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CONFERENCE OVERVIEW p'G -- pAGErNSOeiR QUALI'Y 
C L. Lawson, Conference Chairman



THE NUMERICAL SOFTWARE COMMUNITY, especially in 
 
North America, has predominately used the Fortran 
 
language In the late 60's, there may have been 
 
thoughts that some other language might soon re-

place Fortran for scientific computing. By the 
 
early 70's, however, this appeared much less likely 
 
and a number of people began developing prepro

cessors and other software tools that would make 
 
some of the newer systematic approaches to software 
 
development and testing more readily available in 
 
Fortran environments, 
 

The 1974 SIGNUM Workshop on Fortran Preproces-

sors for Numerical Software held at the Jet Propulsion significance of this project for numerical software.


Laboratory, Pasadena, spotlighted this developing


area and initiated closer communication between 
 
SIGNUM and the ANSI Fortran Committee X3J3. Contacts 
 
established at the 1974 Workshop led to the organi-

zation of two Fortran Forum meetings in 1976, one in


California and one in New York, providing early 
 
public discussion of the emerging Fortran 77 
 
standard 
 

The Workshop and the two Forums gave added
 

impetus to a changing mood within X3J3. There was 
 
increased willingness to deal with significant 
 
additions to the language. In particular, itseems 
 
likely that the eventual decision to add the 
 
structured IF into Fortran 77 was strongly influ-

enced by the considerable interest instructured


Fortran evidenced at the Workshop. 
 

For the present conference we have carried the 
 
SIGNUM-X3J3 communication a step further by

arranging for a half-day joint meeting of the two 
 
groups Brainerd and Schenk will speak on the 
 
current directions of X3J3 and Lawson, Brown, and


Smith will present some views from the mathematical 
 
software community for consideration by X3J3. An 
 
extended discussion period is scheduled for more 
 
general interaction between the SIGNUN conference 
 
attendees and the members of X3J3. 
 

Boyle, Dritz, Schryer, Crary, and Presser will 
 
describe a variety of software tools applicable to


the development of numerical software. Rice gives 
 
an analysis of the increased programming efficiency 
 
attainable by use of a very high order problem 
 
oriented language for solving PDE's Miller 
 
presents a case for an EISPACK-type research and 
 
development project in the area of software tools. 
 
Osterweil speaks on strategies for making the best 
 
use of software tools, 
 

The organizations with the most pressing

necessity to make systematic and efficient use of


tools for dealing with mathematical software are 
 
the vendors of commercial mathematical libraries. 
 
We will hear from Fox of the PORT library, Aird of 
 
IMSL, and du Croz of NAG on their methods and 
 
experiences 
 

Approaches to the technical problems associated 
 
with the exchange of mathematical software between 
 
different facilities will be treated intalks by 
 
Butler and Van Snyder. 
 

New preprocessor-based languages will be 
presented by Grosse and Feldman. PASCAL, which has 

been regarded mainly as a teaching language has


achieved a new burst of popularity among micro

computer users, due in large part to PASCAL compiler
 

developments at UCSD. Volper of that group will


discuss PASCAL's relevance to the mathematical


software community.



The DoD High Order Language Working Group is in
 

the midst of one of the largest efforts ever under

taken by a user organization to create and promote


the use of an entirely new language The talk by

Fisher on this project will give conference


attendees an opportunity to begin to assess the



Hull will discuss language and hardware features


that would give the numerical analyst new levels of


control and confidence innumerical computations.



Kahan and Eggers are both presently active on


an IEEE committee to specify a standard for


floating-point arithmetic hardware. They will


present two different proposals on this subject.



Fong will report on the recent DoE Workshop on


Mathematical Libraries Jones will report on the


DOE Advanced Computing Committee Language Working

Group which isdeveloping guidelines for Fortran
 

extensions to meet DoE needs.



It is a pleasure to thank Tom Aird, Jim Boyle,


and Norm Schryer for working with me inorganizing


the technical program for this conference John


Rice provided valuable assistance incoordination


with ACM Headquarters, publicity, and budgetary


guidance.



The Jet Propulsion Laboratory has supported the


conference by permitting me and my secretary,

Kay Cleland, to carry through the preparation, and


by publishing the conference schedule and pro

ceedings for distribution at the conference I


wish to personally thank Kay for her sustained


dedication to the success of the conference.



The members of the ANSI Fortran Committee X3J3


will be making a very generous effort on behalf of


the conference in travelling thirty miles across


Los Angeles from their own meeting site to Pasadena


for the Wednesday morning sessions I thank


Jeanne Adams, Chairman of X3J3, and James Matheny,


local arrangements Chairman fo X3J3's Oct 16-19 
meeting inLos Angeles for their unstinting 
cooperation inarranging for X3J3's participation

in this conference



I wish to express appreciation to all of the


speakers and their home institutions for their


outlay of t hme,
funds, and energy to bring their


recent work to the podium of this conference. The


Session Chairmen and attendees at the conference 

encompass a wide range of experience in mathematical 
software and we look forward to stimulating ex
changes of information during the discussion periods. 
We believe this conference will provide a useful 
snapshot of the current state-of-the-art intools 
and techniques for development of mathematical 
software and we hope this will lead to more wide
spread use of systematic methods inthis field. 
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A "CORE + MODULES" APPROACH 

TO FORTRAN STANDARDIZATION



Walt Brainerd 

Los Alamos Scientific Laboratory 
Los Alamos; NM 87544 

ABSTRACT 
 

The ANSI FORTRAN standards committee X3J3 has 
 
adopted a "core + modules" approach to specifying 
 
the next revision of the standard. The motivation 
 
for and the projected benefits of this approach 
 
are discussed. 
 

In 1978 January, ANSI X3,3 voted to adopt a frame-

work consisting of a "core" and "modules" for 
 
developing the next revision of the ANSI Fortran 
 
standard. Of course, this is a decision which 
 
could be reversed if the approach appears to be 
 
unsuitable or technically unsound after some exper- 
 
imentation. However, the approval of this procedure 
 
is an indication that the committee wants to invest 
 
considerable effort in an attempt to make this ap-

proach work. 
 

There are at least three reasons for adopting 
 
the "core + modules" approach: 
 

1) to provide a mechanism to interface with 
 
collateral standards and implementations in 
 
major applications areas 
 

2) to provide a mechanism for having optional 
 
functional areas described within the stan-

dard 
 

3) to specify a smaller, more elegant, language 
 
than Fortran 77 without decreasing the 
 
status of Fortran 77 as a standard language. 
 

Each of these reasons is now discussed in more 
 

detail. 
 
One of the major concerns of X3J3 is the de

velopment of collateral standards in areas such as 
data base management, real time process control, 
and graphics. X3J3 does not have the resources to 
do the technical development of standards in all of 
 
these areas; in some cases X3J3 may not even be in-

volved directly in the approval of such a standard, 
 
Therefore, it is important that X3J3 provide a 
 
scheme whereby collateral standards in these appli-

cations areas can be regarded as modules in the 
 
language that are "attached" to the core of the 
 
language in a standard way. The only mechanism 
 
considered so far for interfacing with these modules 
 
is through the CALL statement, extended to allow 
 
the arguments to be identified by key words. This 
 
topic is covered in more detail in another paper 
 
and is an area that can use more good ideas, be-

cause it is a very difficult and important problem. 
 

A second kind of extension might be called a 
 
"language feature module." This sort of module 
 
would include a collection of related language 
 

features that might not be appropriate to include


in the core, but which should have its form spec
ified so that all extensions to the core in this 
area will be the same. Example candidates for such 
modules are array processing, a bit data type, and


specification of numerical precision. Fortran 77


should be considered to be such a module.



It may be quite inappropriate to add some of 
these language features to Fortran 77. For example, 
it would be rather messy to add a bit data type or 
REAL*ll (indicating at least 11 digits of precision) 
on top of the Fortran 77 equivalencing mechanism. 

For these reasons it is important to design a


core that is sufficiently trim that new language


features can be added in a natural way.



Since Fortran 77 will be one of the modules, 

the core need not be constrained to contain all 

archaic features of Fortran. One of the design 

objectives is to eliminate those features Ce.g., 

the arithmetic IF statement) that are no longer 

necessary, due to the addition of better equivalent 

features or those features (e.g., storage asso

ciation) that actually stand in the way of adding 
features recognized as contributing to high quality 

programming practices. 


To provide just one example illustrating how


the storage association concept impedes the addition


of useful features, consider the possibility of a


conditional array assignment.



REAL A(90), B(90), C(90), D(90)


A(*) = 0


B(-) = 0


WHERE (A(*) .LT. 2) DO



CC*) = B(*) + 1 
END WHERE 

If no equivalencing is allowed, the assignment 

may be implemented as 
DO 9 I = 1, 90 

9 IF (ACT) .LT. 2) C(I) = B(I) + I 
However, if the program may contain the state

ment 
EQUIVALENCE (C(l), B(2))



the loop above will set C(I) = I for I = 1 to 90


instead of setting each element to 1. The imple

mentation will be more complex on most machines.



In 1978 August, X3J3 approved a proposal to


create a first cut at a core language by starting


with Fortran 77 and making the following changes.


Of course, this list is not final, but is given to


provide a flavor of the final result. When reading


the list of changes, it is important to keep in


mind that Fortran 77 will be one of the modules, so


any compiler that contains the Fortran 77 module


will be able to process programs containing any of


the features of Fortran 77.



The following two paragraphs are excerpted


from the X3J3 proposal to indicate some of the ob

jectives of the approach
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The general philosophy governing this core
 

design is that the core should be comprehensive,


containing virtually all of the generally useful


features of Fortran and that it should form a


practical, general-purpose programming language.


Modules would be used largely for special-purpose


language features that entail high implementation


costs or are used primarily in special-purpose


application areas. The number of such modules 
-should remain small in order to-mjnimize-roblems 
of program portability. Three examples might be 
(1)a module providing comprehensive array process

ing facilities, (2)one providing data base manage

ment facilities, and (3)one providing features of


Fortran 77, and possibly certain other isolated
 

special-purpose features, not contained in the core.



Another goal is to produce a more elegant lan

guage by moving redundant features and including


features which lend themselves to modern program

ming practices.



The net effect of these changes is the


following


i)Subroutine linkage facilities are enhanced


to improve the interface with applications


modules written in Fortran.



2) Archaic control structures are replaced 
with modern ones. 

3) The concept of storage association is re
moved. 

4) Fixed-form source is replaced with free
form source.



There are two kinds of changes: features


added to Fortran 77 and features remaining in 
Fortran 77 but not included in the core.



To be added 
 

Free-form source 
 
Larger character set 
 
Longer names 

Simple data structures 
 
Some array processing 
 
Global data definition 
 

Bit data type 
 
A length (digits) for REAL 
 

Enhanced looping 
 
Case construct 
 
Internal procedures 
 
Subroutine linkage 
 

To be moved to Fortran 77 module



Column 6 continuation 
C for comment 

EQUIVALENCE


COM4ON and BLOCK DATA 
Passing an array element or


substring to a dummy array


Association of ENTRY names


DOUBLE PRECISION



Arithmetic IF


Computed GO TO


Alternate RETURN


ASSIGN and assigned GO TO


Statement functions


ERR = and END = specifiers



H, X, and D edit descriptors


Specific names for antrinsics
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NUMERICAL PRECISION AND DATA STRUCTURES



Werner 	 Schenk, Xerox Corporation


Rochester, New York



ABSTRACT



Group T9 of the ANSI Fortran 
 
Committee X3J3 has been assigned 
 
to study the areas of numerical 
 
precision, storage and data 
 
structures, with a goal of devel-

oping technical proposals and 
 
recommendations for future re-

visions of the Fortran stan-

dard. Developers and users of


numerical software have proposed 
 
the addition of various functions
 

to return the base of a computer 
 
system's number representation. 
 
Also desirable are features to 
 
enhance Fortran portability, 
 
such as single and double pre- 
 
cision wbrd lengths, and expo-

nent ranges. Structured types 
 
proposed include arrays, re-

cords, sets and files. 
 

INTRODUCTION 
 

Soon after completing work on


Fortran 77, the X3J3 Committee 
 
began the task of identifying 
 
technical issues to be considered 
 
for future revisions of the 
 
Fortran standard. As a first 
 
approach, the Committee reviewed 
 
all comments which had been re-

ceived during the public review 
 
period of the proposed standard 
 
(Fortran 77), especially all of 
 
the comments which had been 
 
referred to the "future develop-

ment" subcommittee. 
 

This rough list of desirable 
 
features was sorted and cate

gorized, resulting in the current 
 

X3J3 Committee organization of


technical subgroups, such as T9,


to investigate and propose speci

fic changes. For the past year,


group T9 has been gathering in

formation about the issues of


Numerical Precision and Data


Structures.



NUMERICAL PRECISION FEATURES



L. D. Fosdick (1) * addressed


the X3J3 Committee at their


October 1977 meeting proposing a


set of environment parameters and


intrinsic functions to enhance


computations and portability of


numerical software. Since that
 

time, group T9 has received pro

posals from W. S. Brown and


S. I. Feldman (2) H. P. Zeiger


(3), G. M. Bauer (4) outlining


similar sets of desirable fea

tures. Additionally, group T9


has reviewed the discussions of


B. Ford (5) (6) on transportable


numerical software.
 


Fosdick's proposed features


address portability, reliability,


and efficiency of the Fortran


language, with an automatic


adjustment to changes in the


environment. Examples cited are


those of IMSL of Houston, Texas,


and NAG of Oxford, England, who


adjust their mathematical soft

ware libraries to a specific


environment by removing coded


records which do not apply to


the environment from the source


file. 	 Environmental parameters
 

identified include the following:



* Numbers in parenthesis 
designate References at end of paper. 
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1. 	 Base of floating 
 
point representa-

tion. 
 

2. 	 Largest positive 
 
real number, expo-

nent and integer, 
 

3. 	 Largest negative 
 
real number, expo-

nent and integer, 
 

4. 	 Number of signifi-

cant digits. 
 

5. 	 Exponent Bias.



Fosdick suggests that these 
 
parameters would be made availa-

ble to a Fortran program with a 
 
set of intrinsic functions pro-

posed by IFIP WG2.5 (EPSLN (a), 
 
INTXP (a), SETXP (a1a2)). 
 

Ford proposes three sets of 
 
parameters to make software trans-

portable and adaptable to an en-

vironment. The arithmetic set, 
 
including the radix (same as 
 
Fosdick's base of a floating 
 
point representation)F the Input/ 
 
Output set, defining such en-

tities as the standard units 
 
for input and output; and a mis-

cellaneous set, to define number 
 
of characters per word, page 
 
size, and number of decimal di

gits. 
 

Brown and Feldman present 
 
a language2 independent proposal 
 
for environment parameters and 
 
basic functions for floating-

point computation with specific 
 
representation in terms of gener-

ic functions. Their basic para-

meters include the base, the 
 
precision, the minimum exponent, 
 
and the maximum exponent. To 
 
provide access to precise and 
 
efficient numerical computation 
 

tools, Brown and Feldman suggest


analysis and synthesis functions,
 

such as exponent (x) and frac

tion x); as well as precision


functions to aid in iterational


computations. Seven generic


and six computational procedures
 

are suggested, with specific


illustrations of implementation


for Univac 1100, Honeywell 6000,


and Interdata 8/32 systems.



Group T9 expects to soli

cit additional proposals in the


area of numerical precison from


users and designers of numerical


software. It is clear, that the


above authors agree on a certain


set of basic necessary parameters,
 

although a wide range of nomen

clature and specific function
 

names have been proposed. With

in the next year, group T9 will


incorporate these suggestions


into position papers and spe

cific Fortran language proposals.


The intent is to maintain close


liaison with groups such as


IFIP WG 2.5 to assure compati

bility with language development


and numerical computation prac

tices.



DATA STRUCTURES
 


At the August 1978 meeting


of X3J3, M. Freeman conducted a


tutorial on "Data Structures: A


Language Comparison." Feedback


from committee members yielded
 

the need for a glossary and


definition of terms in this area.


A survey questionnaire has been


designed and will be mailed to


X3J3 participants to reach some


consensus as to the types of


structures which should be con
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sidered for future Fortran revi-

sions.



R. Oldehoeft and R. Page (7)


have examined PASCAL data types 
 
as a possible model for Fortran. 
 
These types include arrays, re-

cords, sets and files. B. Lampson 
 
hnd others (8) describe the pro-

gramming language EUCLID with its


structures, arrays, records, and 
 
modules. In addition to defining 
 
the types of structures to be in-

cluded in Fortran, group T9 will 
 
develop and propose necessary 
 
functions to operate on structures. 
 
Currently identified operations


include: Read, Write, Assign, 
 
Initialize, and Compare. The 
 
array processing features are a 
 
separate issue being studied by 
 
group T6 of X3J3. 
 

SUMMARY 
 

Group T9 is nearing the con-

clusion of a period of information 
 
gathering. The next phase of


technical work will be-the iden-

tification of common features 
 
which have been proposed for 
 
numerical computation and data 
 
structures, followed by the de- 
 
velopment of Fortran language 
 
proposals for X3J3 committee con

sideration. 
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THE IFIP WG 2.5 PROPOSALS ON FORTRAN



Charles L. Lawson



Jet Propulsion Laboratory


Pasadena, California



ABSTRACT 
 

This paper is one of three'to he presented at a


joint meeting of SIGNUM and the ANSI X3J3 Fortran 
 
Committee October 18, 1978, for the purpose of


communicating suggestions arising in the mathemati-

cal 	 software community to the X3J3 Committee. A 
 
summary is given of language problem areas and 
 
possible solutions that have been discussed by the 
 
IFIP Working Group 2.5 on Numerical Software. Also 
 
included are some thoughts on control structures 
 
due 	 to the author. 
 

THE MATHEMATICAL SOFTWARE COMMUNITY has given 

serious and continuing attention to portability and 
 
black-box modularity. This is evidenced by the 
 
existance of extensive and widely used libraries 
 
and other systematized collections of portable or 
 
transportable mathematical subprograms which are 
 
ready for use in applications without need for 
 
modification or recompilation. 
 

We feel this approach has had large payoffs in 
 
injecting,good quality subroutines into innumerable 
 
applications programs. There is a great deal of 
 
room for improvement, however, and some of this 
 
improvement could be facilitated by enhancements in 
 
programming languages. Following are three general 
 
concepts that are often among the goals in designing 
 
and programming mathematical software and which 
 
could be better handled with the aid of appropriate 
 
language enhancements. 
 

1. Long argument lists are to be avoided. The 
user should not be burdened with declaring, 
 
dimensioning, and assigning variables that 
 
are inessential to his or her functional 
 
concept of the task to be done by the 
 
subprogram. 
 

Portability. Ideally it should be possible 
 
to move the source code to different 

machines with no changes. Next best is code 
that can be ported by systematic changes 
effected by a processor designed for that 
purpose. Since a library may involve 
hundreds of subprograms, manual changes that 
would be acceptable in porting an individual 
subprogram do not provide a reliable 
approach. 

3. 	 A library subprogram should be useable with-

out the need to make changes dependent on 
 
the application. The user has enough 
 
concerns without also being asked to reset 
 

dimensions in a set of library subprograms


and 	 recompile them.



TOPICS IN LANGUAGE ENHANCEMENT CONSIDERED BY WG2.5



The topics listed in this section have been


discussed by WG2.5 [see Appendix A for information


on WG2.5]. Some of these have only been briefly


considered by WG2.5 while others have been the


subject of a substantial amount of effort including


the 	 solicitation of comments via the SIGNUM


Newsletter and the formulation of detailed proposals


for 	 language enhancements. I believe it is fair to


say that the mathematical software community,


including WG2.5, is more concerned that some viable


solutions be worked out for these problem areas than


that any particular suggested solution be adopted.



DOUBLE COMPLEX. There are significant classes


of problems in engineering and science for which


complex numbers provide the most natural and con

venient mode of expression. If it is agreed that a


programming language for scientific computation


must support complex arithmetic, then it should also
 

provide a choice of precisions for complex arithme

tic for the same reasons that such a choice is


provided for real arithmetic. See Ref []. 

ARRAYS OF WORK SPACE IN LIBRARY SUBROUTINES.


Many subroutines in a mathematical library require


one or more arrays of temporary work space of sizes


depending on the problem parameters. Suppose for


example, a library subroutine SUB requires two


temporary integer arrays of length N and one of


length M where N and M are dummy arguments of SUB.


How 	 should this work space be provided to SUBI 

One possibility is to include the three arrays



as distinct dummy arguments. This is objectionable


as it leads to long argument lists which, among


other things, can discourage a potential user


considering the use of SUB. When libraries are


modularized so that SUB may call lower level library


subroutines which in turn call others, etc., this


approach can lead to some very long argument lists



since temporary arrays needed only by some lower


level subprogram will appear in the argument lists



of all higher level subprograms. 

Use of COMMON storage as specified in Fortran 66 
and 77 is not suitable since the lengths of arrays 
in COMMON in a set of precompiled library sub
programs cannot adjust to the problem variables 
M and N. 

A frequently used approach is to require one


array of length 2*N+M as an argument to SUB and then
 


make use of this array as two arrays of length N


and one of length K. WG2.5 has proposed in some
 

detail a "MAP" statement, Ref [1], to provide


dynamic renaming of subsets of dummy arrays to
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facilitate this approach. This capability is also 
 
supported efficiently by the "DEFINE" statement in 
 
Univac Fortran V. 
 

Another approach to this problem could 
be through 
 

changes to the concept of COMMON. For example, 
 
there could be two types of COMMON declaration, 
 
primary and secondary. A primary declaration 
 
establishes absolute amounts of storage needed just 
 
as the present COMMON declaration does whereas a 
 
secondary declaration may contain array names with 
 
adjustable dimensions. Each distinct named COMMON 
 
block would have to be declared by a primary decla-

ration in at least one program unit of a complete 
 
executable program but could also be declared by 
 
secondary declarations in other program units. 
 

This concept appears to be convenient and 
efficient for sets of library subprograms that are 
always used together. It may not be convenient for 
a library subprogram that is sometimes called by 
other library subprograms and sometimes directly 
by users, 

Yet another approach would be truely dynamic 
 

arrays that a black-box subroutine could fetch from 
 
and release to the operating system as needed, 
 

CALLS FROM A LIBRARY SUBPROGRAM TO USER CODE. 
 
Certain mathematical subprograms require access to


user-provided problem-dependent code. For example, 
 
a subprogram for numerical integration (quadrature)
requresaccsso te uer'scod fo evluaion
requires access to the user's code for evaluation 
 

of the integrand. Analagous situations arise with


library subprograms for differential equations, 
 
nonlinear equations, optimization, sparse matrix 
 
algorithms, etc. 
 

The approach supported by Fortran and most other 
 
languages would be typified by a user main program 
 
MAIN calling a library subprogram, say QUAD, which 
 
in turn calls a user-coded function evaluation


subprogram FUNG. 
 

It is not uncommon that a need arises for a 
 
direct data path between MAIN to FUNO. For example, 
 

one may need to integrate a number of functions, in 
 
which case quantities which are input or computed 
 

FONG to select


by MAIN need to be communicated 

to 
 

or parameterize the function to be computed. 
 
In Fortran this can be handled by inserting a 

The user is then
COMMON block in MAIN and FUNC. 

required to write a number of things twice - the 
 

COMMON statements and possibly some type and 
 

dimension statements. 
 This double writing and 
 

maintenance could be alleviated, however, if an 
 
INCLUDE feature were available. 
 

An alternative approach sometimes called 
 
"reverse communication" has been used in some


library software. In this approach there is no 
 
separate FUNC subprogram. The code that would 
 
have been in FUNC is in MAIN. When QUAD needs a


havcben inalN iseadin Mai n UAD nte s 
 
function value instead of calling FLING it returns 
 

to cause MAIN

to MAIN with a branching index set 
 

to branch to the function evaluation code and then 
 
call QUAD again. In this approach the user needs 
 
to write and maintain only one program unit, MAIN, 
 
instead of two, MAIN and FUNG. Furthermore, there 
 
is no need for COMMON to establish a data path 
 
between the main driver and the function evaluation 
 
code. 
 

Reverse communication can be confusing to a user 
 
and may involve more linkage overhead since it will 
 

involve just one call to QUAD and many calls to FUNG. 
Generally, FUNG would be a simpler code than QUAD in 
ways that might cause its linkage overhead to be 
less. 

If internal procedures are added to Fortran, as


for instance was done in Univac Fortran V, then FUNO


could be written as an internal procedure within


MAIN and one could have the more easily understood


structure of QUAD calling FUNG and still have only


one program unit for the user to write and maintain,


and have data accessible to the driver and FUNC.


To support this usage it must be possible to pass


the name of the internal procedure FUNC to QUAD in



the call from MAIN so that QUAD can call FUNG.


DECOMOSITION AND SYNTHESIS OF FLOATING-POINT



NUMBERS. There are situations in which it is


desirable to decompose a floating-point number into


its exponent and mantissa parts or conversely to


construct a floating-point number from these two


parts. One application would be the scaling of a


vector by an exact power of the machine's radix in


order to avoid introducing rounding errors in the


scaling operation. Another application would be in


writing portable subprograms for certain special


functions such as SQRT, EXP, and LOG.



Let b denote the radix of the system used to



rernThloati non numberon a pricul


computer. Then each nonzero number x, representable
on this computer, can be associated uniquely with a
pair of numbers (e,f) by the requirement that



x fbe, b- Iflt<l, and e is an integer.


WG2.5 has suggested the following two functions



1. Integer exponent: INTXP(x)



This function returns the integer value e if


x#O and x is associated with the pair (e,f).


The result is undefined if x"O.



2. Set exponent: SETXP(x,N)



If x=O the result is zero. If x0O and x is


associated with the pair (e,f) then the result



N
fbNvalue

overflow. otherwise the result is undefined.
or 


As examples of usage, suppose x#O and x is associated 
with the pair (e,f). Then e and f can be obtainedby: 

INTEGER a 
e = INTXP(x)


f = SETXP(xO) 

and x can be constructed from e and f by
 

x = SETXP(f,e)



The machine radix b can be obtained by 

b = SETXP(l.0,2)


It is further proposed that these functions be


generic to deal with both single and double precision

floating-point numbers.



ENVIRONMENT PARAMETERS. One of the key


hinderances to portability in Fortran has been the


need to include machine dependent parameters in


programs. For example, after strenuous effort to


achieve portability in the EISPACK eigenvalue codes,


it remained that a number representing the arithmetic


precision needed to be reset in certain subroutines


to adjust the code to different machines.



A quite thorough discussion of this problem with


reasonable approaches to its resolution was given
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by Redish and Ward Ref [2] in 1971. Redish and Ward 
 
noted that the problem had previously been discussed 
 
by Naur Ref [3] in 1964 
 

The approach to defining and naming the set of 
 
environment parameters used in the IISL library was 
 
reported in Aird et al Ref [4]. This paper stimu-

lated an ad-hoc meeting on the subject by T. Aird, 
 
G. Byrne, B. Ford, and F. Krogh during a SIGNUM 
 
conference in Pasadena, Nov 9, 1974 Ref [5]. The 
 
draft produced by this ad-hoc meeting was used as 
 
a working paper at the first meeting of WG2.5 i 
 
January, 1975, and after further exposure and 
 
discussion, particularly at the Oak Brook Porta-

bility meeting, June 1976, evolved to the paper 
 
approved by WG2.5 and the parent IIP Committee TC2 
 
and published in Ref [6] and elsewhere.



This paper proposed definitions and names for 
 
three clases of quantities as follows: 
 

Arithmetic Set 
 
Radix, mantissa length, relative precision, 
 
overflow threshold, underflow threshold,


and symmetric range. 
 

Input-Output Set 
 
Standard input unit, standard output unit, 
 
standard error message unit, number of 
 
characters per standard inputrecord, and 
 
number of characters per standard output 
 
record, 
 

Miscellaneous Set 
 
Number of characters per word, size of a 
 
"page" in a virtual storage system, and 
 

number of decimal digits useful to the 
 
compiler in numeric constants. 
 

PRECISION FUNCTION. WG2.5 has proposed a 
 
function to be used to determine the resolution of 
 
a computer's number system in the vicinity of a 
 
given floating-point number. The set P of all real 
 
numbers that can be represented as valid floating-

point numbers of a particular precision, e.g., 
 
single precision, in storage in a given computer 
 
forms a linearly ordered set. Let a denote the 
 
underflow threshold, i.e , the smallest positive 
 
real number such that both G and -o are members of



P. The proposed precision function is EPSLN(x)

whose value is maxfx-x',x"-x,a}
where v 
 

='Ther one.x' hepedecessor of x in P if there is on. 
 

x if x is the least member of P. 
 

and 
"The successor of x in P if there is one. 
 

= x if x is the greatest member of P. 
 

OPTIONAL ARGUMENTS FOR SUBPROGRAMS. For some 
mathematical subprograms it is desirable to provide 
the userwith the choice of a simple calling sequence 
with a minimal number of parameters or a longer 
calling sequence giving the user more detailed 
control of the subprogram This is presently ac
complished by providing different "front-end" sub
programs or by "option-vectors" which are arrays in 
the calling sequence the elements of which 
essentially play the role of arguments in a variable 
length or keyworded calling sequence. 

The concept of keyworded calling sequences


currently being considered by X3J3 may be a very


useful mechanism for this situation.



VIEWS OF THE AUTHOR ON CONTROL STRUCTURES



For the purpose of this discussion "structured


programing" will be defined to mean programming



using some specified set of control structures


designed to encourage and support the production of


programs whose control logic has a high degree of


human comprehensibility. The author's opinions on


structured programming are strongly influenced by


his use of JPL's structured Fortran preprocessor


SFTRAN, Ref [7], over the past three years.



Since human comprehension of a program listing


is a major goal of structured programming, the


format of a listing and the suitability of the


control structures for being formatted in a


rational way are important issues.



* * * * * * * * * * * * * * * * * * * * * * * * * 
* * * Suggestion 1: Each control structure should * 

* have explicit beginning and ending statements., 
* * * * * * * * * * * * * * * * * * * * * * * * * 

For example, the IF(p)THEN and ENDIF play these



roles for the structured IF of Fortran 77 and of


SFTRAN. In contrast, there is no explicit ending



statement for the IF of ALGOL 60 or PASCAL and this


leads to the necessity of special nonintuitive


rules to match ELSE's with the correct IF's in


cases of nested IF's. Furthermore, the lack of an


explicit ending statement for the WHILE in PASCAL,


and the presence of one (the UNTIL) for the REPEAT,


leads to the peculularity that the segment of code


controlled by the WHILE is a simple statement or a


BEGIN-END block, whereas the code controlled by the


REPEAT is a sequence of statements.



The presence of explicit beginning and ending


statements also suggests a natural rule for


indenting listings: The explicit beginning and


ending statements of the same structure are listed


at the same indentation level. Lines between


these two statements are further indented with the


exception of certain secondary keyword lines, such


as ELSE, that are listed at the same level as the


associated beginning and ending statements.



.*...*** ******** **** 
*

Suggestion 2: A compiler for structured * 

* Fortran should be required to produce a * .cononically indented listing.


* * 
 i listing.



The problem of a syntax for special exits from


structures has appeared in minutes of recent X3J3


meetings. The troublesome case of a special exit


from a looping structure that is to skip past some


code that follows the exited structure can be


represented as an exit from an enclosing structure.


In order to be able to place an enclosing structure
 

where it is needed to serve this purpose, it is


useful to have an essentially null structure such


as DO BLOCK ... END BLOCK.
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As an example consider: 
 

DO BLOCK 
 

DO FOR I = Nl,N2 
 

f 
 

IF~p) EXIT BLOCK 
 

g 
 

END FOR 
 

h 
 

END BLOCK 
 

It seems very likely that a programmer having a 
 
general acquaintance with control structures would 
 
correctly guess the control flow of this example, 
 
corectaly gues the codntoflw othisn,e6. h 
 
especially with the indentation as shown, which 
 
should always be supplied by the compiler. 
 

I do not feel that this quality of self-evident 
 
semantics is shared by alternative approaches that 
 
have appeared in recent X3J3 minutes and use a 
 
single, but more complicated, control structure to


express what has been represented in this example 
 
by a nesting of two elementary control structures.



An unconditional looping structure permitting 
 

one or more exits from anywhere in the loop is 
 

desirable. With such a structure one could do with-

out special looping structures for the cases of 
 
testing at the begning or testing at the end, 
 

however, I think these special cases occur so 
 

frequently that special structures should be 
 

provided for them. 
 

When keywords are selected, I hope real words 
 
will be used rather than reversed words as in 
 
ALGOL68.
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APPENDIX A



The IFIP Working Group 2.5 on Numerical Software



currently consists of sixteen people as follows:



E. L. Battiste, W. S. Brown, L. D. Fosdick,


C. W. Gear, C. L. Lawson, J. C. T. Pool, J. R. Race,

and B. T. Smith of the U.S.A., and T. J. Dekker,



The Netherlands; B. Einarsson, Sweden; B. Ford,



U.K.; T. E. Hull, Canada; J. K. Reid, U.K.;



C. H. Reinsch, West Germany, H. J. Stetter, Austria,


and N. N. Yanenko, U.S.S.R. The group has met at


approximately one year intervals since its initial


meeting in January, 1975.
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1. 	 Introduction 
This paper presents a language-independent proposal for environment parameters and 

basic functions for floating-point computation, and suggests a specific representation in terms of 
generic functions for Fortran 77. The environment parameters were originally introduced in 
1967 by Forsythe and Moler [1], who attributed the essentials of their theory to Wilkinson [2]. 
These parameters are also used in the PORT mathematical subroutine library [3], with precise 
definitions in terms of a more recent model of floating-point computation [4], and a similar set 
has been proposed by the IFIP Working on Numerical Software [51 Three of the basic func
tions are taken from a proposal by Ford, Reid, and Smith [61, but redefined in terms of the 
parameters and the model to provide a firm theoretical foundation. The other three basic func
tions can be expressed in terms of these, but we feel they should be provided separately for 
convenience 

The stated purpose of the model is to capture the fundamental concepts of floating-point 
computation in a small set of parameters and a small set of axioms In this paper we extend 
the earlier work by proposing basic functions to analyze, synthesize, and scale floating-point 
numbers, and to provide sharp measures of roundoff error. 

Using the proposed parameters and functions, one can write portable and robust codes 
that deal intimately with the floating-point representation Subject to underfiow and overflow 
constraints, one can scale a number by a power of the floating-point radix inexpensively and 
without loss of precision. Similarly, one can take an approximate logarithm of a floating-point 
number very cheaply by extracting the exponent field, and one can readily implement algo
rithms (e.g., those for logarithmic, exponential, and nth root functions) that operate separately 
on the exponent and fraction-part. The convergence of iterations is extremely important in 
numerical computation While one often wants to relate the termination conditions to the accu
racy of the host computer, it is essential to avoid demanding more accuracy than the computer 
can provide Although a termination criterion can be formulated in terms of the environment 
parameters alone, it may be desirable to use the roundoff-measuring functions for finer control, 
especially when the floating-point radix is greater than 2. 

We view it as essential to provide mechanisms for accomplishing these goals in any 
language that is used for scientific computing Ideally, to facilitate translations from one 
language to another, these mechanisms ought to be provided m a similar manner m all such 
languages Therefore, we present our proposal in a language-independent form, beforeosuggest
ing a specific representation for Fortran 

2. 	 Environment Parameters 

In this section we present the environment parameters of the model, and review other key 
properties First, for any given real number x 0, we define the (integer) exponent, e, and the 
(real) fraction-part,f relative to a specified (integer) base b > 2, so that 
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x = fbe 

b- < IfI < 1. (1) 

Next, we introduce the parameters of the model - four basic integer parameters and three 
derived real parameters3 all constants for a given floating-point nuiber system. If a computer 
supports two or more such systems (e.g., single- and double-precision), then each has its own 
parameters. The basic parameters are 

1 The base, b > 2. 

2. The precision,p >2 

3. The minimum exponent, emn<O. 

4. The maximum exponent, emax >0. 

These must be chosen so that zero and all numbers with exponents in the range 

emIn < e < emax (2) 

and fraction-parts of the form 

f =±(f 1 b- 1 + - + fvb-P) 

f= 1. b-I 

f, =0. b-, =2. p (3) 

are possible values for floating-point variables. These model numbers are a subset of all the 
machine numbers that can occur in floating-point computation. 

Returning to (1), it is evident that the model numbers with a given exponent e are 
-equally spaced, a change in f of one unit in the last place implies a change in x of be P. It fol

lows that the maximum relativespacing is 
-
e = b1 (4) 

Also of interest are the smallest positive model number 

a" = be' (5) 

and the iargest model number 

X= bem.(1-b-P). (6) 

From the point of view of the model, the integer parameters b, p, emm, and e.ax are funda
mental, a practical programmer is more likely to want the real parameters o-, X, and e 

3. Analysis and Synthesis Functions 
As noted in Section 1, it is often necessary in numerical computation to scale a number 

by a power of the base, to break a number into its exponent and fraction-part, or to synthesize 
a number from these constituents. To provide convenient access to precise and efficient ver
sions of these operations, we propose the following functions

exponent(x) returns the exponent of x, represented as an integer; if x=O, the result is 
undefined 
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fraction (x) returns the fraction-part of x; if x=0, the result is 0 

synthesize (x,e) returns fraction(x) be if possible, otherwise the result is undefined 

scale(x,e) returns xbe if possible, otherwise the result is undefined However, if 
0< IxbeI<G., then any numerical result must be in the interval [0,o-] if x > 0 
or in the interval [-o-,0] if x < 0 

4. 	 Precision Functions 
To attain sharp control over the termination of an iteration, one needs to know-the abso

lute or relative spacing of model numbers in the vicinity of a given number x If x = fbi, we 
have already shown (see Section 2) that the absolute spacing is be-P , and it follows that the 
relative spacing is b-P/ If I Unfortunately, if Ix I < o-/e = be'mn+p - 2 , then the absolute spacing 
is less than a-, and hence too small to be represented in the model. This suggests defining the 
absolute-spacingfunction 

-Jbe , if IxI > oE 
(X)= O, if IxI < E (7) 

and the relative-spacingfunction 

b-P/If[, if x 0, 
p(x) = [undefined, if x=0 (8) 

Instead of including p (x) in the basic set, we favor the reciprocal-relative-spacingfunction 

P(x) 	 = 1lp(x) = If ibp , 	 (9) 

because its definition is simpler, its evaluation is faster and involves no roundoff, and it is more 
often wanted. 

5. 	 Implementability 
Each of the seven environment parameters is a well defined constant for any given 

floating-point number system. Although it may be convenient to express these parameters as 
functions (see Section 6), the compiler should substitute the correct values rather than produc
ing code to fetch them at run-time 

Each of the six basic functions is simple enough to permit a short in-line implementation 
on most machines. Furthermore, the definitions are meaningful for all real x, except that 
exponent (0) is undefined Finally, each function can be evaluated without error whether or not 
x is a model number, provided only that the result is representable; however, if x is initially in 
an extra-long register, it may be rounded or chopped before the computation begins. 

6. 	 Fortran Representation 
In all of the above, we have carefully ignored the distinction between single- and double

precision numbers. The Standard Fortran language specifically has floating-point variables of 
these two precisions; some compilers recognize a third. There is talk of adding a mechanism to 
Fortran to permit specifying the number of digits of accuracy, rather than the number of 
machine words To avoid difficulties in this area, we propose using generic functions, for which 
the compiler chooses the operation to be performed and/or the type of the result from the type 
of the first argument Like the conversion functions in Fortran 77, the proposed functions 
need not have specific names for the different types. The only restriction on such generic func
tions isthat they cannot be passed as actual arguments. 

The following seven generic functions (m which the prefix "EP" stands for "Environ
ment Parameter") would provide the necessary parameters 
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EPBASE(X) = b 
EPPREC(X) = p 
EPEMIN(X) = eran 
EPEMAX(X) - emax 
EPTINY(X) -
EPHUGE(X) = X 
EPMRSP(X) = 

The first four of these functions return integers related to the precision of X. The last three 
return floating-point values with the same precision as X. The functions EPBASE, EPPREC, 
and EPtHUGEshould also be defined for integer arguments; an appropriate model of integer 
computation is outlined in [31 

For the six computational procedures, we suggest 

FPABSP(X) = a(X) 
FPRRSP(X) = P3(X) 
FPEXPN(X) = exponent (X) 
FPFRAC (X) = fraction X) 
FPMAKE(X,E) - fraction (X)b E 

E


-Xb
FPSCAL(X,E) 

where the prefix "FP" stands for "Floating Point". FPEXPN returns the (integer) exponent 
of X, the other five functions return floating-point values with the same precision as X 
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A Comparison of Two Recent Approaches to Machine 

Parameterization for Mathematical Software N 79 wJ1 W 
Brian T. Smith*, Applied Mathematics Division 

Argonne National Laboratory 
Argonne, Illinois, U.S A. 

INTRODUCTION relative precision parameter. 

Recently, there have been published two different At first sight, the latter parameters seem to be 
proposals for expressing the dependence of numerical simply related to the former set, however, such 
software on the environment. One proposal, which is relations are not machine independent in general. 
essentially described in two papers [1,2] ** 
characterizes the dependence of the software on the To complement this set of parameters, three 
machine architecture essentially in terms of the functions were defined which permitted access to the 
representation of floating point entities in the size and representation of any floating point 
machine. The second, more recent proposal, number. Briefly, one function determined the 
described in [3] characterizes the dependence of the integer exponent of an entity X, when expressed in a 
software on the environment in terms of models both standard exponent-fraction form, another determined 
of the floating point numbers and of the behavior of a number that was small relative to X (that is, the 
the arithmetic unit of the machine, largest positive number X which could be considered 

negligible when involved with X in additive 
The purpose of this paper is to expose and operations), and a third function formed a floating 

clarify the differences and similarities between point entity from an integer exponent and another 
these two approaches. It is the author's opinion entity containing the fractional part, 
that the two approaches interpreted in their 
strictest sense serve two distinct purposes. When The above definitions were designed to make the 
each is interpreted imprecisely, their roles parameterization of the environment dependent as 
overlap, much as possible on the representation of floating 

point entities. This is not strictly adhered to in 
In order that the comparisons briefly discussed terms of the detailed definitions in at least two 

below are fully understood, we need to briefly instances. The relative precision parameter and the 
summarize the separate approaches Since our negligible number function are defined in terms of 
interest here is in the parameterization of the the additive operations and so depend on the 
numerical aspects of the environment, the non- arithmetic unit This anomoly could be avoided by 
numerical parameters discussed in [l] and the defining these items in terms of the number of radix 
considerations of implementation discussed in [2,3] digits in the representation. The second instance 
will not be considered here where a defintion was not tied to the representatron of 

entities is that the integer exponent functi6n is 
PARAMETERIZATION IN TERMS OF THE defined in terms of a canonical exponent-fraction 
REPRESENTATION representation of numbers instead of the 

representation of the machine. This was done for 
In [1], there is described and defined a collection uniformity of the returned result on different 

of parameters which characterizes the set of all machines for the same numbers and at the same time 
floating point numbers in terms of their permits floating point numbers to be decomposed and 
representations on current machines. The assumption synthesized without the introduction of rounding 
underlying this characterization, which is not errors 
explicitly stated, is that all machines use a 
positional notation with a fixed radix and fixed One goal of the above approach was to define the 
length to represent floating point entities Thus, parameters and functions basically in terms of the 
quantities such as the radix of the representation, representation. As the above discussion 
the number of radix digits in the significand, the illustrates, such definitions may cofflict with 
smallest and largest positive numbers in the set of other important considerations such as portability, 
floating point numbers (denoted "representable" and here the definition of. the exponent-fraction 
numbers) such that both the number and its negation manipulation functions was modified to satisfy the 
are representable, are defined. These parameters, more important consideration of portability. 
then, characterize the salient properties of the 
representable floating point numbers. This goal may also conflict with the desire to 

obtain suitable and precise definitions for all 
Other parameters are included which have more hardware. A case in point is the definition of the 

relevance to preparing mathematical software. For relative precision parameter where the definition 
example, the relative precision parameter, known in given in [1] breaks down on unusual hardware. This 
various papers as MACHEP, is defined so that it can parameter is defined in [1] as the smallest number 
be used to determine negligible numbers compared to e such that for the computed and stored quantities 
one in additive operations. Another such parameter 1-e and 1+e,l-e<1<1+e. This definition is not 
is the symmetric range parameter which is the 
largest positive representable number such that its *Work performed under the auspices of the U.S 
negation, its reciprocal, and its negative Department of Energy. 
reciprocal each can be approximated by a "Numbers in brackets designate references at the 
representable number within a relative error of the end of the abstract. 
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suitable for a machine with a large number of guard
digits whose rounding strategy is to round to the 
nearest odd significand. The resulting e for such a 
machine is not suitable for the relative precision 
parameter as it cannot be used to measure negligible
numbers in additive operations with numbers near 1 
as well as 1 itself. One other common definition 
for e is the radix raised to a power of 1 minus the 
number of radix digits in the representation but 
this is-not-completely satisfactory for-processors 
that perform proper rounding. 

Consequently, we see a major disadvantage with 
this approach in constraining the definitions of the 
parameter and functions to the representation of 
floating point numbers. It appears to be very 
difficult to define the parameters in a portable yet 
reliable manner for all machines. For this approach 
to be workable as an implemented feature in a 
language, the definitions may need to be adjusted to 
each environment to satisfy the intent of the 
original definitions 

These difficulties with this approach lead one 
naturally to the second approach [2]. Rather than 
treating directly the diverse computing 
environments, it might be better to define a model 
of a computer, and then state the definitions of the 
parameters and functions in terms of the model. 

THE MODEL APPROACH 

Recently in [2), Brown et al describe a 
characterization of the environment in terms of a 
parameterized model of the floating point number 
system and arithmetic unit. The model characterizes 
the representation of floating point numbers in a 
signed magnitude notation in terms of 4 parameters, 
and specifies the behavior of the arithmetic unit in 
terms of a small number of axioms. Numbers 
representable within the model are called model 
numbers; the model numbers for a specific machine 
may be a proper subset of the machine representable
numbers, The parameters which characterize a 
particular environment are defined in terms of the 
specific values of the 4 parameters which determine 
the particular model. The environment functions 
which manipulate floating point entities are also 
defined in terms of the specific values of the 4 
parameters. 

The four parameters of the general model are: 1) 
the radix of the model numbers, 2) the effective 
number of base radix digits; 3) the maximum exponent
for model numbers, and 4) the minimum exponent for 
model numbers. The environment parameters include 
these four parameters plus three others; 1) a large 
positive number near the overflow threshold, set 
equal to the radix raised to the power of the 
maximum exponent minus 1;2) a small positive number 
near the underflow threshold, set equal to the radix 
raised to the minimum exponent, and 3) a number 
considered negligible when compared to 1, set equal 
to the radix raised to the effective number of base 
radix digits in the model minus 1. 

The three basic analysis and synthesis functions 
are: 1) a function to extract the exponent of a 
floating point entity interpreted as a number within 
the model, 2) a function to extract the fraction of 
a floating point entity interpreted as a number 
within the model, and 3) a function to form a 
floating point entity from an integer exponent and 

the fractional part of a given floating point
entity. Also, two basic precision functions are 
defined: 1) a function to determine the maximum 
absolute spacing in the model near a given floating 
point entity, 2) a function to determine the 
reciprocal of the maximum relative spacing in the 
model near a given floating point entity. 

The key to understanding the approach is the 
speciflcation if the effective number of base radix 
digits. The choice of this parameter is determined 
by the behaviour of the arithmetic unit. The idea is 
to penalize the specific model of the machine by 
reducing this number until a specified set of axioms 
and conditions characterizing the behavior of the 
arithmetic unit are all satisfied. 

This approach now has three major advantages over 
the earlier approach. First, the definitions of the 
environment parameters are in terms of the general 
model and so can provide clean unambiguous 
definitions. Second, the intended use of the 
parameters can be specified clearly in terms of the 
model. And third, statements that specify the 
behavior of the software in terms of the model can 
conceivably be proven by relying on the axioms 
characterizing the model's arithmetic. 

But it is just these axioms that make the model 
approach very difficult to use in practice. The 
difficulty comes in determining the effective number 
of radix digits. To be sure of your choice, one 
must carefully and thoroughly analyze the algorithms 
which implement the arithmetic operations on a 
specific machine. With straightforward arithmetic 
units, such verification is tedious but possible. 
With the more unusual arithmetic units, such 
verification can be very difficult indeed. 

USES OF EACH APPROACH 

We have referred to some of the advantages and 
disadvantages of each approach in terms of the ease 
with which the parameters and functions are defined 
In this section, we compare the uses of each 
approach. 

In the first approach, the intent of the 
definitions is to constrain the parameters and 
functions to be dependent on the representation of 
the floating point numbers alone. None of the 
parameters (except for convenience and ease of 
definition) depend critically upon the behavior of 
the arithmetic unit. Consequently, the 
characterization of the machine environment using 
the first approach is most appropriate where the 
dependence of the software on the environment is in 
terms of the representation. 

The second approach, on the other hand, applies 
to situations where the dependence of the software 
on the environment involves the behavior of the 
arithmetic unit. For example, algorithms that 
depend upon the size of rounding errors in each 
operation can thus be written in terms of the model 
parameters, thereby yielding reliable portable
software Also, as the model guarantees a regular 
and controllable behavior for the arithmetic 
operations as specified by the axioms, and the 
precision functions as well, algorithms can more 
readily be analyzed and may be proven correct within 
the model. 
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Because of the manner in which the effective 
number of base radix digits is determined, the model 
is deteriorated by the least accurate arithmetic 
operation. Thus, a specific program which does not 
use such imprecise arithmetic operations may be 
unduly penalized. 

Whereas the parameters and functions for the 
first approach are determined in general by the 
representation alone, some of the functions defined 
in the second approach are determined by both the 
model and the representation. For example, the 
function (x) returns the fraction 
determined by the model but is as precise as the 
machine; that is, the returned fraction may not be 
the fraction of any model number. The maximum 
absolute spacing function returns a number that is 
determined by the model alone and not the 
representation of the argument The maximum 
relative spacing, on the other hand, may return a 
number that is not a model number. Consequently,
the algorithms that use the precision functions must 
be analyzed in terms of the possibly less precise 
model rather than the precision of the machine, 
despite the fact that the precision functions seem 
to address the representation of floating point 
entities on the machine.



CONCLUSION



Upon considering the two approaches to 
parameterization of the environment for floating 
point computation, there emerges two distinct uses 
for environment parameters. On one hand, the 
parameterization permits machine wide analysis of 
the algorithms, and on the other hand, permits 
machine wide control and formulation of algorithms 
for numerical software. 

In the past, we have performed the analysis under 
the assumption that our algorithms would be executed 
on a well-behaved hypothetical arithmetic unit that 
satisfied some straightforward and useful axioms for 
floating point arithmetic. When implementing such 
algorithms, we had two choices, either machine 
constants were suitably adjusted where the constants 
were critical for the reliable behavior of the 
software so that the resulting software was safe, or 
machine constants were used directly where there was 
no danger of producing incorrect or misleading 
results.


Ideally, we are striving for a machine 
environment that makes this final choice


unnecessary. Such an ideal requires the general 
availability of the perfect hardware. However, it 
is not clear that the perfect hardware is forthcoming 
in the near future. Thus, it seems inappropriate at 
this time to implement one parameterization of the 
environment to the exclusion of the other. 
Possibly, the two approaches can be merged so that 
we can have the best of both approaches. 
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1. Introduction 
The UNIXoperating system [1] supports a number of software tools which, when viewed 

as a whole, are an unusually powerful aid to programming. 
The 	 design, implementation, documentation and maintenance of a portable FORTRAN 

test of the floating-point arithmetic unit of a computer is used to illustrate these tools at work 
The result of this effort was a program created automatically from the paper describing the test.
Thus, only the documentation had to be written, the program was automatically produced from 
it Also, changes in the document (debugging) were automatically reflected in the program. 

The second section briefly describes the UNIX tools to be used The third section out
lines 	 the basic problem and the fourth section shows how the tools can help solve the problem. 

2. 	 Tools


This section lists and briefly describes the UNIX tools to be used



EQN - A mathematical equation-setting language [2]. 
When y6u want to say a, you simply type a sub ij sup k A general rule of thumb for 

EQN is that you type at it the words you would use-in describing the object to a friend on the 
telephone The output of EQN is TROFF 

TROFF- A phototypesetting language 11,pp2115-21351


This processor lays out text according to user given commands and built-rn rules. 
 For 

example, the subheading for this paragraph was produced by typing 

.SH 
TROFF-
A phototypesetting language 

where the SH command tells TROFF to underline the following input lines. TROFF also left
and right justifies the text on the page, does hyphenation, and generally produces a tidy docu
ment from free-form input This paper is an example of its output. 

EFL - A FORTRAN pre-processor language 141. 
This pre-processor has an Algol-like input syntax, portable FORTRAN [31 as output, and

provides a language of considerable power and elegance It has the usual control-flow construc
tions (IF ELSE .. , WHILE, FOR, etc.), as well as data structures and a macro facility. A 
useful feature of EFL is the ability to take input while inside one program file from another file 
during compilation, via the INCLUDE statement. 

MAKE 151 
A UNIX command which makes sure that if A and B are two files, and B can be derived

from A by a command sequence, then that command sequence is executed if and only if the
date of A is later than the date of B Thus, MAKE is often used to keep object libranes up to 
*UNIX is a trademark of Bell Laboratories.



18 



N79-12721



date with respect to their source code 

ED - The UNIX text editor 11, pp2115-21351 

For example, the ED command 

g/b sup [-]*/s/b sup \(P ]*\)/Bl)/g 
(don't worry, its easier to type than to read one of these!) changes all occurrences of b sup 
String into B(String), where String is any string of non-blank characters 

SHELL - The UNIX command interpreter [1, pp1971-19901 
Each process on UNIX has a standard input and a standard output These standard i/o 

"devices" may be files, teletypes, or even other processes Thus, for example, the editor ED 
may take its editing commands from a file (script) Also, the output from one process may be 
input directly to another process This connection is called a "pipe" and is denoted by a "I'. A 
typical use of a pipe is to create a document with the aid of EQN and TROFF, as m 

EQN files ITROFF 
where EQN produces TROFF input which is then shipped directly to TROFF to make the docu
ment. 

3. 	 The Problem 
As part of the installation of the PORT library [6] it is necessary that the PORT machine 

parameterization be dynamically correct That is, it is not enough to simply read the owners 
manual for the host machine and conclude that it has a base-2 floating-point architecture with 
48 bits in the mantissa The manner in which the the floating-point arithmetic units operate on 
their data must also be taken into account. For example, if the result of a+b is only good to 
24 bits in some cases, many algorithms aren't going to behave well if they believe that a round
ing error is 2-48 

In order to test the accuracy of the floating-point arithmetic unit of a computer, we chose 
to compute 

x op y 

where x and y are one of 

be (b 1+b) 1) 

-
be 	 b J 	 2) 
J-1 

0 	 3) 
i 

be (b-I) tb- 4) 
J-i 

-'+ b
be (b-1) ( b ' ) 	 5) 

and op is any of +,-, *and I The test basically consists of finding the analytically correct 
value of x op y and companng it to what the machine gets for fl (x op y ) 

The fly in this ointment is that the exact result of x op y must be found Take, for 
example, the product of two elements of pattern 1), denoted as 1)1) We desire a bRM 
representation for the result The exponent of the result is trivial to compute The mantissa of 
the result can be rather simply computed as in 

--(b-lb ) . (b-+b 2) b-'(b-lwb-'1+b-,2+b-01+i2-1)) 

This 	 may be put into normalized form as follows 
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If (b=2 & il=2 & i2= 1)
-

I b(b-l'+b 
4) } 

Else # No piling up
I b-1 (b-l+b-'1+b-t2+b-('1+,2-1))} 

This 	 is a rather simple example since most x op y derivations run from 6 to 8 TROFF output 
pages, but it does illustrate the -technique. The prolem here is that there are 42 separate 
x op y cases to be resolved, none of which is particularly complex individually, but which taken 
together represent a major effort - more than 200 TROFF output pages. 

There is a grand ideal to which paper writers aspire - Document what you want to do, and 
then do it! Believing this, the author wrote the paper before writing any code A typist entered 
the text into a file, transcribing mathematical formulas into the notation of EQN, using the edi
tor ED. As an example, the preceding display for the result of 1)*1) was entered as 

If $(b=2~&-il=2-&-i2=il)$

{ $b sup 0 (b sup-1 + b sup -4)$ I



Else # No piling up


{ $b sup -1 (b sup -1 + b sup-il



+ b sup -12 + b sup -(il+i2-1) )$ } 

The $" is a delimiter telling EQN what to act on, and the .' tells EQN to leave a little white 
space 

The problem now consists of implementing such formulae in a programming language 
Also, great care must be taken that the code agree with the document describing it This 
means that debugging such code (and formulae) must result in both the program and documen
tation being changed correctly and simultaneously. Yet, there are more than 200 pages of such 
formulae to implement! 

4. 	 The Solution 
To attempt this by hand would be cosmic (and comic) folly. Soon neither the document 

nor the code would be correct, or m agreement with the other Actually, the author learned 
this the hard way, but lets not dwell on dead-ends. The solution is quite simple Use an ED 
script to convert the TROFF input into EFL and use MAKE to keep the whole thing up to 
date. 

It is quite clear that the TROFF input for 1)*l) given earlier rather resembles an EFL 
program in structure (IF ... ELSE .), but not in detail - indeed, it is a rare language that can 
make sense of b-(l+ b- ') I However, b-(1+b- ') can be converted into a form EFL can 
recognize - B(1)*(I+B ()) - by a rather general ED script fragment 

g/b sup r ]*/s/b sup -\([- ]*\)/B \l)/g
g/) *(/s/) *(/)*(/g 

and we can easily construct an array B such that B(t) = b- ' . A complete ED script may be 
constructed along the above lines It is a long (6 pages) but simple script The ED script 
applied to the TROFF input for )*I) gives the EFL program fragment 

If(b--- 2& - -- 2&2 = -il) 

E = 	 0, M = (B(1)+B(HiLo(4))) 

Else # No piling up 

E =-1; M = (B(1)+B(il)+B(2)+B(I-hLoil+i2-1))) 
I 

where HiLo is the statement function 
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HiLo() = Max(O,Min(i,t+l)) 

used to get the left-hand end-point of the smallest floating-point interval containing the exact 
result Here t is the number of base-b digits carried in the floating-point representation and the 
array B has been extended to have B(O) = 0 = B(t+l). There are 42 such EFL program frag
ments They form the heart of the floating-point test, and the part with all the bugs in it - ini
tially, at least' There is a standard EFL driver into which these fragments fit, via the EFL 
INCLUDE mechanism. The resulting 42 programs form the floating-point test 

The above ED script mechanism produces the EFL code directly and automatically from 
the TROFF input Thus, only the TROFF input must be altered by hand, the EFL production 
is automatic Debugging was literally carried out at the TROFF (not the EFL) level 

However, one great problem still remained The EFL depends on the TROFF input for 
1)*1) How can one be sure that both the EFL and the document for 1)1) have been pro
duced from the most recent version of the TROFF input for 1)1)? In all there are 42 such 
dependencies which must be checked Here MAKE is invaluable. A file is created for MAKE, 
giving the dependencies and desired command sequences Whenever the MAKE file is exe
cuted (by saying simply "make"), any TROFF input which has been altered since the last 
MAKE will be re-TROFFed, and any EFL file which has not been updated since its correspond
ing TROFF file was altered, will be updated and listed 
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ABSTRACI precompiler to band the data type representations



and extend them throughout the package.



We discuss the use of a FORTRAN precompaler in


the development of packages for nonstandard We illustrate this philosophy with examples



arithmetics In particular, the use of the FORTRAN 
 drawn from the interval arithmetic and triplex 

precompiler, AUGMENT, renders the source code more arithmetic packages developed by the second author 

lucid, reduces the number of lines of code in a 
nonstandard arithmetic package, facilitates modifi- We also give an indication of several other 
cation, and ameliorates the problems of applications of AUGMENT which, while not necessari

transporting such a package to another host system ly employing this philosophy, serve to indicate the 
breadth of possible applications of AUGMENT.



INTRODUCTION



With decreasing hardware costs and increasing 2. BRIEF DESCRIPTION OF AUGMENT


processor speeds, the cost of software development


is becoming more and more a function of personnel AUGMENT is a program which allows the easy and



cost. Furthermore, with the explosion of applica- natural use of nonstandard data types in Fortran.



tions of digital computers, an ever-higher percent- With only a couple of exceptions, it places non


age of users place implicit trust in the software standard types on the same basis as standard types



they use to support their applications, and allows the user to concentrate on his applica

tion rather than on the details of the data type 

For these reasons, it is essential to supply implementation. 
the user with reliable, well-documented software

packages It is no longer profitable, or even fea- AUGMENT gains its power and ease of use


sible in many cases, to re-invent support software, through several aspects of its design.


These considerations have led to an increasing (1) Its input language is very much like FORTRAN. 

emphasis on transportable software If development The only changes are the addition of new type names 

costs can be incurred just once for a package or and operators, and the ability to define "func
system that will work correctly and accurately on a tions", naming parts ("fields") of variables, which 

broad spectrum of equipment, users are willing to may appear on either side of the assignment opera

tolerate a reasonable amount of inefficiency in re- or. 
turn for the convenience of having the development (2) AUGMENT is extremely portable Since it is 
work done for them and the confidence that they can writtEN TRAN AUGmeNT cabe Sante on
place in a quality product. written in FORTRAN, AUGMENT can be implemented on



almost any computer. The machine-dependencies of



Increasingly, it is becoming practical to AUGMENT are concentrated in eight subroutines which 

build on existing software rather than to develop can be implemented in less than 200 lines of 

new packages from first principles, even when the (machine-dependent) FORTRAN. 

existing software might not be just exactly tai
lored to the application in question. (3) AUGMENTts output is standard FORTRAN which



makes it suitable as a cross-precompiler, that is,



In order to make the best use of existing the AUGMENT translation may be performed on one



software, one must havd the tools to make its (large) machine and the results compiled on or for 

incorporation in new programs reasonably easy, and some other machine which is unable to host AUGMENT. 

one must adopt a design philosophy which will make 
the use of both the tools and the existing software There are three major steps in the use of AUG
natural and uncomplicated. MENT" 

In this paper, we describe one such tool -- Specification. The whole process begins with



the AUGMENT precompiler for FORTRAN ([3J) -- and the specification of the properties of a nonstan


illustrate a design philosophy which has proved to dard type. The specification will need to consider


be a reasonable application of the above criteria, the following questions:


Briefly, we advocate the abstraction of the data


type representations to the maximum possible degree What information wall the user see?


in the design and implementation of software pack-
 What operations will be made available?


ages, and subsequent application of the AUGMENT How Will this type interact with other types?


In many cases, the answers to these questions will


Sponsored by the U. S. Army under Contract No. be available in previous research orte aecn
tentr ftenwtp.I obvious from



DAAG29-75-C-0024. the nature of the new type.
 In other cases, con
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siderable research may be needed and even an an ap-


peal to personal preference may be made 
 

AUGMENT gives little assistance to this part 
of the process. The specifications will be guided 
by the applications envisioned by the person pre
paring the new type, by the operations known or 
felt to useful in manipulating the type, and 
 
aesthetic considerations such as consistency with 
 
similar types (-if any) already existing in Fortran 
or previous extensions. 
 

Binding (Implementation). The binding of the 
abstract specification of the new type to a repre
sentation usable through AUGMENT is by means of a 
"supporting package" of subroutines and functions, 
and through a "description deck" which tells AUG-
MENT about the supporting package. In this effort, 
the implementor must consider the conventions ex
pected by AUGMENT in terms of argument number and 
order, 

In addition to this, there may remain basic 
 
questions of representation. For example, the data 
 
structure which the user sees may not necessarily 
 
be the best way to implement the type.



Aplication. The application of AUGMENT to 
preparation of a program which uses one or more 
nonstandard data types is by far the easiest part 
 
of the process. Given that the supporting 
 
package(s), description deck(s), and adequate docu-

mentation have already been prepared, the use of 
 
the package(s) through AUGMENT consists of just


four steps: 
 

(1) Write the program using the new operators 
and functions, 

(2) Supply AUGMENT with your program and the 
 
description deck(s)



(3) Compile AUGMENT's output with the system 
 
FORTRAN compiler. 
 

(4) Link-edit and run. 
 

3. 	 ABSTRACT DATA TYPES 
 

In the planning of most computations, we do 
 
not explicitly consider the architecture of the 
 
computer that will be processing the program or the 
 
specific representation that it will assign to real 
 
numbers, for example In writing the code, howev

er, most languages require that we make decisions 
 
early in the coding about such questions as preci-

sion, data representation, and so forth. 
 

We have found one of the major attractions of 
 
AUGMENT in writing special-purpose arithmetic pack-

ages to be the ability to use abstract (unbound) 
 
data types throughout the majority of the program-

ming, binding the data type to a specific represen-

tation only in the instructions to AUGMENT and in a 
 
few primitive modules of the package 
 

Thus, for example, one might write a package 
 
using the data type ETHEREAL, later instructing 
 
AUGMENT to convert ETHEREAL to MULTIPLE PRECISION 
 
or what have you. Other data types may then be de
fined as vectors or matrices of ETHEREAL numbers, 
and AUGMENT will be able to allocate the proper 
amount of space when it knows the binding of 
ETHEREAL. Moreover, the routines which manipulate 
the arrays of ETHEREAL numbers may all be written 
in terms of operations on ETHEREAL numbers; again, 

AUGMENT will put everything right at precompile


time.



The following sections illustrate this philos

ophy with concrete examples.
 


4. 	 THE USE OF AUGMENT IN THE CONSTRUCTION OF THE


INTERVAL PACKAGE



The Interval Arithmetic Package described in


[7] was motivated by interest in interval arithme
tic on the part of several other universities with 
different computer systems. 

The package needed to be flexible enough to 
accommodate a wide variety of different computer 
architectures, so we wanted to leave the represen
tation of interval endpoints arbitrary throughout 
the bulk of the package. But because of FORTRAN's 
popularity for scientific computation, it was the 
language of choice for implementing the package. 
Needless to say, ANSI standard FORTRAN does not 
have the flexibility we needed in order to accom
plish the goals we had set. 

We wanted to make the interval arithmetic 
package easily accessible from the user's point of 
view. This naturally led us to design the package 
to be interfaced with AUGMENT But the require
ments for flexibility and transportability led us 
to conclude that the package itself should be writ
ten with the aid of AUGMENT 

Before we discuss the role of AUGMENT in the 
implementation of the package, it would be appro
priate to include a very brief description of in
terval arithmetic. The interested reader can find 
more details in [5]. 

Interval arithmetic is a means for bounding


the error in computation by calculating with pairs


of real numbers, the first member of the pair being
 

a lower bound for the true result, and the second


an upper bound The foundations for interval math

ematics have been carefully laid by Moore [51 and


others, so interval mathematics is on firm theoret

ical ground. There are closed-fom formulae for


evaluating operations and functions on the space of


intervals, so that computation with intervals is


reasonably straightforward



In machine interval arithmetic, one naturally


represents an interval as a pair of approximate


real numbers. In most cases, the existing


hardware/software systems are not adequate, for one


important reason. in order to preserve the integ

rity of the interval, calculations involving the


lower bound, or left endpoint of the interval, must


be rounded downward; those involving the upper


bound (right endpoint) must be rounded upward. No


production system that we know of provides these


roundings.



The design of the arithmetic primitives for 
the approximate real arithmetic was relatively 
straightforward; we used the algorithms given in 
(6] The special functions posed more of a prob
lem: straightforward evaluation of these functions 
can lead to unacceptably wide intervals. We decid
ed to evaluate these functions in higher precision, 

and use information about the inherent error in the 

higher precision procedures before rounding the re


24





sults 3rltha proper direction to obtain the desired 
real doproxr'ation. 

In order to preserve the desired degree of 
 
flexibility, we introduced the nonstandard data 
 
type EXTENDED to designate the higher-precision 
 
functions, and the nonstandard data type BPA (mne

monic for Best Possible Answer) to designate the

approximation to real numbers USed for the interval 
endpoints. The nonstandard data type INTERVAL was


then declared to be a BPA array of length 2. 
 

The BPA portion of the package was written in 
 
terms of BPA and EXTENDED data types wherever pos-

sible. In only a few cases was it necessary to 
 
band BPA to a standard data type in the package

modules: such functions as the replacement opera-

tor obviously need to be bound to a standard data 
 
type to avoid recursive calls, 
 

We illustrate the implementation of the BPA


portion of the package with a segment of the BPA 

square root routine. For simplicity, we have omit
ted declarations and COMMON blocks which are used 

to communicate accuracy constants, rounding op
tions, and other information between package mod. 

ules AC is an integer variable which indicates 

the number of accurate digits in the EXTENDED rou
tines. The statement R = ER implicitly invokes the 
conversion from EXTENDED to BPA, which includes ad
dition or subtraction of an error bound computed
from AC and rounding in the specified direction 
 

BPA A, R 
 
EXTENDED EA, ER 
 
EA = A 
ER = SQRT(EA) 
 
ACC = IACC(17) 
R E 
 

Next, the INTERVAL portion of the package was 
 
written in terms of INTERVAL, EPA, and EXTENDED da-

ta types. Here, only three modules are 
 
system-dependent, 
 

The following simplified segment of the inter-

val square root routine illustrates the general 
 
philosophy used in the implementation of this por-

tion of the package. Declarations and code re-

quired for communication with the error-handling

routine have been omitted for brevity. Note that 
 
before invoking the EPA square root routine (im-

plicitly, twice, once for the right endpoint, or


SUP, of the interval, and once for the left 
 
endpDoint, or INF, of the interval), the variable 
 
OPTION is set to specify the desired directed 
 
rounding (RDU for upward directed rounding, and RDL 
 
for downward directed rounding). 
 

INTERVAL A, R


OPTION = RDU 
 
SUP(R) = SQRT(SUP(A)) 
OPTION = EDL 
 
INF(R) = SQRT(INF(A)) 
 

Appropriate description decks were prepared 
 
for AUGMENT, binding the nonstandard types EXTENDED 
 
and EPA to representations in terms of standard da-

ta types The entire package was then processed 
using AUGMENT to extend these bindings. 

In order to adapt the resulting package to a 
 
different host environment, or different precision,


or both, one writes the necessary primitive rou


tines, adjists the declarations in the description
deck as necessary, and reprocesses the package with 
AUGMENT That this procedure is effective is 
attested to by the relative ease with which this 
package was adapted for use on the IBM 370, Honey
well 600, DEC-10, PDP-11, and CDC Cyber systems.



5. ADAPTATIONS OF THE INTERVAL PACKAGE



We discuss two adaptations of the INTERVAL


package the first of these is the creation of a


package to perform triplex arithmetic, and the sec

ond is a package to perform interval arithmetic in


multiple precision.



A. THE TRIPLEX PACKAGE: Triplex is a variant


of interval arithmetic in which a main, or "most


probable", value is carried in addition to the


endpoints.



The difference between triplex and interval


arithmetic is conceptually quite simple: at the


same time one computes an operation or function on


the interval endpoints, using the interval mathe

matics formulas, one evaluates the same operation


or function on the main values, using standard real


arithmetic, rounding the results to the nearest ma

chine number.



In order to modify the INTERVAL package to


perform triplex arithmetic, we needed to add code


to all of the interval routines to compute the main


values, rename the modules of the package, adjust


the formats to accommodate the third value, and, of


course, change the representation of intervals to


accommodate the main value.



The addition of the extra code was pedestrian;


we simply added the appropriate lines of code to


each routine to compute the main value. We should


note, however, that this did not disturb the exist

ing code, inasmuch as storage and retrieval of the


endpoint values had already been defined not in


terms of first and second array elements in the in

terval number, but rather in terms of the field


functions INF and SUP respectively (AUGMENT allows


the use of such field functions, even when the host


FORTRAN compiler does not).



The modules were renamed by suitable use of a


text-editing program on the INTERVAL file.



The representation problem was handled simply


by changing the word INTERVAL in the type declara

tion statements to TRIPLEX. No other changes 
 were


necessary in the majority of the routines, since


AUGMENT automatically extended the new binding


throughout the package.



The portion of the triplex square root routine


below illustrates the types of changes to the in
terval package that were necessary to produce the


triplex package:



TRIPLEX A, R 
OPTION = RDU


SUP(R) = SQRT(SUP(A))


OPTION = RDN


MAIN(R) = SQRT(MAIN(A))


OPTION = RDL


INF(R) = SQRT(INF(A))
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The modification of the INTERVAL package to AUGMENT allows the definition of data types which 

produce a TRIPLEX package was accomplished in lit- are lists, and by using this feature, precision can



tle more than one week of elapsed time, documenta- be determined dynamically.


tion ([1]) excepted.

 (4) Simuations: 
 AUGMENT 
 has been used to



B. THE MULTIPLE PRECISION INTERVAL PACKAGE: 
 

One of the goals of the original design of the IN-

TERVAL package was to facilitate increasing the 
 

precision in cases where that was desired. When 
 
the 	 multiple precision arithmetic package of Brent 
 
[2] became available, it was only natural to con-

sider using that package as a basis for the multi

ple precision version of INTERVAL 
 

The first step in this process was to develop 
 
an AUGMENT interface for Brent's package. This we 
 
did in collaboration with Brent. 
 

We are now at the point of developing the mul

tiple precision version of the interval package it-

self. The steps will be: 
 

(1) Determine the representation to be used 
for the real approximations. (Brent's package al
lows a great deal of flexibility in this regard.) 

(2) Write the primitive arithmetic operations, 
basing these on Brent's routines, but providing di
rected roundings. 

(3) Use Brent's package as the EXTENDED arith-

metic package



(4) 	 Write the BPA primitives. 

(5) Write an additional module which will set 
the necessary constants based on the run-time pre
cision chosen for the BPA numbers, 

(6) Rewrite the description decks as neces-

sary. 
 

(7) Reprocess the package with AUGMENT.



6. 	 OTHER APPLICATIONS OF AUGMENT 
 

In the foregoing, we have illustrated the 
 
flexibility that may be gained by using abstract 
 
data types. We now consider some extensions of


this concept, and some other applications of AUG-

MENT. 
 

(1) Recursive data type definitions: AUGMENT


allows data types to be defined in terms of one an- 
 
other, and this opens up some unique possibilities, 
 
The first author once used AUGMENT to aid in the 
 
writing of a program to sort multiply-layered in

formation that was stored in the form of trees. 
 
This problem was addressed by creating two data 
types: TREE and NODE One field of a TREE was the 
root NODE, and one field of a NODE was a TREE. The 
development of the program using these new data 
types was straightforward. 

(2) Analytic differentiation of FORTRAN func
tions: This package ([4]) allows one to obtain the 
Taylor Series expansion or the gradient of a func
tion which can be expressed as a FORTRAN program. 

(3) Dynamic precision calculations: In cer-

tain types of applications, the precision required 
 
for the calculations is a function of the data.



simulate one computer on another. The technique


for doing this is straightforward; one defines a


nonstandard data type which represents the simulat

ed machine, and prepares a nonstandard package


which copies the arithmetic characteristics and da

ta formats of the target computer.



(5) Algorithm analysis: AUGMENT can be used 
to provide information such as operation counts in 
the running of programs or portions thereof One 
simply defines a nonstandard data type which, in 
addition to performing the standard operation, in
crements a counter. 

(6) Image processing: The picture processing 
package developed by W. Fullerton of Los Alamos 
Scientific Laboratory is one of the most unusual 
applications of AUGMENT we have yet seen. Various 
new operators allow the construction of composite


pictures from smaller parts, and mathematical func

tions have even been defined on type PICTURE.



The above illustrations should serve to indi

cate that the role of AUGMENT in development of


mathematical software is limited primarily by the


user's imagination.



7. 	 CONCLUSION



We 	 have indicated a number of ways in which 
the AUGMENT precompiler for FORTRAN can be and has


been used to aid in the development of mathematical
 

software. Other applications will undoubtedly be


found for this precompiler, since it is both versa

tile and powerful.
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INTRODUCTION



Over the past decade, mathematical software 
 
libraries have matured from small, usually locally- 

assembled, collections of subroutines to large, 
 
commercially-provided libraries which are approach

xng the status of standards [Aird, Do Croz; Fox]**. 
 
Despite the high quality of such libraries and the 
 
obvious economic advantages of using routines whose 
 
development cost has been shared with many other 
 
users, applications programmers, when asked- "Why 
 
don't you use routine XYZ from IMSL, or from NAG, 
 
or from PORT?" frequently reply that library rou-

tines are too general, that they need a routine 
 
which takes advantage of special features of their 
 
problem, and that since they could not use a li-

brary routine without modifying it, they might as 
 
well write their own routine from scratch, 
 

In many, if not most, instances, the latter 
 
assertion could be easily refuted by a simple com-

petition on selected test problems. However, the 
 
need for a routine adapted, or tailored, to a 
 
particular problem is more difficult to dismiss.


It usually arises from considerations of efficiency, 
 
which may range from the perceived inefficiency of 
 
the presence of unused options in a routine to the 
 
practical impossibility of using a routine whose 
 
data representation is utterly incompatible with 
 
that needed in the rest of the applications pro-

gram.rHow, then, can mathematical software develop-


ers answer this need for mathematical algorithms 
 
tailored to individual applications9 One approach 
 
especially applicable to complicated problems, such 
 
as solution of PDE's, is to preprocess a specifica-

tion of the problem into code which uses a particu-

lar software package, as is done in ELLPACK [Rice]. 
 
(In some sense, this approach tailors the problem


to the software.) For library routines in simpler 
 
problem areas, however, it seems necessary to 
 
tailor the routine to the problem, since such rou- 

tines constitute only a small part of the applica
tion program, and several routines with possibly 

conflicting requirements may need to be included. 

In order for this to be practical, tatZored ver
stons of such routines mut be constructed mechan
tcalty from very generaZ tvbrary routines. Such 
mechanical program generation is necessary both to 

insure that the reliability of the library routine 

is preserved in its tailored versions and to insure 

that their construction is not prohibitively expen-

sive [6]. 
 

For some time, the TAIPR system has been in 
 
use to construct multiple versions, or realizations, 
 
of prototype programs for inclusion in mathematical 
 
software packages themselves [4,5]. For the 
 
LINPACK package, a single prototype routine was 
 
used to construct the eight versions representing


the combinations of complex or real arithmetic, 
 
single or double precision, and calls to Basic 
 
Linear Algebra subroutines or in-line code replace-

ments for them [5] 
 

Recent research with TAMPR has focussed on 
 
determining the properties a prototype program



should have in order to maximize the number and 
diversity of realizations which can be constructed


from it.



ABSTRACT PROGRAMS


The most important property of a prototype



program is its abstractness. Intuitively, an


abstract program captures the essence of a numer

ical algorithm without cluttering it with mrrele

vant detail. The presence of irrelevant detail in


a prototype program hampers the construction of


diverse realizations precisely because a great


deal of analysis must be done to verify that it


is indeed irrelevant.



The research discussed here has not progressed


far enough to characterize abstract programs in


general, but examples from the area of linear


algebra have been studied sufficiently to illus

trate the ideas involved. Consider the code frag

ment (1):



for i = n,l,-l 
for j - i+l,n 

y(i) = y(i)-U(i,j)*y(j)


end


y(m) = y(i)/U(i,i)



end



and the code fragment (2): 
for i = n,l,-l 

y(i) y63/U(ii) 
for j = l,i-1 

Y(J) - y(j)-U(j,i)5 y(i) 
end 

end 

Now, both of these fragments actually perform the


same computation, the solution of an upper-triangu

lar system of linear equations Uy-x (the final step


in the solution of a general linear system whose


matrix has been factored into triangular matrices


L and U). Fragment (1) is the usual method of


solving such a system; it refers to the matrix U


by rows. Fragment (2) refers to the matrix U by


columns, and is therefore more efficient than


fragment (1) on machines with virtual memory or


with buffer memory, when the language in which the


program is written stores matrices by columns (as


does Fortran), see Molar [8) and Smith [10).



Considerable effort is required to see that


these two fragments actually perform the same


computation; even more effort would be required


to devise a way to transform (1) into (2) automa

tically in order to be able to make the (possibly)


more efficient version available to a user. Thus
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n n
(1) is not a suitable prototype for tailoring, A = AT = AZ(e a) = I ((AeI)e) 

since it contains difficult-to-discard information i=1 i i=1 

about the row-oriented version of the program, 

which has nothing to do with the specification of Aei as the x-th column of A.



the algorithm for the solution of the linear sys- The synthesis begins with (3) augmented to


tem (see also Smith (10].)



At what level of abstraction, then, is such indicate that U is an upper-triangular nxn matrix 
irrelevant information about how storage is stored by columns, that y is an n-vector, and that 
referred to absent from the specification of the x as to be-identified with y: 

algorithm? It is absent when the algorithm is 
specified in terms of matrix (rather than matrix y 

element) operations. Thus the abstract represen- --> y = (diag(U) + uppersubtri(U))**-l*y 

tation of this algorithm is (3): now U is expanded by columns: 


-l 
 n I

U y--> y = (diag(U) + Z (uppersubtri(U)e.e ))**-l*Y


(Note that this representation of the algorithm i=l


T
is abstract not only with respect to row or -- > y = (c(I+(diag(U)ei)eT-Iee 

column orientation, but with respect to all as- iI 
pects of the representation of the data; e g., n 
the elements of U could be given by a function.) +(uppersubtri(U)e )e ))**-l y



nT T
T
TRANSFORMATIONAL SYNTHESIS OF CONCRETE PROGRAMS --> y = l(+(invdiag(U)e )eT-e e 
This abstract statement of the triangular i=1 ii ii



solution algorithm can be converted into a con

crete, executable program by first augmenting -(uppersubtri(U)e )(e invdiag(U)e )eT)*y

it with a specification of the properties of the 
concrete representations of U,x, and y. The --> for i = nl,-l 
augmented abstract program can then be transformed T


according to various program-algebraic rules which Y y + (invdiag(U)e )(eiy)-ei.(eY)


incorporate the properties into the abstract pro- T T


gram and then simplify it where possible (see -(uppersubtri(U)e )(e invdiag(U)ei)(ely)


Boyle [4] and Green [9]).



This process can be illustrated by a sketch end 

of the synthesis of fragment (2) from the abstract (Note that the above program is the point of 
program (3). This sketch omits numerous small (. 
steps and to avoid introducing unfamiliar notation departure for a "vector" solution of the triangular 
is presented in terms of quasi-programs. In the system, although this problem is not particularly
actual TAMPR implementation, the transformations well suited to vector computation ) Now expandthe remaining vectors to components (the assignment


are carried out on a representation of the program til a vector one):


in an applicative (i.e., expression) language is still a vector one):



until the final stage, at which Fortran code is 

generated. As discussed by Backus in his 1977 

Turing Lecture [1] such applicative languages have n T n T T 

a richer and simpler associated "algebra" than = ey) = Z e.(e y) + e (e invdiag(U)el)*
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do conventional languages in part because the 


scope of values is indicated clearly by functional T - n 
application. (Experience with TAMPR strongly (eLY) ed(e y) - I (ekCek uppersubtri(U)e,)* 
supports this simplicity of applicative languages, k=1 
which is also well known to LISP programmers.) T T



The synthesis of fragment (2) depends on some (e1 Invdiag(U)ej)(e y)
)



identitles from matrix algebra, including- end



n

(4) 1 - S e eT 

After a number of steps which include determining 
i-i that a vector temporary is not required in conver

heeis the -th unit vector, ting the vector assignment to a scalar one, the



where component-level is reached

, T I (I+De l
(5) D + Z Ue e =11 eT-Te eTlteT) 

sl I i=n a I i -- > for i=n,l,

where D is an nxn diagonal matrix and U' is upper for 3 = li-I 
triangular with zero.diagonal; and (eUy)3 (eUy) - T
1ey) =ey - (e. uppersubtri(U)ee)* 

(6) 11(I+De e-e T+ e)leIa + eIa) (e i nvdiag(Ube )(eTy)
i=ni



n -1lT U -1 T end

-H (+De e -IeTUe eTD- e) e


i=l 1 1 1 1 i I 1(ely) = (e i nvdag(U)eI)*(ey)_



T T
The idea of a matrix A being "stored by columns" (e uppersubtri(U)e )*(eT invdiag(U)e?(e y)


is thus expressed as I i



for j = i+l,n 

28 



T T - T 
(ey) (eJy) - (e J uppersubtri(U)e1 )* 

eTInvdag(U)ei)(eTY) 
 

end 
 
end 
 

Uppersubtri(U) implies ekTppersubtri(l)e3= 0 for 
 
k=more 
 

k > j, assignments of the form x = x need not be 
 
carried out, and common subexpressions can be 
 
computed once, so that the program becomes: 
 

-- > for a = n,l,-l 

t = (eT invdiag(U)e )(ey) 

for 3 = l,i-l 

(T y) = ( T uppersubtrm(U)e.)*t 
e3y) (e 

end 
 

(eT t
iY 
 

end 
 

The temporary can be eliminated by reordering and 
 

the component references converted to conventional 
 
form to obtain fragment (2), above Thus the trans-


formational synthesis of a program takes place in a 
 

large sequence of small steps, each effected by a 
 

transformation based on a relatively simple mathe-


matical theorem or axiom, 
 

CORRECTNESS OF CONCRETE PROGRAMS 
 
As discussed in [4], transformationally-


constructed concrete programs inherit the correct-


ness of the abstract prototype program provided the 
 

transformations themselves are correct. 
 A correct 
 
transformation may add information to the abstract 
 
program, but this information must be consistent 
 

with the properties assumed for the abstract pro-

gram. (In this sense, the process is rather like 

constructing the integers as a "concrete" instance 

of a ring, by augmenting the ring axioms with addi
tional axioms consistent with the original set.) 
Thus anything provable about the abstract program 

remains true for any of the concrete realizations 
 

ofThe proof that an arbitrary set of transforma-


tmons is correct may be difficult in general. How-


ever, as discussed in [7], if each transformation 
 
in the set is itself "semantics-preserving" (i.e., 
 
replaces a part of a program with program text

which does no t ontrict the meaning of the 
 

original text), the correctness of the transfor-

mational process is guaranteed (if it terminates), 
 

Usually it is quite easy to see that an individual 
 

transformation is semantics-preserving, especially 
 
when it is based on a mathematical property. 
 

Finally, the fact that the abstract program 
 

is closer to the mathematical formulation of a 
 

problem than is an ordinary program means that its 
 

correctness is much easier to prove. 
 In the 
 

present example (but not in general) the abstract 
 
program and its specification are almost identi-


cal; about the only thing which must be verified 
 
is that the product and assignment involve 
 
is aallows 
 
consistently-dimensioned arrays.



Incidentally, the fact that the concrete 
 

realizations of (3) do not 
 cause out-of-bounds 
 

subscript references when executed follows from 
 

the fact that (3) involves consistently dimension
ed arrays and the fact that those transformations 
which introduce subscripts also simultaneously


introduce the index sets for them based on the


array dimensions (See Backus [1], section 5,



for some discussion of the significance of this.)



This two-stage proof is much easier than showing


directly that (2) does not execute out-of-bounds



subscript references The difference is even


dramatic for an abstract Gaussian elimination



algorithm and a realization of it employing mmpl

cit pivoting; the subscripts in the latter program


are themselves subscripted variables, and it is


very difficult to prove directly from the code


that they are always in bounds.



WHY TRANSFORMATIONS?


It is perhaps interesting to conclude by posing



the questions: Why use a program transformation


system to construct concrete realizations of


abstract programs' Why not simply devise an


extended language for specifying abstract programs



and a processor to translate it into an existing


language (e.g., EFL [Feldman] and Bayer and



or directly
Witzgall's Complete Matrix Calculi [3]) 
 
into machine language' Or, why not implement by



hand a relatively fixed ensemble of routines for


different data representations and call them as



appropriate to a particular user's needs?


Clearly, these alternatives are not completely



distinct, for the "processor" for an extended


language might consist of a collection of trans

formations, while some transformations insert code



which could be thought of as very small subrou


tines. However, what I call a program transfor

mation system is distinguished from the other two



approaches primarily because it provides a high


level notation for specifying and applying source


to-source program transformations and because it



can manipulate any programming-language construct



(not just subroutines and arguments). Transfor

mation systems of this type include not only
 

TAMPR, but also those proposed by Bauer [2], and



by Loveman and Standish (see [6]).


In my experience, the idea of providing for



abstract program specification through a fixed



extended language is too static an approach to 
be effective. The work discussed here is far from



complete, yet already it has undergone numerous



revisions. Had a particular notation been fixed,


or had the transformations been implemented in a


fixed processor, they would have been very diffi


cult to modify. Moreover, emphasis on Designing


a Language tends to cause one to get lost in a



tangle of language-related issues which are not


very germane to abstract program specification;


indeed the expression and function notation



available in slightly modified Fortran or in Algol


seems quite adequate for experimentation. Finally,



even extensible languages, which permit the def


initlon of new data types and operators (e.g.,


Algol 68), do not usually provide a means for


easily specifying optimizations (especially global



ones) for these extensions. As we have seen, such



optimizations are both fundamental and rather



specific (e.g., the row analog of (6), which shows



that n instead of n(n+l)/2 divisions suffice) and


it is unreasonable to expect them to be built into



a general-purpose language processor Specifying


these optimizations by transformations not only


them to be easily tested and modified, it



also permits them to be selectively applied to



classes of programs which may reasonably be ex


pected to use them.
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Similarly, the implementation, by hand, of a 
 
set of subroutines tailored to various properties 
 
is also static and not very reliable; moreover, 
 
the set needed is very large, being the product of 
 

the number of variables, the number of representa-

tions of each, etc. In a transformational formu-

lation, the number of transformations needed be-

haves more like the sum (plus some initial over

head). Thus, use of transformations enables one


to manage the complexity of the problem and there

by greatly enhances reliability.



CONCLUSION


I have sketched how various concrete executa


ble programs can be constructed automatically from


an abstract prototype program by applying trans

formations based on theorems of matrix algebra


and on "algebraic" properties of programming


languages. Although this research has just begun,


it offers the hope of being able to provide a user


with highly efficient programs tailored to his


environment while maintaining the advantages of


high reliability and low cost associated with


routines from the best mathematical software li

braries. Moreover, the transformations which


produce such programs themselves represent a val

uable resource: a formal codification of rules for 
writing linear algebra programs.
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ABSTRACT 1. ANSI FORTRAN CHECKER & ERROR DETECTOR



This tool accepts as input a Fortran
This paper outlines an integrated set 

source program and outputs clear documenta
of Fortran tools that are commercially 
 
tion pinpointing:
available. The basic purpose of various 
 

deviations from.ANSI (1966)standard
tools is summarized and their economic im-

errors present in the source program
pact highlighted. The areas addressed by . 

these tools include: code auditing, error . portability problems 

detection, program portability, program in- management indices 
To substantiate the economic advan
strumentation, documentation, clerical aids 
 

and quality assurance. tages that result from use of this tool let


us simply focus on its error detection cap

ability. Our experience indicates that


during software development this tool re

duces the number of compilations necessary
THE PURPOSE OF THIS PRESENTATION is to out-

to obtain a program ready for execution by
line a number of powerful software tools 
 presently marketed by Softool Corporation. a factor of 3 to 5. Use of this tool for



Here we shall only discuss an integrated the analysis of production programs (i.e.,



set of Fortran tools, since the Fortran 
 programs that have been running 'correctly'
 

language and the portability of Fortran for years) generates about 3 definite er


programs is a key to the development of rors per thousand lines analyzed! [1,2].



The issues, however, If we assume, quite conservatively, that a
numerical software. 
 
person costs $20/hour and that each problem
extend well beyond numerical software, and 


apply to software development in general. present in the software will require 8 per-


A perspective is in order. The cur- son-hours for its removal, we have:



rent cost of software development is exor- 3 problems x 8 hours x $20
 

bitant and the quality of the products gen- 1000 lnes 1 prob. $500/1000 lnes



erated leaves much to be desired. The


That is, use of this tool would save on the
single most serious issue facing us today 
 
order of $500 for each 1000 lines of Fortran
is the lack of coherent methodologies for 
 

Such method- processed!
the construction of software. 
 
ologies should address the entire construc- Concerning portability, this tool de


tion process from requirement analysis to tects and documents a large number of poten

tial Fortran portability problems, such as:
maintenance. Furthermore, the absence of 
 

. statement orderings,
explicit methodologies explains the lack of 

sound software management disciplines, so . operations of equal precedence that


necessary in a process of such complexity are not fully parenthesised,



. implcit conversions,
as the construction of software. 
 
and many othersThe key to methodology and management . shde effects, 

are proper tools. Indeed, Webster's New We have been moving software across 

Collegiate Dictionary defines management 
 different computers in a straightforward
 

'judicious use of means to accomplish manner with the aid of this tool.
as: 
Each Softool tool produces appropriate
an end', and it defines tool as 'a means 
 

to an end'. From these we deduce: management indices that help concerned man


(software) management: 'judicious use of agement obtain visibility over their soft

ware. For example, this tool generates
(software) tools.' 

three different indices: 

. average number of errors perFORTRAN TOOL SET 
 
statement
The available Fortran tools apply prin-


. average number of warnings percipally to the programming, testing and 
 
statement
maintenance phases of the software construc-


. average number of portabilitytion process. These tools consist of: 
 
problems per statement
standard auditors 
 

error detectors
 

portability aids 2. FORTRAN INSTRUMENTER I


instrumenters This tool accepts as input a Fortran


documenters source program and execution time test data


clerical aids sets for the program. Upon execution of


quality assurers the source program it automatically gener-


All of the Fortran tools are coded in ates routine level profiles. These pro

a highly portable subset of Fortran. Next, files quantize testing and optimization


we highlight some of the existing Fortran efforts in detail. The information pro

tools. vided by the prefiles includes: percent of
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test coverage, time spent in each routine,


number of calls to each routine, test ef

fectiveness index and an optimization in

dex.



This tool has a major impact in ex

pediting and reducing the effort spent in


testing. In essence, it helps minimize


the test data required for a specified


coverage, which in turn results in de

crelsed test data execution time and also


reduces the human time required to analyze


test results. Similarly, this tool is a


great aid in focusing optimization efforts.


Our experience indicates that savings in


excess of 10% of the overall software de

velopment effort are readily obtained with


the help of this tool.



This tool also serves as a valuable


adjunct to the ANSI FORTRAN CHECKER AND


ERROR DETECTOR during program portability


efforts.



3. FORTRAN DOCUMENTER A



The main purpose of this tool is to


facilitate and expedite the uniform docu

mentation of Fortran source program units.


In essence, management provides to this


tool the definition of a documentation


template. Programmers write their code in


a simple and straightforward shorthand


format. The code written by the program

mers is input to this tool which outputs


fully commented units of source code, doc

umented according to the predefined docu

mentation template. Our experience indi

cated that excellent, self-contained doc

umentation can be consistently obtained


with the aid of this tool. Moreover, the


keypunching and/or terminal entry work is


reduced by a factor of about 51



Other members of our integrated set


of Fortran tools are a statement level in

strumenter and two other documenters that


accept as input a source program and gen

erate extensive local and global cross

reference directories.



SUMMARY



The objective of this presentation


has been to outline a set of integrated


Fortran tools available from Softool Corp

oration. These tools have extensive and


highly cost-effective application in the
 

development, management and quality assur

ance of Fortran based software. If we are


to conquer the ubiquitous software problem


we must promptly incorporate into our meth

odology tools of the kind described here.
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I. Introduction 
 

There has been considerable interest lately 
 
inmethodologies for the production of high 
 
quality computer software. Work in this area 
 
has been carried out by researchers in a wide 
 
variety of disciplines and covers an impressive


spectrum of approaches. Some of the more active 
 
current lines of research include software 
 
management techniques [1, 2], creation of error 
 
resistant programming techniques [3, 4, 5]; and 
 
design of error resistant programming languages 
 
[6, 7] 
 

There has also been considerable activity 
 
in the creation of program testing, verification
 

and documentation tools. The work in this area 
 
has been directed primarily towards two different 
 
but related goals -- the detection and examination 
 
of errors present in a program, and the determina-

tion that a given program has no errors of some 
 
particular type. Among the diverse activities in 
 
this area, this paper shall focus on four of the 
 
major approaches -- namely dynamic testing, symbolic 
 
execution, formal verification and static analysis 
 
In this paper, the different patterns of strengths, 
 
weaknesses and applications of these approaches will


be shown. Itwill, moreover, be demonstrated that 
 
these patterns are in many ways complementary, 
 
offering the hope that they can be coordinated and 
 
unified into a single comprehensive program testing 
 
and verification system capable of performing a 
 
diverse and useful variety of error detection, 
 
verification and documentation functions, 
 

II. Four Error Detection 
 
and Verification Techniques 
 

In dynamic testing systems, [8, 9, 10, 11] a 
 
comprehensive record of a single execution of the 
 
program is built. This record -- the execution 
 
history -- is usually obtained by instrumenting 
 
the source program with code whose purpose is to 
 
capture information about the progress of the execu-

tion. Most such systems implant monitoring code


after each statement of the program. This code 
 
captures such information as the number of the 
 
statement just executed, the names of those varia-

bles whose values had been altered by executing 
 
the statement, the new values of these variables, 
 
and the outcome of any tests performed by the 
 

IResearch supported by NSF Grant # MCS77-02194. 
 

statement. The execution history is saved in a


file so that after the execution terminates it can


be perused by the tester. This perusal is usually


facilitated by the production of summary tables


and statistics such as statement execution fre

quency histograms, and variable evolution trees.



Many dynamic testing systems also monitor


each statement execution checking for such error


conditions as division by zero and out-of-bounds


array references The monitors implanted are


usually programmed to automatically issue error


messages immediately upon detecting such condi

tions in order to avoid having the errors concealed


by the bulk of a large execution history.



Some systems [9, 10] even allow the tester


to create his own monitors, direct their implanta

tion anywhere within the program, and specify where


and how their messages are to be displayed. The


greatest power of these systems is derived from


the possibility of using them to determine whether
 

a program execution is proceeding as intended.


The intent of the program is captured by sets of


assertions about the desired and/or correct rela

tion between values of program variables.



Dynamic testing systems provide strong error


recognition and exploration capabilities, but are


unable to determine the absence of errors. Their


results are narrowly applicable, being valid only


for a single program execution. These results are


quite extensive and detailed, however, providing


sufficient material for deep insight into the


program. These systems allow extensive human


interaction, and their power is most fully realized


when a skilled human tester is using them interac

tively. They require as input a complete set of


actual program input data. The success of a


dynamic testing run as a vehicle for discovering
 

and exploring errors is largely dependent upon the


selection of revealing and provocative input data.


This usually presumes the involvement of a human


tester who is knowledgable about the program being


tested.



Insymbolic execution, symbolic representa

tion (inthe form of formulas) are kept for the


evolving values of variables instead of numeric


quantities. For a given path through the program,


the values of all the variables encountered are


maintained as formulas. The only unknowns in


these formulas are the input values to the program;


all other values of variables are functions of con

stants and these input values and, therefore, can
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be removed by substitution. The formulas can be 
 
examined by a human tester to see whether they 
 
embody the intent of the program If so, then the 
 
tester has determined that the program will yield 
 
the desired results for all executions which follow 
 
the given program path. A number of symbolic exe-

cution systems have been produced [12, 13, 14, 15]. 
 

Clarke's system [12] is perhaps the most 
 
interesting symbolic execution system in the con-

text of this paper, in that it indicates better 
 
than the others the range of error detection and 
 
verification capabilities possible with the sym

bolic execution approach. In Clarke's system, the 
 
execution path which is specified as input is used 
 
to dictate the required outcome of all conditional 
 
tests along the path. Hence, the path dictates a 
 
set of constraints which must be satisfied in order 
 
for execution to proceed along the given path. 
 
These constraints are in terms of current values 
 
of program variables, but through the use of sym- 
 
bolic execution, they can more profitably be 
 
expressed as relations in terms of current values 
 
of program variables. The system of relations 
 
obtained in this way is taken to be a set of simul-

taneous constraints, and is examined by Clarke's 
 
system for consistency. A solution to a consistent 
 
set of constraints is a set of values which, when 
 
taken as input to the program, will force execution 
 
of the given path If the constraints are incon-

sistant, then the path is unexecutable -- that is, 
 
there exists no data which will effect the execution


of the given path. 
 

Clarke's system also creates additional, 
 
temporary constraints for the purpose of error 
 
detection and verification. Constraints are 
 
created which test for the possibility of array 
 
bounds violations, DO statement loop control varia-

ble errors and division by zero. Clarke's system will 
 
attempt to solve the system of constraints to pro-

duce program input data which forces the traversal 
 
of the given input path, followed by a zero-divide 
 
error at the given point, 
 

Symbolic execution systems provide strong

error detection capabilities and some pathwise 
 
verification capabilitieswhich fall short of the 
 
power of full verification Symbolic execution 
 
systems provide diagnostic information which is 
 
applicable to classes of executions rather than a 
 
single execution. This is achieved by supplying 
 
symbolic relationships between program values in 
 
place of precise numeric data. These systems 
 
require human intervention and evaluation in order 
 
to carry out error detection, although the pathwise 
 
validation capabilities require no human assistance. 
 
Symbolic execution systems require that a test path 
 
through the program be supplied. It is important 
 
that the path given be revealing and provocative, 
 
thur requiring the skills of a knowledgable human 
 
tester 
 

In static analysis systems, the text of a 
 
source program is examined in an attempt to deter-

mine whether the program is defective due to local 
 
malformations, improper combinations of program 
 
events, or improper sequences of program events. 
 
In order to make this determination, each statement 
 

of the program is represented by a small, carefully


selected set of characteristics. The static analy

sis system can then examine each characteristic


set on a statement-by-statement basis for malfor

mations, and various combinations and sequences of


statements on a characteristic-by-characteristic


basis for faulty program structure or coordination.


No attempt ismade at replicating the entire beha

vior or functioning of the program Rather, static


analysis attempts to examine the behavior of the


entire program only with respect to certain
 

selected features
 


The syntax checking of individual statements


of a program provides a good example of static


analysis. More interesting and valuable error


detection is obtained by examining the characteris

tics of combinations of statements. For example,


illegal combinations of types can be detected by


examining declaration statements and then examining


the executable statements which refer to the varia

bles named in the declarations Similarly, mis

matches between argument lists and parameter lists


associated with the invocation of procedures or


subroutines can also be made by static analysis


systems. Some of the types of static analysis


discussed above are available with most compilers.


Other types, such as argument/parameter list


agreement are far less common in compilers, but are


found in such stand-alone static analysis systems


as FACES [16] and RXVP [17].



The use of static analysis techniques to


examine sequences of program events enables the


detection of still other types of program errors.


InDAVE [18] each statement of a program is repre

sented by two lists -- a list of all variables


used to supply values as inputs to the computa

tion, and a list of all variables used to carry


away values produced as output by the computation.


The static analysis then examines sequences of


statement executions which are possible given a


program's control flow structure, and determines


such things as whether it is possible to reference


an uninitialized or otherwise undefined variable,
 

and whether it is possible to compute a value for


a variable and then never refer to the computed


value In such cases, the static analyzer deter

mines and outputs the statement sequence for


which the anomalous pattern of references and


definitions occurs. Similarly, it would be possi

ble to scan programs for other improper sequences
 

of events such as openings, writings, and closings


of files; and enablings and disablings of inter

rupts. Paths along which these sequences could


occur would then also be determined. It should be


emphasized here that the most recent static analy

sis systems which examine event sequences for


improprieties employ search techniques which enable


the examination of all sequences of statement


executions which are possible, given the flow of


control structure of the program. These search


techniques, first studied in connection with pro

gram optimization [19, 20, 21, 22] are also quite

efficient. Unfortunately, the most efficient of


them will merely detect the existence of such


improper sequences. Somewhat less efficient algo

rithms are needed in order to determine the actual


sequences.



34





It can be seen from the preceding paragraphs 
 
that static analysis systems offer a limited amount 
 
of error detection, but are capable of performing

certain verification functions. Static analysis 
only examines a few narrow aspects of a program's 
 
execution, but the results of this analysis are 
 
comprehensive and broadly applicable to all possi-

ble executions of the program Here, as in the 
 
case of symbolic execution, it is seen that the 
 
verification capabilities are obtained without the 
 
need for human interaction. A human tester is 
 
required, however, in order to interpret the 
 
results of the analysis and pinpoint errors. 
 
Finally, it is important to observe that static 
 
analysis requires no input from a human tester, 
 
As output, itproduces either paths along which 
 
anomalous program behavior is possible, or valida- 
 
tion results indicating that no anomaly-bearing 
 
paths exist 
 

In formal verification, the code comprising 
 
a program is compared to the total intent of the 
 
program, as captured and expressed in the form of 
 
assertions. Assertions are used to describe the 
 
program output expected in response to specified 
 
program inputs. The goal of the formal verifica

tion isto prove a theorem stating that the program 
 
code actually achieves this asserted input/output 
 
transformation. The proof of this theorem is 
 
reduced to the proof of a coordinated set of 
 
lemmas. The statements of these lemmas are derived 
 
from a set of intermediate assertions positioned in 
 
specific locations throughout the program code 
 
These assertions describe precisely the desired 
 
status of program computations at the locations of 
 
the assertions. Differences in status between 
 
assertion sets separated in position by a body of 
 
code embody the transformation which that code 
 
segment is intended to perform. Proving that the 
 
code segment achieves the transformation establishes 
 
the lemma that the segment is correct. A total 
 
formal verification is achieved if the program is 
 
also proven to always terminate. 
 

It is quite significant to observe that 
 
symbolic execution is the technique used to deter-

mine the transformation effected by a given code 
 
segment. Hence, the symbolic execution technique


is central to formal verification Formal verifi-

-cation can, in fact, be viewed as a formalized 
 
framework for carrying out a rigorously complete
and coordinated set of symbolic executions and
comparisons to intended behaior. 
 

Formal verification is the most rigorous, 
 
thorough and powerful of the four techniques 
 
presented here. There are sizable problems in 
 
carrying it out, however. The size and intricacy 
 
of the work make it costly. The need for exact 
 
mathematical models of the desired and actual 
 
behavior of a program invite errors and weakening 
 
inaccurate assumptions. It is generally agreed, 
 
however, that the discipline and deep perception 
 
needed to undertake formal verification are useful 
 
in themselves Anticipation of formal verification 
 
seems to foster good program organization and 
 
design Attempts at formal verification invariably 
 
lead to improved insight into both the goals and 
 
implementation of a program. 
 

IllI.An Integrated Testing,


Analysis and Verification System



Recently, each of the four above techniques


has received considerable attention and investi

gation. Stand-alone systems, implementing each


have been constructed, and experience has been
 

gained in using each. Partly as a result of this


experience, there is a growing concensus that no


single technique adequately meets all program


testing verification and analysis needs, but that
 

each contributes some valuable capabilities It


thus becomes clear then that the four techniques


should not be viewed as competing approaches, but


rather that each offers useful but different
 

capabilities. Attention then naturally turns to


the examination of how the various ,capabilities


can be merged into a useful total methodology and


ystem.



Such a methodology is described now. The


methodology makes provision for the progressive


detection and exploration of errors as well as


provision for selective verification of different


aspects of program behavior.



Both types of activities are begun with


static analysis of the source program using a


pathwise anomaly detecting analyzer. Inthe next


phase of the methodology, symbolic execution is


used to further the results of static analysis.


The symbolic execution focuses on anomaly-bearing


paths detected by the static analyzer to further


the error detection and verification power of the


methodology. The methodology next calls for the


application of either dynamic testing or formal


verification. Dynamic testing is used to obtain


the most precise but restricted examination of


the nature and sources of errors and anomalies


whose existence has been determined during the


first two phases. Symbolic execution is used to


generate test data for the dynamic test of individ

ual cases Formal verification-is used to obtain


the most definitive demonstration of the absence


of errors Extreme rigor and thoroughness can be


applied at high cost in showing the absence of


errors.



A schematic diagram of the methodology is


shown in Figure I



The above strategy organizes the four


techniques into a progression of capabilities


which is natural in a number of important ways. It



begins with a broad scanning procedure and progress


to deeper and deeper probing of errors and anomaly


phenomena It initially requires no human inter

action or input. It progresses to involve more


significant human interaction as human insight
 

becomes more useful in tracing errors to their


sources and constructing mathematical demonstra

tions of correctness. Itprovides the possibility


of some primitive verification without human


intervention, and then allows error detection based


upon the negative results of the verification scan.


The flow of data is also most fortuitous. The


first phase static analysis requires no input. It


produces as output, however, paths through the pro

gram which are deemed to be significant inerror
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output of the first phase. Finally, the dynamic 
 
testing phase requires actual program input data


It has been observed, however, that symbolic execu-

tion systems can be used to produce data sets 
 
which are sufficient to force the execution of 
 
their input paths Hence, the second phase can be 
 
used to provide the input required by the dynamic 
 
testing phase. 
 

It is also interesting to observe that the 
 
use of assertions provides a unifying influence in 
 
integrating the four techniques. All techniques


except static analysis are explicit assertions to


demonstrate either the presence or absence of 
 
errors Static analysis uses implicit assumptions


of proper behavior as embodied in language seman-

tics, but could also benefit from explicit asser-

tions Seen in this light, the four techniques 
 
basically differ in the manner and extent to 	 which 
 
they perform assertion verification. Thus, it 
 
seems reasonable to require that a program and 
 
initial set of assertions be submitted. The adher-

ence of program to assertions would be examined at


every stage. The stages would test the adherence 
 
in different ways, progressively establishing 
 
firmer assurances of adherence or focusing more 
 
sharply on deviations. 
 

IV. Conclusion
IV.Cocluo 
 

The foregoing section has presented a rather 
 
saguine view of the capabilities of an integrated 
 
testing system combining the best features of 
 
static analysis, symbolic execution, dynamic test-

ing, and formal verification Although software 
 
systems implementing each of these techniques have 
 
been produced, the task of constructing a usable


system is still far more formidable than simply 
 
building software interfaces between existing 
 
systems Significant research must be completed 
 
before a useful system can be built. 
 

The outlines of some of the longer range 
 
outcomes of this research can be observed already. 
 
It appears, for example, that this research will 
 
show 	that many of the testing operations currently 
 
performed by dynamic testing systems alone, can be 
 
performed more effectively by some combination 
 
with static analysis, symbolic execution and formal 
 
verification. This would lessen the reliance of 
 
testing upon chance and human interaction. It 
 
also 	appears that this research will show that the 
 
activities of program testing and formal verifica-

tion 	are more closely related than previously 
 
generally thought. Some of the static analysis 
 
techniques proposed here can reasonably be thought 
 
of as techniques for producing proofs of the 
 
correctness of certain restricted aspects of a 
 
given program Moreover, certain proposed appli-

cations of symbolic execution are tantamount to 
 
assertion verification over a limited range.omeTransactions on Software Enineering SE-2,
is hisreserchmayprovde
epeced tat 	 It 

p.215-222 (September 1976)
is expected that this research may provide some 
 

insight into some ways inwhich testing and prov


ing activities can be utilized as complementary 
 
activities The proposed research should confirm 
 
these and other important conjectures. 
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ABSTRACT 
 

We propose a collaborative effort to develop a 
 
systematized collection of software tools for



Fortran programming. 
 

1. SOME SOFTWARE TOOLS 
 

LET US TRY TO CLASSIFY some software tools in terms 
 
of their applicability during the development of a 
 
typical Fortran program. 

design 
 

+ 
 

coding 
 

+ 
 

testing 
 

+ 
 

distribution 
 

+ + 
 

use maintenance 
 

DESIGN - At this phase the program's specifi
cations are determined and algorithms and data 
structures are selected. Software tools can assist 
in the preparation and checking of design specifi
cations. (JO) A much more specialized tool is 
software for roundoff analysis (14,15) which can be 
used to help design a program performing matrix 
computations. 
 

CODING - Text editors, compilers, structured 
 
Fortran preprocessors like RATFOR (11) or EFL, and 
 
source-text formatters like POLISH (3) are useful. 
 

TESTING - Debugging systems (8) help track down 
 
program errors and profilers (10,22) can locate un

tested code and code in need of scrutiny for possible 
manual optimization. The PFORT Verifier (20) and



DAVE (6,17,18) can diagnose certain kinds of errors. 
 
Currently, much research (9,16,19,22) in software 
 
engineering is focused on this phase of software 
 

development. 
 
DISTRIBUTION - Distribution aids can assist in 
 

preparing multiple versions (for different machine 
 
number systems or different machines) from the


"master version" of a program. (2, pp. 305-423) 

MAINTENANCE - Distribution aids can also be


used to keep track of the various releases of a



program and to update collections of programs


stored on tape. (5,21) For maintaining a program



written by someone else, it may help to automatic

ally convert Fortran into, say, well-structured


Fortran 77 with a structurer. (1)



2 TOOLPACK



We feel that the time has arrived for a col

laborative effort to develop a systematized collec

tion of software tools for Fortran programming.


Since we envision an effort along the lines of the


"PACK series" (EISPACK and its descendants) we use



the name "TOOLPACK " 
Probably the first and most crucial design de


cision would be the selection of a Fortran exten


sion, which we will call FE, with adequate control


structures and with data types sufficient to make 
writing the software tools relatively painless (the


tools should be written in this language). Com

patability with Fortran 77 seems extremely desir

able, but perhaps other considerations will make,


say, EFL the proper choice A processor for FE



should be designed with all of its possible uses in



tools (i)-(iv) in mind (we could also use it to up

date our minicompiler (14,15))



The exact contents of TOOLPACK would have to be



dictated by the willingness and interests of con

tributors One possibility is that TOOLPACK ini


tially contain:


(i) a FE-to-PFORT translator,


(ii) a FE source-text formatter which transforms



PFORT into PFORT,


(iii) a FE profiler,


(v) distribution and maintenance aids.


Of the candidates for eventual inclusion in



TOOLPACK, some are promising, e.g., DAVE (we hope


that improvements will make wide use economically


feasible) and program structurers (they are of in

terest as much for insights into the programing


process gained during their development as for


their usefulness as a tool). On the other hand,


some candidates are of doubtful value, e.g , auto
matic test data generators (we feel that our method



(13) is best in many cases, but even it does not


seem especially useful) and symbolic execution sys

tens (9), while some candidates seem to have no


immediate practical value, e.g., automatic program 
verifiers. (4)



3. JUSTIFICATION



We are convinced that TOOLPACK would easily pay


for itself in savings to Fortran programmers. How
ever, there are software development issues at



stake which are far more important

The PACK series is the prime example of the
 


spread of what might be called the "PACK paradigm"



'Numbers in parentheses designate References at end 

of paper. 
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of computer science research Characteristically, 	 workshop should be to come as near as possible to 
 

(1) such endeavors take the form of collaboration completing a package of proposals for constructing 
 
by research leaders to produce portable state-of- and testing TOOLPACK, also to be submitted to the 
 
the-art software and all levels of supporting docu-	 Department of Energy and the National Science Foun
mentation, (ii) federal funding provides partial dation jointly. Some discussion of design questions 
support and (III) the resulting software and docu- (e.g , the choice of FE) should take place, but only 
ments are placed in the public domain. until someone assumes responsibility for a generally 

Consider the following map of the computer pro- approved software tool so that a concrete proposal 
 
gramming milieu (it is neither complete nor drawn can be made. Detailed design questions need not be 
 

considered until TOOLPACK development Is funded. 
to scale). The approximate domain of the PACK 
 

paradigm is shaded
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EXTENDED ABSTRACT 
 

The TANPR System originated as an approach to 
 
the problem of automating the routine modifications 
 
of Fortran source programs required to adapt them 
 
to a variety of uses or environments fl]** Over-

all, the system accomplishes such modifications by 
 
applying transformations to Fortran programs at the 
 
source level. But the process differs markedly, in 
 
detail, from string-based editing or macro expan-

sion. Three steps are involved: 
 
(1) A Fortran source program is processed by the 
 

TAMPR Recognizer, yielding essentially a parse 
 
tree called the abstract form. 
 

(2) The Transformation Interpreter applies IGT's 
 
(Intragramatical Transformations) to the 
 
abstract form as tree operations [2] 
 

(3) The abstract form is then reconverted to source 
 
program form by the Formatter. 
 

By ensuring that the transformations are applied 
 
only to the correct syntactic entities and only in 
 
the intended contexts, the use of the abstract form 
 
greatly simplifies establishing the reliability of 
 
the overall process. 
 

The Formatter, of course, is responsible for 
 
meeting the requirements of the target language, 
 
such as use of blanks, statement continuations, 
 
etc. In addition, the formatting process is 
 
charged with imparting to the resultant program a 
 
certain degree of style. Areas of concern here are 
 
spacing between symbols, choosing "logical" break-

points in multi-line statements, and, at a higher 
 
level, commenting and indentation to help reveal 
 
program structure The expectation of variation 
 
of opinion among researchers as to what constitutes 
 
good style plus the knowledge that our own criteria 
 
for good style would evolve with experience led us 
 
to reject the idea of a fixed formatting process, 
 
such as that essentially used in Lang's STYLE 
 
editor [3]. The Formatter, accordingly, was de-

signed to interpret an easily modified set of 
 
formatting instructions, 
 

Several alternative designs were possible for 
 
the Formatter. For example, the approach of em-

bedding formatting directives in the program to be 
 
formatted, as in document formatting systems, was 
 
rejected partly because it would have seriously 
 
complicated the application of IGT's. More impor-

tantly, however, the idea of formatting instructions 
 
separate from the programs appealed because it 
 
would permit one set of instructions to be used for 
 
the formatting of many Fortran programs. Pursuing 
 
that idea, we next concentrated on the form of the 
 
instructions. A tabular encoding in the manner of 
 
Koch and Schwarzenberger [4] suffered in our opin-

ion from being obscure, unnatural, and not suffm-

ciently expressive and was rejected. We chose


instead to develop a high-level procedural language, 
 
Format Control Language, containing appropriate 
 
application-oriented features as well as general 
 
computational capability. The Formatter, then, is 
 
programmed in FCL.



How does one write FCL programs that are
 

broadly applicable to the conversion of a whole



class of Fortran programs from abstract to concrete



form? We will answer this question by surveying


some of the features of FOL.



Since the trees to be formatted are essential

ly parse trees, a first-order approximation to the


desired output can be obtained simply by traversing


the tree in canonical (left-to-right, or recursive


descent) order producing output at the terminal


nodes. That behavior is in fact built in to the


Formatter and does not require programming in FCL.


The automatic traverse falls short of providing all


the required behavior, however For instance, no


special treatment would be provided for label def

initions or for "end-of-statement," and spacing


between tokens would be fixed at some value, say


zero or one. Or there could be various reasons


(see [5]) for pruning the tree (i.e., for not


descending into certain subtrees) or for emitting


some computable function of the "print name" of


one or more terminal nodes rather than just the


print names themselves, in order and with the fixed


spacing between them. These problems are addressed


by various features of FCL, some of which are des

cribed below.



In order to intercept the automatic traverse


at any desired point one employs a fundamental


FCL control structure called a production block.


A production block is similar to a procedure block


except that its "name" is a representation of a


production in the grammar to which the tree con

forms (in other words it is the representation of


a type of node which may occur in the abstract


form tree). Continuing the analogy, a production


block is invoked not by a CALL statement but by


arrival of the automatic traverse at a node of the


type described by the production block's name



Within the body of a production block, the


individual components of its name can be used to


refer symbolically to the actual node at which the


traverse was interrupted and to its immediate sub

nodes. Two useful and essential functions derive


from this capability. First, tile "print names" of


terminal subnodes may be used in EMIT statements


to produce fragments of textual output, or they


may be used in computations leading to such output,


for example, to construct and emit the nrtext


form of a Hollerith constant represented in the


tree by a terminal node whose print name contains
 

just the text part. Second, the automatic traverse


may be continued into a particular subtree headed


by a subnode of the node at which it was interrup

ted by referring to the subnode in a FORMAT state

ment.



Normal block structure rules, when applied to


the nesting of production blocks, yield another


useful and essential feature. Since a nested



*Work performed under the auspices of the U.S.
 

Department of Energy.


**Numbers in brackets designate References at end



of paper.
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block is not "known" and cannot be invoked unless 
its containing block is active, we are provided 
with a simple and natural way to make the format-

ting of a particular type of node (e.g., phrase) 
 

dependent on its context. An example of the use 
 
of this feature, in conjunction with SPACE state-


ments, is to replace the default spacing ofne 
 

as it applies, for instance,on either side of an 
 

arithmetic operator by zero when that operator



appears inside a subscript list. 
 
. The problem of breaking and continuing state


ments that are too long to fit on one line has 
 

received special attention Statements can in 
 
general be thought of as composed of nested Zssts. 
 

For example, a logical-IF statement containing, 
 

say, a CALL statement is a list of two items, 
 

the IF-test and the CALL statement. The argument 
 

list in the call is a list of expressions separ-


ated by commas. Each expression is a list of 
 
terms separated by "+" or "-", each term is a 
 

list of factors separated by "*" or "", etc. When 
 

it is determined that a statement must be broken, 
 

it is broken at the rightmost breakpoint of the 
 

shallowest (highest level) unclosed list that has at 
 
least one breakpoint on the line, and it is con-


tinued on the next line in the column in which the 
 

broken list began. Since the beginnings, ends, 
 

and breakpoints of lists do not always bear 
 
constant relationships to the recursive phrase 
 

structure of the grammar, we require that they be 
 

marked in passing by the execution of FCL state-


ments provided for that purpose. For instance, 
 

the beginning of an argument list is just inside 
 

the left parenthesis, while its breakpoints are 
 

just after the commas and its end is just outside 
 

the right parenthesis (by not closing the list 
 

until after the right parenthesis, a possible 
 
"dangling parenthesis" is avoided if the line 
 

should overflow by just that one character) Some 
 
controversy surrounds the following question: if 
 

a list of terms or of factors, etc., is broken, 
 

should the breakpoint be before or after the


arithmetic operator? The programmability of the
 


Formatter gives the TAMPR user his choice



Early in the design of the Formatter a more



general approach to choosing the breakpoints was



discussed, namely, that of buffering an entire



statement and then choosing all of its breakpoints


to minimize the overall badness of the result,



defined in some suitable way At the time we were


not prepared to deal with that much added complex


ity. Perhaps we will restudy that approach after



Knuth shares the results of implementing a similar



dynamic programming algorithm for the line divi

sion of paragraphs in his technical text system,



TEX [6].


FCL contains also a standard assortment of



general control structures and declarative



and computational features for integer and


character string data types. These have



proved of particular value in algorithms to


detect and preserve columnar relationships and



paragraph structure in blocks of comments that



are subjected to a variety of substitutions and



other minor transformations. A discussion of


other features of FCL, such as those for marking



labels and ends of statements, setting off


comments, and indenting, may be found in [5],



along with numerous illustrations of the use of


all the features mentioned in this abstract.



The Formatter's programmability, particularly



its general computational and control capabili


ties, has aided its own evolution by permitting



new ideas to be simulated, at least, for evalua


tion before taking the decision to build them in 
as primitives. It has likewise made possible the


use of TAMPR in new application areas (see [7]),


such as a verification condition generator in a



program verification project. In that use, the


requirement to format ordinary infix logical
 


and arithmetic expressions as prefix output was


easily met.
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1. 	 Introduction 

Existing languages for numerical software are not altogether satisfactory. Fortran, even 
preprocessed, has troublesome limitations Unfortunately, proposed replacements have been 
discouragingly large, or omit essential features like variably dimensioned arrays and Fortran 
compatibility 

A new language has been designed to include such crucial features, but otherwise be as 
small as possible This language, called T, includes indention to indicate block structure, novel 
loop syntax, and engineering format for real constants By .preprocessing into PL/I, implemen
tation cost was kept low. 

But this language can only be regarded as a stopgap. The next step is to deal with more 
fundamental issues, by more fully exploiting arrays, by making pointers available in a controlled 
way, and by arranging for better declaration and syntax for using subroutine libraries. 

2. 	 Defects of Existing Languages 

Why do we need new languages? Consider how your favorite programming language 
deals with the following catalog of annoying features encountered in writing mathematical 
software Though the list is long, a failing on even one issue can make life rather unpleasant. 

Arithmetic 

* 	 Converting a program from single to double precision is a chore Variables must be 
declared, constants like 1EO converted to 1DO, and function names changed 

* 	 Precision can easily be lost accidentally Intermediate results may be truncated, or 
extended with garbage. 

* 	 One must remember a distinct name for each version of each routine that handle different 
types and precisions of numbers. 

* 	 Silent type conversions, as in I = J = 0, can give wrong answers without warning. 

Arrays and Pointers 

* 	 Subscript checking is not available. 
* 	 Array bounds are fixed at compile time. Working with several datasets requires repeated 

recompilation or the use of a clumsy stack mechanism 

* 	 All lower bounds must be 1 If the natural origin is 0, off-by-one errors easily slip in. 

* 	 Information about bounds must be explicitly passed in subroutine calls. This is so incon
venient that fake bounds of 1 are used instead. 
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* 	 References are used in a fundamental but unnatural way, and therefore wind up being 
hidden. (e g. real really means ref real) 

* 	 Operations like the sum of two vectors or the sum of all components of a vector are not 
available, or only available by a somewhat unreadable subroutine call. Or the operations 
are available, but their implementation is expensive enough that-one-is advised not to-use 
them. 

Input-Output and Error-Handling 
* 	 The underflow routine, as it properly sets the result to 0, loudly reports its activity. 
* 	 When a fatal error occurs, the input-output buffers are not flushed No subroutine call 

traceback is provided either 
* 	 The free-format facilities are nonexistent or produce ugly output, so awkward format 

specifications must be prepared 

Restrictions 
* 	 The form of identifiers is severely limited 
* 	 Do loop bounds are restricted. 
" 	 Modern control constructs, macros, procedure variables, and fully-supported structured 

data types are missing 
* 	 The interface to Fortran routines is weak, particularly with arrays, input-output, and error 

handling 
* 	 There are not enough restrictions to allow good optimization, particularly when function 

calls are present 

Clutter 
* 	 Quotation marks are required around keywords Semicolons must appear in specified 

places. 
* 	 Poor comment conventions make it tricky to comment out blocks of code. 
* 	 The reference manual is bulky, hard to read, and obsolete. 
* 	 The compiler is slow, expensive, large, difficult to use, and contains many bugs 

3. 	 A Quick Fix 
Each of these problems has been solved before, but not in a single language. So to show 

it could be done and to provide a useful tool, I drew up plans for a small language T [Grosse 
1978] and, with the help of another numencal analysis student, implemented it in about a 
month. 

We chose to preprocess into PL/I, following Kernighan and Plauger's [1976] motto to "let 
someone else do the hard work" By incorporating a macro processor to handle tasks like revers
ing array subscripts for Fortran compatibility, we managed to avoid parsing most program text, 
in the same spirit as RATFOR and other Fortran preprocessors At the same time we cleaned 
up a few aspects of PL/I, for example converting 1 0 automatically to BINARY (1 00000000...) 
so that precision and type troubles are avoided 

In addition, we were able to include several unusual features For the ALGOL veteran, 
perhaps the most striking is the complete absence of BEGINs and ENDs. Not only is the text 
indented, but the indention actually specified the block structure of the program. Such a 
scheme was apparently first proposed by Landin [1966], except for an endorsement by Knuth 
[1974], the idea seems to have been largely ignored 

Ideally, the text editor would recognize tree-structured programs In practice, text editors 
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tend to be line oriented so that moving lines about in an indented program requires cumber
some manipulation of leading blanks. Therefore the current implementation of T uses BEGIN 
and END lines, translating to indention on output. 

Whatever the implementation, the key idea is to force the block structure and the inden
tion to be automatically the same, and to reduce clutter from redundant keywords. 

In addition to normal statement sequencing and procedure calls, three control structures 
are provided. The CASE and WHILE statements are illustrated m this typical program seg
ment 

WHILE(NORMYP > 1(-3) & 1<=IFLAG & IFLAG<=3) 
TOUT T + 10(-3)/NORMYP 
ODE(DF,2,Y,T,TOUT,RELERR,ABSERR,IFLAG,ODEWORK,ODEIWORK) 
CASE 

2 = IFLAG 
GDRAW (YPF) 

3 = IFLAG 
PUT ('ODE DECIDED ERROR TOLERANCES WERE TOO SMALL.') 
PUT 	 ('NEW VALUES') 
PUT DATA (RELERR,ABSERR) 

ELSE 
PUT 	 ('ODE RETURNED THE ERROR FLAG') 
PUT DATA (IFLAG) 

FIRST 
DF(T,Y,YP) 
NORMYP = NORM2(YP) 

The CASE statement is modelled after the conditional expression of LISP, the boolean expres
sions are evaluated in sequence until one evaluates to YES, or until ELSE is encountered The 
use of indention makes it easy to visually find the relevant boolean expression and the end of 
the statement 

One unusual feature of the WHILE loops is the optional FIRST marker, which specifies 
where the loop is to be entered In the example above, the norm of the gradient, NORMYP, is 
computed before the loop test is evaluated Thus the loop condition, which often provides a 
valuable hint about the loop invariant, appears prominently at the top of the loop, and yet the 
common n-and-a-half-times-'round loop can still be easily expressed. 

The FOR statement adheres as closely as practical to common mathematical practice 

FOR 	 (I <= I <= 3)


NORMSQ = (Y(1)-X(I,1))**2 + (Y(2)-X(I,2))**2


Z = Z + H(I)*EXP(-O 5*W(I) *NORMSQ)



Several years experience with these control constructs has demonstrated them to be adequately 
efficient and much easier to maintain than the alternatives. 

Beginners often find Fortran's input/output the most difficult part of the language, and 
even seasoned programmers are tempted to just print unlabelled numbers, often to more digits 
than 	 justified by the problem, because formaiting is so tedious. PL/I's list and data directed 
I/0 is so much easier to use that it was wholeheartedly adopted in T By providing procedures 
for modifying the number of decimal places and the number of separating blanks to be output, 
no edit-drected I/O is needed Special statements are provided for array I/O so that, unlike 
PL/I, 	 arrays can be printed in orderly fashion without explicit formatting 

Since almost as much time is spent in scientific computation staring at pages of numbers 
as at pages of program text, much though was given to the best format for displaying numbers. 

In accordance with the "engineering format" used on Hewlett-Packard calculators and with 
standard metric practice exponents are forced to be multiples of 3 This convention has a histo
gramming effect that concentrates the information in the leading digit, as opposed to splitting it 
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between the leading digit and the exponent, which are often separated by 14 columns, the use 
of parentheses to surround the exponent, like the legality of imbedded blanks, was suggested by 
mathematical tables. This notation separates the exponent from the mantissa more distinctly 
than the usual E format 

4. 	 A Longer-Term Solution 
By building on a rather powerful host language, T goes a long way towards meeting the 

standards implied in section 2 But there are certain fundamental problems that will probably 
stimulate a completely independent implementation. 

Source-level optimization is desirable because particular transformations can be performed 
or analyzed by hand. To permit this and to clarify the use of "arbitrary" arguments for passing 
information untouched through library routines, a controlled form of pointers can be intro
duced By manipulating descriptor blocks, considerably more powerful array operations are 
feasible. The increasing availability of computer phototypesetting equipment has implications 
for language syntax Declarations and statements ought to be able to be intermixed. With the 
growing importance of subroutine libraries, provision must be made for language extensions to 
support new data types and operators. 

By using Fortran very carefully and invoking verification tools, it is now possible to write 
programs that run, without any change whatsoever, on practically any computer This extreme 
portability can probably neyer be achieved by any new language Even a portable Fortran 
preprocessor requires some effort to bring up at a new site But I believe that the advantages of 
instant portability are overwhelmed by the expressiveness, efficiency, and clean environment 
that new languages can provide 
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Introduction 
EFL is a comprehensive language 

designed to make it easy to write portable, 
understandable programs It provides a rich 
set of data types and structures, a con
venient operator set, and good control flow 
forms The lexical form is easy to type and 
to read 

EFL was originated by A D Hall 
The current author completed the design of 
the language and wrote the current com
piler Whenever possible, EFL uses the 
same forms that Ratfor [1] does, in this 
sense EFL may be viewed as a superset of 
Ratfor EFL is a well-defined language, this 
distinguishes it from most "Fortran prepro
cessors" which only add simple flow of con
trol constructs to Fortran 

The EFL compiler generates (possibly 
tailored) Standard Fortran as its output 
EFL should catch, and diagnose all syntax 
errors 
 

The following description will be brief 
and informal Many details of the language 
are omitted The reader is assumed to be 
familiar with Fortran, but not necessarily 
with Ratfor 

Syntax 
EFL is line-oriented The end of line 

terminates a statement unless the last token 
on the line is an operator or is part of a test 
or loop construct A sharp (#) starts a 
comment, which continues till the end of 
the line Statements may be terminated by a 
semicolon, in that case more than one state
ment may appear on a line EFL uses 
natural characters (&, <, ) rather than 
Fortran's multi-character identifiers (AND , 
LT, ) for operators Variable names 
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begin with a letter, and may be followed by 
any number of digits and letters Numeric 
and logical constants follow the rules of For
tran Character constants are surrounded by 
quotes 

Program Form 
Every procedure (main program, sub

routine, function) begins with a procedure 
statement and finishes with an end state
ment 

Macros may be given values in a 
define statement 

define EOE -4 
define BUMP { i +=1 ; j+=1) 

A file may be read in with a line like 

include filename 

Data Types 
The basic data types of EFL are 

integer, logical, real, complex, long real 
(=double precision), and character The 
first five are the usual Fortran data types 
Character data are strings of fixed length, 
represented in Hollerith strings EFL also 
has homogeneous aggregates (arrays) and 
rnhomogeneous aggregates (structures) 
Arrays may have more than one dimension, 
and lower bounds need not be 1 In declara
tions, attributes may be factored, and more 
than one attribute may be declared on a line 
Initial values may also be given on the 
declaration line 

character(8) greeting = "hello" 
integer size = 5*9 

The following single statement declares a 
common block 



common(x) 
I 
logical firsttime 
character(7) name 
array(0 99) 

I 
integer flag 
complex value 

The block contains a logical variable, a char
acter variable, and two arrays, each contain
ing 100 elements 

Structures may be made up of objects 
of different types A structure may be given 
a tag, that tag acts as a type name (analo
gous to integer) in the rest of the program 
Thus, 

struct point 

integer color 
real x,y 

declares a shape. Later declarations might
be 

point p, z(50) 
 

struct


I 
integer ptr 
point p 

buffer(100) 

The latter declares a variable with an 

tures containing points as elements An ele
ment of an array is selected by the usual 
subscript notation; subscripts may be arbi
trary integer expressions 

a(ij) b( max(ij) ) 

Elements of structures are specified by giv
ing the element names 

xcoord = buffer(S) p.x 

Structures may be passed to procedures 
There is also a mechanism for dynamic loca
tion of structures. 

Operators 
The usual arithmetic operators (+, -, 

*,/, **) logical operators (&, j, -, and rela
tional operators (<, <=, >, > =, 
-=) are provided Quantities of different 
types may be mixed within expressions In 
addition to ordinary assignment (=), there 
are a number of operating assignment opera
tors



k ±=1


q &= p



are equivalent to the Fortran statements 

k = k + 1 
q = q and p 

Assignments are expressions Multiple 
assignments are expressed directly 

a b =c 

is equivalent to 
b c 
a b 

Assignment expressions are very useful for 
capturing values* 

if( (k = inchar(unit)) == "x") 

invokes the function inchar, stores its value 
in k, then compares it to the letter x. 

In addition to the usual logical opera
tors, there are two sequentially evaluated 
ones, &&and II The expression El && E2 

is evaluated by first evaluating El, only if it 
is true is E2 evaluated Thus, these operators guarantee the order of evaluation of 
logical expressions 

EFL provides generic functions and a 
general type conversion mechanism EFL 
chooses the correct version of the intrinsic 
functions depending on the argument types 

sin(5 ldl) generates a call to the dsin func
tion 

Flow of Control 

EFL statements are normally executed 
in sequence Statements may be grouped 
within braces This is the only grouping 
mechanism. The testing and looping con
structs usually operate on a single statement; 
a braced group acts as a single statement 
The usual if forms are permitted 
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if(a < b) 
 
a=b 
 

if(a < b) 
{ 
x =a 
 
y=b



else 

x b 
 
y =a 
 

There is also a switch statement for branch
ing n may vauesThe 

switch( inchar(unit) ) 

case 1 

done 0 
case 1 

letter = inval 
case 2 

digit = inval 

For looping, a Fortran do, a conventional 
while and repeat - until, and a general 
for loop are provided The do is unneces
sary but very convenient 

do i = 1,n 
a(i) = b(i) + c(i) 

while( (k = inchar(unit)) EOF) 

a(i) = inval 
i += 1 

repeat 
 
x + = delta 
 
until( ( delta = phi(x)) < epsilon) 
 

The for statement is borrowed from the 
C[2] language It has three clauses an mi
tial value, a test, and a step rule The loop 

for(p=first, node(p) ptr>O, p=node(p) ptr) 
out( node(p) value) 

will output every element of a linked list 

struct 
{ 
integer ptr 
real value 
I 

node(100) 

Statements may be labeled and reached 
by a goto Labels are alphabetic identifiers 
There are (optionally multilevel) break and 
next statements for leaving a loop, or going 
to the next iteration These statements are 
needed only rarely, but very convenient 
occasionally a oT rt n ae t xs o 

return statement exits from a pro
cedure It may have a function value as 

argument 

return( sin(x+l) ) 

Miscellaneous 
The discussion above touches on most 

of the features of the languages There are 
also input/output statements in the language 
that give access to Fortran's I/O, but in a 

somewhat more convenient form. 
A number of statement forms are 

included to ease the conversion from 
Fortran/Ratfor to EFL These atavisms 
include numeric labels, computed goto state
ments, subroutine and function statements, 
and the ability to use the AND , etc forms 
under compiler option. 
Compiler 

The current version of the compiler is 
written in C Its output is readable Fortran 
To the extent possible, variable names are 
the same as in the EFL text Statement 
numbers are consecutive, and the code is 
indented (This is possible because of the 
two-pass nature of the compiler) 

There are EFL compiler options for 
tailoring the output for a particular machine 
or Fortran compiler Implementation of 
character variables requires knowledge of 
the packing factor (number of characters per 
integer) The default output formats are 

machine-dependent, as is the handling of 
input/output errors Except for issues of 
these sorts, the output is machine
independent The EFL compiler worries 
about generating Standard Fortran, following 
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its restrictions on line format, subscript 
form, DO statement syntax, type agreement, 
and so on; the EFL programer need know 
nothing of these rules 
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ABSTRACT 

The Bell Laboratories Mathematical 
Subroutine Library, PORT, has been under 
development at Bell Laboratories for the 
past few years The design of PORT 
stemmed from the basic principles of porta
bility and ease of use. The attributes and 
mechanisms used in the library to support 
this philosophy include the use of a portable 
subset of Fortran, and the use of (machine
dependent) functions to supply the neces
sary environment parameters. Abbreviated 
calling sequences are made possible by a 
simplified error-handling technique, and by 
the use of a portable stack allocator for tem
porary workspace. Our experience to date 
with these approaches, and our plans for the 
future are reviewed here 

BELL LABORATORIES MATHEMATICAL 
SUBROUTINE LIBRARY, PORT, is a 
library of portable Fortran programs for 
numerical computation An article descnb
ing the library appeared in a recent issue of 
TOMS [1] together with CACM Algorithm 
528 [21 containing the basic utilities for the 
library - the functions defining the machine 
constants, the error handling and the storage 
stack structure Our rallying points
throughout the development of the library 
have been portability, modularity and econ
omy of structure, all of which lead to 
simplified calling sequences. 

PORTABILITY 
The rules of the game for programs 

acceptable to PORT require that (1) the 
program pass the PFORT Verifier [4], which 
guarantees that it is written in a portable 
subset of ANSI Fortran (1966 version), and 
(2) any machine-dependent quantities used 
in the program be obtained by invoking the 

appropriate one of the three PORT func
tions that return integer, real or double
precision values 

The machine-dependent values for the 
constants in these functions are set when 
the library is installed on the Computer. The 
same tape is sent to all computer sites; the 
recipient simply removes the C's in column 
1 from the data statements defining the con
stants for the computer at hand, and com
piles the library Values are defined on 
the PORT tape for the Burroughs 
5700/6700/7700 systems, the CDC 
6000/7000 series, the Cray 1, the Data Gen
eral Eclipse S/200, the Harris SLASH 6 and 
SLASH 7, the Honeywell 600/6000 series, 
the IBM 360/370 series, the Interdata 8/32 
the PDP-10 (KA or KI processor), the 
PDP-11 and the UNIVAC 1100 series 
PORT has been installed on each of these 
computers 

ERROR HANDLING 
The design of PORT's error-handling 

has been described elsewhere (e g. [1]). 
Briefly, two types of errors are specified 
fatal and recoverable. Errors which can be 
checked a priori by the user, such as the 
length of a vector not being negative, are 
typed fatal. All others are recoverable, but 
revert to fatal unless the user specifically 
elects to enter the "recovery" mode and deal 
with the errors as they occur. The method 
has proved to be safe for the inexperienced 
user, but to allow flexibility and leeway for 
the expert 

The error handler is heavily used 
within the library itself As a matter of pol
icy, outer level routines called by the user 
reinterpret any errors occurring at lower lev
els. Thus the user never sees an error mes
sage from a mysterious lower-level routine 
Everything is aboveboard 
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STORAGE STACK 

The concept of a dynamic storage 
stack, as implemented in a labeled COM-
MON region in the PORT library is also 
described in [1]. Each program that needs 
scratch space, allocates space on the stack 
for the computation, and then returns the 
space when it is done The stack-handling 
routines are, of course, available to the user 
as well, and have been found to provide 
efficiencies of space usage for all concerned 

(Note that the design of the error
handling and of the stack means that neither 
error flags, nor scratch vector designators 
appear in the calling sequences to PORT 
routines.) 

A stack dump routine, written by Dan 
Warner, has been tremendously useful in 
debugging; it will be included in a future 
edition of PORT 

CURRENT ACTIVITY 
PORT is now installed at 15 sites 

within Bell Laboratories, its use at Murray 
Hill on the Honeywell computer fluctuates 
between about 160 and 200 accesses per day 
It has been sent to 29 external sites includ
ing locations in Austria, Belgium, Egypt and 
the Netherlands, and several requests are 
currently in process. 

One of the more interesting uses to 
which the library has been put in the last 
few months has been in computer bench
marking using a set of computationally 
intensive programs The benchmarking pro
grams are based on the PORT library, so 
that once the library is installed, they run 
easily without adaptation It has been reas
suring to find that at those sites where the 
library was not already installed, it could be 
put up in about an hour. 

An on-going task is the development 
of various categories of test programs for 
the library We have recently developed a 
collection of the example programs listed in 
the documentation in the PORT Users 
Manual [3], These will be included on the 
tape when PORT is sent out to requesting 
sites. On another front, Norm Schryer has 
developed very probing and exacting tests of 
the PORT utilities; these are included on 
the Algorithm 528 tape [2]. Finally, tests 
for all the routines in the library are being 

developed or assembled (In most cases 
they already exist and have been in use for 
some time) 

Our primary activity, however, still 
centers around the construction of high 
quality portable numerical software. Linda 
Kaufman is providing the library with rou
tines in the areas of linear algebra and 
least-squares fitting In the pde direction 
PORT will acquire Norm Schryer's PEST 
package for one-dimensional partial 
differential equations coupled with ordinary 
differential equations, and Jim Blue's 
Laplace equation program based on a boun
dary integral equation formulation will be 
incorporated into the library Dan Warner 
has a good linear programming program,and other things are coming along You 
might say - the future looks bright on the 
port side 

REVIEW OF DESIGN PRINCIPLES 
In developing a program to go intoPORT we consider it a matter of pride as 

well as principle to "pipe" it through a 
sequence of processes untouched by human 
hands (if not minds) The original is prob
ably written in the languag, EEL, discussed 
by Stu Feldman elsewhere in these proceed
ings. The EFL version is automatically 
translated into Fortran, and then is put 
through the PFORT Verifier to check for 
language. Then after a, shall we say variable 
amount of time required for debugging, the 
double-precision version of the program is 
automatically twinned to a single-precision 
version and both are put on the tape The 
initial comment section of the program must 
contain a detailed description which can be 
transcribed into the file containing the pho
totypeset original for the program reference 
sheets for the Users Manual An example 
program, illustrating the use of the subrou
tine, is developed, tested, and automatically 
added to the reference sheet file as well as 
to the set of example programs on tape 
Admittedly, at the moment, the transcrip
tion from program comments to reference 
sheets is done somewhat manually, but the 
macros used to form this phototypesetting 
version make the process very quick We 
intend to increase the level of automation 

Historically, we have found it best to 
exercise our programs on a number of prob
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lems within Bell Laboratories before issuing 
them outside. During this period any 
difficulties that come up get incorporated 
into a growing set of tests for the programs. 

SUMMARY OF DESIGN PHILOSOPHY 
Our current thinking about mathemati- 

cal program libraries leads us to wonder 
whether a new kind of duplication of effort 
won't occur if the several libraries now 
extant try to become all things to all people 
We may not wish to make PORT an all
inclusive library covering the multiple facets 
of numerical and statistical computation, but 
rather to maximize our result/resource ratio 
by collecting our best software in clean 
modular structures into our library 

PORT, having been carefully designed 
to be an men, poviesgod fundtio 
developinstrument for program an 
ment, provides a good foundation and 
framework for this work 
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ABSTRACT 
 

IMSL has developed a set of macros and a file 
naming convention that automates the subroutine 
development and testing process over ten computer 
types. The INSL software development system is 
implemented on a Data General Eclipse C330 computer 
with 256K bytes of central memory and 192M bytes 
of disk storage using the AOS Operating System. 
RJE activity is handled by a Data 100 communica
tions computer. The system allows the programmer 
to work with basis decks. Distribution decks are 
generated, by the INSL Fortran converter, as they 
are needed for testing and whenever the basis deck 
has been modified. 

THE IMSL LIBRARY consists of approximately 450 
 
Fortran subroutines in the areas of mathematics 
 
and statistics. At this time IMSL serves over 650 
 
subscribers. The library is available on the com-

puters of ten manufacturers as follows: 
 

IBM 360/370 	 series 
 
Xerox Sigma 	 series


Data General 	 Eclipse series 
 
Digital Equipment series 11 
 
Hewlett Packard 3000 series 
 
Univac 1100 	 series


Honeywell 6000 series 
 
Digital Equipment series 10 & 20 
 
Burroughs 6700/7700 series


Control Data 	 6000/7000 and 
 

Cyber 70/120 	 series



Each subroutine has an associated minimal test 
 

routine which executes the manual example of usage


and an exhaustive test program designed to exer-

cise the various types of usage for each routine 
 
and the range of input data which might be employ

ed. This amounts to over 9,000 individual programs 
which INSL must produce and support (subroutines 
and minimal tests). These programs, together with 
the exhaustive test programs for each subroutine, 
constitute over 10,000 total programs which must 
be managed efficiently. In addition, each one of 
these subroutines must be tested on at least one 
of each of the ten computers. 

At best, the production and support of the 
library is a very complicated task. But IMSL has 
developed a set of macros and a file naming con
vention that automates the subroutine development 
and testing process on these ten computer types. 
The IMSL software development system is imple
mented on a Data General Eclipse C330 computer 

with 256K bytes of central memory and 192M bytes 
of disk storage using the AOS Operating System. 
This machine 	 is also used for the testing of the 
Data General Library. The testing on the nine 
other supported machines is done by remote job 

entry via a Data 100 computer which can be pro
grammed to emulate the environments necessary for 

job entry to the various computer types. 
The file naming convention used by IMSL is 

designed to clearly distinguish the different types 
of files used in the development of the library. 

The naming convention consists of the follow
ing: 

name H <IMSL routine name. 6 characters or 
less> 

prog H <IISL test program or associated 
subprogram name. 6 characters or less> 

computer H <IBM XEROX[DCCJDECII[UNIVAC HIS DEC10 
BGHICDCIHP300iH32IH361H48 H60!ALL> 
ALL => portability across entire 

computer set. 
H32=> portability across H32 computer



set (etc. for 136, 148, and H60).


The H32 computer set consists of


IBM, XEROX, DOC, DEC11 and HP3000.


The 136 set consists of UNIVAC,


HIS and DECI0. The H48 set con

sists of BE. The H60 set con

sists of CDC.
 


File Name 
 Description


name.BD 
 Basis deck for IMSL



routine "name"



name.computer 
	 Distribution deck source


file



name.DgC.OB 
	 DGC object files



name.T
 program filies
PHDGC
name.MT.PR



RJE.name.ET.computer 
 RJE jobfile as produced


RJE.name.MT.computer 
 by the system



name.ET.DGC.LISTFILE 
 Output listfile as produced


name.MT.DGC.LISTFILE 
 by the system for DGC



name.ET.prog.BD 
 Exhaustive 	 test program


name.ET.prog.computer 
 or subprogram



name.ET.LL 	 computer 
	 Required programs and


routines list for the


exhaustive test



name.ET.DD.computer 
	 Data for exhaustive test



name.MT.prog.BD 
 Minimal test program


name.MT.prog.computer 
 or subprogram



name.MT.LL.computer 	 Required programs or 
routines list for the 
minimal test 

name.MT.DD.computer 	 Data for minimal test 
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http:name.MT.prog.BD
http:name.ET.LL
http:name.ET.prog.BD
http:RJE.name.MT
http:name.MT.PR
http:name.DgC.OB


This naming convention gives a unique name to 
 
each file which enables identification of the file 
 
type by the programmer and the system. 
 

The development system makes use of the Data 
General convention of logically splitting disk 
space into independent sections called directories. 
Each programmer has his/her own directory called a 
working directory where all modifications to IMSL 
programs take place. Modification is not permit
ted elsewhere. The main directory in the develop- 
ment system is called DEV. This directory con
tains all of the programs used by the system as 
well as the subdirectories used. There are four 
subdirectories of DEV. Each of these directories 
is write-protected to insure that someone cannot 
unknowingly alter their contents. The first is 
called PRODUCT. This directory contains eleven 
subdirectories, one for each of the computer types 
and one for the basis decks. Each of these sub
directories contains the source distribution files 
for each of the distributed programs (subroutines 
and minimal tests) for that computer. The DGC sub
directory also contains the compiled object files 
of the Data General product set. The second 
subdirectory in DEV is called EDITION. This sub-

directory contains all of the files for new programs 
 
and modified current programs which will be released 
 
in the next edition of the library. The third sub- 
 
directory of DEV is called MAINT. This subdirectory 
 
contains the files for the versions of the programs 
 
which have been modified and are scheduled for re-

lease at the next maintenance of the library. The 
 
final subdirectory is called TESTS. This directory 
 
contains the source files for all versions of the 
 
exhaustive test programs, their associated sub-

routines, and the data. It also contains the re-

quired programs and routine lists for the exhaus-

tive tests and the minimal tests, 
 

DEV 
 

PRODUCT EDITION MAINT TESTS 

..... 
 

At the heart of the development system is the 
Fortran Converter. This is a program which performs 
automatic conversion of Fortran programs and sub-
programs from one computer-compiler environment to 
another. This conversion is done automatically via 
built-in features of the converter and specifically 
via converter instructions inserted in the program 
by the programmer. Thus the code for all versions 
(computer types) of a program are contained in one 
 
file called a basis deck. The programmer makes 
 

modifications to the basis deck only. Distribution


decks are generated by the converter as they are


needed for testing and whenever the basis deck has
 

been modified. This general approach to handling


portability problems is explained in (1) and (2).



The programmer works at a CRT console and uses

the development system by executing the command

RUN.DEV When the target computer is Data General,

this command will run a job including all necessary 
basis deck conversions, compilations, binding, and 
execution of the program file. For all other com
puters, a job will be set up (with appropriate job 
control language) for running at a remote site and 
submitted to the appropriate remote job entry site 
queue. The command is issued in the following way'


RUN.DEV/C=computer[/other optional


switches] name.ET (or name.MT)



where computer is one of the ten distribution en

vironments and name is the name of the IMSL routine
 

to be tested. The development system begins the


execution of the command by locating the appro

priate list of the required routines contained in


an LL file. The system then determines which


(if any) basis decks located in the programmers


working directory must be converted by examining


the time last modified. If the time last modified 
of a basis deck is later than the time last modi

fied of its corresponding distribution file, con

version must take place. Next, for all computers
 

other than Data General, a job is built consisting


of the routines required for running and the ap
propriate job control language. For every computer, 
there is a default site for running. Unless 
specified otherwise by the programmer via a 
/COMPILER=type switch, the default job control 
language is used. The JCL is contained in files 
named



computer. compiler.cc 

These files contain the commands necessary for


compilation, binding, and execution of a Fortran


job at the job site After the job is built, it 
is submitted (unless otherwise specified) to the


default site queue for that particular computer


or to a specific queue via the /QUEUE=site switch


From here, an operator copies the job to magnetic


tape and places the tape on the Data 100 for input 
to the remote site. For Data General, after con

version, the required source files are compiled,


if necessary. This determination is made in the


same manner as the determination for conversion.


This is followed by binding and execution of the 
program file. The programmer is informed upon


completion of the job (execution for Data General, 
queue submission for other computers). The system


monitors itself during the execution of a RUN.DEV


comnand and, if at any time during the execution


an error occurs, the system will terminate execu

tion of the command and send the user an appropri

ate error message. In addition, by specifying the


/D switch, the system will place certain vital


communications files in the working directory to


help the user in debugging his problem.



The system will perform conversions, compiles,


binds, and execution only in the working directory


(that is, the directory from which the programmer


gave the command). If a basis deck or its corres
ponding distribution file is not found in the


working directory, the system will try to locate 
the file by searching the TEST directory, the
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http:compiler.cc


MAINT directory, the EDITION directory, and finally 
the appropriate directory of PRODUCT. This enables


the programmer to run a test without necessarily 
 
having all of the required routines in the working 
 
directory. The programmer can alter which direc

tories are searched by specifying the /SL switch 
 
and setting up his own list of directories. In 
 
addition, the programer can specify the /CURRENT


switch which negates the search of MAINT and 
 
EDITION. This is particularly useful-if the pro-

grammer is trying to verify a problem which occurred


in the current 	 release of the library because it 
 
uses the version of the library which is out in 
 
the field at that time.



Both the Fortran converter and the development


system are written in modular form to insure easy 
 
readability and debugging of the code. The system


itself was designed in such a way as to easily 
 
facilitate the addition of a new computer into the 
 
product set. It also allows the programmer Tn-

limited flexibility in varying his/her specific 
 
runs. The command generally requires 30 to 60 
seconds of CPU time and takes between 15 and 20 
minutes of elapsed time to execute to completion. 
Therefore, the programmer usually issues the com-

mand from one of four batch streams, freeing his/ 
 
her terminal for other uses. 
 

The production and support of a multi-environ-

ment subroutine library is a complicated task, re

quiring many tedious details. The INSL development


system makes life much easier for the programmers


undertaking this task. Through the issuance of a


simple, one line command, the programmer can cause


the execution of a job, freeing him/her from annoy

ing but necessary details such as obtaining the


right version of a required code or unintentionally


modifying a code. This enables the programmer to


concentrate on the task at hand: supporting and


enhancing a state-of-the-art subroutine library.



Other software tools available through the


IMSL software development system are listed below:



Name Purpose 

HELP Provide on-line documentation for 
all system commands 

RUN.CVT 	 Execute the Fortran converter to


produce a specific distribution deck



RJE 	 Submit a job for execution at one of


the RJE sites



RJE.S 	 Status of RJE activity



MAGCARD 	 Send computer readable documentation


to an IBM mag card typewriter



CLEAN 	 Reformat source code according to


IMSL conventions - runs on a CDC


computer



REVIEW 	 Review a code and list deviations



from I2SL conventions



PFORT 	 Submit a code to be run through


the PFORT verifier - runs on an


IBM computer



BRNANL 	 Submit a code to be run through the 
branch analysis program - runs on 
a CDC computer 

SEQUENCE 	 Sequence a deck



STRIP 	 Remove sequence numbers and


trailing blanks from a deck



SPLIT 	 Split a file into separate program


units



COMPARE 	 Compare two codes and list


differences



EDIT 	 Edit a file via Data General's


text editor SPEED
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ABSTRACT



Two guiding principles for the development of the NAG Library are:



a) 	 the algorithms must be adaptable to the


characteristic of the computer on which


they are being run;



b) 	 the software must be transportable



(These 	 concepts have been discussed in detail elsewhere.)
 


The purpose of this talk is to discuss how these principles have stood the


test of practice over the past two years and how NAG's approach to library


development has been refined in the light of experience.



The adaptability of algorithms is achieved with the aid of machine-dependent


parameters, available through calls of library functions. The initial set


of parameters was concerned only with the arithmetic properties of the



computer. A new parameter is now being introduced, concerned with storage


organizations: it will enable algorithms for certain operations of linear


algebra to adapt, when run on a paged machine, to the approximate amount of


real store available, and hence to achieve a dramatic reduction in page


thrashing.



The transportability of the software is proven by the fact that the NAG Library


has now been implemented on 25 different computer systems - including


several minicomputers, which required no fundamental change of approach. The


talk will discuss various interesting problems which have arisen in the
 

course of implementation. Frequently it has been deficiencies in the compiler
 

and associated software that have caused the problems, rather than defects


in the NAG routines. NAG's test software (though not always ideally suited


to the task) has proved remarkably effective at detecting these problems


before the Library is released to sites. This 3ustifies NAG's policy of


always distributing a tested compiled library (in addition to the source-text).
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ABSTRACT 
 

The software portability problem is examined 
 
from the viewpoint of experience gained in the oper-

ation of a software exchange and information center, 
 
First, the factors contributing to the program 
 
interchange to date are identified, then major 
 
problem areas remaining are noted. The import of 
 
the development of programing language and docu-

mentation standards is noted, and the program pack-

aging procedures and dissemination practices 
 
employed by the Center to facilitate successful 
 
software transport are described. Organization, or 
 
installation, dependencies of the computing environ-

ment, often hidden from the program author, and data 
 
interchange complexities are seen as today's primary 
 
issues with dedicated processors and network 
 
communications offering an alternative solution, 
 

THE 	 NATIONAL ENERGY SOFTWARE CENTER (NESC) is the 
 
successor to the Argonne Code Center, originally 
 
established in 1960 to serve as a software exchange 
 
and 	information center for U S. Atomic Energy 
 
Commission developed nuclear reactor codes. The 
 
Code Center program was broadened to an agency-wide 
 
program in 1972, and the scope of the activity 
 
expanded further with the organization of the Energy 
 
Research and Development Administration (ERDA) and 
 
then the Department of Energy (DOE). The Center's 
 
goal is to provide the means for sharing of software 
 
among agency contractors, and for transferring com-

puting applications and technology developed by the 
 
agency to the information-processing community. 
 

To achieve these objectives the NESC: 
 
1. 	 Collects, packages, maintains, and 
 

distributes a library of computer programs 
 
developed in DOE research and technology


programs. 
 

2. 	 Prepares and publishes abstracts describing


the NESC collection. 
 

3. 	 Checks library contributions for complete-

ness and executes sample problems to 
 
validate their operation in another 
 
environment, 
 

4. 	 Consults with users on the availability of 
 
software and assists them in implementing 
 
and using library software, 
 

5. 	 Compiles and publishes summaries of ongoing 
 
software development efforts and other 
 
agency-sponsored software not included in 
 
the collection because it is felt to be of 
 
limited interest. 
 

6. 	 Maintains communications and exchange 
 
arrangements with other U.S. and foreign 
 
software centers. 
 

7. 	 Coordinates acquisition of non-government 
 
software for the Department of Energy. 
 

8. 	 Initiates and participates in the develop

ment of practices and standards for


effective interchange and utilization of


software.



About 850 computer programs covering subject


classifications such as mathematical and computer


system routines; radiological safety, hazard, and


accident analysis; data management; environmental


and 	 earth sciences, and'cost analysis and power


plant economics make up the current collection.


Each year over 1000 copies of librAry software


packages or authorizations for their use are dis

seminated in response to requests from DOE offices


and 	 contractors, other government agencies, uni

versities, and commercial and industrial organi

zations. Over 500 organizations are registered as


participants in the program. Of these 333 are


registered as contractors, or under exchange


arrangements. The remainder pay the cost of the


materials and services requested.



It is clear from the enumeration of NESC


activities that the major portion of the Center's


program is devoted to the task of making it


possible for individuals, other than the program


author, to use the computer program in their own


computing environment, which is different from the


environment in which the author developed the


software. The Center's dissemination statistics


attest to a measure of success in the task. This


success is due in part to the DOE sponsors of


program development projects who, recognizing the 
need for software sharing, have encouraged authors 
to attempt to develop portable software, and to the 
authors who, self-motivated, entered the initial 
development stage with the avowed intent of pro
ducing a transferrable product. But success must 
be attributed in large part, too, to the availa
bility of programming language and program doc
umentation standards, and to the program review 
and evaluation procedures and dissemination 
practices established by the Center. 

STANDARDS



In 1964 when the first FORTRAN language


standards were published, program developers


welcomed them enthusiastically as the means by which


programs, developed for today's environment, could


be readily transferred to tomorrowls, or moved to


someone else's, quickly and with minimal cost. In
stallations attempting to achieve this promised 
portability, however, were frustrated by the variety 
of implementations produced by the compiler writers, 
each claiming conformity with the standard, but 
offering, in addition, special enhancements 
exploiting their particular hardware. 

At the time a standards committee of the Ameri

can Nuclear Society sent a letter to the Editor of 

the Communications of the Association for Computing 

Machinery urging the computing community to exert 

pressure on the compiler developers to implement 

the standard, and where deviations existed to flag 
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accepted non-standard statements and standard state-

mnents implemented in a non-standard fashion, 
 
describing these variations in the compiler documen-

tation. The computing community not only failed to 
 
endorse this early plea for .a standard that could be 
 
used to achieve software portability, but the Editor 
 
held up publication of the letter for six months 
 
because FORTRAN was mentioned explicitly and the 
 
ACM 	 might appear to be showing a preference for 
FORTRAN over other programming languages 
 

While programming language standards have not 
 
proved to be the ready remedy to the portability 
 
problem first envisioned, they have provided the 
 
necessary first step Authors pursuing the goal of 
 
producing portable software have, by restricting 
 
themselves to a "portable" subset of the standard 
 
language, common to nearly all compilers, been able 
 
to produce an easily transferrable product. Program 
 
verification tools, such as PFORT, have proved 
 
helpful in this activity. 
 

Over the past decade the American Nuclear 
 
Society's ANS-10 standards committee has produced a 
 
series of standards to assist authors and developers 
 
of scientific and engineering computer programs in 
 
preparing software to be used by colleagues at other 
 
installations. These include ANSI N413-1974 
 
entitled "Guidelines for the Documentation of 
 
Digital Computer Programs" and ANS-STD.3-1971, 
 
"Recommended Programming Practices to Facilitate the 
 
Interchange of Digital Computer Programs", both of 
 
which were adopted by the AEC's Reactor Physics 
 
Branch, along with the ANSI FORTRAN standard, for 
 
its 	program development projects. Recently, this 
 
committee completed another guidelines document, 
 
this one titled "Guidelines for Considering User 
 
Needs in Computer Program Development". It is 
 
presently under review by the parent committee 
 

PACKAGING PROCEDURES 
 

The 	Center's software package is defined as the 
 
aggregate of all elements required for use of the 
 
software by another organization, or its implementa-

tion in a different computing environment It is 
 
intended to include all material, associated with a 
 
computer program, necessary for its modification and 
 
effective use by individuals other than the author, 
 
on a computer system different from the one on which 
 
it was developed. The package is made up of two 
 
basic components: the computer-media material and 
 
the traditional printed material or hard-copy 
 
documentation. The material may include all of the 
 
following: 
 

1. 	 Source decks: source language program 
 
decks or card-image records, 
 

2. 	 Sample problems test case input and 
 
output for use in checking out installation 
 
of the software 
 

3. 	 Operating system control information:


operating system control language records 
 
required for successful compilation of the


software and execution of the sample 
 
problems in the author's computing environ-

ment. This element includes device assign-

ment and storage allocation information, 
 
overlay structure definitions, etc. 
 

4. 	 Run decks: object decks or load modules 
 
prepared by the language processors prelim-

znary to execution of the software. This 
 
element is redundant when included in con-

junction with the equivalent source decks 
 
for interchange between users of like 
 
systems 
 

5. 	 Data libraries external data files


required for program operation, e.g.,


cross section libraries, steam table data,


material properties. To provide for


exchange across machine-lines a decimal or


alphanumeric form is recommended. Routines


for transforming the data to the more 
efficient binary or machine-d&pendent 
representation should be included as 
auxiliary routines. 

6. 	 Auxiliary routines or information


supplementary programs developed for use


in conjuction with the packaged software;


e.g., to prepare or transform input data,


to process or plot program results, edit


and maintain associated data libraries.



7. 	 Documentation: traditional reference


material associated with the development of


the software and its application If


documentation is provided in machine-read

able form it is classified as auxiliary


information. This item may be a single


report or several independent documents.



Not all seven elements are required for every


software package; however, items 1,2,3, and 7 are


rarely absent from scientific and engineering


applications which make up the bulk of our library.



In our review process the package elements are


examined for consistency and completeness. Whenever


possible, source decks are compiled and test cases


and run decks executed to ensure the output gener

ated in another environment agrees with that


produced at the developer's installation. 'Th4s


evaluation process provides a good check also, of


the adequacy of the documentation elements. If the
 

submitted documentation proves inadequate for our


staff to evaluate the software additional informa

tion is sought and incorporated in the package


doeumentation. Frequently an NESC Note is written


for this purpose. If data libraries are present


an effort is made to include these in machine-inde

pendent form. This is especially important for the


first, or original, version of a program. When


conversions to other computer systems, i.e. addi

tional machine versions, are considered, machine


dependencies reflecting significant convenience to


the users of that system are accepted. An attempt


is made to retain in the collection one version of


each library program in a form amenable to transfer.



Special software tools have been developed to


verify that all routines called are included in the


package, to perform rudimentary checks for unin

itialized or multiply-defined variables, unrefer

enced statement numbers, active variables in common


and equivalence blocks together with block names


and addresses, etc., and to convert between a


variety of character codes such as IBM EBCDIC, CDC


Display Code, and UNIVAC Fieldata.



DISSEMINATION PRACTICES



The computer-media portion of the program


package is generally transmitted on magnetic tape,


however, card decks will be supplied for card-image


material upon request The tape recording format


to be used in filling a request can be specified by


the potential user to suit his computing environ

ment, and, whenever possible, the Center will


provide the format, character code, density, and


blocking requested.



The Center maintains records of all package


transmittals and, should an error be detected or a


new edition be received, all recipients of the


affected program package are notified.
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PROBLEMS 

A large number of problems encountered today


in software sharing are traceable to in-house


modifications of vendor-supplied systems, locally

developed libraries and utility routines, and


installation conventions Recognizing the problem


of reproducing the performande df a program at 
another installation independent of the "local"


system, the ANS-10 standards committee introduced
 

the concept of an installation-environment report in


its "Code of Good Practices for Documentation of


Digital Computer Programs", ANS-STD.2-1967. The


idea was that this report would document those


timing, plotting, special function, and other local


system routines which would have to be transferred


with locally-developed software, or replaced with


their counterparts at another site before the


software could be successfully executed. It was


suggested that each program-development installation


package their collection of the documented routines


.as a library package so that users of, for example,


the XYZ Laboratory's software would be able to


create the necessary XYZ environment either by


implementing these environmental routines or with


acceptable alternative routines. Several packages


in the Center collection are of this nature; the


Bettis Environmental Library and the NRTS Environ

mental Routines are two of them.



Most computer centers, however, have never


attempted to define such a package Program


developers are frequently unaware of the routines


automatically supplied by the local system and


seldom informed when changes or modifications to


such routines are effected.



Proprietary software can magnify installation


dependency problems, and programs utilizing graph

ical output are always a challenge to exchange. In


most cases the Center, and each receiving organiza

tion, is required to insert the equivalent local


plotting routines before the test cases can be run


Even when organizations have the same commercial


software product, they will probably have different
 

plotting devices, and, if not, you can bet each


location chose to implement its own unique enhance

ments--after all, graphics is an art!
 


One-of-a-kind compilers and parochial operating


systems used at some installations have proved to be


a significant deterrent to program interchange. Of


growing concern with the increasing use of database


systems is data exchange. A DOE Interlaboratory


Working Group has committed its members to working


with the ANSI Technical Committee X3L5 to develop


specifications for an Information Interchange Data
 

Descriptive File. 

ARPANET and the Magnetic Fusion Energy Computer
 

Center offer a different solution to the software


portability problem. Instead of developing portable


software and making it generally available such


facilities encourage the development of centers of


excellence which provide and maintain the latest and


best software for a particular application on a


dedicated processor, accessible to the user commun

ity. That is the other end of the spectrum.
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zation to promulgate a standard for record lengths,


block lengths, codes and party modes. Then if



ABSTRACT such information is not provided, the standard is a


reasonable guess. Neither approach can cope with



Computer software is usually exchanged between disorganization of the data, or with parity errors.


different computer facilities via punched cards or We chose therefore to write a transportable program



magnetic tape. For up to about 1000 images, cards to enforce a standard recording format, organize
 
magetior tae. aout100 imges cads This
p t the data and provide for error recovery. 
 
relieves the sender of the responsibility for
are cheaper and probably easier to deal with than 
 

The primary problem with cards is the variety sendin o t rercodesiror
tape. 
 
of punch codes. Frequently, one also has the minor leng anfockaln ithete . e must,


nuisance of repunching cards damaged in transitblock lengths wth the tape. He must,



of course, still tell the receiver the tape density,
For larger amounts of data, tape is cheaper, but 

there are so many tape formats in use that the r 
 and whether it is a seven- or nine-track tape.



Since some binary numeric information is recorded,

cipient frequently has trouble reading a tape, even only odd parity tapes may be used with this program.


if the format is simple and well defined. Occasion

ally, one has the problem of parity errors, which RECORDING FORMAT


make a tape essentially worthless. When test data,
 

modules in several languages, computer output or Most computer systems can deal with ASCII infor

documentation are included, the lack of organization


in the material can cause a substantial amount of mation in a natural way. 
 In order to use ine


unneessay huan tape conveniently, we represent the seven-bit
lbortrack 
 
unnecessary human labor. ASCII code using eight bits, with the high-order



This paper presents a system for exchanging bit zero. The program does not, however, enforce


information on tape, that allows information about this convention rigidly. Certain information must


the data to be included with the data. The system be encoded in this way, but the textual information
 

is designed for portability, but epndntmodules.requires a few may be encoded in any way that may be represented
slmlemahle These modules 
 
simple machine dependent mof hese moduas by a string of eight-bit units. It is preferable


are available for a variety of machines, and a that all information be encoded in some standard


bootstrapping procedure is provided. The system form, and we hope that all implementations of the


allows content selected reading of the tape, and a


simple text editing facility is provided. Although program will use ASCII code for the textual



information.
the system recognizes 30 commands, information may Some computers can read or write tapes con

be extracted from the tape by using as few as three taming blocks consisting of an integral number of


commands. In addition to its use for information words, and can read tape blocks of arbitrary length
 

exchange, we expect the system to find use in only with difficulty. For example, a tape con

maintaining large libraries of text. taining blocks consisting of ten 80-character



records could be read only with difficulty on a 
Univac-ll00, which expects nine-track tapes to 
contain blocks consisting of a multiple of nine 
characters, and could not be written on a Univac
1100. We therefore selected a block size having 

THE MOTIVE FOR DEVELOPING THIS PROGRAM was the ex- factors of nine (for 36-bit words), fifteen (for
TE MoTIVE Freceivi 60-bit words) and four (for 32-bit words).DEVEOps thommanycorrespodent
 Theseparience of receiving tapes from many correspondents. factors also guarantee that the block will be an



We dealt with most correspondents only once or twice. intralnumbertof wordstif itois wi e a



We received tapes written in every possible density, integral number of words if it is ritten on a 

both parity modes, several character codes, and seven-track tape. The program uses data the Same



having a variety of block and record lengths. We for seven- and nine-track tapes.



see three solutions to this problem. Most computer Since information may be recorded on magnetic



centers have access to a program that can handle 
 tape in blocks of arbitrary length, separated by
 

fixed length records, written in fixed length gaps of fixed length, one can use less space on the


tape to record a given amount of data by writing
blocks, using a popular code such as ASCII or 
 

EBCDIC. When the characteristics of the medium longer, and therefore fewer blocks. We chose to


write information in blocks of 7200 characters.

were correctly provided, we had good success with a This block size allows efficient use of space on



program of this type*. Unfortunately, this infor- tape, and usually fits into a minicomputer memory.
 

mation was not always provided, and was sometimes A 180-character label is the first block written on


incorrect. Another solution is for some organi- every tape. Information in the label includes the



block size. If the program does not fit in


*We used two programs, known as BLOCK and UNBLOCK, available memory, smaller blocks may be written.



The program can read the smaller blocks automati
written in Univac-1100 assembler language at the 
 
This was required in one minicomputer
University of Maryland Computer Science Center. cally. 
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implementation of the program. We recommend that 
 
all implementations retain the capability to read 
 
7200 character blocks. Further conservation of 
 
space on the tape is achieved by compressing the 
 
data. To compress the data, consecutive 
 
occurrences of blanks (or another character if 
 
desired) are removed, and replaced with an encoded


representation requiring less space. A compressed 
 
Fortran program usually occupies about one third


the space otherwise required. 
 

DATA MANAGEMENT FACILITY 
 

Although the problem of dealing with variable 
 
and frequently uncertain physical characteristics 
 
of the transmission medium was irritating, the 
 
problem that consumed most of our time was the 
 
uniform lack of organization of the information on 
 
the tape. We received programs in several 
 
languages, subprograms with several test drivers, 
 
multiple versions of a program, test data, computer 
 
output and documentation, with no indication of 
 
what was to be done with the information. In such 
 
situations, much effort was spent organizing the 
 
information before it could be used. We therefore 
 
developed not only a program to read and write tape, 
 
but also a transportable data management system 
 
for textual information, 
 

Our data management scheme consists of re-

cording each program, subprogram, listing or data 
 
group as a separate module of text. Helpful 
 
information about the module is recorded with the


module. The minimum information required with each 
 
module is a name. For more complete identification


of the module, one may record the data type 
 
(language for modules that are programs), machine 
 
type, authors' names and addresses, and biblio-

graphic references. To facilitate management of 
 
programs consisting of several modules, one may 
 
record the names of groups of which the module is a 
 
member, and keywords related to the module. To 
 
control changes to modules, a simple but flexible 
 
updating mechanism is provided, and the updating 
 
history is recorded. To record information that 
 
does not fall into any of the specified categories, 
 
one may include comments. We call this information 
 
control information. All control information is 
 
recorded with the text of the module. The text and 
 
control information can be examined and updated 
 
separately, but they remain together on the tape. 
 

A data management system requires a command 
 
language. In specifying the command langdage for 
 
the Exchange Program, our goals were simplicity 
 
and comprehensive flexibility. The use of the 
 
program is oriented primarily toward the receiver 
 
of the tape. Although the program acts on 30 
 
commands, information may be extracted from the 
 
tape with as few as three commands" 
 

INTAPE = Fortran unit number of input tape 
 
OUTPUT = Fortran unit number of native format



file 
 
COPY = List of module numbers.



To create a new tape requires, at a minimum, the 
 
following commands: 
 

TITLE = Title of tape 
 
SITE = Site at which the tape is being 
 

written 
 
OUTAPE = Fortran unit number of the tape 
 
DATE = Date written (YYMNDD) [May be provided 
 

automatically.] 
 

Each module of the text must then be preceeded by


INSERT = Name of module


TEXT



and followed by an end of text signal. If more in

formation about the module than its name is to be


provided, more commands are required.



ERROR DETECTION AND CORRECTION



The program currently contains two error de

tection mechanisms. First, it uses the error


detection mechanism of the supporting operating


system. Second, it records a sequence number in


each block, and checks it during reading. It also


records in each block the location of the first


record that starts in the block, the number of the


text module of which it is a member, and the lo

cation of the first record of the first text module


that begins in the block, if any. We plan to use


this information for partial error recovery. We


also plan a more ambitious error control algorithm,


capable of detecting and correcting up to 72


consecutive erroneous characters, at up to four


different places in each block. It can be imple

mented in a transportable way, requiring only a


machine sensitive exclusive-or primitive operation.


For the 7200 character block chosen as the standard


for the Exchange Program, only 113 characters of


error control information are required. The


design of the block format includes provision for


this information.



EXPERIENCE



The program has been used at JPL to manage the


collection of algorithms submitted to ACM TOMS, for


weekly exchange of data between a DEC PDP-11/55 and


a Univac-1108, and occasional exchange of data


between a Univac 1108, Sperry (formerly Varian) 72,


and a DEC PDP-II/55. The program was used to


transmit the JPL mathematics library to a DEC PDP-10


at the California Institute of Technology, and is


currently used there to retrieve modules of the JPL


mathematics library from the exchange tape. It was


also used to transmit information to a CDC-6600 at


Sandia Laboratories. Experience in implementing


the program on the DEC PDP-11/55 and on the DEC


PDP-10 indicated that changes in the interface


between the portable and non-portable parts of the


program are desirable. In particular, the DEC


Fortran environment requires that data files be


explicitly opened (with a non-portable statement)


before they are used. Thus, a subprogram thought


to be portable does not work on DEC machines. We


expect to change the interface between the portable


and non-portable parts of the program to concentrate


potentially non-portable requirements in fewer
 

places. When we make that change, we will also add


a few commands.



SUMMARY



We have developed a transportable program for


exchange of textual information that provides


several advantages over previous methods. The


program enforces the use of a standard tape format,


uses tape efficiently, organizes the information on


the tape, provides for simple retrieval of infor

mation from the tape, and provides for error


recovery. Since the program is transportable, it


is used similarlylon all computer systems. Thus,


once one learns to use the program, one may use the


program on many computer systems with little


additional effort.
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ABSTRACT 
 

The data structures and control 
 
structures of Pascal enhance the coding

ability of the programmer. Recent proposed 
 
extensions to the language further increase 
 
its usefulness in writting numeric programs 
 
and support packages for numeric programs. 
 

PASCAL HAS THE ADVANTAGE of being a highly 
 
structured language. In addition, it was 
 
specifically designed "to make available a 
 
language suitable to teach programming as a 
 
systematic discipline based on certain 
 
fundamental concepts clearly and naturally

reflected by the language."[21* It has been 
 
noted by R. Block [11 and others that 
 
structured approaches to algorithms reduce 
 
programming time. It has been the 
 
experience of the UCSD Pascal pro3ect that 
 
students quickly learn the structures of 
 
the language and are rapidly able to 
 
maintain and modify programs of 
 
considerable complexity. For example the 
 
code in the UCSD Pascal system is the work


of student programmers. The majority of 
 
those programmers are undergraduates, 
 
Maintainablility and verification of 
 
programs are made easier in Pascal because 
 
the structure of the program closely 
 
resembles the structure of the algorithm it 
 
represents, 
 

The popularity of the language Pascal 
 
is growing. Work is progressing to remove 
 
remaining deficiencies in the language. The 
 
Institute for Information Systems at UCSD 
 
4J has developed and is continuing to 
 
improve a machine independent Pascal system 
 
for small computers. Also this summer the 
 
Workshop on Extensions to Pascal for 
 
Systems Programming [31 has recommended 
 
extensions which will enhance the 
 
applications of Pascal to numerical


analysis. Parallel to the work of the 
 

workshop, an international group of Pascal


experts is attempting to construct a


standard for Pascal and its extensions.



PROGRAMMING IN PASCAL


In this section we will describe



certain features of Pascal which are useful


in writting support packages for numerical


programs as well as the numerical programs


themselves.



DATA STRUCTURES IN PASCAL - Data


handling is simple and efficient because


the Pascal Language supports the


declaration of data structures. The


programmer may use the base types of the


language to build structured types and may


even create files of user declared types.
These complex types may be manipulated,


either as units or by their various parts.


For example to exchange two rows of a


matrix, rows can be treated as single


entities.



TYPE ROW=ARRAYf0..61 OF INTEGER;


MATRIX=ARRAY[0..51 OF ROW;



VAR A:MATRIX;


R:ROW;



BEGIN


R:=A[l];


A[]:=A[21;


A[2]:=R;



END;



This reduces the details of coding required


to do data handling and simultaneously


reduces the possibility of programmer


error. Data structures can be declared to


be PACKED causing the maximum number of


variables to be in each word. This provides


considerable space savings for any non

numeric data which must be associated with


numeric computations.



To further enhance the potential space


savings variant records are allowed.


Dynamic variables may be variant records,


in which case only the space necessary for


the variant declared is needed. Strong type


checking is maintained as a tool to


validate data handling and thereby minimize


programming errors.



*Numbers in parentheses designate references at


end of paper
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Thus the language is extremely 
 
convenient as a data handler, with a 
 
simplicity exceeding COBOL and a 
 
flexibility exceeding FORTRAN and ALGOL. 
 
The availability and ease of using files 
 
make it an excellent language to use as a


preprocessor for numerical data. The 
 
compactness of its representations has the


consequence of requiring smaller amounts of 
 
source code. 
 

Dynamic variables called pointers 
 
permit the explicit expression of linked 
 
structures such as sparse matrices, 
 

TYPE ARRAYENTRY= 
 
RECORD 
 
DATA:REAL; 
 
ROWLINK:±ARRAYENTRY; 
 
COLUMNLINK:^ARRAYENTRY 
 

END; 
 

Note that these structures, as well as


arrays of any data structure, have the 
 
advantage that 	 pieces of logically grouped


information are represented as components 
 
of a logical structure, rather than as 
 
entries in parallel structures, 
 

CONTROL STRUCTURES - Pascal is a


highly structured, recursive language with 
 
a design which 	 encourages top-down 
 
programming. With its 3 looping 
 
(WHILE,REPEAT-UNTIL,FOR) 2 branching 
 
(CASE,IF-THEN-ELSE) there are a limited 
 
number of control constructs to understand,


yet they are sufficient to express any 
 
algorithm. In large numerical programs a 
 
"90-10" rule appears to hold. Particularly 
 
in the interactive environment, the bulk of


the source code represents the control 
 
structures and user interface of the 
 
program, with intense numeric calculations 
 
representing a small fraction source code.


The block structure, the simplicity of the 
 
Input and Output commands make these easy


to code. 
 

Syntax has been specified for type 
 
secure compilation of external modules and 
 
their inclusion into Pascal programs.[4] In 
 
addition UCSD Pascal permits the inclusion 
 
of procedures from native code modules into 
 
Pascal programs. This will permit the 
 
writing of small pieces of highly used code 
 
in assembly language thereby increasing 
 
speed. It will also permit linking user 
 
written data gathering, or hardware 
 
monitoring routines into Pascal programs. 
 

MACHINE INDEPENDENCE - One of the 
 
goals of Pascal is machine independence. By 
 
adhering to standard Pascal it should be 
 
possible to compile and run a program on 
 
any implementation. Validation suites are


being made available for the purpose of 
 
comparing a given implementation with the 
 
standard. UCSD 	 Pascal is designing machine


independence into its numerical 
 
calculations by converting its numerical 
 
package to the 	 proposed IEEE standard, 
 
Using this standard it is possible to gain 
 
machine independent results to floating-

point calculations, that is, the same 
 
calculation performed on two machines (of 
 
equal word length) will produce bit 
 
equivalent results, 
 

INTERPRETIVE ADVANTAGES - Interpretive


implementation, packing of data, and


compactness of source code combine to allow


a larger portion of the available memory to


be allocated to data storage.



NUMERICAL PROGRAMMING IN PASCAL



This section provides a description of


those features of Pascal which are


particularly relevent to numerical


analysis. We will be describing both


features which 	 affect only program style as


well as those which can cause significant


execution differences between FORTRAN and


Pascal implementations of the same


algorithm.



ARBITRARY ARRAY INDICES - Let us


assume an algorithm which works on 3


vectors in synchronization. A FORTRAN


programmer could declare 3 vectors:



INTEGER RED(10),GREEN(10),BLUE(10)



or if he was worried about page faults and


confident that his installation's FORTRAN


stores arrays by columns he would declare,



INTEGER COLORS(3,10)


totally obscuring the separate identities
 

of the three vectors.



In contrast a Pascal programmer faced


with the same problem could declare:



TYPE COLOR = (RED,GREEN,BLUE);


VAR COLORS: ARRAY [l..101 OF ARRAY [COLOR]



OF INTEGER;
 


using array index constants which preserve


readability without sacrificing the ability


to loop through the colors since:



FOR C:=RED to BLUE DO ......



is a legal Pascal loop statement.


NUMERICAL ARRAY INDICES - The Pascal



programmer also has the freedom to use any


desired lower limit for numeric (integer)


array indices. Unfortunately, it is not


possible to have arbritrary spacing of


indices.



ADJUSTABLE ARRAY PARAMETERS - The


current definition of Pascal allows a


procedure which takes arrays as arguments


to be called only with actual arguments of


one fixed size. That restriction has,



however, been recognized as a mistake, and


allowing procedure headings of the form


shown in the example given below has been
 

proposed [31:



PROCEDURE P(P: 	 ARRAY [LOW..HIGH:INTEGER]


OF INTEGER)



When procedure 	 P is called, the local


variables LOW and HIGH will be


automatically assigned the index limits of


the array used as the actual argument.


Passing the array size as a separate


argument to the function as is done in


FORTRAN will not be required.



COMPLEX ARITHMETIC - The current


definition of Pascal does not provide for


complex arithmetic. However, adding that
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facility has been proposed [3]. The


proposed extension includes a predefined


type COMPLEX, the functions necessary to


take complex numbers apart (RE, IN ,ARG),


and 	 a way of creating complex constants and


values. The standard mathematical


functions will also be extended to handle


complex numbers.



LONG INTEGERS - The UCSD Pascal system
 

now provide s the capability of declar-ing


the minimum number of digits that must be


contained in each integer number declared.


All arithmetic operations involving large


range numbers can generate intermediate


results of at least the specified size


without causing overflow.



SHORT INTEGERS - The Pascal sub-range


feature allows the user to declare that a


given variable can have only a very small


range of values. This can lead to


considerable savings in storage as shown in


the following example:
 


VAR 	 PACKED ARRAY [1..161 OF 0..3



which uses only 2 bits for each array


element.



REAL NUMBERS - Pascal currently


defines one floating point precision, and


that is machine dependent. However, the


UCSD Pascal system will incorporate the


IEEE floating point standard as soon as it


is finalized (at least for 32 and 64 bits).
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ABSTRACT 
 

The purpose of this talk is to summarize 
 
proposed specifications for floating-point arithme-

tic and elementary functions. The topics considered 
 
are: the base of the number system, precision con-

trol, number representation, arithmetic operations, 
 
other basic operations, elementary functions, and 
 
exception handling. The possibility of doing with-

out fixed-point arithmetic is also mentioned. 
 

The specifications are intended to be entirely 
at the level of a programing language such as 
Fortran. The emphasis is on convenience and simpli
city from the user's point of view. Conforming to 
such specifications would have obvious beneficial 
implications for the portability of numerical soft
ware, and for proving programs correct, as well as 
attempting to provide facilities which are most 
suitable for the user. The specifications are not 
complete in every detail, but it is intended that 
 
they be complete "in spirit" - some further details, 
 
especially syntatic details, would have to be 
 
provided, but the proposals are otherwise relatively 
 
complete. 
 

THERE HAS BEEN A GREAT DEAL OF PROGRESS during 
 
recent years in the development of programming 
 
languages. However, almost all of this progress has 
 
been under the general banner of 'structured program-

ming" and almost no attention has been paid to those 
 
aspects, such as the semantics of flcatng-point 
 
operations, that are of special interest to practi-

tioners who are interested in numerical computation.



The purpose of this talk is to propose some 
 
specifications for floating-point arithmetic and 
 
elementary functions. The main design goal is to 
 
produce a set of specifications which is most 
 
desirable from a user's point of view. There is of 
 
course no claim that the set is unique. In fact, 
 
many details, especially syntatic details, have 
 
been omitted because there are obviously so many 
 
possible variations that would be equally acceptable. 
 

It should be emphasized that the specifications 
 
are intended to be entirely at the level of a 
 
programing language such as Fortran. For example, 
 
in discussing arithmetic operations, our concern is 
 
entirely with the syntax ard semantics of the 
 
programing language expressions. 
 

We feel that it is important to consider such 
 
specifications for floating-point arithmetic and 
 
elementary functions. Indeed, users who are 
 
interested in numerical computation have an obliga-

tion to try to reach a consensus on such specifica
tions, unless they are prepared to put up forever 
with whatever facilities the manufacturers and 
language designers happen to provide. If some sort 
 
of consensus became possible, it could evolve 
 
towards a standard. And with the technology chang-

ing as rapidly as it is, such a standard may not be 
 
too difficult to achieve, or at least to approach


much more closely than is the case at present. In 
 

any event, with a language standard agreed upon, we 
would at least have a basis against which we could 
judge the appropriateness of various trade-offs, and 
to judge the suitability of any new hardware 
designs that are being proposed. 

The usefulness of a standard in terms of port
ability of numerical software, and particularly in 
terms of portability of proofs about what the soft
ware does, is obvious. 

An ideal arithmetic system should be complete, 
simple and flexible. Completeness means that the 
programmer knows what will happen under any circum
stance Simplicity leads us to conclude, for 
example, that the base should be 10. For simplicity 
we also argue for a particular way of determining 
the precision at which calculations are performed. 
We choose a flexible way of controlling precision, 
and also a flexible mechanism for coping with 
exceptions such as overflow and underflow, 

An ideal system for elementary functions is 
more difficult to agree upon. Completeness, in the 
sense of always producing the same results whenever 
the precisions are the same, would be desirable 
here too, but probably not practical. However, what 
is more to the point at this stage is that we


emphasize simplicity, and this leads us to require 
only a single simply-stated accuracy requirement
for all elementary functions. In particular, we 
argue against insisting that a long list of addi

tional special properties be required to hold.



The following is only a summary of what is


proposed. Most of the justification for these


recommendations has had to be omitted because of


space limitations.



BASE


Much has been written about different number



bases, and their relative merits with respect to


efficiency of storage, roundoff behavior, and so on.


We believe that simplicity and convenience for the


user should be the primary consideration and this


means that



the chotee o abue . 10. Ci) 
With this choice, a number of annoying problems

disappear immediately. For example, the "constant"

0.1 will really be exactly one tenth. The compiled


value for a number will not differ from its input


value, and input-output will be simplified in general.



Programmer efficiency will improve if the pro
grammer does not have to keep in mind the peculiari
ties of other number bases. It may even happen 
that a base-10 system, including a base-10 internal 
representation, would turn out to be, overall, the 
most efficient, besides being the simplest and most 
convenient for the user.



PRECISION


Earlier versions of what is proposed in this



section, including the description of a preprocessor


for implementing the main ideas, have been discussed


elsewhere by Hull and fofbauer (2,3)*.



*Nos. in ( ) designate References at end of paper. 
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It is important thst the user have control over 
 
the precision. In an ideal system, we believe that 
 

the user shoutd be abte to zpeciy 
.epav tety the numbex o6 digit6 to be 
used o&the exponent o4 Ku 6toatcng- (2) 

point vatuL6, and the numbet o6 d 
to be used 6o the"6acftto pn t. 

Ideally he should be able to make a declaration such 
 
as FLOAT(2,12) X and as a result have the value of 
 
X composed of a 2-digit exponent part along with 
 
a 12-digit fraction part. 
 

It should also be possible that 
 

contiabnt6 ob expiuso6, a6 wett 6 (3)
cowta6, be allowed 4n the dect Lonm, 

For example, FLOAT(2,I+I) X would have the obvious 
 
meaning.



The most important part of our proposal with 
 
respect to precision is that 
 

theuweA 6houed be abte to peciq the 
pJeciton o6 the openztionh to be cauted 
out on the opeAand, quite aptt 6rom, (4) 

and independent y o the p'teci6.on oj 
the opelfand6 themseft-v . 

For example, he should be able to write something 
 
like 
 

BEGIN PRECISION(3,14) 
 

Y = X + .51 * SIN(I) 
_ NuXed=X+.1 

END 
and mean that every operation in the expression is 
 
to be carried out in (3,14)-precision arithmetic,


the result of the calculation finally being adjusted 
 

to fit the precision of Y, whatever the precision of 
 

Y has been declared to be, before the result is 
 

assigned to Y. 
 
It is of course intended that 
 

the pLecon o 5uch "pvecizcon btocku" 
be allowed to change betoeen one exec- (5) 
Lton o6 a bock and the next. 
 

Examples are given in the references by Hull and 
 
Hofbauer referred to earlier; however, the pre-


processor mentioned there handles only the special 
 

cese in which only the fraction parts (of the varia-


bles and precision blocks) are declared, and their 
 

values denote numbers of word lengths rather than 
 

numbers of decimal digits. 
 
The specifications we propose for precision 
 

control provide a considerable degree of flexibility, 
In particular, they allow the user to carry out 
 
intermediate calculations in higher precision (as 
may be required, for example, in computing scalar 
products, or in computing residuals), and they allow 
for the repetition of a particular calculation in


different precisions (as is required, for example. 
 

in some iterative procedures, or in attempting to 
 
measure the effect of roundoff error), 
 

The proposed specifications are also simple. 
 
For example, separating the precision of the opera-


tions from the precisions of the quantities entering 
 

into the calculations avoids having to remember a 
 

lot of rules about how quantities of different 
 
precisions combine. (No satisfactory rules for such 
 

calculations can be devised in any event, for 
 
example, no such rules would enable us to compare 
 

the results of doing a particular calculation twice, 
 

at two different precisions.) 
 
It must be acknowledged that very high precision 
 

calculations would be used only rarely. 
 This means 
 
that all precisions up to something like (2,12) or



perhaps (3,15) should be done very efficiently, but,


beyond that, a substantial reduction in efficiency



would be quite acceptable. 
One point is worth emphasizing. It is intended



that precision 12, say, means exactly precision 12,



and not at least precision 12. We cannot measure 
rouneoff error if precision 12 and precision 15


give the same results.



One further point is perhaps worth mentioning. 
Our requirements for precision control could lead 
to thinking of the machine as being designed to 
handle character strings, a number being just a 
special case in which most of the characters in 
a string are decimal digits. However, as indicated 
earlier, we are concerned here primarily with the 
functional specificatiors, and not with any details


about how those specifications are to be implemented.



REPRESENTATION


Quite independently of how the base is



specified, or of what sort of flexibility is allowed



with the precision, it is possible to state specific



requirements about the representation of floating
We will describe what we consider
point numbers. 


to be desirable requirements in terms which may 
appear to be hardware specifications but the propo

sal is not meant to restrict the details of the


hardware representation in any way except in so far
 

as the results appear to the user.



The proposal is that



a &cagn and magnitude tepentattn be 
Ao i both the exponent part and the (6)

6ator pakt, and that the )tacton 
pwtt be nomnazed. 

The reason for proposing a sign and magnitude


representation is that it is simple, and probably



easiest to keep in mind. 
 The reason for allowing


only normalized numbers is so that the fundamental



rule regarding error bounds that is discussed In the



next section can then be relatively simple.


We deliberately do not propose any axioms, 

such as "if x is in the system then so is -x", to be 
satisfied by the numbers in the system. Any such 

statements that are valid are easily derived, and



there is no need to state them explicitly. In fact,



it might be somewhat misleading to begin with state


ments of this sort and perhaps give the impression



that one might be able to derive the system from a



collection of such desirable properties.


Besides the normalized floating-point numbers



proposed above



,/t Wct be neceSakytq to allow a Aeto otheA 
vatue6 as wel, Such a OVERFLOW, UNDER-
FLOW, ZERODIVIVE, INDETERMINATE, and (7) 
UNASSIGNED to be maed at spectaZ


xcuJtcaitncez.



We will return to this question in a later section


when we discuss the requirements for exception



handling.


Although what we have proposed as allowed



values for floating-point numbers is, for the purpose



of simplicity, very restricted, the hardware can



carry much more in the way of extended registers,



guard digits, sticky bits, and so on, if that should



be convenient for meeting the requirements of the



following sections However, if this is done, it



will ordinarily be only for temporary purposes, and,



in any event, the user would under no circumstances


have access to such information. (We are continuing



to think of the user as programming in a higher



level language such as Fortran.)
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ARITHMETIC OPERATIONS 
 
Whatever the base or method of representation, 
 

we can still be precise about the kind of arithmetic 
 
that is most desirable. For various reasons we 
 
propose that,



Zn the absence o6 ovvC4tow, undet6tlt. 
 
-ndteminate, and ze'o-dcvide, the


&e Oj5t6o6aU akkthmettc opvuztaon
 
be picope4ty 'ounded to the neaACAt 
AephA&entabte numbe)L. (Some uthe'A (8) 
deaait "czneeded to make .t 'lequwxe
ment comptetety pheace. In ea6e o6 
a ;te, we mcghta6awe have the 
ncutma~xzed 4&reeon part xounded tothe neaaest even vatue.) 
 

There are several reasons for preferring this 
 
specification-

(a) 	 It is simple, and easy to remember. 
 
(b) 	 Since unnormalized numbers are not allowed, the 
 

basic rule required for error analysis is easy


to derive and, in the absence of overflow, 
 
underflow, indeterminate, and zero-divide, 
 
takes the simple form: 
 

fz(xoy) = (soy)(1+), 
where a is an operation and Is] < u, u being 
the relative roundoff error bound for the 
precision that is currently in effect. 

(c) 	 Rounding is better than chopping, not because 
 
the value of u is smaller (although that 
 

happens to be the case), but primarily because 
 
of the resulting lack of bias in the errors. 
 

There is a considerable advantage to stating 
 
directly what outcome one is to expect from an 
 
arithmetic operation, and then deriving any proper-

ties that one needs to use, rather than to start 
 
off with a list of desirable properties. For 
 
example, from the simple specification we have given, 
 
it is a straightforward matter to prove that (sign 
 

preservation): 
 
(-x)*y = -(x*y), 
 

or that (monotonicity).


x y and z 0 implies x*z y*z.



It is misleading to write down a list of such 
 
desirable properties and to suggest that rules might 
 
be derived from them. (After all, if we did write 
 
down all of the most desirable properties we would 
 
of course want to include associativity!)



It is undesirable to allow any exceptions to 
 
the specifications - even such small ones as the 
 
exception to true chopping arithmetic that occurs
with IBM 360/370 computers. Nor should we tolerate 
 
the inclusion of tricks, such as evaluating A+B*C 
 

with at most one rounding error The reason is 
 
that it is important for the user to know what 
 
happens under all circumstances. A simple rule, 
 
that is easy to remember and to which there are no 
 
exceptions, is a good way to ensure this knowledge. 
 

To complete the programming language specifica- 
 
tions with regard to floating-point arithmetic, we 
 
also require that 

.&ome conventcon6 be adopted, 5uch a6 the 
te6t to -gh-t Aute 6ojL Je6ouVn wmn - (9) 
gutti6 in exptes-ton6 such as6A+B+C. 

A further discussion of overflow, underflow, etc., 
 
is also required, but that will be postponed to the 
 

section on exception handling. 
 

OTHER BASIC OPERATIONS 
 
Besides the arithmetic operations, a program-


ming language must of course also provide various 
 
other basic operations. These should include such 
 
standard operations as 
 

abzotzte vafae


the 	 6fooA fanctAon,


quotient, em , 	 (10)A 

max, 	 mtn, 


as well as 
the Itetationat opekutoX6. 	 (11) 

With the latter it is essential that they work pro
perly over the entire domain, and that, for example,

nothing ridiculous happen such as allowing IF(A > B) 
to cause overflow.


There would also be a need for functions to


perform special rounding operations, such as



reound the -'euwtt o6 an avthmetc opekatt.on 
to a speCcied number o4 places in the 

J'actionpatt, (12) 
iound up, 0 iwand down, ztmavah1y, 
-'wand a -o4.eut ,to a speci6ed numbeA o6 

ptc6 ate' the point 

and 	 to carry out other special operations, such as


get pretton o6 6ac on pa2t, (13) 
get ptecision o6 exponent pa&t. 
Finally, a special operation nay be needed to 

denote 

-'epewted mutpttiation. 	 (14) 
n


The purpose of this operation is to distinguish x



where n is an integer and it is intended that x be



multiplied by itself n-i times, from the case where


n 
 

it is intended that x be approximated by first



determining log x and then computing en log x


Being able to make this distinction would be helpful



n3


in calculating expressions such as (-l)", or (3.1)


But whether this part of the proposal is accepted


depends to some extent on how strongly one feels


about dropping the fixed-point or integer type, as



mentioned in a later section.



For the elementary functions, such as SQRT(X),


EM (X), SIN(X), etc., we propose some simple but


uniform requirement such as



6(lxl) = (1+n1 )6(x{+nf))



ovekL appopfrate kangez6 o6 x, whe e n 

and n are smatt inegA. (06 coweue, (15) 

each e zatiz6iesl|l < u, an the vatue 
o6 u ep~ec on.)
on Aepe6 
 

It would be a nice feature if the n's were relative

ly easy to remember. For example, it might be


possible to require nI = 2 for each function, and



1


= 0 for at least most of the functions of 

interest. Unfortunately, the "appropriate ranges"

will 	 differ, although they will be obvious for some

functions (for example, they should contain all


possible non-negative values of x for the square
 

root function).
 


There is a temptation to require more restric


a2 
 

tions on the approximations to the elementary 
functions, such as



SIN(O) = 0, COS(O) = 1 

LOG(l) = 0, ABS(SIN(X)) 1



or that some relations be satisfied, at least close

ly, such as



SQRT(X
2) = X,



(SQRT(X))
2 = X



SIN(ARCSIN(X)) =X,



SIN 2 (X) + COS 2(X) = i
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or that some monotonicity properties be preserved, BesZdes OVERFLOW and UNDERFLOW, the othcA


such as possbte causes o6 .ntetapt a/e ZERO

0 X Y implies SQRT(X) 5 SQRT(Y) DIVIDE, INDETERMINATE, UNASSIGNED, and

A few such properties follow from the proposed OUTOFRANGE (i.e., Atgument o6 a 6unction


requirement (for example, SIN(O) = 0), but we out o4 xangej. 
propose not requiring anything beyond what can be Third, it is to be understood that 
derived from the original specification. This 
proposal is made in the interests of simplicity. The contAolwut be Aetwtned to the pocnt o6 
original specification is easy to remember, and any intmuptcon, afteA the speckdzed actcon 
proofs about what programs do should depend only on has been taken, untfsa the programmer has (18) 
a relatively few "axioms" about floating-point arith- pwovded 6o an altenattve to be oflowed, 
metic and the elementary functions. No one is re- such as stoppxng t1e caeutationz atto
quired to remember a potentially long list (and gtthet, o pexhap mclng an ett Aorm 
perhaps changing list!) of special properties of the that btock oS £n6twctionA. 
elementary function routines. Fourth, it is also proposed that 

In those cases where something special is re

quired, one possibility is that the programmer take the pcogncmeA be abe to assign a vatue 

appropriate measures. For example, if it appears to RESULT a pawd o6 the acton to be 

that we might want to require that Isin(x)[ :c 1, as taken. Fox exampte, he coutd w'wte (19) 

we might in trying to approximate the integral ON{OVERFLOW) RESULT = 10**5o 


I v 1-sin x dx, we can simply replace 1-sin x with END ERFLOW) RESULT = 0


11-sin xl. Alternatively, separate function sub- Not allowing the user to have access to the operands,


routines can always be developed in order to provide other than through his access to the program var

function approximations that satisfy special proper- ables themselves, has been deliberate. In particu

ties; for example, there could be a special sine sub- lar, if the operands that caused the interrupt were


routine, say SSIN, which produces approximations to "temporaries", it is difficult to see how he could


sin(x) with special properties such as being guaran- make use of them.


teed not to exceed 1 in absolute value.



FIXED-POINT ARITHMETIC


EXCEPTION HANDLING In conclusion, we would like to comment that,



Overflow, underflow, indeterminate, and zero- at least to us, it arpears that we do not need to 
divide have already been mentioned. (It may be that have any type of arithmetic in our programming 
one would like to make further distinctions here, language other than the floating-point arithmetic 
between positive and negative overflow, for example ) described in the preceding sections (except, of 
It should be pointed out that overflow and underflow course, for complex arithmetic). In particular, 
can occur when precision is changed, especially if there does not appear to be any compelling need for 
the user can change the exponent range. Other fixed-point or integer arithmetic. 
exceptions that can arise include trying to compute 
with an as yet unassigned value, or using a func- ACKNOWLEDGEMENTS 

tion argument that is out of range. Much of this work is based on material that



The first rule should be that, was prepared for discussion by members of the IFIP
 


i6 an exception axa6 and the ?YogB'mWni 	 Working Group 2.5 on Numerical Software, beginning 

makes no spectat pitovw on 6o& handng .t, with the Oak Brook meeting in 1976 (1). I would like 

the computatcon shoud be Stopped, aeong (16) to acknowledge the helpful criticism of members of 

with an appwpt £emesage about wheke that committee, particularly of W.S. Brown and T.J. 

and why. 	 Dekker. I would also like to thank W.M. Kahan 

especially; although we have not always been in 


If the user is aware that an exception might complete agreement, he has certainly had an enor

arise, and knows what he wants to do about it, he mous influence on my thinking about this, as well


can often "program around" the difficulty. One as many other subjects!


example has already been mentioned in connection


with an argument getting out of range in Vi-Knx. REFERENCES


Another arises in trying to calculate min(ly/xj,2) 1. T.E. Hull, "Semantics of Floating Point


where y/x might overflow. However, such strategies Arithmetic and Elementary Functions", Portability


are often quite confusing and sometimes not even of Numerical Software (ed. W.R. Cowell), Springer


3 7 4 8
 
available Some kind of general capability for hand- Verlag, N.Y., 1977, pp. - .


ling exceptions is needed. 2. T.E. Hull and J J Hofbauer, "Language



Our second rule with regard to exception hand- Facilities for Multiple Precision Floating Point


ling is therefore that Computation, with Examples, and the Description of 


the uzex should be able to specify the scope a Preprocessor", Tech Rep. No.63, Dept. of Comp. 

over which he " preparedto state what-TZ Sci., Univ. of Toronto (1974). 

to be done, and that he be abtLe to detect 3. T.E. Hull and J.J. Hofbauer, "Language 


the cause o6 the int upt, in a mg sAh Facilities for Numerical Computation", Mathematical 

as suggested zn the fo6omE. Proceedings of the ACM-STAM Conf. on Mathematical 
BEGIN (17) Software IT (ed. John R. Rice), Academic Press, 

ON(OVERFLOW) N.Y. 1977, Proceedings of the ACM-SIAM Conf. on 
y what to do in case o6 ovex- Mathematical Software 11, Purdue Univ. (1974), 

ftow pp.1-18.(UNDERFLOW) 
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Handling of Floating Point Exceptions



Thomas W. Eggers


Judson S. Leonard



Mary H. Payne



Digital Equipment Corporation


Maynard, Massachusetts



SUMMARY The second words that are created


on an overflow or underflow exception



An IEEE subcommittee on the are held in a table which dynamically


standardization of microprocessor changes in size. The table can be


floating point arithmetic has a managed with traditional storage

proposal under discussion. Part of allocation techniques. It can grow to


that proposal concerns overflow and a maximum size equal to the number of


underflow exceptions. floating point variables in the
 


program. The expected size and access


The proposal calls for a rate of this table are being


"gradual" underflow implemented with investigated.


denormalized numbers. For a sequence


of addition/subtraction operations, The authors believe that the


the gradual underflow works very well: Payne pointer scheme offers an


it almost has the effect of a machine improvement in both functionality and


with infinite range numbers. But if simplicity over the gradual underflow


an addition/subtraction sequence is mechanism.


interrupted by a multiply or divide,


things don't work nearly as well, and


a fallback to symbolic information is


likely. The proposal helps overflow


hardly at all.



The Payne alternate proposal


handles overflow, underflow,


addition/subtraction, and


multiplication/division equally well.


It relies on a pointer scheme that is


invoked when an overflow or underflow


exception occurs. The excepted result


is replaced by a reserved operand.

The reserved operand encodes


information about the exception,


stores the "excess exponent," and


points to a second word which stores


the correct number less the excess


exponent factor. Whenever a reserved


operand is encountered during


execution, a trap occurs and an


interpreter performs the operation

using the excess exponent for extended


range.
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"PROGRAMMING EFFORT" ANALYSIS OF THE ELLPACK LANGUAGE



John R. Rice



Divis-in of Mathematical Sciences 

Purdue University



ELLPACK is a problem statement language and system for elliptic partial



differential equations (PDEs) which is implemented by a Fortran preprocessor.



ELLPACK's principal purpose is as a tool for the performance evaluation of



software. However, we use it here as an example with which to study the


"programming effort" required for problem solving. It is obvious that



problem statement languages can reduce programming effort tremendously; our



goal is to quantify this somewhat. We do this by analyzing the lengths and



effort (as measured by Halstead's "software science" technique) of various



approaches to solving these problems.



A simple ELLPACK program is shown below to illustrate the nature of



the ELLPACK language. Space does not allow a description of the language



but it is somewhat self explanatory. See [2] and [3] for further details.



* ELLPACK 77 - EXAMPLE 4 FOR SIGNUM CONFERENCE


EQUATION. 2 DIMENSIONS



UXX$ +S.UYY$ -4.UY$ +(fUB9(X)-3.)U = EXP(X+Y)*lUBS(X)*(2./(1.+X)-1.)


BOUND. X = 0.0 , U = TRUE(O.,Y)


Y = 1.0 , UY= EXP(1.+X)*SQRT(UBS(X)/2.)


X = EXP(l.) , U = TRUE(2.71828182848,Y)


Y = 0.0 , MIXED = (I.+X)U (1.+X)UY = 2.*EXP(X) 

GRID. UNIFORM X = 5 $ UNIFORM Y = 7
* 
DISCRETIZATION(1). 5-POINT STAR


DIS(2). P3-Cl COLLOCATION


INDEX(1). NATURAL


INDEX(2). COLLOCATE BAN


SOL. BAND SOLVE


OUTPUT(B). MAX-ERROR $ MAX-RESIDUAL


OUTPUT(SS). TABLE(5,5)-U


SEQUENCE. 	 DIS(1) $ INDEX(1) $ SOLUTION $ OUTPUT(B)



DIS(2) $ INDEX(2) $ SOLUTION $ OUTPUT(B)


OUTPUT(SS)


OPTIONS. MEMORY $ LEVEL=2


FORTRAN.



FUNCTION TRUE(X,Y)


TRUE = EXP(X+Y)/(1.0+X)


RETURN


END


FUNCTION DUBSCT)


DUB9 = 2./(I.+T)**2

RETURN


END



END.
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A problem solution with the ELLPACK system goes through three principal



stages: (1)the ELLPACK language input is read by a Fortran preprocessor which



writes a Fortran Control Program, (2)the Control Program is compiled, and



(3)the Control Program object deck is loaded along with modules from the ELLPACK



library which implement steps in the solution of the PDE. We compare the programming



effort for each of these steps, i.e., (1)an ELLPACK statement of the PDE problem



to be solved and method to be used, (2)preparation of the Control Program, assuming



familiarity with the module library and (3)programming the entire solution in



Fortran.



Three measures of programming effort are used: lines of code, total number of



operators and operands and "effort" measured by thousands of elementary mental



discriminations. The latter two measures are part of Halstead's "software science"



presented in [1]. This is an empirical method to define and relate various program
 


parameters to the effort required to write the programs. While we do not attempt to



explain this method, it is very plausible that the total number of operators and



operands in a program is more directly related to the complexity of a program than



the number of lines of Fortran. Two short-comings of the method for this application



are (1)that it ignores declarations and I/0 statements and (2)the mechanism for


estimating the effort for a set of tightly integrated subroutines is inadequate.



However, the measurements are good enough for the present purposes where only rough
 


accuracy is needed.



We consider 10 example problems and present the data N=total number of operators



and operands, L=total lines of code (including comments in the Fortran modules, most



of which are well commented), C=code complexity measured by number of operators and



operands per line, and E=programming effort in 1000's of elementary mental discrimin


ations as defined by Halstead. For each problem we have data for the ELLPACK language
 


(labeled ELPK), the Control Program (labeled Control) and the set of library subroutines



used (labeled Modules).



PROBLEM 1 PROBLEM 2 PROBLEM 3 PROBLEM 4 
ELPK Control Modules ELPK Control Modules ELPK Control Modules ELPK Control Modules 

N 
L 

187 
33 

1793 
381 

14,349 
3,852 

103 
22 

1331 
295 

6632 
1330 

147 
27 

1552 
353 

14,203 
5,348 

134 
29 

1354 
314 

12,6711 
3,402 

C 5.7 4.7 3.7 4.7 4.5 5.0 5.4 4.4 2.7 4.6 4.3 3.7 
E 27 1076 6,425 5 371 4804 14 852 4,232 12 614 5881 

73





PROBLEM 5 PROBLEM 6 PROBLEM 7 PROBLEM 8 
ELPK Control Modules ELPK Control Modules ELPK Control Modules ELPK Control Modules 

N 1 3 231 11,198 125 1358 15,113 125 1366 8500 102 1238 7,2611 
L 40 303 2,918 42 336 5,425 51 311 2561 29 303 2,145 
C 2.8 4.1 3.8 3.0 4.0 2.6 2.5 4.4 3.3 3.5 4.1 3.4 
El 8 385 5,306 12 587 3,784 11 444 2771 6 394 2,211 

PROBLEM 	 9 PROBLEM 10


ELPK Control Modules ELPK Control Modules



N 112 1283 14,134 87 1716 7997


L 38 315 3,937 110 365 2517



2.9 	 4.1 3.6 .8 4.7 3.2


6 503 6,739 4 390 3243



There are considerable variations among these examples but there is also an obvious



trend of greatly increased "length" from stage to stage, no matter how it is



measured. The programming effort E should increase faster than the number of lines,



but it does not always do so because of the inability of the software science



method to completely account for the use of modularity in implementing an algorithm.



Comparing the Control and Modules data should be representative of the compari


son of using or not using a library of powerful subroutines. We see that the ratios



of effort range from 6 to 15 with 10 as an average, the ratios of lines range from



6 to 17 with 11 as an average. Thus we conclude that,at least in the context of



solving PDEs, the use of a library increases programming productivity by a factor



of 10. It may well increase it more and the quality of the results will be



improved if the library is good.



Comparing the ELPK and Control data should measure the value of a problem



statement language compared to using a library. The ratios of effort range from



40 to 100 with 60 as an average and the ratios of lines range from 3 to 13 with 9



as an average. We thus conclude that using an ELLPACK type preprocessor increases



programming productivity by a factor of 10 to 50.



We also conclude that using this preprocessor instead of writing the programs



from scratch reduces programming effort by a factor of between 100 and 500.
 


This work is partially supported by NSF Grant MCS76-10225.



El] M. H. Halstead, Elements of Software Science, Elsevier North-Holland,
 

New York, 1977.



[2] 	 J. R. Rice, ELLPACK: A Research Tool for Elliptic Partial Differential


Equations Software in Mathematical Software III (J.R. Rice, ed.)


Academic Press, 1977, pp. 319-341.



J. R. Rice, ELLPACK 77 User's Guide, CSD-TR 226, Computer Science 
Dept.,


[3] 
 
Purdue University, September 1978.
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Notes from the Seoond Department of Energy Library Workshop 

by



Kirby W. beg - litioml lbgnetio Fasion Iferg Comuter Center 
at the Lowrence Livenure laboratory 

and



Bonda!1 X. Jones - Sndita laboratories Albuquerque



Part I - A General Review of the Workshop



The U S Atomic Energy Commission (AEC) and 
 
its successors, first the U.S Energy Research and 
 
Development Administration and now the 
U S Department of Energy (DOE) and Nuclear 
Regulatory Commission, has been and continues to 
be one of the nation's major purchasers and users 
 
of large scale scientific computers 
 
Historically, each of the more than dozen computer 
 
centers at different laboratories evolved 
 
independently of the others so that each was 
 
self-contained In particular, each computer 
 
center developed mathematical software libraries


according to its own needs In 1975, 
 
representatives for the mathematical software 
 
libraries at the various AEC computer centers met, 
 
with Argonne National Laboratory as the host, to 
 
hold the first Workshop on the Operational Aspects 
 
of Mathematical Software Libraries. Among the 
 
purposes of the first Workshop were: (1) to meet 
 
colleagues doing similar work - at other AEC 
 
computer centers, (2) to share experiences in the 
 
management of mathematical software libraries, and 
 
(3) to discuss ideas and issues in the operation 
 
of libraries The first Workshop was sufficiently 
 
rewarding that the participants ' felt it 
 
appropriate to hold a second Workshop in three 
 
years. an interval that would encompass sufficient 
 
progress in library operation that new experiences 
 
and ideas could be discussed, 
 

The Second DOE Workshop on the Operational 
 
Aspects of Mathematical Software Libraries was 
 
hosted by the National Magnetic Fusion Energy 
 
Computer Center at the Lawrence Livermore 
 
Laboratory in August 1978 It was attended by 
 
thirty-five participants representing fifteen DOE


computer centers. Representatives from three 
 
non-DOE computer centers were also invited A 
 
major new development in DOE computer centers, the 
 
use of commercial mathematical software libraries, 
 
led to inviting representatives from three major 
 
commercial library companies. 
 

The Workshop included both individual 
 
presentations and group discussions. We will deal 
 
here with only the group discussions because they 
 
reflect the problems and issues that all of us, in 
 
or out of DOE, face in the management of 
 
mathematical software libraries.



One problem regarded with varying degrees of


concern by the participants is the proliferation


of mini computers While some mini computers are


limited by small amounts of memory or inaccurate


elementary functions, these appear not to be the


principal problems The problem is that there are


potentially so many brands and models at any given


site, each being used for scientific computation.


Consequently, the mathematical software librarian


has the task of supplying many versions of his or


her library - one for each mini computer.



At the opposite end of the spectrum is the


super computer with unconventional architecture
 

At this time, the only DOE computer centers


acquiring such machines already have computers


with long word lengths. This means extensive


conversion between single and double precision has


not yet been needed The basic problem is that


standard Fortran codes on the existing large


computers may be unable to take full advantage of


the new architecture of the super computers This


problem is currently felt to be handled best by


increased modularization (e g the Basic Linear


Algebra Subroutines or BLAS) so that only a


limited number of key modules need to be rewritten


(presumably in assembly language) for a new super


computer. Conspicuous by its absence was any


mention of programming languages other than


Fortran Apparently, no DOE computer center


expects to use any language other than Fortran or
 

a limited amount of assembly language in


mathematical software libraries be they libraries


for mini computers, conventional large computers,


or super computers



Participants were asked to mention


mathematical areas in which current libraries


seemed to lack sufficient coverage. In many


cases, the areas mentioned below reflect a single


user at a single site asking for a capability


rather than a wide spread need. (1) Sparse linear


algebra routines of all types are in demand This


was not an isolated occurrence. (2) Certain areas


of physics require high accuracy quadrature


routines In up to twelve dimensions. (3) One


computer center reported a need for Fortran


callable subroutines to perform symbolic algebra
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and produce Fortran compilable output. (4) There 
 
is a modest need for multi-dimensional surface 
 
fitting and approximation routines where data are 
 
given at co-ordinates that do not constitute a 
 
rectangular mesh - i.e. randomly distributed data 
 
points. (5) There is no end to the special 
 
functions that users request Users are asking 
 
for functions of two and three parameters with 
 
fractional or even complex degree, order, or 
 
argument. (6) Users are starting to encounter 
 
more multi-point boundary value problems We 
 
anticipate greater demand for routines in this 
 
area. 
 

The statistics software area is one in which 
 
the responsibilities of the mathematical software 
 
librarian are not well defined. It appears that 
 
the practitioners of statistical analysis prefer 
 
to use self-contained tools - i.e. programs that 
 
handle input, output, and graphics as well as 
 
analysis Many such complete programs exist and 
 
are commercially available. Each is designed to 
 
handle some reasonable subset of problems. A 
 
library of statistics subroutines is therefore 
 
needed only when a statistician must construct a 
 
new tool for a new class of problem, and then he 
 
or she will also need input, output, and graphics 
 
routines as well as statistics routines. We 
 
believe it fair to say the discussion of this 
 
topic was inconclusive, 
 

The era in which each computer center could 
 
afford to write and maintain its own complete 
 
mathematical software library is now generally 
 
acknowledged to be past. The continuing expansion 
 
in numerical analysis precludes having experts in 
 
every area of numerical analysis on the staff, and 
 
DOE is also sensitive to the duplication of effort 
 
implied by having independent library efforts at 
 
many computer centers. Thus commercial libraries 
 
are seen as playing a larger role in DOE computer 
 
centers. They can provide and support high 
 
quality, standard, general purpose numerical 
 
software while allowing the staff at each computer 
 
center to specialize in mathematical software 
 
unique to the needs of users at each computer 
 
center. The second Workshop therefore invited 
 
three of the major commercial library companies 
 
(IMSL, NAG, and PORT) to send representatives, 
 
The representatives were asked to give informal 
 
descriptions of their current activities and 
 
plans 
 

From the viewpoint of DOE participants, 
 
probably the most important benefit from having 
 
the commercial representatives was the chance to 
 
tell them how DOE perceived their roles and to 
 
state specifically what services the DOE computer 
 
centers would be needing. The commercial 
 
libraries play a role somewhat analogous to the 
 
scholarly journal They are increasingly being 
 
viewed as the vehicle through which the author of 
 
mathematical subroutines presents his or her 
 
software to the world just as a journal is used 
 
for presenting research to the world We expect 
 
that software will be refereed just as journals 
 
articles are refereed in order to achieve a 
 
uniformly high quality of content. Specific needs


of computer centers focus primarily on 
 
documentation. As the completely home grown 
 
library recedes into history, so will the 
 
completely home grown library document. It will 
 
be necessary for commercial libraries to supply 
 
documentation that is convenient to use and can 
 

fit into the great variety of procedures which


different computer centers use to maintain


documentation Most DOE computer centers are


still relying on hardcopy (e.g. paper) documents


to some extent, but the cost or inconvenience of


printing new manuals or inserting revision pages


is pushing computer centers in the direction of


machine readable, on line documentat-ion. Typing a


document into a form suitable for processing by a


report editor is not vastly more expensive than


typing a camera ready master, and it means the


document is stored in a form that permits


revisions to be made easily and quickly If the


document is kept on-line, the user can interrogate


it interactively or print a copy of the current


write-up on some output device The on-line


document is not free of problems however One is


that on-line storage (e.g. disks) is expensive.


We await a decrease in hardware costs combined


with the inevitable increase in labor costs and


inconvenience in maintaining paper documents to


tilt the balance in favor of on-line documents


Computer networks with users who are


geographically dispersed have already had to shift


away from a dependence on hardcopy manuals A


second reason is that limited character sets in


various output devices (e.g. printers or


terminals) prevent writing mathematical


expressions in the natural way. The commercial


library company faces exactly the same problems as


its customers in producing and maintaining


documentation Just as business offices have


resorted to word processing equipment to control


the cost of producing correspondence, so the


commercial libraries will have to turn to the


computer for assistance in producing and


maintaining documentation. Their problem is more


difficult than that of any individual computer


center in that they must furnish portable, machine


readable documentation that can be integrated


easily into each customer's system and set of


output devices. Currently, they furnish a


finished, hardcopy manual The problem is not the


content of the manual; it is the format. The


current form makes it impractical for computer


centers to furnish a copy to every user Also,


few users really need to own a complete manual.


Rather they need to be able to extract and print a


subset of the manual appropriate for their needs.


It is now generally recognized that documentation


is an integral part of mathematical software


(software without documentation is nearly useless)


but that construction, maintenance, and


distribution of the library document is perhaps a


more intractable problem than construction,


maintenance, and distribution of the library


itself. With commercial libraries now containing


hundreds of subroutines come manuals containing


thousands of pages. The sheer bulk of


documentation, while it suggests automation is now


in order, also means the companies must choose a


documenation system carefully because they can


afford to type such large documents only once.


Thereafter, the companies must be able to


transform their machine readable master documents


into various "documentation system ranges" as


needed by their customers.



Numerous other topics received' varying


amounts of attention at the Workshop (1)


Participants were asked to mention any


mathematical software packages which might


supplement general purpose libraries. (2)


Participants were asked to describe any tools or
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preprocessors that they had found useful in 
 
preparing, testing, and documenting mathematical 
 
software. (3) One of the Workshop participants is 
 
also a member of the DOE Advanced Computing 
 
Committee Language Working Group He spoke about 
 
the activities and plans of the group and answered 
 
questions about why DOE was so interested in 
 
designing a Fortran which would be an extension of 
 
ANSI 1977 Fortran. (5) Several DOE computer 
 
centers related their experiences and observations 
 
in monitoring the use of mathematical libraries 
 
(6) The concept of a core library was advanced as 
 
a response to some of the constraints now being 
 
encountered A core library is of manageably 
 
small size and includes routines from any source, 
 
local or outside, to provide coverage of most of 
 
the mathematical algorithms needed by users A 
 
core library is small enough to be supported by a 
 

small staff and does not require a massive manual


The staff is free to adopt for the core library
 

the finest routines from commercial libraries,


outside authors, or , local authors (7)


Participants reviewed briefly the means for


exchanging information or software. The ARPA net


is not available to all computer centers, but it


does allow transmission of messages and files


between some of the DOE computer centers The


magnetic tape formats recommended by the Argonne


Code Center were agreeable to most participants


although some thought that seven track tapes


should be blocked instead of unblocked (8)


Finally, the Workshop gave librarians a chance to


express their advice for authors who would write


mathematical software for libraries. This is in 
contrast to mathematical software packages 
intended for stand alone use 

Part II - Suggestions for Authors of Mathematical Software



In this part of the paper we present our 
 
views about the format for Fortran software to be 
 
admitted to libraries. Most of these ideas were 
 
presented at the DOE Library Workshop; however, we 
 
do not wish to imply that they were endorsed by 
 
the Workshop Most of these ideas come from the 
 
discussions between Sandia Laboratories, the Los


Alamos Scientific Laboratory, and the Air Force 
 
Weapons Laboratory about the feasibility of 
 
constructing a common mathematical library from 
 
existing software These discussions were 
 
organized under SLATEC, a committee with 
 
representatives from the three laboratories, which 
 
co-ordinates technical exchanges among the three 
 
members, 
 

The programming environment for the 
 
development of mathematical software is influenced 
 
to some extent by what the author perceives as the 
 
manner in which the software will ultimately be 
 
used. In particular, a mathematical package that 
 
is destined for stand alone use will be written to 
 
be self-contained, that is, it will use no 
 
externals other than the basic (Fortran) externals 
 
and will try to avoid any input/output or system 
 
dependence Such attention to portability is 
 
commendable, for it eases the recipient's task of 
 
installing the package; yet, a librarian may


nevertheless be unhappy because the package adds 
 
yet another linear system solver or error message


printing routine to the library From the 
 
librarian's point of view, a collection of 
 
completely independent routines is not a library, 
 
A collection of software cannot really be elevated 
 
to the status of library until redundancy is 
 
minimized, error conditions are handled in a 
 
systematic way, and the routines and their 
 
documents are presented in a fairly uniform way 
 
Let us be more specific about the attributes the


librarian values 
 

(1) Whenever possible, the arguments for a 
 
subroutine should be in this order' (1) input, 
 
(2) input/output, (3) output, (4) work arrays An 
 
exception is that array dimensions should 
 
immediately follow the array name. Work arrays 
 
should be limited to no more than one of each 
 
needed type, z.e. one single precision array, one 
 

double precision array, one complex array, one


integer array, and one logical array. This


implies user callable routines may actually be


nothing more than interface routines which carve


the work arrays into smaller pieces for use by


other subroutines.



(2) Each subprogram should have a block of
 

information called a prologue. The prologue 
should immediately follow the subprogram 
declaration. The first part of the prologue 
should be an abstract in the form of comment cards


which describes the purpose of the subprogram and


gives the author, history, or references for the


subprogram The second part should be a


description of each argument in the calling


sequence, and each argument should be described in


the order in which it appears in the calling


sequence It has been found that users will code


a call by reading the argument description, thus,


such a description should not mislead the user


into writing actual arguments in an incorrect


order The third part of the prologue should be


array declarations These may be actual


declarations or comment cards describing arrays


and their sizes The fourth part of the prologue


should be a comment card



C *** END OF PROLOGUE



which signals the end of information for the user.


This type of sentinel is of great use in the


automatic preparation of user manuals A string


processor or other text editing program can Lake


the cards from each subprogram up to the sentinel


to construct a library manual. The prologue


should contain sufficient information that it


could be used as the primary user document



(3) If at all possible, any separate


documentation should be supplied In machine


readable form Hardcopy documentation may be


suitable when a complete package is supplied to a


single user, but library routines are available to


all users. Hence a document for a library routine


should be in a form where it can be edited easily


to fit in a manual or in a form where users can


easily print as many copies as they need. Since
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many output devices are not capable of printing 
 
integral or summation signs and other mathematical 
 
notation, considerable ingenuity may be required 
 
to write the document using only the ASCII or 
 
EBCDIC character set. We furthermore recommend 
 
that authors restrict themselvs to the 
 
intersection of the ASCII and EBCDIC character 
 
sets At this time we are incl-ined t6 accept


mixed upper and lower case documentation, however, 
 
authors who are dedicated to distributing their 
 
software may wish to confine themselves to the 
 
forty-seven characters in standard Fortran. Line 
 
lengths for machine readable documents should not 
 
exceed 80 columns as most terminals will print 
 
only 80 columns. If the document describes the 
 
arguments of a subprogram, it, like the prologue, 
 
should describe them in the same order in which 
 
they occur in the calling sequence The names of 
 
any arguments or internal variables described in 
 
the document should be exactly the same as the 
 
names in the Fortran subprogram. This assists the 
 
user who is symbolically debugging his program who 
 
may ask by name for the values of arguments or key


internal variables inside the library routine. 
 
For example, if EPSLON is an argument, it should 
 
be referred to as EPSLON, not EPSILON, in any 
 
separate document 
 

(4) A comment card of the following type 
 

C ... FIRST EXECUTABLE STATEMENT



should be placed between the last declaration or 
 
arithemtic statement function and the first 
 
executable statement This assists string 
 
processing programs in inserting CALL statements 
 
to system routines that monitor the use of library 
 
routines 
 

(5) Input/output (I/O) should be localized 
 
if it is present at all. READ and WRITE 
 
statements should be confined to one subprogram 
 
and not be scattered throughout a package This 
 
makes modification of any I/O much simpler. We do 
 
not consider the penalty of going through another 
 
level of subroutine call to perform I/O a serious 
 
penalty. 
 

(6) We recommend that authors use the PORT


Library or SLATEC error message packages rather 
 
than write their own routines for printing error 
 
messages (A description of the latter may be 
 
found in Sandia report SAND 78-1189 ) Both 
 
packages are portable. The packages are (by 
 
design) very similar in approach, with the SLATEC 
 
package differing from the PORT package in some 
 
features to reflect the production computing 
 
environment in which the SLATEC library is to be 
 
used. We suggest that authors choose the package 
 
which better suits their philosophy Use of these 
 
packages then relieves the author of the burden of 
 
designing and coding his or her own error handling 
 
procedures 
 

(7) There is some controversy whether 
 
machine constants should be computed internally or 
 
data loaded in library routines. We prefer that 
 
authors use similar if not identical routines to 
 
those in the PORT Library. These routines return



machine constants which are data loaded inside


these routines. This minimizes the number of data


statements that must be changed in moving a


library from one machine to another. It also


precludes the possibility that some new optimizing


compiler or architecture might invalidate a tricky


algorithm for computing a machine constant



(8) We encourage authors to use reputable,


existing software as building blocks for their


packages Examples are EISPACK, FUNPACK, LINPACK,


IMSL, NAG, and PORT. We also encourage the use of


the Basic Linear Algebra Subroutines (BLAS)


because they are a small enough set of routines


that we can reasonably expect to provide an


optimal set for each machine This in turn means


that higher level routines calling the BLAS can be


made more efficient just by improving the BLAS


We thus minimize conflicts between portability and


efficiency by isolating efficiency dependent parts


of a program into small modules which can be


receded easily



(9) Until some portable subset of ANSI 1977


Fortran becomes recognized, mathematical software


should be written in a portable subset of ANSI


1966 Fortran as defined by the PFORT Verifier


Authors of routines that do not pass the PFORT


Verifier should offer good reasons why their


routines should not be modified to do so



(10) Avoid using common blocks because users


may accidentally invent program or block names


that conflict If common blocks or subroutines


internal to a package (not called by users) are


used, pick highly unusual names in order to


minimize the chance that they will conflict with


names existing elsewhere. User callable routines


should also have very distinctive names, possibly


names that are obviously related to the package,


that are not likely to cause conflicts. Examples


of bad choices are START, TIME, F, OPEN, CLOSE,


FFT. INTEG. SOLVE, SORT, SECOND, INIT. and QUIT.
 

These all have a high probability of conflicting


with user or system library names Authors should


also avoid names used in widely available software


such as IMSL, NAG, PORT, EISPACK, FUNPACK,


LINPACK, BLAS, and DISSPLA.



We believe the DOE computer centers are not


alone in moving from libraries consisting solely


of locally written software to libraries including


externally written software We urge software


authors who are proud of their products and wish
 

to see them widely used, to consider putting their


software in a form that may more easily be


integrated into libraries. Not only are computer


centers becoming more receptive to outside


software in their libraries, they tend to promote


their library software more vigorously than


software which exists separately on some tape


somewhere in the machine room. The "official"


library, for example, is usually readily available


to the linkage editor in an on-line disk file.


Librarians quite naturally will prefer to accept


software that fits into libraries easily and has
 

documentation that can easily be transformed into


the local canonical form
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ABSTRACT 
 these differences did not come about


casually, but rather were the result of
The Language Working Group is a each laboratory's attempt, over the years,
technical arm of the DOE Advanced to deal most effectively with the advanced


Computing Committee. The ourpose of the computer hardware of which they were often


Group is to work toward providing a the first recipients.

comnatible Fortran environment at the ACC


sites. A brief history of the efforts of During the first year 
 of the LWG's

the Group is given, and the 
 general existence, the imoortant capabilities of


features of the language the group will the Fortran languages in use at the ACC

recommend are discussed. This language is laboratories were distilled, and the


a multi-level Fortran with Fortran 77 as concept of a multi-level Fortran language

the core. 
 based on the new ANSI standard, Fortran



77, was refined. In this multi-level


Fortran, the core, or "Level 0", of the


language would be precisely Fortran 77
HISTORY 
 (i.e., X3.9-1978). Level I would consist


of Level 0 plus features which were "de


The Advanced Computing 
 Committee facto standard" at all the laboratories.


(ACC) is a committee of reoresentatives or which were clearly desirable by all the

from the management of the scientific laboratories and did not involve any

computer rescources at the large DOE technical questions 
 of implementation.

research and development laboratories. Level 2 would consist of Level I plus all

The function of this committee is to help the other functional capabilities deemed

guide various aspects of the use of large necessary by the LNG (as determined from

scientific computers at the laboratories the survey of features in use) which were

represented in the ACC. The ACC Language technically feasible for a language usable


Working 
 Group (ACCLWG, or LWG) is a on a broad class of scientific computers.

subcommittee reporting to the ACC, made up 
 Level 3 would consist of Level 2 plus

of one or two technica'l personnel from necessary features which for 
 some reason

each site, plus representatives from two could not be placed in Level I or 2.

closely related sites. not
non-DOE Thus, Level 3 features would probably 

Approximately twelve oersons are currently 
 be applicable to some computers. This


serving on the LWG. The LNG was formed by 
 concept of a completely nested series of


the ACC in October 1976, as a technical three 
levels of Fortran, with the current


arm to advise ACC in matters concerning ANSI standard as the core, was presented

programming languages. 
 to the ACC by the LNG at its fifth meeting



in November, 1977.


Specifically, the major assignment of



the LWG is to advise on how to provide a LEVEL I FORTRAN


"compatible Fortran environment" at all
the ACC sites. This requirement was Once the multi-level approach to


motivated 
by the current situation in achieving a compatible Fortran environment

which many large programs written at one was approved, the first business of the


site cannot be used at other ACC sites LWG was to agree on 
 a detailed description

because of the considerable differences in 
 of the Level I features. Such "detailed

the versions of Fortran in use at the descriptions5' do not include a choice of

various sites. Indeed, it is sometimes exact syntax to be used, but rather


not possible to run the same or similar discuss the functional capability itself.


program on two different computers at the Such descriptions were usually made


same site. It should be pointed out that difticult by the fact that the "de facto
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standard" features in current use were 
 
cased on features in the previous ANSI 
 
Fortran standard. It was often necessary 
 
to revamp these features significantly to 
 
base them on Fortran 77. Briefly, the 
 
features defined to be in Level I are as 
 
follows. 
 

I. 	 An asynchronous input/output 
 
feature, similar in capability to


the well known BUFFER IN/BUFFER 
 
OUT feature, but built on Fortran 
 
77's expanded READ/NRITE/INOUIRE 
 
features. 
 

2. 	 NAMELIST input/output, in much 
 
the same form currently in wide 
 
use. 
 

3. 	 Timing functions, including the 
 
capatility to determine elaosed


CPU time as well as time of day, 
 
date, and remaining job time left 
 
before time limit. 
 

4. 	 Input stream compiler directives 
 
to control listing, list 
 
suppression, and page electing. 
 

5. 	 "Bit-by-bit data manipulation" 
 
features including octal and


hexadecimal constants and format 
 
descriptors, word oriented 
 
shifting and masking operations, 
 
and oit-by-bit Boolean 
 
operations. 
 

The functional description of Level I 
 
was completed by the LNG's seventh 
 
meeting, and was presented to the ACC by

the 	 officers of the LuG In May 1978. 
 

LEVEL 2 FORTRAN 
 

The next order of business of the LVG 
 
was to develop detailed functional 
 
descriptions of the features to be in 
 
Level 2. This was a harder task than for 
 
Level I because the featureswere in less 
 
common use than Level I features, and were



more technically difficult to fully


describe. In addition, it was desired to


add fairly detailed examples using


illustrative syntax to demonstrate the


feasibility of the feature. (Note we do


not mean examples of the syntax chosen for


a feature, out an example syntax which


might or might not eventually be


selected.)



At the time of this writing, it


appears that all, or almost all, of the


features chosen for Level 2 will indeed be


written up in detail by the committee's


tenth meeting in October 1978, which is


the goal which has been set. Briefly, the


main features likely to be in Level 2 are


as follows. (A more definitive listing


should be available by the time of the


presentation of this paper.)



1. 	 Array processing, including


referencing of whole arrays in


assignment statements without the
 

use of subscriots, referencing


sections of arrays, array valued


conditional assignment


statements, and both elemental


and transformational array valued


functions.



2. 	 Dynamic array allocation,


including dynamic array renaming


and sectioning, a COMMON-like


feature for dynamic arrays, and


appropriate environmental inquiry


features.



3. 	 A macro capability, in which a


macro can be invoked as an


expression, a statement, or


outside a subprogram. The


simplest form of a statement


macro would be equivalent to an


INCLUDE feature. Macro libraries


are allowed, and facilities are


included to allow generation of


unique statement labels and


variables within the body of the


macro.
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SUMMARY



In 	 summary, the concept of a



4. 	 More 	 general, "structured" multi-level Fortran language, with Fortran


control structures for looping 77 as "Level O" was developed in resoonse


and case selection. to the need for a compatible Fortran



environment for the ACC sites. A fairly


5. 	 Various orovisions for improving detailed description of the recommended



form, possibly including language, including illustrative syntax,
program 
 
such items as a larger character but not including final syntax choice. was


set, trailing comments on a line, developed in only about a year from the


longer variaole names, multiple time the decision was made to go ahead


assignment statements, and with that development. More detailed


optional automatic indentation. language specification will hopefully be



performed by a much smaller committee



6. 	 COMPLEX DOUBLE PRECISION type working more intensively for several



declaration, with appropriate months. The result of that effort will



extensions to the intrinsic then be examined oy the LNG. It should be



function set. emphasized that this effort is oriented to


eventually greatly imoroving the computing



7. 	 An environment inquiry feature environment for the ACC laboratories;
 it



orobably implemented through is not an attempt to usurp any function of


inclusion of a substantial family the ANSI Fortran committee, though the LVG



of intrinsic functions which certainly communicates with that



provide information on the committee. Indeed, the philosophy of the



details of the machine's LG would be to restructure its


arithmetic and related matters. multi-level Fortran to incorporate any



future standard as the core of the



8. 	 A data structuring capability, language.


centered on the concept of a


"record" which consists of fields


and subfields which are


accessible as an aggregate or


individually. Among other


things, this feature allows very


easy acess to part of a word.



9. 	 Expansion of certain features in


Level I, such as extended


NAMELIST features.



LEVEL 3 FORTRAN



Clearly, the 	Level 2 language will be


a considerable extension beyond Level I.


Level 3, on the other hand. will probaoly


contain 02 features beyond Level 2


initially. Rather, a careful definition


will be given as to what kinds of features


would be included in Level 3 if such a



need arises at a later date.
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