL software development system is imple
mented on a Data General Eclipse C330 computer

with 256K bytes of central memory and 192M bytes
of disk storage using the AOS Operating System.
This machine 	 is also used for the testing of the
Data General Library. The testing on the nine
other supported machines is done by remote job

entry via a Data 100 computer which can be pro
grammed to emulate the environments necessary for

job entry to the various computer types.
The file naming convention used by IMSL is

designed to clearly distinguish the different types
of files used in the development of the library.

The naming convention consists of the follow
ing:

name H <IMSL routine name. 6 characters or
less>

prog H <IISL test program or associated
subprogram name. 6 characters or less>

computer H <IBM XEROX[DCCJDECII[UNIVAC HIS DEC10
BGHICDCIHP300iH32IH361H48 H60!ALL>
ALL => portability across entire

computer set.
H32=> portability across H32 computer

set (etc. for 136, 148, and H60).

The H32 computer set consists of

IBM, XEROX, DOC, DEC11 and HP3000.

The 136 set consists of UNIVAC,

HIS and DECI0. The H48 set con

sists of BE. The H60 set con

sists of CDC.

File Name
 Description

name.BD
 Basis deck for IMSL

routine "name"

name.computer
	 Distribution deck source

file

name.DgC.OB
	 DGC object files

name.T
 program filies
PHDGC
name.MT.PR

RJE.name.ET.computer
 RJE jobfile as produced

RJE.name.MT.computer
 by the system

name.ET.DGC.LISTFILE
 Output listfile as produced

name.MT.DGC.LISTFILE
 by the system for DGC

name.ET.prog.BD
 Exhaustive 	 test program

name.ET.prog.computer
 or subprogram

name.ET.LL 	 computer
	 Required programs and

routines list for the

exhaustive test

name.ET.DD.computer
	 Data for exhaustive test

name.MT.prog.BD
 Minimal test program

name.MT.prog.computer
 or subprogram

name.MT.LL.computer 	 Required programs or
routines list for the
minimal test

name.MT.DD.computer 	 Data for minimal test

54

http:name.MT.prog.BD
http:name.ET.LL
http:name.ET.prog.BD
http:RJE.name.MT
http:name.MT.PR
http:name.DgC.OB

This naming convention gives a unique name to

each file which enables identification of the file

type by the programmer and the system.

The development system makes use of the Data
General convention of logically splitting disk
space into independent sections called directories.
Each programmer has his/her own directory called a
working directory where all modifications to IMSL
programs take place. Modification is not permit
ted elsewhere. The main directory in the develop-
ment system is called DEV. This directory con
tains all of the programs used by the system as
well as the subdirectories used. There are four
subdirectories of DEV. Each of these directories
is write-protected to insure that someone cannot
unknowingly alter their contents. The first is
called PRODUCT. This directory contains eleven
subdirectories, one for each of the computer types
and one for the basis decks. Each of these sub
directories contains the source distribution files
for each of the distributed programs (subroutines
and minimal tests) for that computer. The DGC sub
directory also contains the compiled object files
of the Data General product set. The second
subdirectory in DEV is called EDITION. This sub-

directory contains all of the files for new programs

and modified current programs which will be released

in the next edition of the library. The third sub-

directory of DEV is called MAINT. This subdirectory

contains the files for the versions of the programs

which have been modified and are scheduled for re-

lease at the next maintenance of the library. The

final subdirectory is called TESTS. This directory

contains the source files for all versions of the

exhaustive test programs, their associated sub-

routines, and the data. It also contains the re-

quired programs and routine lists for the exhaus-

tive tests and the minimal tests,

DEV

PRODUCT EDITION MAINT TESTS

.....

At the heart of the development system is the
Fortran Converter. This is a program which performs
automatic conversion of Fortran programs and sub-
programs from one computer-compiler environment to
another. This conversion is done automatically via
built-in features of the converter and specifically
via converter instructions inserted in the program
by the programmer. Thus the code for all versions
(computer types) of a program are contained in one

file called a basis deck. The programmer makes

modifications to the basis deck only. Distribution

decks are generated by the converter as they are

needed for testing and whenever the basis deck has

been modified. This general approach to handling

portability problems is explained in (1) and (2).

The programmer works at a CRT console and uses

the development system by executing the command

RUN.DEV When the target computer is Data General,

this command will run a job including all necessary
basis deck conversions, compilations, binding, and
execution of the program file. For all other com
puters, a job will be set up (with appropriate job
control language) for running at a remote site and
submitted to the appropriate remote job entry site
queue. The command is issued in the following way'

RUN.DEV/C=computer[/other optional

switches] name.ET (or name.MT)

where computer is one of the ten distribution en

vironments and name is the name of the IMSL routine

to be tested. The development system begins the

execution of the command by locating the appro

priate list of the required routines contained in

an LL file. The system then determines which

(if any) basis decks located in the programmers

working directory must be converted by examining

the time last modified. If the time last modified
of a basis deck is later than the time last modi

fied of its corresponding distribution file, con

version must take place. Next, for all computers

other than Data General, a job is built consisting

of the routines required for running and the ap
propriate job control language. For every computer,
there is a default site for running. Unless
specified otherwise by the programmer via a
/COMPILER=type switch, the default job control
language is used. The JCL is contained in files
named

computer. compiler.cc

These files contain the commands necessary for

compilation, binding, and execution of a Fortran

job at the job site After the job is built, it
is submitted (unless otherwise specified) to the

default site queue for that particular computer

or to a specific queue via the /QUEUE=site switch

From here, an operator copies the job to magnetic

tape and places the tape on the Data 100 for input
to the remote site. For Data General, after con

version, the required source files are compiled,

if necessary. This determination is made in the

same manner as the determination for conversion.

This is followed by binding and execution of the
program file. The programmer is informed upon

completion of the job (execution for Data General,
queue submission for other computers). The system

monitors itself during the execution of a RUN.DEV

comnand and, if at any time during the execution

an error occurs, the system will terminate execu

tion of the command and send the user an appropri

ate error message. In addition, by specifying the

/D switch, the system will place certain vital

communications files in the working directory to

help the user in debugging his problem.

The system will perform conversions, compiles,

binds, and execution only in the working directory

(that is, the directory from which the programmer

gave the command). If a basis deck or its corres
ponding distribution file is not found in the

working directory, the system will try to locate
the file by searching the TEST directory, the

55

http:compiler.cc

MAINT directory, the EDITION directory, and finally
the appropriate directory of PRODUCT. This enables

the programmer to run a test without necessarily

having all of the required routines in the working

directory. The programmer can alter which direc

tories are searched by specifying the /SL switch

and setting up his own list of directories. In

addition, the programer can specify the /CURRENT

switch which negates the search of MAINT and

EDITION. This is particularly useful-if the pro-

grammer is trying to verify a problem which occurred

in the current 	 release of the library because it

uses the version of the library which is out in

the field at that time.

Both the Fortran converter and the development

system are written in modular form to insure easy

readability and debugging of the code. The system

itself was designed in such a way as to easily

facilitate the addition of a new computer into the

product set. It also allows the programmer Tn-

limited flexibility in varying his/her specific

runs. The command generally requires 30 to 60
seconds of CPU time and takes between 15 and 20
minutes of elapsed time to execute to completion.
Therefore, the programmer usually issues the com-

mand from one of four batch streams, freeing his/

her terminal for other uses.

The production and support of a multi-environ-

ment subroutine library is a complicated task, re

quiring many tedious details. The INSL development

system makes life much easier for the programmers

undertaking this task. Through the issuance of a

simple, one line command, the programmer can cause

the execution of a job, freeing him/her from annoy

ing but necessary details such as obtaining the

right version of a required code or unintentionally

modifying a code. This enables the programmer to

concentrate on the task at hand: supporting and

enhancing a state-of-the-art subroutine library.

Other software tools available through the

IMSL software development system are listed below:

Name Purpose

HELP Provide on-line documentation for
all system commands

RUN.CVT 	 Execute the Fortran converter to

produce a specific distribution deck

RJE 	 Submit a job for execution at one of

the RJE sites

RJE.S 	 Status of RJE activity

MAGCARD 	 Send computer readable documentation

to an IBM mag card typewriter

CLEAN 	 Reformat source code according to

IMSL conventions - runs on a CDC

computer

REVIEW 	 Review a code and list deviations

from I2SL conventions

PFORT 	 Submit a code to be run through

the PFORT verifier - runs on an

IBM computer

BRNANL 	 Submit a code to be run through the
branch analysis program - runs on
a CDC computer

SEQUENCE 	 Sequence a deck

STRIP 	 Remove sequence numbers and

trailing blanks from a deck

SPLIT 	 Split a file into separate program

units

COMPARE 	 Compare two codes and list

differences

EDIT 	 Edit a file via Data General's

text editor SPEED

REFERENCES

1. T. J. Aird, "The IMSL Fortran Converter:
An Approach to Solving Portability Problems". New
York, Springer-Verlag, "Portability of Numerical

Software", Editor, Wayne Cowell, 1977, pp. 368-388

2. T. J. Aird, E. L. Battiste, and W. C.
Gregory, "Portability of Mathematical Software
Coded in Fortran", "ACM TOMS", Vol. 3, No. 2, June,
1977, pp. 113-127.

3. "Advanced Operating System (AOS), Command

Line Interpreter, User's Manual", Data General

Publication 093-000122, 1977.

56

Transportability in Practice - Recent

Experience with the NAG Library

J.J. Du Croz

Numerical Algorithms Group Limited

7 Banbury Road

Oxford OX2 6NN

England

ABSTRACT

Two guiding principles for the development of the NAG Library are:

a) 	 the algorithms must be adaptable to the

characteristic of the computer on which

they are being run;

b) 	 the software must be transportable

(These 	 concepts have been discussed in detail elsewhere.)

The purpose of this talk is to discuss how these principles have stood the

test of practice over the past two years and how NAG's approach to library

development has been refined in the light of experience.

The adaptability of algorithms is achieved with the aid of machine-dependent

parameters, available through calls of library functions. The initial set

of parameters was concerned only with the arithmetic properties of the

computer. A new parameter is now being introduced, concerned with storage

organizations: it will enable algorithms for certain operations of linear

algebra to adapt, when run on a paged machine, to the approximate amount of

real store available, and hence to achieve a dramatic reduction in page

thrashing.

The transportability of the software is proven by the fact that the NAG Library

has now been implemented on 25 different computer systems - including

several minicomputers, which required no fundamental change of approach. The

talk will discuss various interesting problems which have arisen in the

course of implementation. Frequently it has been deficiencies in the compiler

and associated software that have caused the problems, rather than defects

in the NAG routines. NAG's test software (though not always ideally suited

to the task) has proved remarkably effective at detecting these problems

before the Library is released to sites. This 3ustifies NAG's policy of

always distributing a tested compiled library (in addition to the source-text).

57

N79-12732

PORTABILITY AND TEE

NATIONAL ENERGY 1SOFTWARE CENTER

Margaret K. Butler, National Energy Software Center

Argonne National Laboratory

Argonne, Illinois, U.S.A.

ABSTRACT

The software portability problem is examined

from the viewpoint of experience gained in the oper-

ation of a software exchange and information center,

First, the factors contributing to the program

interchange to date are identified, then major

problem areas remaining are noted. The import of

the development of programing language and docu-

mentation standards is noted, and the program pack-

aging procedures and dissemination practices

employed by the Center to facilitate successful

software transport are described. Organization, or

installation, dependencies of the computing environ-

ment, often hidden from the program author, and data

interchange complexities are seen as today's primary

issues with dedicated processors and network

communications offering an alternative solution,

THE 	 NATIONAL ENERGY SOFTWARE CENTER (NESC) is the

successor to the Argonne Code Center, originally

established in 1960 to serve as a software exchange

and 	information center for U S. Atomic Energy

Commission developed nuclear reactor codes. The

Code Center program was broadened to an agency-wide

program in 1972, and the scope of the activity

expanded further with the organization of the Energy

Research and Development Administration (ERDA) and

then the Department of Energy (DOE). The Center's

goal is to provide the means for sharing of software

among agency contractors, and for transferring com-

puting applications and technology developed by the

agency to the information-processing community.

To achieve these objectives the NESC:

1. 	 Collects, packages, maintains, and

distributes a library of computer programs

developed in DOE research and technology

programs.

2. 	 Prepares and publishes abstracts describing

the NESC collection.

3. 	 Checks library contributions for complete-

ness and executes sample problems to

validate their operation in another

environment,

4. 	 Consults with users on the availability of

software and assists them in implementing

and using library software,

5. 	 Compiles and publishes summaries of ongoing

software development efforts and other

agency-sponsored software not included in

the collection because it is felt to be of

limited interest.

6. 	 Maintains communications and exchange

arrangements with other U.S. and foreign

software centers.

7. 	 Coordinates acquisition of non-government

software for the Department of Energy.

8. 	 Initiates and participates in the develop

ment of practices and standards for

effective interchange and utilization of

software.

About 850 computer programs covering subject

classifications such as mathematical and computer

system routines; radiological safety, hazard, and

accident analysis; data management; environmental

and 	 earth sciences, and'cost analysis and power

plant economics make up the current collection.

Each year over 1000 copies of librAry software

packages or authorizations for their use are dis

seminated in response to requests from DOE offices

and 	 contractors, other government agencies, uni

versities, and commercial and industrial organi

zations. Over 500 organizations are registered as

participants in the program. Of these 333 are

registered as contractors, or under exchange

arrangements. The remainder pay the cost of the

materials and services requested.

It is clear from the enumeration of NESC

activities that the major portion of the Center's

program is devoted to the task of making it

possible for individuals, other than the program

author, to use the computer program in their own

computing environment, which is different from the

environment in which the author developed the

software. The Center's dissemination statistics

attest to a measure of success in the task. This

success is due in part to the DOE sponsors of

program development projects who, recognizing the
need for software sharing, have encouraged authors
to attempt to develop portable software, and to the
authors who, self-motivated, entered the initial
development stage with the avowed intent of pro
ducing a transferrable product. But success must
be attributed in large part, too, to the availa
bility of programming language and program doc
umentation standards, and to the program review
and evaluation procedures and dissemination
practices established by the Center.

STANDARDS

In 1964 when the first FORTRAN language

standards were published, program developers

welcomed them enthusiastically as the means by which

programs, developed for today's environment, could

be readily transferred to tomorrowls, or moved to

someone else's, quickly and with minimal cost. In
stallations attempting to achieve this promised
portability, however, were frustrated by the variety
of implementations produced by the compiler writers,
each claiming conformity with the standard, but
offering, in addition, special enhancements
exploiting their particular hardware.

At the time a standards committee of the Ameri

can Nuclear Society sent a letter to the Editor of

the Communications of the Association for Computing

Machinery urging the computing community to exert

pressure on the compiler developers to implement

the standard, and where deviations existed to flag

58

accepted non-standard statements and standard state-

mnents implemented in a non-standard fashion,

describing these variations in the compiler documen-

tation. The computing community not only failed to

endorse this early plea for .a standard that could be

used to achieve software portability, but the Editor

held up publication of the letter for six months

because FORTRAN was mentioned explicitly and the

ACM 	 might appear to be showing a preference for
FORTRAN over other programming languages

While programming language standards have not

proved to be the ready remedy to the portability

problem first envisioned, they have provided the

necessary first step Authors pursuing the goal of

producing portable software have, by restricting

themselves to a "portable" subset of the standard

language, common to nearly all compilers, been able

to produce an easily transferrable product. Program

verification tools, such as PFORT, have proved

helpful in this activity.

Over the past decade the American Nuclear

Society's ANS-10 standards committee has produced a

series of standards to assist authors and developers

of scientific and engineering computer programs in

preparing software to be used by colleagues at other

installations. These include ANSI N413-1974

entitled "Guidelines for the Documentation of

Digital Computer Programs" and ANS-STD.3-1971,

"Recommended Programming Practices to Facilitate the

Interchange of Digital Computer Programs", both of

which were adopted by the AEC's Reactor Physics

Branch, along with the ANSI FORTRAN standard, for

its 	program development projects. Recently, this

committee completed another guidelines document,

this one titled "Guidelines for Considering User

Needs in Computer Program Development". It is

presently under review by the parent committee

PACKAGING PROCEDURES

The 	Center's software package is defined as the

aggregate of all elements required for use of the

software by another organization, or its implementa-

tion in a different computing environment It is

intended to include all material, associated with a

computer program, necessary for its modification and

effective use by individuals other than the author,

on a computer system different from the one on which

it was developed. The package is made up of two

basic components: the computer-media material and

the traditional printed material or hard-copy

documentation. The material may include all of the

following:

1. 	 Source decks: source language program

decks or card-image records,

2. 	 Sample problems test case input and

output for use in checking out installation

of the software

3. 	 Operating system control information:

operating system control language records

required for successful compilation of the

software and execution of the sample

problems in the author's computing environ-

ment. This element includes device assign-

ment and storage allocation information,

overlay structure definitions, etc.

4. 	 Run decks: object decks or load modules

prepared by the language processors prelim-

znary to execution of the software. This

element is redundant when included in con-

junction with the equivalent source decks

for interchange between users of like

systems

5. 	 Data libraries external data files

required for program operation, e.g.,

cross section libraries, steam table data,

material properties. To provide for

exchange across machine-lines a decimal or

alphanumeric form is recommended. Routines

for transforming the data to the more
efficient binary or machine-d&pendent
representation should be included as
auxiliary routines.

6. 	 Auxiliary routines or information

supplementary programs developed for use

in conjuction with the packaged software;

e.g., to prepare or transform input data,

to process or plot program results, edit

and maintain associated data libraries.

7. 	 Documentation: traditional reference

material associated with the development of

the software and its application If

documentation is provided in machine-read

able form it is classified as auxiliary

information. This item may be a single

report or several independent documents.

Not all seven elements are required for every

software package; however, items 1,2,3, and 7 are

rarely absent from scientific and engineering

applications which make up the bulk of our library.

In our review process the package elements are

examined for consistency and completeness. Whenever

possible, source decks are compiled and test cases

and run decks executed to ensure the output gener

ated in another environment agrees with that

produced at the developer's installation. 'Th4s

evaluation process provides a good check also, of

the adequacy of the documentation elements. If the

submitted documentation proves inadequate for our

staff to evaluate the software additional informa

tion is sought and incorporated in the package

doeumentation. Frequently an NESC Note is written

for this purpose. If data libraries are present

an effort is made to include these in machine-inde

pendent form. This is especially important for the

first, or original, version of a program. When

conversions to other computer systems, i.e. addi

tional machine versions, are considered, machine

dependencies reflecting significant convenience to

the users of that system are accepted. An attempt

is made to retain in the collection one version of

each library program in a form amenable to transfer.

Special software tools have been developed to

verify that all routines called are included in the

package, to perform rudimentary checks for unin

itialized or multiply-defined variables, unrefer

enced statement numbers, active variables in common

and equivalence blocks together with block names

and addresses, etc., and to convert between a

variety of character codes such as IBM EBCDIC, CDC

Display Code, and UNIVAC Fieldata.

DISSEMINATION PRACTICES

The computer-media portion of the program

package is generally transmitted on magnetic tape,

however, card decks will be supplied for card-image

material upon request The tape recording format

to be used in filling a request can be specified by

the potential user to suit his computing environ

ment, and, whenever possible, the Center will

provide the format, character code, density, and

blocking requested.

The Center maintains records of all package

transmittals and, should an error be detected or a

new edition be received, all recipients of the

affected program package are notified.

59

PROBLEMS

A large number of problems encountered today

in software sharing are traceable to in-house

modifications of vendor-supplied systems, locally

developed libraries and utility routines, and

installation conventions Recognizing the problem

of reproducing the performande df a program at
another installation independent of the "local"

system, the ANS-10 standards committee introduced

the concept of an installation-environment report in

its "Code of Good Practices for Documentation of

Digital Computer Programs", ANS-STD.2-1967. The

idea was that this report would document those

timing, plotting, special function, and other local

system routines which would have to be transferred

with locally-developed software, or replaced with

their counterparts at another site before the

software could be successfully executed. It was

suggested that each program-development installation

package their collection of the documented routines

.as a library package so that users of, for example,

the XYZ Laboratory's software would be able to

create the necessary XYZ environment either by

implementing these environmental routines or with

acceptable alternative routines. Several packages

in the Center collection are of this nature; the

Bettis Environmental Library and the NRTS Environ

mental Routines are two of them.

Most computer centers, however, have never

attempted to define such a package Program

developers are frequently unaware of the routines

automatically supplied by the local system and

seldom informed when changes or modifications to

such routines are effected.

Proprietary software can magnify installation

dependency problems, and programs utilizing graph

ical output are always a challenge to exchange. In

most cases the Center, and each receiving organiza

tion, is required to insert the equivalent local

plotting routines before the test cases can be run

Even when organizations have the same commercial

software product, they will probably have different

plotting devices, and, if not, you can bet each

location chose to implement its own unique enhance

ments--after all, graphics is an art!

One-of-a-kind compilers and parochial operating

systems used at some installations have proved to be

a significant deterrent to program interchange. Of

growing concern with the increasing use of database

systems is data exchange. A DOE Interlaboratory

Working Group has committed its members to working

with the ANSI Technical Committee X3L5 to develop

specifications for an Information Interchange Data

Descriptive File.

ARPANET and the Magnetic Fusion Energy Computer

Center offer a different solution to the software

portability problem. Instead of developing portable

software and making it generally available such

facilities encourage the development of centers of

excellence which provide and maintain the latest and

best software for a particular application on a

dedicated processor, accessible to the user commun

ity. That is the other end of the spectrum.

60

N 79'. 127s8

A TRANSPORTABLE SYSTEM FOR MANAGEMENT AND EXCHANGE

OF PROGRAMS AND OTHER TEXT

W. V. Snyder

Jet Propulsion Laboratory

4800 Oak Grove Drive

Pasadena, California 91103

zation to promulgate a standard for record lengths,

block lengths, codes and party modes. Then if

ABSTRACT such information is not provided, the standard is a

reasonable guess. Neither approach can cope with

Computer software is usually exchanged between disorganization of the data, or with parity errors.

different computer facilities via punched cards or We chose therefore to write a transportable program

magnetic tape. For up to about 1000 images, cards to enforce a standard recording format, organize

magetior tae. aout100 imges cads This
p t the data and provide for error recovery.

relieves the sender of the responsibility for
are cheaper and probably easier to deal with than

The primary problem with cards is the variety sendin o t rercodesiror
tape.

of punch codes. Frequently, one also has the minor leng anfockaln ithete . e must,

nuisance of repunching cards damaged in transitblock lengths wth the tape. He must,

of course, still tell the receiver the tape density,
For larger amounts of data, tape is cheaper, but

there are so many tape formats in use that the r
 and whether it is a seven- or nine-track tape.

Since some binary numeric information is recorded,

cipient frequently has trouble reading a tape, even only odd parity tapes may be used with this program.

if the format is simple and well defined. Occasion

ally, one has the problem of parity errors, which RECORDING FORMAT

make a tape essentially worthless. When test data,

modules in several languages, computer output or Most computer systems can deal with ASCII infor

documentation are included, the lack of organization

in the material can cause a substantial amount of mation in a natural way.
 In order to use ine

unneessay huan tape conveniently, we represent the seven-bit
lbortrack

unnecessary human labor. ASCII code using eight bits, with the high-order

This paper presents a system for exchanging bit zero. The program does not, however, enforce

information on tape, that allows information about this convention rigidly. Certain information must

the data to be included with the data. The system be encoded in this way, but the textual information

is designed for portability, but epndntmodules.requires a few may be encoded in any way that may be represented
slmlemahle These modules

simple machine dependent mof hese moduas by a string of eight-bit units. It is preferable

are available for a variety of machines, and a that all information be encoded in some standard

bootstrapping procedure is provided. The system form, and we hope that all implementations of the

allows content selected reading of the tape, and a

simple text editing facility is provided. Although program will use ASCII code for the textual

information.
the system recognizes 30 commands, information may Some computers can read or write tapes con

be extracted from the tape by using as few as three taming blocks consisting of an integral number of

commands. In addition to its use for information words, and can read tape blocks of arbitrary length

exchange, we expect the system to find use in only with difficulty. For example, a tape con

maintaining large libraries of text. taining blocks consisting of ten 80-character

records could be read only with difficulty on a
Univac-ll00, which expects nine-track tapes to
contain blocks consisting of a multiple of nine
characters, and could not be written on a Univac
1100. We therefore selected a block size having

THE MOTIVE FOR DEVELOPING THIS PROGRAM was the ex- factors of nine (for 36-bit words), fifteen (for
TE MoTIVE Freceivi 60-bit words) and four (for 32-bit words).DEVEOps thommanycorrespodent
 Theseparience of receiving tapes from many correspondents. factors also guarantee that the block will be an

We dealt with most correspondents only once or twice. intralnumbertof wordstif itois wi e a

We received tapes written in every possible density, integral number of words if it is ritten on a

both parity modes, several character codes, and seven-track tape. The program uses data the Same

having a variety of block and record lengths. We for seven- and nine-track tapes.

see three solutions to this problem. Most computer Since information may be recorded on magnetic

centers have access to a program that can handle
 tape in blocks of arbitrary length, separated by

fixed length records, written in fixed length gaps of fixed length, one can use less space on the

tape to record a given amount of data by writing
blocks, using a popular code such as ASCII or

EBCDIC. When the characteristics of the medium longer, and therefore fewer blocks. We chose to

write information in blocks of 7200 characters.

were correctly provided, we had good success with a This block size allows efficient use of space on

program of this type*. Unfortunately, this infor- tape, and usually fits into a minicomputer memory.

mation was not always provided, and was sometimes A 180-character label is the first block written on

incorrect. Another solution is for some organi- every tape. Information in the label includes the

block size. If the program does not fit in

*We used two programs, known as BLOCK and UNBLOCK, available memory, smaller blocks may be written.

The program can read the smaller blocks automati
written in Univac-1100 assembler language at the

This was required in one minicomputer
University of Maryland Computer Science Center. cally.

61

implementation of the program. We recommend that

all implementations retain the capability to read

7200 character blocks. Further conservation of

space on the tape is achieved by compressing the

data. To compress the data, consecutive

occurrences of blanks (or another character if

desired) are removed, and replaced with an encoded

representation requiring less space. A compressed

Fortran program usually occupies about one third

the space otherwise required.

DATA MANAGEMENT FACILITY

Although the problem of dealing with variable

and frequently uncertain physical characteristics

of the transmission medium was irritating, the

problem that consumed most of our time was the

uniform lack of organization of the information on

the tape. We received programs in several

languages, subprograms with several test drivers,

multiple versions of a program, test data, computer

output and documentation, with no indication of

what was to be done with the information. In such

situations, much effort was spent organizing the

information before it could be used. We therefore

developed not only a program to read and write tape,

but also a transportable data management system

for textual information,

Our data management scheme consists of re-

cording each program, subprogram, listing or data

group as a separate module of text. Helpful

information about the module is recorded with the

module. The minimum information required with each

module is a name. For more complete identification

of the module, one may record the data type

(language for modules that are programs), machine

type, authors' names and addresses, and biblio-

graphic references. To facilitate management of

programs consisting of several modules, one may

record the names of groups of which the module is a

member, and keywords related to the module. To

control changes to modules, a simple but flexible

updating mechanism is provided, and the updating

history is recorded. To record information that

does not fall into any of the specified categories,

one may include comments. We call this information

control information. All control information is

recorded with the text of the module. The text and

control information can be examined and updated

separately, but they remain together on the tape.

A data management system requires a command

language. In specifying the command langdage for

the Exchange Program, our goals were simplicity

and comprehensive flexibility. The use of the

program is oriented primarily toward the receiver

of the tape. Although the program acts on 30

commands, information may be extracted from the

tape with as few as three commands"

INTAPE = Fortran unit number of input tape

OUTPUT = Fortran unit number of native format

file

COPY = List of module numbers.

To create a new tape requires, at a minimum, the

following commands:

TITLE = Title of tape

SITE = Site at which the tape is being

written

OUTAPE = Fortran unit number of the tape

DATE = Date written (YYMNDD) [May be provided

automatically.]

Each module of the text must then be preceeded by

INSERT = Name of module

TEXT

and followed by an end of text signal. If more in

formation about the module than its name is to be

provided, more commands are required.

ERROR DETECTION AND CORRECTION

The program currently contains two error de

tection mechanisms. First, it uses the error

detection mechanism of the supporting operating

system. Second, it records a sequence number in

each block, and checks it during reading. It also

records in each block the location of the first

record that starts in the block, the number of the

text module of which it is a member, and the lo

cation of the first record of the first text module

that begins in the block, if any. We plan to use

this information for partial error recovery. We

also plan a more ambitious error control algorithm,

capable of detecting and correcting up to 72

consecutive erroneous characters, at up to four

different places in each block. It can be imple

mented in a transportable way, requiring only a

machine sensitive exclusive-or primitive operation.

For the 7200 character block chosen as the standard

for the Exchange Program, only 113 characters of

error control information are required. The

design of the block format includes provision for

this information.

EXPERIENCE

The program has been used at JPL to manage the

collection of algorithms submitted to ACM TOMS, for

weekly exchange of data between a DEC PDP-11/55 and

a Univac-1108, and occasional exchange of data

between a Univac 1108, Sperry (formerly Varian) 72,

and a DEC PDP-II/55. The program was used to

transmit the JPL mathematics library to a DEC PDP-10

at the California Institute of Technology, and is

currently used there to retrieve modules of the JPL

mathematics library from the exchange tape. It was

also used to transmit information to a CDC-6600 at

Sandia Laboratories. Experience in implementing

the program on the DEC PDP-11/55 and on the DEC

PDP-10 indicated that changes in the interface

between the portable and non-portable parts of the

program are desirable. In particular, the DEC

Fortran environment requires that data files be

explicitly opened (with a non-portable statement)

before they are used. Thus, a subprogram thought

to be portable does not work on DEC machines. We

expect to change the interface between the portable

and non-portable parts of the program to concentrate

potentially non-portable requirements in fewer

places. When we make that change, we will also add

a few commands.

SUMMARY

We have developed a transportable program for

exchange of textual information that provides

several advantages over previous methods. The

program enforces the use of a standard tape format,

uses tape efficiently, organizes the information on

the tape, provides for simple retrieval of infor

mation from the tape, and provides for error

recovery. Since the program is transportable, it

is used similarlylon all computer systems. Thus,

once one learns to use the program, one may use the

program on many computer systems with little

additional effort.

62

ACKN0LEDGEMENTS

The author thanks the following (in alpha

betical order) for their help: Julian Gomez of

JPL implemented the program on a DEC PDP-11 using

RSX-ll. Jeff Greif at the California Institute of

Technology implemented the program on a DEC PDP-10.

Dick Hanson and Karen Haskell at Sandia Laboratories

in Albuquerque wrote some of the IBM system 360

modules. Karen Haskell implemented the program on

a CDC-6600. Fred Krogh of JPL provided most of the

requirements and several ideas for the command

language. Robert McEliece of JPL provided an error

detection code. West Coast University in Los

Angeles provided free computer time to implement

the program on a Varian 72.

This paper presents the results of one phase of

research carried out at the Jet Propulsion

Laboratory, California Institute of Technology,

under contract No. NAS 7-100, sponsored by the

National Aeronautics and Space Administration.

63

N79-12734

Using Pascal for Numerical Analysis

by

Dennis Volper (speaker)

Instatute for Informat-ion-Systems, C=021

University of California, San Diego

La Jolla, CA 92093

and

Terrence C. Miller

Computer Science Segment

Applied Physics & Information Sciences Dept., C-014

University of California, San Diego

La Jolla, CA 92093

ABSTRACT

The data structures and control

structures of Pascal enhance the coding

ability of the programmer. Recent proposed

extensions to the language further increase

its usefulness in writting numeric programs

and support packages for numeric programs.

PASCAL HAS THE ADVANTAGE of being a highly

structured language. In addition, it was

specifically designed "to make available a

language suitable to teach programming as a

systematic discipline based on certain

fundamental concepts clearly and naturally

reflected by the language."[21* It has been

noted by R. Block [11 and others that

structured approaches to algorithms reduce

programming time. It has been the

experience of the UCSD Pascal pro3ect that

students quickly learn the structures of

the language and are rapidly able to

maintain and modify programs of

considerable complexity. For example the

code in the UCSD Pascal system is the work

of student programmers. The majority of

those programmers are undergraduates,

Maintainablility and verification of

programs are made easier in Pascal because

the structure of the program closely

resembles the structure of the algorithm it

represents,

The popularity of the language Pascal

is growing. Work is progressing to remove

remaining deficiencies in the language. The

Institute for Information Systems at UCSD

4J has developed and is continuing to

improve a machine independent Pascal system

for small computers. Also this summer the

Workshop on Extensions to Pascal for

Systems Programming [31 has recommended

extensions which will enhance the

applications of Pascal to numerical

analysis. Parallel to the work of the

workshop, an international group of Pascal

experts is attempting to construct a

standard for Pascal and its extensions.

PROGRAMMING IN PASCAL

In this section we will describe

certain features of Pascal which are useful

in writting support packages for numerical

programs as well as the numerical programs

themselves.

DATA STRUCTURES IN PASCAL - Data

handling is simple and efficient because

the Pascal Language supports the

declaration of data structures. The

programmer may use the base types of the

language to build structured types and may

even create files of user declared types.
These complex types may be manipulated,

either as units or by their various parts.

For example to exchange two rows of a

matrix, rows can be treated as single

entities.

TYPE ROW=ARRAYf0..61 OF INTEGER;

MATRIX=ARRAY[0..51 OF ROW;

VAR A:MATRIX;

R:ROW;

BEGIN

R:=A[l];

A[]:=A[21;

A[2]:=R;

END;

This reduces the details of coding required

to do data handling and simultaneously

reduces the possibility of programmer

error. Data structures can be declared to

be PACKED causing the maximum number of

variables to be in each word. This provides

considerable space savings for any non

numeric data which must be associated with

numeric computations.

To further enhance the potential space

savings variant records are allowed.

Dynamic variables may be variant records,

in which case only the space necessary for

the variant declared is needed. Strong type

checking is maintained as a tool to

validate data handling and thereby minimize

programming errors.

*Numbers in parentheses designate references at

end of paper

64

Thus the language is extremely

convenient as a data handler, with a

simplicity exceeding COBOL and a

flexibility exceeding FORTRAN and ALGOL.

The availability and ease of using files

make it an excellent language to use as a

preprocessor for numerical data. The

compactness of its representations has the

consequence of requiring smaller amounts of

source code.

Dynamic variables called pointers

permit the explicit expression of linked

structures such as sparse matrices,

TYPE ARRAYENTRY=

RECORD

DATA:REAL;

ROWLINK:±ARRAYENTRY;

COLUMNLINK:^ARRAYENTRY

END;

Note that these structures, as well as

arrays of any data structure, have the

advantage that 	 pieces of logically grouped

information are represented as components

of a logical structure, rather than as

entries in parallel structures,

CONTROL STRUCTURES - Pascal is a

highly structured, recursive language with

a design which 	 encourages top-down

programming. With its 3 looping

(WHILE,REPEAT-UNTIL,FOR) 2 branching

(CASE,IF-THEN-ELSE) there are a limited

number of control constructs to understand,

yet they are sufficient to express any

algorithm. In large numerical programs a

"90-10" rule appears to hold. Particularly

in the interactive environment, the bulk of

the source code represents the control

structures and user interface of the

program, with intense numeric calculations

representing a small fraction source code.

The block structure, the simplicity of the

Input and Output commands make these easy

to code.

Syntax has been specified for type

secure compilation of external modules and

their inclusion into Pascal programs.[4] In

addition UCSD Pascal permits the inclusion

of procedures from native code modules into

Pascal programs. This will permit the

writing of small pieces of highly used code

in assembly language thereby increasing

speed. It will also permit linking user

written data gathering, or hardware

monitoring routines into Pascal programs.

MACHINE INDEPENDENCE - One of the

goals of Pascal is machine independence. By

adhering to standard Pascal it should be

possible to compile and run a program on

any implementation. Validation suites are

being made available for the purpose of

comparing a given implementation with the

standard. UCSD 	 Pascal is designing machine

independence into its numerical

calculations by converting its numerical

package to the 	 proposed IEEE standard,

Using this standard it is possible to gain

machine independent results to floating-

point calculations, that is, the same

calculation performed on two machines (of

equal word length) will produce bit

equivalent results,

INTERPRETIVE ADVANTAGES - Interpretive

implementation, packing of data, and

compactness of source code combine to allow

a larger portion of the available memory to

be allocated to data storage.

NUMERICAL PROGRAMMING IN PASCAL

This section provides a description of

those features of Pascal which are

particularly relevent to numerical

analysis. We will be describing both

features which 	 affect only program style as

well as those which can cause significant

execution differences between FORTRAN and

Pascal implementations of the same

algorithm.

ARBITRARY ARRAY INDICES - Let us

assume an algorithm which works on 3

vectors in synchronization. A FORTRAN

programmer could declare 3 vectors:

INTEGER RED(10),GREEN(10),BLUE(10)

or if he was worried about page faults and

confident that his installation's FORTRAN

stores arrays by columns he would declare,

INTEGER COLORS(3,10)

totally obscuring the separate identities

of the three vectors.

In contrast a Pascal programmer faced

with the same problem could declare:

TYPE COLOR = (RED,GREEN,BLUE);

VAR COLORS: ARRAY [l..101 OF ARRAY [COLOR]

OF INTEGER;

using array index constants which preserve

readability without sacrificing the ability

to loop through the colors since:

FOR C:=RED to BLUE DO

is a legal Pascal loop statement.

NUMERICAL ARRAY INDICES - The Pascal

programmer also has the freedom to use any

desired lower limit for numeric (integer)

array indices. Unfortunately, it is not

possible to have arbritrary spacing of

indices.

ADJUSTABLE ARRAY PARAMETERS - The

current definition of Pascal allows a

procedure which takes arrays as arguments

to be called only with actual arguments of

one fixed size. That restriction has,

however, been recognized as a mistake, and

allowing procedure headings of the form

shown in the example given below has been

proposed [31:

PROCEDURE P(P: 	 ARRAY [LOW..HIGH:INTEGER]

OF INTEGER)

When procedure 	 P is called, the local

variables LOW and HIGH will be

automatically assigned the index limits of

the array used as the actual argument.

Passing the array size as a separate

argument to the function as is done in

FORTRAN will not be required.

COMPLEX ARITHMETIC - The current

definition of Pascal does not provide for

complex arithmetic. However, adding that

65

facility has been proposed [3]. The

proposed extension includes a predefined

type COMPLEX, the functions necessary to

take complex numbers apart (RE, IN ,ARG),

and 	 a way of creating complex constants and

values. The standard mathematical

functions will also be extended to handle

complex numbers.

LONG INTEGERS - The UCSD Pascal system

now provide s the capability of declar-ing

the minimum number of digits that must be

contained in each integer number declared.

All arithmetic operations involving large

range numbers can generate intermediate

results of at least the specified size

without causing overflow.

SHORT INTEGERS - The Pascal sub-range

feature allows the user to declare that a

given variable can have only a very small

range of values. This can lead to

considerable savings in storage as shown in

the following example:

VAR 	 PACKED ARRAY [1..161 OF 0..3

which uses only 2 bits for each array

element.

REAL NUMBERS - Pascal currently

defines one floating point precision, and

that is machine dependent. However, the

UCSD Pascal system will incorporate the

IEEE floating point standard as soon as it

is finalized (at least for 32 and 64 bits).

REFERENCES

[11 	 R.K.E. Block, "Effects of Modern

Programming Practices on Software

Developement Costs", IEEE COMPCON Fall

1977.

(21 K. Jensen and N. Wirth, "Pascal User

Manual and Report" Springer-Verlag,

1978.

[3) T.C. Miller and G. Ackland ed.,

"Proceeding of the Workshop on Systems

Programming Extensions to Pascal",

Institute for Information Systems,

Univ. of California, San Diego, July

1978.

[4] 	 K.A. Shillington, "UCSD (Mini-Micro

Computer) Pascal Release Version 1.5

September 1978", Insitute for

Information Systems, Univ. of

California, San Diego, 1978.

[5] 	 R.L. Sites, personal communication,

APIS Dept., Univ. of California, San

Diego, 1978.

66

N79- 12735

DESIRABLE FLOATING-POINT ARITHMETIC AND

ELEMENTARY FUNCTIONS FOR NUMERICAL COMPUTATION

T.E. Hull, Department of Computer Science

University of Toronto

Toronto, Ontario, Canada

ABSTRACT

The purpose of this talk is to summarize

proposed specifications for floating-point arithme-

tic and elementary functions. The topics considered

are: the base of the number system, precision con-

trol, number representation, arithmetic operations,

other basic operations, elementary functions, and

exception handling. The possibility of doing with-

out fixed-point arithmetic is also mentioned.

The specifications are intended to be entirely
at the level of a programing language such as
Fortran. The emphasis is on convenience and simpli
city from the user's point of view. Conforming to
such specifications would have obvious beneficial
implications for the portability of numerical soft
ware, and for proving programs correct, as well as
attempting to provide facilities which are most
suitable for the user. The specifications are not
complete in every detail, but it is intended that

they be complete "in spirit" - some further details,

especially syntatic details, would have to be

provided, but the proposals are otherwise relatively

complete.

THERE HAS BEEN A GREAT DEAL OF PROGRESS during

recent years in the development of programming

languages. However, almost all of this progress has

been under the general banner of 'structured program-

ming" and almost no attention has been paid to those

aspects, such as the semantics of flcatng-point

operations, that are of special interest to practi-

tioners who are interested in numerical computation.

The purpose of this talk is to propose some

specifications for floating-point arithmetic and

elementary functions. The main design goal is to

produce a set of specifications which is most

desirable from a user's point of view. There is of

course no claim that the set is unique. In fact,

many details, especially syntatic details, have

been omitted because there are obviously so many

possible variations that would be equally acceptable.

It should be emphasized that the specifications

are intended to be entirely at the level of a

programing language such as Fortran. For example,

in discussing arithmetic operations, our concern is

entirely with the syntax ard semantics of the

programing language expressions.

We feel that it is important to consider such

specifications for floating-point arithmetic and

elementary functions. Indeed, users who are

interested in numerical computation have an obliga-

tion to try to reach a consensus on such specifica
tions, unless they are prepared to put up forever
with whatever facilities the manufacturers and
language designers happen to provide. If some sort

of consensus became possible, it could evolve

towards a standard. And with the technology chang-

ing as rapidly as it is, such a standard may not be

too difficult to achieve, or at least to approach

much more closely than is the case at present. In

any event, with a language standard agreed upon, we
would at least have a basis against which we could
judge the appropriateness of various trade-offs, and
to judge the suitability of any new hardware
designs that are being proposed.

The usefulness of a standard in terms of port
ability of numerical software, and particularly in
terms of portability of proofs about what the soft
ware does, is obvious.

An ideal arithmetic system should be complete,
simple and flexible. Completeness means that the
programmer knows what will happen under any circum
stance Simplicity leads us to conclude, for
example, that the base should be 10. For simplicity
we also argue for a particular way of determining
the precision at which calculations are performed.
We choose a flexible way of controlling precision,
and also a flexible mechanism for coping with
exceptions such as overflow and underflow,

An ideal system for elementary functions is
more difficult to agree upon. Completeness, in the
sense of always producing the same results whenever
the precisions are the same, would be desirable
here too, but probably not practical. However, what
is more to the point at this stage is that we

emphasize simplicity, and this leads us to require
only a single simply-stated accuracy requirement
for all elementary functions. In particular, we
argue against insisting that a long list of addi

tional special properties be required to hold.

The following is only a summary of what is

proposed. Most of the justification for these

recommendations has had to be omitted because of

space limitations.

BASE

Much has been written about different number

bases, and their relative merits with respect to

efficiency of storage, roundoff behavior, and so on.

We believe that simplicity and convenience for the

user should be the primary consideration and this

means that

the chotee o abue . 10. Ci)
With this choice, a number of annoying problems

disappear immediately. For example, the "constant"

0.1 will really be exactly one tenth. The compiled

value for a number will not differ from its input

value, and input-output will be simplified in general.

Programmer efficiency will improve if the pro
grammer does not have to keep in mind the peculiari
ties of other number bases. It may even happen
that a base-10 system, including a base-10 internal
representation, would turn out to be, overall, the
most efficient, besides being the simplest and most
convenient for the user.

PRECISION

Earlier versions of what is proposed in this

section, including the description of a preprocessor

for implementing the main ideas, have been discussed

elsewhere by Hull and fofbauer (2,3)*.

*Nos. in () designate References at end of paper.

67

It is important thst the user have control over

the precision. In an ideal system, we believe that

the user shoutd be abte to zpeciy
.epav tety the numbex o6 digit6 to be
used o&the exponent o4 Ku 6toatcng- (2)

point vatuL6, and the numbet o6 d
to be used 6o the"6acftto pn t.

Ideally he should be able to make a declaration such

as FLOAT(2,12) X and as a result have the value of

X composed of a 2-digit exponent part along with

a 12-digit fraction part.

It should also be possible that

contiabnt6 ob expiuso6, a6 wett 6 (3)
cowta6, be allowed 4n the dect Lonm,

For example, FLOAT(2,I+I) X would have the obvious

meaning.

The most important part of our proposal with

respect to precision is that

theuweA 6houed be abte to peciq the
pJeciton o6 the openztionh to be cauted
out on the opeAand, quite aptt 6rom, (4)

and independent y o the p'teci6.on oj
the opelfand6 themseft-v .

For example, he should be able to write something

like

BEGIN PRECISION(3,14)

Y = X + .51 * SIN(I)
_ NuXed=X+.1

END
and mean that every operation in the expression is

to be carried out in (3,14)-precision arithmetic,

the result of the calculation finally being adjusted

to fit the precision of Y, whatever the precision of

Y has been declared to be, before the result is

assigned to Y.

It is of course intended that

the pLecon o 5uch "pvecizcon btocku"
be allowed to change betoeen one exec- (5)
Lton o6 a bock and the next.

Examples are given in the references by Hull and

Hofbauer referred to earlier; however, the pre-

processor mentioned there handles only the special

cese in which only the fraction parts (of the varia-

bles and precision blocks) are declared, and their

values denote numbers of word lengths rather than

numbers of decimal digits.

The specifications we propose for precision

control provide a considerable degree of flexibility,
In particular, they allow the user to carry out

intermediate calculations in higher precision (as
may be required, for example, in computing scalar
products, or in computing residuals), and they allow
for the repetition of a particular calculation in

different precisions (as is required, for example.

in some iterative procedures, or in attempting to

measure the effect of roundoff error),

The proposed specifications are also simple.

For example, separating the precision of the opera-

tions from the precisions of the quantities entering

into the calculations avoids having to remember a

lot of rules about how quantities of different

precisions combine. (No satisfactory rules for such

calculations can be devised in any event, for

example, no such rules would enable us to compare

the results of doing a particular calculation twice,

at two different precisions.)

It must be acknowledged that very high precision

calculations would be used only rarely.
 This means

that all precisions up to something like (2,12) or

perhaps (3,15) should be done very efficiently, but,

beyond that, a substantial reduction in efficiency

would be quite acceptable.
One point is worth emphasizing. It is intended

that precision 12, say, means exactly precision 12,

and not at least precision 12. We cannot measure
rouneoff error if precision 12 and precision 15

give the same results.

One further point is perhaps worth mentioning.
Our requirements for precision control could lead
to thinking of the machine as being designed to
handle character strings, a number being just a
special case in which most of the characters in
a string are decimal digits. However, as indicated
earlier, we are concerned here primarily with the
functional specificatiors, and not with any details

about how those specifications are to be implemented.

REPRESENTATION

Quite independently of how the base is

specified, or of what sort of flexibility is allowed

with the precision, it is possible to state specific

requirements about the representation of floating
We will describe what we consider
point numbers.

to be desirable requirements in terms which may
appear to be hardware specifications but the propo

sal is not meant to restrict the details of the

hardware representation in any way except in so far

as the results appear to the user.

The proposal is that

a &cagn and magnitude tepentattn be
Ao i both the exponent part and the (6)

6ator pakt, and that the)tacton
pwtt be nomnazed.

The reason for proposing a sign and magnitude

representation is that it is simple, and probably

easiest to keep in mind.
 The reason for allowing

only normalized numbers is so that the fundamental

rule regarding error bounds that is discussed In the

next section can then be relatively simple.

We deliberately do not propose any axioms,

such as "if x is in the system then so is -x", to be
satisfied by the numbers in the system. Any such

statements that are valid are easily derived, and

there is no need to state them explicitly. In fact,

it might be somewhat misleading to begin with state

ments of this sort and perhaps give the impression

that one might be able to derive the system from a

collection of such desirable properties.

Besides the normalized floating-point numbers

proposed above

,/t Wct be neceSakytq to allow a Aeto otheA
vatue6 as wel, Such a OVERFLOW, UNDER-
FLOW, ZERODIVIVE, INDETERMINATE, and (7)
UNASSIGNED to be maed at spectaZ

xcuJtcaitncez.

We will return to this question in a later section

when we discuss the requirements for exception

handling.

Although what we have proposed as allowed

values for floating-point numbers is, for the purpose

of simplicity, very restricted, the hardware can

carry much more in the way of extended registers,

guard digits, sticky bits, and so on, if that should

be convenient for meeting the requirements of the

following sections However, if this is done, it

will ordinarily be only for temporary purposes, and,

in any event, the user would under no circumstances

have access to such information. (We are continuing

to think of the user as programming in a higher

level language such as Fortran.)

68

http:p'teci6.on

ARITHMETIC OPERATIONS

Whatever the base or method of representation,

we can still be precise about the kind of arithmetic

that is most desirable. For various reasons we

propose that,

Zn the absence o6 ovvC4tow, undet6tlt.

-ndteminate, and ze'o-dcvide, the

&e Oj5t6o6aU akkthmettc opvuztaon

be picope4ty 'ounded to the neaACAt
AephA&entabte numbe)L. (Some uthe'A (8)
deaait "czneeded to make .t 'lequwxe
ment comptetety pheace. In ea6e o6
a ;te, we mcghta6awe have the
ncutma~xzed 4&reeon part xounded tothe neaaest even vatue.)

There are several reasons for preferring this

specification-

(a) 	 It is simple, and easy to remember.

(b) 	 Since unnormalized numbers are not allowed, the

basic rule required for error analysis is easy

to derive and, in the absence of overflow,

underflow, indeterminate, and zero-divide,

takes the simple form:

fz(xoy) = (soy)(1+),
where a is an operation and Is] < u, u being
the relative roundoff error bound for the
precision that is currently in effect.

(c) 	 Rounding is better than chopping, not because

the value of u is smaller (although that

happens to be the case), but primarily because

of the resulting lack of bias in the errors.

There is a considerable advantage to stating

directly what outcome one is to expect from an

arithmetic operation, and then deriving any proper-

ties that one needs to use, rather than to start

off with a list of desirable properties. For

example, from the simple specification we have given,

it is a straightforward matter to prove that (sign

preservation):

(-x)*y = -(x*y),

or that (monotonicity).

x y and z 0 implies x*z y*z.

It is misleading to write down a list of such

desirable properties and to suggest that rules might

be derived from them. (After all, if we did write

down all of the most desirable properties we would

of course want to include associativity!)

It is undesirable to allow any exceptions to

the specifications - even such small ones as the

exception to true chopping arithmetic that occurs
with IBM 360/370 computers. Nor should we tolerate

the inclusion of tricks, such as evaluating A+B*C

with at most one rounding error The reason is

that it is important for the user to know what

happens under all circumstances. A simple rule,

that is easy to remember and to which there are no

exceptions, is a good way to ensure this knowledge.

To complete the programming language specifica-

tions with regard to floating-point arithmetic, we

also require that

.&ome conventcon6 be adopted, 5uch a6 the
te6t to -gh-t Aute 6ojL Je6ouVn wmn - (9)
gutti6 in exptes-ton6 such as6A+B+C.

A further discussion of overflow, underflow, etc.,

is also required, but that will be postponed to the

section on exception handling.

OTHER BASIC OPERATIONS

Besides the arithmetic operations, a program-

ming language must of course also provide various

other basic operations. These should include such

standard operations as

abzotzte vafae

the 	 6fooA fanctAon,

quotient, em , 	 (10)A

max, 	 mtn,

as well as
the Itetationat opekutoX6. 	 (11)

With the latter it is essential that they work pro
perly over the entire domain, and that, for example,

nothing ridiculous happen such as allowing IF(A > B)
to cause overflow.

There would also be a need for functions to

perform special rounding operations, such as

reound the -'euwtt o6 an avthmetc opekatt.on
to a speCcied number o4 places in the

J'actionpatt, (12)
iound up, 0 iwand down, ztmavah1y,
-'wand a -o4.eut ,to a speci6ed numbeA o6

ptc6 ate' the point

and 	 to carry out other special operations, such as

get pretton o6 6ac on pa2t, (13)
get ptecision o6 exponent pa&t.
Finally, a special operation nay be needed to

denote

-'epewted mutpttiation. 	 (14)
n

The purpose of this operation is to distinguish x

where n is an integer and it is intended that x be

multiplied by itself n-i times, from the case where

n

it is intended that x be approximated by first

determining log x and then computing en log x

Being able to make this distinction would be helpful

n3

in calculating expressions such as (-l)", or (3.1)

But whether this part of the proposal is accepted

depends to some extent on how strongly one feels

about dropping the fixed-point or integer type, as

mentioned in a later section.

For the elementary functions, such as SQRT(X),

EM (X), SIN(X), etc., we propose some simple but

uniform requirement such as

6(lxl) = (1+n1)6(x{+nf))

ovekL appopfrate kangez6 o6 x, whe e n

and n are smatt inegA. (06 coweue, (15)

each e zatiz6iesl|l < u, an the vatue
o6 u ep~ec on.)
on Aepe6

It would be a nice feature if the n's were relative

ly easy to remember. For example, it might be

possible to require nI = 2 for each function, and

1

= 0 for at least most of the functions of

interest. Unfortunately, the "appropriate ranges"

will 	 differ, although they will be obvious for some

functions (for example, they should contain all

possible non-negative values of x for the square

root function).

There is a temptation to require more restric

a2

tions on the approximations to the elementary
functions, such as

SIN(O) = 0, COS(O) = 1

LOG(l) = 0, ABS(SIN(X)) 1

or that some relations be satisfied, at least close

ly, such as

SQRT(X
2) = X,

(SQRT(X))
2 = X

SIN(ARCSIN(X)) =X,

SIN 2 (X) + COS 2(X) = i

69

http:opekatt.on

or that some monotonicity properties be preserved, BesZdes OVERFLOW and UNDERFLOW, the othcA

such as possbte causes o6 .ntetapt a/e ZERO

0 X Y implies SQRT(X) 5 SQRT(Y) DIVIDE, INDETERMINATE, UNASSIGNED, and

A few such properties follow from the proposed OUTOFRANGE (i.e., Atgument o6 a 6unction

requirement (for example, SIN(O) = 0), but we out o4 xangej.
propose not requiring anything beyond what can be Third, it is to be understood that
derived from the original specification. This
proposal is made in the interests of simplicity. The contAolwut be Aetwtned to the pocnt o6
original specification is easy to remember, and any intmuptcon, afteA the speckdzed actcon
proofs about what programs do should depend only on has been taken, untfsa the programmer has (18)
a relatively few "axioms" about floating-point arith- pwovded 6o an altenattve to be oflowed,
metic and the elementary functions. No one is re- such as stoppxng t1e caeutationz atto
quired to remember a potentially long list (and gtthet, o pexhap mclng an ett Aorm
perhaps changing list!) of special properties of the that btock oS £n6twctionA.
elementary function routines. Fourth, it is also proposed that

In those cases where something special is re

quired, one possibility is that the programmer take the pcogncmeA be abe to assign a vatue

appropriate measures. For example, if it appears to RESULT a pawd o6 the acton to be

that we might want to require that Isin(x)[:c 1, as taken. Fox exampte, he coutd w'wte (19)

we might in trying to approximate the integral ON{OVERFLOW) RESULT = 10**5o

I v 1-sin x dx, we can simply replace 1-sin x with END ERFLOW) RESULT = 0

11-sin xl. Alternatively, separate function sub- Not allowing the user to have access to the operands,

routines can always be developed in order to provide other than through his access to the program var

function approximations that satisfy special proper- ables themselves, has been deliberate. In particu

ties; for example, there could be a special sine sub- lar, if the operands that caused the interrupt were

routine, say SSIN, which produces approximations to "temporaries", it is difficult to see how he could

sin(x) with special properties such as being guaran- make use of them.

teed not to exceed 1 in absolute value.

FIXED-POINT ARITHMETIC

EXCEPTION HANDLING In conclusion, we would like to comment that,

Overflow, underflow, indeterminate, and zero- at least to us, it arpears that we do not need to
divide have already been mentioned. (It may be that have any type of arithmetic in our programming
one would like to make further distinctions here, language other than the floating-point arithmetic
between positive and negative overflow, for example) described in the preceding sections (except, of
It should be pointed out that overflow and underflow course, for complex arithmetic). In particular,
can occur when precision is changed, especially if there does not appear to be any compelling need for
the user can change the exponent range. Other fixed-point or integer arithmetic.
exceptions that can arise include trying to compute
with an as yet unassigned value, or using a func- ACKNOWLEDGEMENTS

tion argument that is out of range. Much of this work is based on material that

The first rule should be that, was prepared for discussion by members of the IFIP

i6 an exception axa6 and the ?YogB'mWni 	 Working Group 2.5 on Numerical Software, beginning

makes no spectat pitovw on 6o& handng .t, with the Oak Brook meeting in 1976 (1). I would like

the computatcon shoud be Stopped, aeong (16) to acknowledge the helpful criticism of members of

with an appwpt £emesage about wheke that committee, particularly of W.S. Brown and T.J.

and why. 	 Dekker. I would also like to thank W.M. Kahan

especially; although we have not always been in

If the user is aware that an exception might complete agreement, he has certainly had an enor

arise, and knows what he wants to do about it, he mous influence on my thinking about this, as well

can often "program around" the difficulty. One as many other subjects!

example has already been mentioned in connection

with an argument getting out of range in Vi-Knx. REFERENCES

Another arises in trying to calculate min(ly/xj,2) 1. T.E. Hull, "Semantics of Floating Point

where y/x might overflow. However, such strategies Arithmetic and Elementary Functions", Portability

are often quite confusing and sometimes not even of Numerical Software (ed. W.R. Cowell), Springer

3 7 4 8

available Some kind of general capability for hand- Verlag, N.Y., 1977, pp. - .

ling exceptions is needed. 2. T.E. Hull and J J Hofbauer, "Language

Our second rule with regard to exception hand- Facilities for Multiple Precision Floating Point

ling is therefore that Computation, with Examples, and the Description of

the uzex should be able to specify the scope a Preprocessor", Tech Rep. No.63, Dept. of Comp.

over which he " preparedto state what-TZ Sci., Univ. of Toronto (1974).

to be done, and that he be abtLe to detect 3. T.E. Hull and J.J. Hofbauer, "Language

the cause o6 the int upt, in a mg sAh Facilities for Numerical Computation", Mathematical

as suggested zn the fo6omE. Proceedings of the ACM-STAM Conf. on Mathematical
BEGIN (17) Software IT (ed. John R. Rice), Academic Press,

ON(OVERFLOW) N.Y. 1977, Proceedings of the ACM-SIAM Conf. on
y what to do in case o6 ovex- Mathematical Software 11, Purdue Univ. (1974),

ftow pp.1-18.(UNDERFLOW)

(_ I

END

so

END

70

4in ,T

Handling of Floating Point Exceptions

Thomas W. Eggers

Judson S. Leonard

Mary H. Payne

Digital Equipment Corporation

Maynard, Massachusetts

SUMMARY The second words that are created

on an overflow or underflow exception

An IEEE subcommittee on the are held in a table which dynamically

standardization of microprocessor changes in size. The table can be

floating point arithmetic has a managed with traditional storage

proposal under discussion. Part of allocation techniques. It can grow to

that proposal concerns overflow and a maximum size equal to the number of

underflow exceptions. floating point variables in the

program. The expected size and access

The proposal calls for a rate of this table are being

"gradual" underflow implemented with investigated.

denormalized numbers. For a sequence

of addition/subtraction operations, The authors believe that the

the gradual underflow works very well: Payne pointer scheme offers an

it almost has the effect of a machine improvement in both functionality and

with infinite range numbers. But if simplicity over the gradual underflow

an addition/subtraction sequence is mechanism.

interrupted by a multiply or divide,

things don't work nearly as well, and

a fallback to symbolic information is

likely. The proposal helps overflow

hardly at all.

The Payne alternate proposal

handles overflow, underflow,

addition/subtraction, and

multiplication/division equally well.

It relies on a pointer scheme that is

invoked when an overflow or underflow

exception occurs. The excepted result

is replaced by a reserved operand.

The reserved operand encodes

information about the exception,

stores the "excess exponent," and

points to a second word which stores

the correct number less the excess

exponent factor. Whenever a reserved

operand is encountered during

execution, a trap occurs and an

interpreter performs the operation

using the excess exponent for extended

range.

71

2736N79

"PROGRAMMING EFFORT" ANALYSIS OF THE ELLPACK LANGUAGE

John R. Rice

Divis-in of Mathematical Sciences

Purdue University

ELLPACK is a problem statement language and system for elliptic partial

differential equations (PDEs) which is implemented by a Fortran preprocessor.

ELLPACK's principal purpose is as a tool for the performance evaluation of

software. However, we use it here as an example with which to study the

"programming effort" required for problem solving. It is obvious that

problem statement languages can reduce programming effort tremendously; our

goal is to quantify this somewhat. We do this by analyzing the lengths and

effort (as measured by Halstead's "software science" technique) of various

approaches to solving these problems.

A simple ELLPACK program is shown below to illustrate the nature of

the ELLPACK language. Space does not allow a description of the language

but it is somewhat self explanatory. See [2] and [3] for further details.

* ELLPACK 77 - EXAMPLE 4 FOR SIGNUM CONFERENCE

EQUATION. 2 DIMENSIONS

UXX$ +S.UYY$ -4.UY$ +(fUB9(X)-3.)U = EXP(X+Y)*lUBS(X)*(2./(1.+X)-1.)

BOUND. X = 0.0 , U = TRUE(O.,Y)

Y = 1.0 , UY= EXP(1.+X)*SQRT(UBS(X)/2.)

X = EXP(l.) , U = TRUE(2.71828182848,Y)

Y = 0.0 , MIXED = (I.+X)U (1.+X)UY = 2.*EXP(X)

GRID. UNIFORM X = 5 $ UNIFORM Y = 7
*
DISCRETIZATION(1). 5-POINT STAR

DIS(2). P3-Cl COLLOCATION

INDEX(1). NATURAL

INDEX(2). COLLOCATE BAN

SOL. BAND SOLVE

OUTPUT(B). MAX-ERROR $ MAX-RESIDUAL

OUTPUT(SS). TABLE(5,5)-U

SEQUENCE. 	 DIS(1) $ INDEX(1) $ SOLUTION $ OUTPUT(B)

DIS(2) $ INDEX(2) $ SOLUTION $ OUTPUT(B)

OUTPUT(SS)

OPTIONS. MEMORY $ LEVEL=2

FORTRAN.

FUNCTION TRUE(X,Y)

TRUE = EXP(X+Y)/(1.0+X)

RETURN

END

FUNCTION DUBSCT)

DUB9 = 2./(I.+T)**2

RETURN

END

END.

4_1 	 72

A problem solution with the ELLPACK system goes through three principal

stages: (1)the ELLPACK language input is read by a Fortran preprocessor which

writes a Fortran Control Program, (2)the Control Program is compiled, and

(3)the Control Program object deck is loaded along with modules from the ELLPACK

library which implement steps in the solution of the PDE. We compare the programming

effort for each of these steps, i.e., (1)an ELLPACK statement of the PDE problem

to be solved and method to be used, (2)preparation of the Control Program, assuming

familiarity with the module library and (3)programming the entire solution in

Fortran.

Three measures of programming effort are used: lines of code, total number of

operators and operands and "effort" measured by thousands of elementary mental

discriminations. The latter two measures are part of Halstead's "software science"

presented in [1]. This is an empirical method to define and relate various program

parameters to the effort required to write the programs. While we do not attempt to

explain this method, it is very plausible that the total number of operators and

operands in a program is more directly related to the complexity of a program than

the number of lines of Fortran. Two short-comings of the method for this application

are (1)that it ignores declarations and I/0 statements and (2)the mechanism for

estimating the effort for a set of tightly integrated subroutines is inadequate.

However, the measurements are good enough for the present purposes where only rough

accuracy is needed.

We consider 10 example problems and present the data N=total number of operators

and operands, L=total lines of code (including comments in the Fortran modules, most

of which are well commented), C=code complexity measured by number of operators and

operands per line, and E=programming effort in 1000's of elementary mental discrimin

ations as defined by Halstead. For each problem we have data for the ELLPACK language

(labeled ELPK), the Control Program (labeled Control) and the set of library subroutines

used (labeled Modules).

PROBLEM 1 PROBLEM 2 PROBLEM 3 PROBLEM 4
ELPK Control Modules ELPK Control Modules ELPK Control Modules ELPK Control Modules

N
L

187
33

1793
381

14,349
3,852

103
22

1331
295

6632
1330

147
27

1552
353

14,203
5,348

134
29

1354
314

12,6711
3,402

C 5.7 4.7 3.7 4.7 4.5 5.0 5.4 4.4 2.7 4.6 4.3 3.7
E 27 1076 6,425 5 371 4804 14 852 4,232 12 614 5881

73

PROBLEM 5 PROBLEM 6 PROBLEM 7 PROBLEM 8
ELPK Control Modules ELPK Control Modules ELPK Control Modules ELPK Control Modules

N 1 3 231 11,198 125 1358 15,113 125 1366 8500 102 1238 7,2611
L 40 303 2,918 42 336 5,425 51 311 2561 29 303 2,145
C 2.8 4.1 3.8 3.0 4.0 2.6 2.5 4.4 3.3 3.5 4.1 3.4
El 8 385 5,306 12 587 3,784 11 444 2771 6 394 2,211

PROBLEM 	 9 PROBLEM 10

ELPK Control Modules ELPK Control Modules

N 112 1283 14,134 87 1716 7997

L 38 315 3,937 110 365 2517

2.9 	 4.1 3.6 .8 4.7 3.2

6 503 6,739 4 390 3243

There are considerable variations among these examples but there is also an obvious

trend of greatly increased "length" from stage to stage, no matter how it is

measured. The programming effort E should increase faster than the number of lines,

but it does not always do so because of the inability of the software science

method to completely account for the use of modularity in implementing an algorithm.

Comparing the Control and Modules data should be representative of the compari

son of using or not using a library of powerful subroutines. We see that the ratios

of effort range from 6 to 15 with 10 as an average, the ratios of lines range from

6 to 17 with 11 as an average. Thus we conclude that,at least in the context of

solving PDEs, the use of a library increases programming productivity by a factor

of 10. It may well increase it more and the quality of the results will be

improved if the library is good.

Comparing the ELPK and Control data should measure the value of a problem

statement language compared to using a library. The ratios of effort range from

40 to 100 with 60 as an average and the ratios of lines range from 3 to 13 with 9

as an average. We thus conclude that using an ELLPACK type preprocessor increases

programming productivity by a factor of 10 to 50.

We also conclude that using this preprocessor instead of writing the programs

from scratch reduces programming effort by a factor of between 100 and 500.

This work is partially supported by NSF Grant MCS76-10225.

El] M. H. Halstead, Elements of Software Science, Elsevier North-Holland,

New York, 1977.

[2] 	 J. R. Rice, ELLPACK: A Research Tool for Elliptic Partial Differential

Equations Software in Mathematical Software III (J.R. Rice, ed.)

Academic Press, 1977, pp. 319-341.

J. R. Rice, ELLPACK 77 User's Guide, CSD-TR 226, Computer Science
Dept.,

[3]

Purdue University, September 1978.

74

Notes from the Seoond Department of Energy Library Workshop

by

Kirby W. beg - litioml lbgnetio Fasion Iferg Comuter Center
at the Lowrence Livenure laboratory

and

Bonda!1 X. Jones - Sndita laboratories Albuquerque

Part I - A General Review of the Workshop

The U S Atomic Energy Commission (AEC) and

its successors, first the U.S Energy Research and

Development Administration and now the
U S Department of Energy (DOE) and Nuclear
Regulatory Commission, has been and continues to
be one of the nation's major purchasers and users

of large scale scientific computers

Historically, each of the more than dozen computer

centers at different laboratories evolved

independently of the others so that each was

self-contained In particular, each computer

center developed mathematical software libraries

according to its own needs In 1975,

representatives for the mathematical software

libraries at the various AEC computer centers met,

with Argonne National Laboratory as the host, to

hold the first Workshop on the Operational Aspects

of Mathematical Software Libraries. Among the

purposes of the first Workshop were: (1) to meet

colleagues doing similar work - at other AEC

computer centers, (2) to share experiences in the

management of mathematical software libraries, and

(3) to discuss ideas and issues in the operation

of libraries The first Workshop was sufficiently

rewarding that the participants ' felt it

appropriate to hold a second Workshop in three

years. an interval that would encompass sufficient

progress in library operation that new experiences

and ideas could be discussed,

The Second DOE Workshop on the Operational

Aspects of Mathematical Software Libraries was

hosted by the National Magnetic Fusion Energy

Computer Center at the Lawrence Livermore

Laboratory in August 1978 It was attended by

thirty-five participants representing fifteen DOE

computer centers. Representatives from three

non-DOE computer centers were also invited A

major new development in DOE computer centers, the

use of commercial mathematical software libraries,

led to inviting representatives from three major

commercial library companies.

The Workshop included both individual

presentations and group discussions. We will deal

here with only the group discussions because they

reflect the problems and issues that all of us, in

or out of DOE, face in the management of

mathematical software libraries.

One problem regarded with varying degrees of

concern by the participants is the proliferation

of mini computers While some mini computers are

limited by small amounts of memory or inaccurate

elementary functions, these appear not to be the

principal problems The problem is that there are

potentially so many brands and models at any given

site, each being used for scientific computation.

Consequently, the mathematical software librarian

has the task of supplying many versions of his or

her library - one for each mini computer.

At the opposite end of the spectrum is the

super computer with unconventional architecture

At this time, the only DOE computer centers

acquiring such machines already have computers

with long word lengths. This means extensive

conversion between single and double precision has

not yet been needed The basic problem is that

standard Fortran codes on the existing large

computers may be unable to take full advantage of

the new architecture of the super computers This

problem is currently felt to be handled best by

increased modularization (e g the Basic Linear

Algebra Subroutines or BLAS) so that only a

limited number of key modules need to be rewritten

(presumably in assembly language) for a new super

computer. Conspicuous by its absence was any

mention of programming languages other than

Fortran Apparently, no DOE computer center

expects to use any language other than Fortran or

a limited amount of assembly language in

mathematical software libraries be they libraries

for mini computers, conventional large computers,

or super computers

Participants were asked to mention

mathematical areas in which current libraries

seemed to lack sufficient coverage. In many

cases, the areas mentioned below reflect a single

user at a single site asking for a capability

rather than a wide spread need. (1) Sparse linear

algebra routines of all types are in demand This

was not an isolated occurrence. (2) Certain areas

of physics require high accuracy quadrature

routines In up to twelve dimensions. (3) One

computer center reported a need for Fortran

callable subroutines to perform symbolic algebra

75

and produce Fortran compilable output. (4) There

is a modest need for multi-dimensional surface

fitting and approximation routines where data are

given at co-ordinates that do not constitute a

rectangular mesh - i.e. randomly distributed data

points. (5) There is no end to the special

functions that users request Users are asking

for functions of two and three parameters with

fractional or even complex degree, order, or

argument. (6) Users are starting to encounter

more multi-point boundary value problems We

anticipate greater demand for routines in this

area.

The statistics software area is one in which

the responsibilities of the mathematical software

librarian are not well defined. It appears that

the practitioners of statistical analysis prefer

to use self-contained tools - i.e. programs that

handle input, output, and graphics as well as

analysis Many such complete programs exist and

are commercially available. Each is designed to

handle some reasonable subset of problems. A

library of statistics subroutines is therefore

needed only when a statistician must construct a

new tool for a new class of problem, and then he

or she will also need input, output, and graphics

routines as well as statistics routines. We

believe it fair to say the discussion of this

topic was inconclusive,

The era in which each computer center could

afford to write and maintain its own complete

mathematical software library is now generally

acknowledged to be past. The continuing expansion

in numerical analysis precludes having experts in

every area of numerical analysis on the staff, and

DOE is also sensitive to the duplication of effort

implied by having independent library efforts at

many computer centers. Thus commercial libraries

are seen as playing a larger role in DOE computer

centers. They can provide and support high

quality, standard, general purpose numerical

software while allowing the staff at each computer

center to specialize in mathematical software

unique to the needs of users at each computer

center. The second Workshop therefore invited

three of the major commercial library companies

(IMSL, NAG, and PORT) to send representatives,

The representatives were asked to give informal

descriptions of their current activities and

plans

From the viewpoint of DOE participants,

probably the most important benefit from having

the commercial representatives was the chance to

tell them how DOE perceived their roles and to

state specifically what services the DOE computer

centers would be needing. The commercial

libraries play a role somewhat analogous to the

scholarly journal They are increasingly being

viewed as the vehicle through which the author of

mathematical subroutines presents his or her

software to the world just as a journal is used

for presenting research to the world We expect

that software will be refereed just as journals

articles are refereed in order to achieve a

uniformly high quality of content. Specific needs

of computer centers focus primarily on

documentation. As the completely home grown

library recedes into history, so will the

completely home grown library document. It will

be necessary for commercial libraries to supply

documentation that is convenient to use and can

fit into the great variety of procedures which

different computer centers use to maintain

documentation Most DOE computer centers are

still relying on hardcopy (e.g. paper) documents

to some extent, but the cost or inconvenience of

printing new manuals or inserting revision pages

is pushing computer centers in the direction of

machine readable, on line documentat-ion. Typing a

document into a form suitable for processing by a

report editor is not vastly more expensive than

typing a camera ready master, and it means the

document is stored in a form that permits

revisions to be made easily and quickly If the

document is kept on-line, the user can interrogate

it interactively or print a copy of the current

write-up on some output device The on-line

document is not free of problems however One is

that on-line storage (e.g. disks) is expensive.

We await a decrease in hardware costs combined

with the inevitable increase in labor costs and

inconvenience in maintaining paper documents to

tilt the balance in favor of on-line documents

Computer networks with users who are

geographically dispersed have already had to shift

away from a dependence on hardcopy manuals A

second reason is that limited character sets in

various output devices (e.g. printers or

terminals) prevent writing mathematical

expressions in the natural way. The commercial

library company faces exactly the same problems as

its customers in producing and maintaining

documentation Just as business offices have

resorted to word processing equipment to control

the cost of producing correspondence, so the

commercial libraries will have to turn to the

computer for assistance in producing and

maintaining documentation. Their problem is more

difficult than that of any individual computer

center in that they must furnish portable, machine

readable documentation that can be integrated

easily into each customer's system and set of

output devices. Currently, they furnish a

finished, hardcopy manual The problem is not the

content of the manual; it is the format. The

current form makes it impractical for computer

centers to furnish a copy to every user Also,

few users really need to own a complete manual.

Rather they need to be able to extract and print a

subset of the manual appropriate for their needs.

It is now generally recognized that documentation

is an integral part of mathematical software

(software without documentation is nearly useless)

but that construction, maintenance, and

distribution of the library document is perhaps a

more intractable problem than construction,

maintenance, and distribution of the library

itself. With commercial libraries now containing

hundreds of subroutines come manuals containing

thousands of pages. The sheer bulk of

documentation, while it suggests automation is now

in order, also means the companies must choose a

documenation system carefully because they can

afford to type such large documents only once.

Thereafter, the companies must be able to

transform their machine readable master documents

into various "documentation system ranges" as

needed by their customers.

Numerous other topics received' varying

amounts of attention at the Workshop (1)

Participants were asked to mention any

mathematical software packages which might

supplement general purpose libraries. (2)

Participants were asked to describe any tools or

76

preprocessors that they had found useful in

preparing, testing, and documenting mathematical

software. (3) One of the Workshop participants is

also a member of the DOE Advanced Computing

Committee Language Working Group He spoke about

the activities and plans of the group and answered

questions about why DOE was so interested in

designing a Fortran which would be an extension of

ANSI 1977 Fortran. (5) Several DOE computer

centers related their experiences and observations

in monitoring the use of mathematical libraries

(6) The concept of a core library was advanced as

a response to some of the constraints now being

encountered A core library is of manageably

small size and includes routines from any source,

local or outside, to provide coverage of most of

the mathematical algorithms needed by users A

core library is small enough to be supported by a

small staff and does not require a massive manual

The staff is free to adopt for the core library

the finest routines from commercial libraries,

outside authors, or , local authors (7)

Participants reviewed briefly the means for

exchanging information or software. The ARPA net

is not available to all computer centers, but it

does allow transmission of messages and files

between some of the DOE computer centers The

magnetic tape formats recommended by the Argonne

Code Center were agreeable to most participants

although some thought that seven track tapes

should be blocked instead of unblocked (8)

Finally, the Workshop gave librarians a chance to

express their advice for authors who would write

mathematical software for libraries. This is in
contrast to mathematical software packages
intended for stand alone use

Part II - Suggestions for Authors of Mathematical Software

In this part of the paper we present our

views about the format for Fortran software to be

admitted to libraries. Most of these ideas were

presented at the DOE Library Workshop; however, we

do not wish to imply that they were endorsed by

the Workshop Most of these ideas come from the

discussions between Sandia Laboratories, the Los

Alamos Scientific Laboratory, and the Air Force

Weapons Laboratory about the feasibility of

constructing a common mathematical library from

existing software These discussions were

organized under SLATEC, a committee with

representatives from the three laboratories, which

co-ordinates technical exchanges among the three

members,

The programming environment for the

development of mathematical software is influenced

to some extent by what the author perceives as the

manner in which the software will ultimately be

used. In particular, a mathematical package that

is destined for stand alone use will be written to

be self-contained, that is, it will use no

externals other than the basic (Fortran) externals

and will try to avoid any input/output or system

dependence Such attention to portability is

commendable, for it eases the recipient's task of

installing the package; yet, a librarian may

nevertheless be unhappy because the package adds

yet another linear system solver or error message

printing routine to the library From the

librarian's point of view, a collection of

completely independent routines is not a library,

A collection of software cannot really be elevated

to the status of library until redundancy is

minimized, error conditions are handled in a

systematic way, and the routines and their

documents are presented in a fairly uniform way

Let us be more specific about the attributes the

librarian values

(1) Whenever possible, the arguments for a

subroutine should be in this order' (1) input,

(2) input/output, (3) output, (4) work arrays An

exception is that array dimensions should

immediately follow the array name. Work arrays

should be limited to no more than one of each

needed type, z.e. one single precision array, one

double precision array, one complex array, one

integer array, and one logical array. This

implies user callable routines may actually be

nothing more than interface routines which carve

the work arrays into smaller pieces for use by

other subroutines.

(2) Each subprogram should have a block of

information called a prologue. The prologue
should immediately follow the subprogram
declaration. The first part of the prologue
should be an abstract in the form of comment cards

which describes the purpose of the subprogram and

gives the author, history, or references for the

subprogram The second part should be a

description of each argument in the calling

sequence, and each argument should be described in

the order in which it appears in the calling

sequence It has been found that users will code

a call by reading the argument description, thus,

such a description should not mislead the user

into writing actual arguments in an incorrect

order The third part of the prologue should be

array declarations These may be actual

declarations or comment cards describing arrays

and their sizes The fourth part of the prologue

should be a comment card

C *** END OF PROLOGUE

which signals the end of information for the user.

This type of sentinel is of great use in the

automatic preparation of user manuals A string

processor or other text editing program can Lake

the cards from each subprogram up to the sentinel

to construct a library manual. The prologue

should contain sufficient information that it

could be used as the primary user document

(3) If at all possible, any separate

documentation should be supplied In machine

readable form Hardcopy documentation may be

suitable when a complete package is supplied to a

single user, but library routines are available to

all users. Hence a document for a library routine

should be in a form where it can be edited easily

to fit in a manual or in a form where users can

easily print as many copies as they need. Since

77

many output devices are not capable of printing

integral or summation signs and other mathematical

notation, considerable ingenuity may be required

to write the document using only the ASCII or

EBCDIC character set. We furthermore recommend

that authors restrict themselvs to the

intersection of the ASCII and EBCDIC character

sets At this time we are incl-ined t6 accept

mixed upper and lower case documentation, however,

authors who are dedicated to distributing their

software may wish to confine themselves to the

forty-seven characters in standard Fortran. Line

lengths for machine readable documents should not

exceed 80 columns as most terminals will print

only 80 columns. If the document describes the

arguments of a subprogram, it, like the prologue,

should describe them in the same order in which

they occur in the calling sequence The names of

any arguments or internal variables described in

the document should be exactly the same as the

names in the Fortran subprogram. This assists the

user who is symbolically debugging his program who

may ask by name for the values of arguments or key

internal variables inside the library routine.

For example, if EPSLON is an argument, it should

be referred to as EPSLON, not EPSILON, in any

separate document

(4) A comment card of the following type

C ... FIRST EXECUTABLE STATEMENT

should be placed between the last declaration or

arithemtic statement function and the first

executable statement This assists string

processing programs in inserting CALL statements

to system routines that monitor the use of library

routines

(5) Input/output (I/O) should be localized

if it is present at all. READ and WRITE

statements should be confined to one subprogram

and not be scattered throughout a package This

makes modification of any I/O much simpler. We do

not consider the penalty of going through another

level of subroutine call to perform I/O a serious

penalty.

(6) We recommend that authors use the PORT

Library or SLATEC error message packages rather

than write their own routines for printing error

messages (A description of the latter may be

found in Sandia report SAND 78-1189) Both

packages are portable. The packages are (by

design) very similar in approach, with the SLATEC

package differing from the PORT package in some

features to reflect the production computing

environment in which the SLATEC library is to be

used. We suggest that authors choose the package

which better suits their philosophy Use of these

packages then relieves the author of the burden of

designing and coding his or her own error handling

procedures

(7) There is some controversy whether

machine constants should be computed internally or

data loaded in library routines. We prefer that

authors use similar if not identical routines to

those in the PORT Library. These routines return

machine constants which are data loaded inside

these routines. This minimizes the number of data

statements that must be changed in moving a

library from one machine to another. It also

precludes the possibility that some new optimizing

compiler or architecture might invalidate a tricky

algorithm for computing a machine constant

(8) We encourage authors to use reputable,

existing software as building blocks for their

packages Examples are EISPACK, FUNPACK, LINPACK,

IMSL, NAG, and PORT. We also encourage the use of

the Basic Linear Algebra Subroutines (BLAS)

because they are a small enough set of routines

that we can reasonably expect to provide an

optimal set for each machine This in turn means

that higher level routines calling the BLAS can be

made more efficient just by improving the BLAS

We thus minimize conflicts between portability and

efficiency by isolating efficiency dependent parts

of a program into small modules which can be

receded easily

(9) Until some portable subset of ANSI 1977

Fortran becomes recognized, mathematical software

should be written in a portable subset of ANSI

1966 Fortran as defined by the PFORT Verifier

Authors of routines that do not pass the PFORT

Verifier should offer good reasons why their

routines should not be modified to do so

(10) Avoid using common blocks because users

may accidentally invent program or block names

that conflict If common blocks or subroutines

internal to a package (not called by users) are

used, pick highly unusual names in order to

minimize the chance that they will conflict with

names existing elsewhere. User callable routines

should also have very distinctive names, possibly

names that are obviously related to the package,

that are not likely to cause conflicts. Examples

of bad choices are START, TIME, F, OPEN, CLOSE,

FFT. INTEG. SOLVE, SORT, SECOND, INIT. and QUIT.

These all have a high probability of conflicting

with user or system library names Authors should

also avoid names used in widely available software

such as IMSL, NAG, PORT, EISPACK, FUNPACK,

LINPACK, BLAS, and DISSPLA.

We believe the DOE computer centers are not

alone in moving from libraries consisting solely

of locally written software to libraries including

externally written software We urge software

authors who are proud of their products and wish

to see them widely used, to consider putting their

software in a form that may more easily be

integrated into libraries. Not only are computer

centers becoming more receptive to outside

software in their libraries, they tend to promote

their library software more vigorously than

software which exists separately on some tape

somewhere in the machine room. The "official"

library, for example, is usually readily available

to the linkage editor in an on-line disk file.

Librarians quite naturally will prefer to accept

software that fits into libraries easily and has

documentation that can easily be transformed into

the local canonical form

78

Activities of the

DOE Advanced Computing Committee Language Working Group

Rondall E. Jones, Sandia Laboratories Albuquerque

ABSTRACT
 these differences did not come about

casually, but rather were the result of
The Language Working Group is a each laboratory's attempt, over the years,
technical arm of the DOE Advanced to deal most effectively with the advanced

Computing Committee. The ourpose of the computer hardware of which they were often

Group is to work toward providing a the first recipients.

comnatible Fortran environment at the ACC

sites. A brief history of the efforts of During the first year
 of the LWG's

the Group is given, and the
 general existence, the imoortant capabilities of

features of the language the group will the Fortran languages in use at the ACC

recommend are discussed. This language is laboratories were distilled, and the

a multi-level Fortran with Fortran 77 as concept of a multi-level Fortran language

the core.
 based on the new ANSI standard, Fortran

77, was refined. In this multi-level

Fortran, the core, or "Level 0", of the

language would be precisely Fortran 77
HISTORY
 (i.e., X3.9-1978). Level I would consist

of Level 0 plus features which were "de

The Advanced Computing
 Committee facto standard" at all the laboratories.

(ACC) is a committee of reoresentatives or which were clearly desirable by all the

from the management of the scientific laboratories and did not involve any

computer rescources at the large DOE technical questions
 of implementation.

research and development laboratories. Level 2 would consist of Level I plus all

The function of this committee is to help the other functional capabilities deemed

guide various aspects of the use of large necessary by the LNG (as determined from

scientific computers at the laboratories the survey of features in use) which were

represented in the ACC. The ACC Language technically feasible for a language usable

Working
 Group (ACCLWG, or LWG) is a on a broad class of scientific computers.

subcommittee reporting to the ACC, made up
 Level 3 would consist of Level 2 plus

of one or two technica'l personnel from necessary features which for
 some reason

each site, plus representatives from two could not be placed in Level I or 2.

closely related sites. not
non-DOE Thus, Level 3 features would probably

Approximately twelve oersons are currently
 be applicable to some computers. This

serving on the LWG. The LNG was formed by
 concept of a completely nested series of

the ACC in October 1976, as a technical three
levels of Fortran, with the current

arm to advise ACC in matters concerning ANSI standard as the core, was presented

programming languages.
 to the ACC by the LNG at its fifth meeting

in November, 1977.

Specifically, the major assignment of

the LWG is to advise on how to provide a LEVEL I FORTRAN

"compatible Fortran environment" at all
the ACC sites. This requirement was Once the multi-level approach to

motivated
by the current situation in achieving a compatible Fortran environment

which many large programs written at one was approved, the first business of the

site cannot be used at other ACC sites LWG was to agree on
 a detailed description

because of the considerable differences in
 of the Level I features. Such "detailed

the versions of Fortran in use at the descriptions5' do not include a choice of

various sites. Indeed, it is sometimes exact syntax to be used, but rather

not possible to run the same or similar discuss the functional capability itself.

program on two different computers at the Such descriptions were usually made

same site. It should be pointed out that difticult by the fact that the "de facto

79

standard" features in current use were

cased on features in the previous ANSI

Fortran standard. It was often necessary

to revamp these features significantly to

base them on Fortran 77. Briefly, the

features defined to be in Level I are as

follows.

I. 	 An asynchronous input/output

feature, similar in capability to

the well known BUFFER IN/BUFFER

OUT feature, but built on Fortran

77's expanded READ/NRITE/INOUIRE

features.

2. 	 NAMELIST input/output, in much

the same form currently in wide

use.

3. 	 Timing functions, including the

capatility to determine elaosed

CPU time as well as time of day,

date, and remaining job time left

before time limit.

4. 	 Input stream compiler directives

to control listing, list

suppression, and page electing.

5. 	 "Bit-by-bit data manipulation"

features including octal and

hexadecimal constants and format

descriptors, word oriented

shifting and masking operations,

and oit-by-bit Boolean

operations.

The functional description of Level I

was completed by the LNG's seventh

meeting, and was presented to the ACC by

the 	 officers of the LuG In May 1978.

LEVEL 2 FORTRAN

The next order of business of the LVG

was to develop detailed functional

descriptions of the features to be in

Level 2. This was a harder task than for

Level I because the featureswere in less

common use than Level I features, and were

more technically difficult to fully

describe. In addition, it was desired to

add fairly detailed examples using

illustrative syntax to demonstrate the

feasibility of the feature. (Note we do

not mean examples of the syntax chosen for

a feature, out an example syntax which

might or might not eventually be

selected.)

At the time of this writing, it

appears that all, or almost all, of the

features chosen for Level 2 will indeed be

written up in detail by the committee's

tenth meeting in October 1978, which is

the goal which has been set. Briefly, the

main features likely to be in Level 2 are

as follows. (A more definitive listing

should be available by the time of the

presentation of this paper.)

1. 	 Array processing, including

referencing of whole arrays in

assignment statements without the

use of subscriots, referencing

sections of arrays, array valued

conditional assignment

statements, and both elemental

and transformational array valued

functions.

2. 	 Dynamic array allocation,

including dynamic array renaming

and sectioning, a COMMON-like

feature for dynamic arrays, and

appropriate environmental inquiry

features.

3. 	 A macro capability, in which a

macro can be invoked as an

expression, a statement, or

outside a subprogram. The

simplest form of a statement

macro would be equivalent to an

INCLUDE feature. Macro libraries

are allowed, and facilities are

included to allow generation of

unique statement labels and

variables within the body of the

macro.

80

SUMMARY

In 	 summary, the concept of a

4. 	 More 	 general, "structured" multi-level Fortran language, with Fortran

control structures for looping 77 as "Level O" was developed in resoonse

and case selection. to the need for a compatible Fortran

environment for the ACC sites. A fairly

5. 	 Various orovisions for improving detailed description of the recommended

form, possibly including language, including illustrative syntax,
program

such items as a larger character but not including final syntax choice. was

set, trailing comments on a line, developed in only about a year from the

longer variaole names, multiple time the decision was made to go ahead

assignment statements, and with that development. More detailed

optional automatic indentation. language specification will hopefully be

performed by a much smaller committee

6. 	 COMPLEX DOUBLE PRECISION type working more intensively for several

declaration, with appropriate months. The result of that effort will

extensions to the intrinsic then be examined oy the LNG. It should be

function set. emphasized that this effort is oriented to

eventually greatly imoroving the computing

7. 	 An environment inquiry feature environment for the ACC laboratories;
 it

orobably implemented through is not an attempt to usurp any function of

inclusion of a substantial family the ANSI Fortran committee, though the LVG

of intrinsic functions which certainly communicates with that

provide information on the committee. Indeed, the philosophy of the

details of the machine's LG would be to restructure its

arithmetic and related matters. multi-level Fortran to incorporate any

future standard as the core of the

8. 	 A data structuring capability, language.

centered on the concept of a

"record" which consists of fields

and subfields which are

accessible as an aggregate or

individually. Among other

things, this feature allows very

easy acess to part of a word.

9. 	 Expansion of certain features in

Level I, such as extended

NAMELIST features.

LEVEL 3 FORTRAN

Clearly, the 	Level 2 language will be

a considerable extension beyond Level I.

Level 3, on the other hand. will probaoly

contain 02 features beyond Level 2

initially. Rather, a careful definition

will be given as to what kinds of features

would be included in Level 3 if such a

need arises at a later date.

81

