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LANGLEY AIRFOIL-RESF.&RCH PROGRAM ":

Percy J. Bobbitt

NASA Langley Research Center

INTRODUCTION _;
i

The purpose of this paper is to give an overview of past, present, and

future airfoil research activities at the Langley Research Center. The immedi-

ate past and future occupy most of the discussion; however, past accomplish-
ments and milestones going back to the early NACA years are dealt with in a

I broad-brush way to give a better perspective of current developments and pro-

grams. Indeed the seeds of the current surge in activity were sown a dozen

• years ago; the pedigree of many of Langley's present-day facilities can be

traced to the mid thirties. In addition to the historical perspective, a short

description of the facilities which are now being used in the airfoil program
is given. This is followed by a discussion of new airfoil developments,

advances in airfoil design and analysis tools (mostly those that have taken
place over the past 5 or 6 years), and tunnel-wall-interference predictive

methods and measurements_ The last subject to be treated is future research
requirements.

HISTORICAL PERSPECTIVE

Airfoil research at the Langley Memorial Aeronautical Laboratory began
shortly after it was established and long before its first tunnel became opera-

tional In 1920. As assessment of the state-of-the-art of airfoil technology in

the world was made and the airfoil data collected were put in a unified format

and published for the benefit of the scientific community in the 1920, 1921,
and 1923 NACA annuals (refs. I to 3). A few of these early airfoils are shown

in figure I; they indicate in a graphic way the lack of understanding of flow

physics that existed in those early days. The airfoil sketched at the top is

the USA I tested in an MIT tunnel at 13 m/sec (44 ft/sec) and is very similar to
the Spad, Sopwith, Italian 2, and Eiffel 53 airfoils. The next two were tested

at the Eiffel Laboratory in 1914 and were apparently designed to determine
whether the performance of airfoils which are in fact two or three airfoils

connected together would be superior to single-hump airfoils. Eiffel 44, the

fourth from the top, has what appears to be a separation step on the top side;
the philosophy behind its design is somewhat more obscure. It should be noted

that the Eiffel Laboratory was probably the leading airfoil research center in

the world prior to World War I and dozens of excellent airfoils were produced.

The first Langley airfoil, which appeared in the 1923 NACA annual, was the
Langley Memorial Aeronautical Laboratory 54. It was tested in the first NACA

wind tunnel, the WT-I 5-foot tunnel, which, as noted earlier, began operating
in 1920.

Reynolds number scaling was already a serious concern in 1920 and was the

motivating factor in the design and construction of the variable density !
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tunnel (VDT). When it came on-line in 1923. it was the most advanced tunnel

/! in the world. It could operate at pressure_ up to 20 atmospheres and achieve

i_ Reynolds numbers up to 3.3 x 106 for a 13-cm (5-in.) chord model Another .__i:i
facility of note that was constructed in the late twenties was the 12-inch

i high-speed tunnel which could produce velocities up to 350 m/sec (800 mph).

The latter half of the twenties saw the development of the NACA 4-digit

_ and modified 4-d_git series of airfoils. A sketch of one of the most popular, _
the 4412, is given in figure 2. A calcuiative procedure for airfoils of arbi-

trary shape was also formulated and provided a more rational basis for airfoil-

family design.

Several more airfoil families were generated in the thirties including

• the 5-digit series, the l-series (also known as the 16-series), and the NACA

laminar-flow airfoil family. A 5-digit and a laminar-flow airfoil section are

depicted in figure 2 along with a GA(W)-2 for comparison. The laminar-flow
series was preceded by a considerable amount of research on calculative methods

for boundary layers and empirical transition criteria.

Wind-tunnel construction during the thirties was driven by a desire to test

,_ airfoils under conditions approaching the flight environment, especially those

designed for extensive runs of laminar flow. The low turbulence tunnel (LTT)

started running in the mid thirties and, in addition to providing useful data,

served as a learning experience for the design of the Langley low-turbulence

pressure tunnel (LTPT). The LTPT started operation in 1941 and is still in use.

By the mid forties, the characteristics of a large numbec of airfoils had

been defined; design procedures were being relied on for definition of airfoil

geometry and modifications to existing airfoils. A report summarizing most of

these data and procedures was published in 1945 (ref. 4). This document later

became the basis for a book by Ira H. Abbott and Albert E. von Doenhoff (ref. 5).

The late forties saw some shift in emphasis away from airfoil-section develop-

ment to high-lift systems and boundary-layer transition and control.

A change in priorities in the early fifties necessitated a reduction in

_ airfoil research, and by the mid fifties, it had completely disappeared. Air-

_:_ foil research did not commence again until 1965 when R. T. Whitcomb conceived a

::_ new type of airfoil section for high subsonic speed applications (ref 6) By• .
¢, virtue of a unique top side shaping, these airfoils were able to delay the

:i formation of shocks and hence, for a given thickness, increase the drag-rise

blach number. Since these airfoils are able to sustain large regions of super-

;!:. critical flow without shock formation near their design condition, they have

_. been termed "supercritical" or "shockless" airfoils.

The first Whitcomb supercritical airfoil was a two-element design; it was

followed closely by a slngle-element concept. Its value was quickly grasped

by the aircraft industry and dermnds for supercritical airfoils for a variety

of flight conditions and applications soon foilowed. This demand and interest

led to a number of actions. It was decided in 1968 to reactivate Langley's

airfoil test facilities; a series of supercritical airfoils were designed;

theoretical efforts to provide a design metllod were commenced; and flight demon-

stration projects using the T2-C and F_V-] aircraft were instituted. The first '_
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dividends from these actions came in the 1970-71 time period when flight tests
clearly validated the airfoil concept and the Langley 6- by 19-inch transonic

. !tunnel became operational The first design and analysis codes for super-

critical airfoils were published in 1972. These codes, developed at the NYU ";

Courant Institute by a team of scientists led by P. R. Garabedian (ref. 7), are
now in use all over the world.

The breakthrough in the design of airfoils for high subsonic applications

precipitated a renewed effort to develop improved airfoils for low speeds. With

the aid of a computer code developed at Lockheed under Langley contract by J.A. 4:

Braden, S. H. Goradia, and W. A. Stevens (ref. 8), R. T. W_itcomb designed the
GA(W)-I airfoil. It was tested in 1972 and showed a potential for better climb

characteristics than airfoils in common use. Requests for the design of, and
data on, similar airfoils with different thickness ratios were numerous.

By 1973, the number of Langley researchers and organizations engaged in
airfoil research to explore the new concepts had increased in response to indus-

try pressures for more data. Informal communication and individual planning no

longer provided the coordination required of such a large effort. Consequently,

i in 1973, airfoil-research activities were programmized Since that time, pro-
; gross in the formulation of new airfoil designs and computer codes with improved

capabilities has been remarkable. Some of the major milestones of the past
4 years are as follows:

Langley 6- by 28-inch transonic tunnel and 0.3-meter transonic cryogenic
tunnel became operational.

Low-speed, medium-speed, and new supercritical airfoil families were
defined.

i Low-drag general aviation airfoils were developed.

New airfoil design and analysis methods were formulated.

Theoretical and experimental research on massive separation began.

Theoretical and experimental studies on wall interference were initiated.

Q
General aviation airfoil design and analysis service was created.

With the exception of the airfoil design service, these items are discussed in

the subsequent sections. The airfoil design service, created in 1976 at Ohio

State University, gives the general aviation industry access to the latest com-

puter codes for airfoil design and analysis. Scientists, expert in the appli-
cation of all NASA-developed codes, are available to render whatever level of
service is required.

TEST FACILITIES i

The NACA and its successor, the NASA, have always been in the forefront

of wind-tunnel technology and test techniques. Tunnel facilities developed

i_ ,.., :_

.,:{.
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over the past few years for airfoil tests and those being used in the program

that were constructed many years ago continue to provide a unique capability

for two-dimenslonal testing. The four wind tunnels which are used primarily
for airfoil research are:

Langley low-turbulence pressure tunnel

Langley 6- by 19-inch transonic tunnel
Langley 6- by 28-inch transonic tunnel

Langley 0.3-meter transonic cryogenic tunnel (20- by 60-cm test section)

The Langley 8-foot transonic pressure tunnel has _iso been used for airfoil

tests but this was done prior to the 6- by 28-1nch transonic tunnel and the

0.3-meter transonic cryogenic tunnel becoming available.

The low-turbulence pressure tunnel (LTPT), as noted earlier, began opera-
tion in 1941 and is still in regular use (see fig. 3). It is still superior

to most tunnels in the world over its operating range, which is Math numbers
from 0. I to 0.4 and Reynolds numbers (based on a 0.6-m (2-ft) chord) from

1.0 x 106 to 30 x 106. New general aviation airfoils are developed with the
aid of this facility; low-speed characteristics of supercritlcal airfoils are

also explored. In addition, the excellent flow quality of the LTPT makes it

ideal to carry out research on airfoils designed for natural or controlled

laminar flow. Planned improvements for this facility will enable it to obtain

accurate data for very high-llft systems and for airfoils at higher angles of
attack than is now possible.

The 6- by 19-inch transonic tunnel came on-line in 1971 and has been uti-

lized for both routine airfoil tests and technique-development research. A

cross-section drawing of this facility is given in figure 4. It is a blowdown-

type tunnel with no independent control of Mach number and Reynolds number, A
15-cm (6-in.) chord model can be tested to Reynolds numbers of 4.5 x 106 up to

a Math number of 1.0. Future utilization of the 6- by 19-inch tunnel will be

primarily in the area of technique development with special emphasis cn wind-
tunnel wall interference.

The workhorse facility of the airfoil research is the 6- by 28-inch

transonic tunnel, depicted in figure 5. Its normal Math number range is from

0.3 to 1.0 with Reynolds numbers up to 13.5 x 106 for Math numbers above 0.5.
Independent control-of Math number and Reynolds number is possible. The 6- by

28-1nch tunnel is used for research on every type of airfoil, including high-
speed general aviation, supercrltical, propeller, and rotorcraft. In the near

future, the capabilities of this facility will be enhanced by =he installation

of a dynamic "rig" to carry out unsteady oscillatory and dynamic motion tests.

Sidewall boundary-layer-control plates will also be provided to increase the
maximum angle of attack at which useful data can be obtained.

The most versatile airfoil facility is the 0.3-meter transonic cryogenic

tunnel (TCT) equipped with its 20- by 60-cm test section. A photograph of this

facility is given in figure 6 and shows the unusual geometry of the tunnel with

the test section at the top and the return leg at the bottom. The sketches

given in figure 7 illustrate this fact more clearly. The bottom sketch shown

is the original three-dimensional octagonal test section, the one in the middle

14
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is the two-dimensional insert with schlieren s)stem in place, and the top sketch
is a self-streamlining two-dimensional section soon to be constructed.

The use oi!nitrogen at cryogenic temperatures gives rise to Reynolds num-
bers up to a factor 5 larger than those of a conventional air tunnel. It also

allows one to _ontrol Math number, Reynolds number, and dynamic pressure inde-

pendently, a capability more important perhaps in three-dimensional than in
two-dimension_l testing_ since aeroelastic and Reynolds number effects can be

isolated. Re,molds numbers up to 50 × 106 can be obtained for a 15-cm (6-in.)

chord model. Production testing in the TCT should commence in the fall after
completion of a number of minor improvements.

Further details on the capabilities and plans for Langley's two-dimenslonal
research facilities can be found in the paper by E. J. Ray in these proceedings
(ref. 9).

Research aircraft have been used as test facilities as well as wind tunnels.

An Fgv-I flghter and a T2-C trainer aircraft were p_ovided with new wings to

determine _he performance of supercritical sections in flight. In both applica-

tlons, the supercritlcal wings proved superior to the original ones.

Similar proof tests of the new general aviation airfoil sections have been

conducted. The GA(W)-I was tested on the Advanced Technology Light Twln-Engine
(ATLIT) aircraft, originally a Piper Seneca, and the GA(W)-2 on the Beech

Sundowner. The latter is shown in flight near Columbus, Ohio, in figure 8.

NEW AIRFOIL DEVELOPMENTS

Langley's airfoil research program involves a variety of airfoil types
including

Low-speed general aviation*
Low-speed natural laminar flow

Medium speed

Transport-type supercritlcal*

Large cargo supercritlcal
Laminar.-flow control (LFC) supercritical

Helicopter*

Fighter

Propeller

By far, the most effort has been expended on the three airfoil types indicated

by the asterisks, and most of the subsequent discussion treats the accomplish-

ments and plans for these types. New designs for the other types of airfoils

(except LFC supercrltical) have in some cases Just been tested an4, in others,

are awaiting test or fabrication. The LFC airfoil is being developed under the

NASA Energy Efficient Transport, Laminar Flow Control Project and is listed
above only for completeness.

Comparisons of experiment with calculated results from the b_:st low-speed

and supercrltical-airfoil predictive methods have generally shown that the '_
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theories are accurate. Theoretically determined pressure distributions and
lift and moment coefficients correlate well with experiment; absolute-drag
levels are sometimes in poor agreement. However, predictions of relatlve-drag
level and drag-rise Math number can usually be relied on. A result of these

observations is that a philosophy has been adopted to test only a few repre-
s_ntatlve samples of each type of airfoil to establish the validity of the

theory. This philosophy has been applied in the case of the new Langley low-
speed airfoil family. Figure 9 shows the range of thicknesses and llft coeffi-

cients of the new design_ as well as their status. Five airfoils have already
been tested, and four others have been designed for future testing. These test •
results coupled with available computer codes will enable other airfoils of

this type to be designed with colaplete confidence. Additional information on

NASA's low- and medium-speed airfoils can be obtained from the McGhee-Beasley
paper in these proceedings (ref. I0).

The matrix of shapes which constitute the NASA supercrltical airfoil family
is shown in figure I0. Design llft coefficients vary from 0 to 1.0, and thick-

ness ratios from 0.02 to 0.21. This family is based on improved design proce-

dures developed by R. T. Whitcomb and were defined by using the transonic

Bauer-Garabedlan-Korn analysis code (ref. 7). Only two designs have been

tested to date; four others are in the planning stages. Many other designs

are available for test, as indicated by the solid dots, but it is likely that
only about hal_ will be sc honored.

f

Rotor-airfoll research has the same objectives as those for conventional

airfoils, that is, the evaluation of new alrfoil-deslgn methodology by wind-

tunnel and flight tests and development of improved sections. Unfortunately,

their achievement is considerably more difficult with current methods. Analysis
tools which apply for two-dimenslonal steady flow must, in some rational way,
be applied to the rapidly changing, three-dlmenslonal environment of a rotor

blade where relative velocities may change from high subsonic .o low subsonic,

or reverse direction in one revolution. Results contained in the proceeding
papers by G. J. Bingham, K. W. Noonan, and H. E. Jones and C. E. Morris, Jr.
would seem to indicate that progress is being made in this area (refs. 11
and 12).

Three new rotor airfoils designed for tests on the AH-IC helicopter as

well as in Langley's two-dlmenslonal wind tunnels are shown in figure I]. Each

has been designed by a different method: the first using a transonic hodograph
equation solution technique, the second using a llnear-potential-equation

method with compressibility corrections (parametric crestline), and the third

using the transonic full-potential-equatlon method (supercrltlcal technology)
of F. Bauer, p. Garabedlan, and D. Korn (ref. 7). All three have been tested

in both the Langley 6- by 19-1nch and 6- by 28-inch transonic tunnels as well
as in flight.

The total rotor-airfoil-development effort can best be judged by the facL

that a total of 29 airfoils have been tested, 21 in the 6- by 28-1nch tunnel

and 8 in the 6- by 19-inch tunnel. Some of the participating organizations
involved are

16
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6- by 19-inch transonic tunnel
NASA

U.S. Army R&T Laboratories (AVRADCOM)

Bell Helicopter Textron
National Aerospace Laboratory (NLR), Netherlands

6- by 2B-inch transonic tunnel
Bell Helicopter Textron

Boeing Co.
Hughes Aircraft Co.

Sikorsky Aircraft
Wortmann

THEORETICAL DEVELOPMENTS

The ability to design airfoils and to analyze flows about them has grown

by leaps and hounds over the past 10 years. Aid=d and abetted by a new genera-

tlon of computers and improved solution techniques, designers can now quickly
analyze supercrltical airfoils with and without shocks and multlelement air-

foils, taking into account viscous effects. Significant progress has also been

made in the treatment of airfoils with regions of separated flow. Many of the

advancements cited have come out of the Langley airfoil-research program and
many more are in store.

Cpeclflc areas where significant progress has been made and/or effort is

being applied are

Design and analysis codes

Shock/boundary-layer interac tion

Trailing-edge interaction
Leadlng-edge bubble interaction
Separated flow

Multlelement airfoil analysis

Unsteady flow

A short discussion of each of these topics follows.

Perhaps the most significant development in airfoil theory in the past

decade was the formulation of the hodograph design and "circle-plane" analysis
codes for _upercritical airfoils by the Garabedian-Korn-Bauer team at the NYU

Courant Institute (ref. 7). The original and improved versions of these two

programs are in use around the world and constitute one of the key technology

advances being utilized by the aircraft industry in the design of the next gen-
eration of commercial transports. Figure 12 shows an airfoil which was designed

using both the design and analysis codes. The top side geometry depicted was

arrived at through repeated runs of the design code; the bottom side resulting

from these same calculations was further modified by using the analysis code to

make successive changes in the bottom contour until the desired pressure dis-

tribution was obtained. The pressure distribution depicted in figure 13 was
obtained from the analysis code for a Mach number of 0.73 and a lift coeffi-
cient of 0.60.

I?
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A second set of programs capable of solving both the analysis and design

problems was put together by L. Carlson of texas A & M about 2 years ago
(ref. 13). Carlson solves the full potential equations in the physical plane

on a Cartesian coordinate system. His method has one advantage over the hodo-

graph approach of Garabedian in that it can design airfoils for input pressure
distributions with shocks. An example of this feature is glven in figure 13.

The design program was given the pressure distribution defined Lv the dashed

line with a shock at approximately the 75-percent-ahord station. The computer

program produced the airfoil shown at the bottom and the slightly modified
pressure distribution given by the solid line. Inserting the derived airfoil

shape into the analysis program produced the circles and triangles which are in

nearly perfect agreement with actual design input (the solid line).

One of the most vexing problems in airfoil analysis is the determination
of drag, particularly at high subsonic speeds when imbedded shocks occur and

under separated flow conditions. Mo_t of the boundary-layer routines in use

today for calculation of boundary-layer displacement tPickness and skin-friction

drag do not apply in regions where strong interactions occur with the invlscld

flow. Three of these interaction regions are being studied in the Langley
alrfoil-research program; these are shock/boundary-layer, traillng-edge, and
leadlng-edge bubble interaction.

The shock/boundary-layer interaction problem has been studied under NASA

grant at the University of Michigan for the past 3 or 4 years. The investiga-

tion started with an idealized laminar-boundary-layer/oblique-shock case and
proceeded through a series of steps to the normal-_hock/turbulent-boundary-layer

problem discussed in these proceedings in a paper by A. F. Messiter and T. C.

Adamson (ref. 14). The next step will be to take this ]ocalized analysis and

patch it into one of the full-potential airfoil-analysis programs such as the
one developed by F. Bauer, P. Garabedian, and D. Korn described earlier
(ref. 7).

The traillng-edge interaction may be even more important from a drag stand-
point since the •last 5 to I0 percent of the airfoil is responsible for most of

the error in drag predictions. Empirical fixes currently employed in the

boundazy-layer routines near the trailing edge are generally reliable in terms

of pressure-di_trlbutlon predictions but are not consistent for drag estimates.

R. E. Melnlk of Grumman Aerospace Corporation has carried out a detailed analyt-

ical treatment of the trail_ g-edge interaction which holds promise of improved

drag prediction. He has found that accounting for the effect of wake curvature
is crucial, a_d an airfoil analysis computer code, due to A. Jameson:. has been

modified to include this effect. A pressure distribution made using this code
is shown in figure 14. I= is for the Korn 0.75 airfoil at a Mach number of 0.7

and a section lift coefflclent of 0.669. Theoretical and experimental pres-

sures are clearly in excellent agreement; the drags are not. The theoretical

drag was 0.0082 as compared to an experime.ntal value of 0.0107. There is some

opinion that the experimental value is too high by about 20 counts, but this

cannot be verified, (There is a general concern about most experimental drag
data.) Drag correlations made using data on a GA(W)-2 airfoil at supercrltlcal

speeds obtained in an Ohio Sta_e University wind tunnel wlth a divided plenum

are quite good. More research is required to oh_aln or identify "interference
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t
free" experimental data, Further de::_ils of the trail :_ --edge-interaction
methodology can be found in the paper by R. E. Me__ :hese proceedings
(ref. 15).

Theoretical treatment of the leading-edge bubble interaction has been
attempted by W. R. Briley and H. McDonald (ref. 16_ using an iterative tech-

nique whereby the pressure is prescribed and boundary-!ay_r profiles and dis-

placement thicknesses are determined. The pzessure is recalculated for the

effective shape, and a new pressure input is formulated based on differences

between the old and new pressures. In a low-l_vel effort, the same type of

problem is being attempted at Langley using a different procedure whereby the
displacement thickness is prescribed. This procedure, which has been developed

by J. E. Carter and S. F. Wornom of Langley (ref. 17), is thought to have cer-
tain advantages over the pressure-prescribed method. It has been successful in

calculating separated-flow bubbles in a depression and at the juncture of an
afterbody-sting combination.

Airfoil flows with large amounts of separation have been calculated for a
number of years using linear methods and empirical assumptions related to the

print of separation and the separated region itself. More recently, these flow

problems have been attacked using both numerical time-asymptotic methods for
the Navier-Stokes equation and finite-difference relaxation methods for various

forms of the nonlinear-potential-flow equation. The latter are used with a

boundary-layer routine which is applied up to the point of separation.

_ R.W. Barnwell of Langley was the first to extend the ideas developedi
i using linear potential equations to the finite difference approach (ref. 18).

In Barnwell's calculation the separation point was not solved for; it was pre-

scribed. An extension of his approach, whereby the separation point is deter-
mined in the calculation, has been undertaken by L. Carlson of Texas A & M

under NASA grant (ref. 19). Some preliminary results have been obta±_ed and an

example is shown in figures 15 and 16. These figures show the pressure distri-

bution at an angle of attack of 18° and lift vs. angle of attack for the GA(W)-2

airfoil at a free-stream Math number of 0.15. Note in figure 15 that the flo_.::

separates at about 6Q percent of the chord. Also, it should be recognized that
at an angle of attack of 18°, the alzfoil is beyond its maximum lift. Further

exploration of this technique is underway.

So far the discussion of theorpt4cal developmerts has been constrained to

slngle-element airfoils. Progress has also Seen made in the analysis of - iti-

element systems. Several analytical methods have been developed around the
country over the past 6 years, and their capab1_ities and limitat_ons are fairly!
well known. The features of the multi,_lemez_tprogram developed by Lockheed foc
Langley (ref. 8), and later modified by Boeing to make it more efficient

' (ref. 20), are listed in figure 17. This is the same program described earlier

in the "Historical Perspective" section as having been used by Whltcomb to
design the GA(W)-I low-speed airfoil. As can be seen in figure 17, the program

computes all the quantities of interest for as many as 7 elements. Correlations

of theory with experiment show that this computer code yields results of good

accuracy up to the point of flow separation. Further improvement_ are contem-

plated to improve the accuracy of the drag prediction, _ncluding an improved

i 19
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slot--flow analysis and a trailing-edge-interactlon patch. The former would be
attempted by applying operator splitting methods to the Navler-Stokes equations.

A companion study using the tlme-averaged Navier-Stokes equations is being
carried out under NASA grant at Mlssissippi State University (ref. 21). It has

reached the point where a two-element, compressible, turbulent flow code is now

being debugged. A mapping procedure is used to transform the airfoil elements

and the external flow field onto the interior of a rectangle where the equa-
tions are solved. The coc dinate system in the physical plane is shown i_

figure 18. Note that the coordinate grid seems to compress in regions where

the most resolution is required. It is expected that this computer program

when fully developed will provide an excellent bench mark by which more approxi-

mate and faster techniques can be judged, including those treating separated
flows.

The ability to analyze two-dimensional unsteady transonic flows is very

much inferior to what one can do with steady flows. This is natural since the

unsteady nonlinear potential equation is much more difficult to solve. A num-
ber of procedures have been tried; the two developed under the Langley program

which have had the mest success are the nonlinear, small-disturbance solution
of Weatherill, Ehlers, and Sebastian (Boeing) (ref. 22) and the full-potential-

equation solution of Isogai at Langley. An example calculation from the Isogai

code is given in figure 19. It is for a steady, hiBh Math number flow where data

are available. Theoretical results from a purely inviscid calculation and one in

which the boundary-layer displacement effect is iucluded are plotted. The lack

of a proper accounting of the shock/boundary-layer interaction is the probaole

cause for much of the disagreement.

An extension of the Isogai code to include the effect of an oscillating
flap is discussed in a paper by R. M. Bennett and S. R. Bland in these pro-

ceedings (ref. 23).

TUNNEL-WALL INTERFERENCE

The discussion of wind-tunnel-wall interference research has been isolated

in a separate section, apart from theoretical developments and facilitles,
because of its special character and importance. Langley research in this area

involves both theoretical and experimental studies for the assessment and elimi-

nation of wall interference. A llst of many of these activities follows:

Slotted walls

Barnwell correction of slot parameter

Parametric slotted wall study in 6- by 19-inch transonic tunnel

Slot flow diagnostic surveys in 8-foot transonic pressure tunnel

Adaptive walls

Flexible wall experiment in 6- by 19-inch transonic tunnel
Flexible wall theoretical prediction

lwo-dimensional adaptive wa]Is for 0.3-meter transonic cryogenic tunnel

20 "!
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!

Computational methodology

! Transonic assessment using experimental boundary conditions
T

Some of these are discussed in the following paragraphs.

! R. W_ Barnwell has done an exhaustive study of slotted-wall boundary con-

ditions and has provided new insights into the deficiencies of older methods.

With the aid of existing data, he has derived a semiempirical design method for
slotted-wall tunnels. $o_e of the data utilized came out of a parametric

experimental study conducted in the 6- by 19-inch transonic tunnel by Everhart

and _rnwell and reported elsewhere in these proceedings (ref. 24).

Very little data are available on the details of the flow in, and _djacent
to, tunnel wall slots. More is needed to enable a better assessment of viscous

effect_ and homogeneous boundary-condition assumptions. An experimental inves-
tigation is being carried out in the 8-foot transonic pressure tunnel to pro-
vide some of the needed data.

Langley has had a cooperative effort in adaptive wall research with the

University of Southampton, England, for several years (ref. 25). In-house the
6- by 19-inch transonic tunnel has been used to explore this technique. Calcu-

lations carried out by Newman (LaRC) and Anderson (DCW Inoustries) for compari-

son with the 6- by 19-inch tunnel tests are discussed in their paper included

in these conference proceedings (ref. 26). All of these activitie_ have con-

tributed to tPe design of an adaptive-wall two-dimensional section for the
0.3-meter transonic cryogenic tunnel.

A third approach to the wall interference problem has been proposed in the

proceedings paper by W. B. Kemp, Jr. (ref. 27). Through the use of pressures
measured near the tunneJ _-alls as boundary conditions in a tunnel flow analysis

program, he is able to determine whether a flow is correctable and, if so, what

the corrections should be. The method, in effect, eliminates the need for
detailed knowledge of slot flows, porous wall flows, and so forth.

FUTURE RESEARCH REQUIREMENTS

A recurring theme in much of the research discussed was the need to improve
the accuracy of drag predictions. Existing codes must be modified or new codes

created to include the effects of strong interactions and flow separation.

Although not discussed previously, turbulence models are also a source of drag

error and a _trong effort is needed to impLuve them.
J

Good progress in the prediction of flows with large separation was indi-

cated, but many of the techniques are new anJ require further exploration. In
'? o_der to obtain accurate data to validate these theories, it is mandatory that

_ sidewall treatments in two-dimensional facilities be implemented and refined.
"j

:

There is a dearth of unsteady pressure data at supercrltical speeds. In

addition to classical oscillatory data, dynamic-stall and buffet-type flows
must be simulated. Wall interference corrections for unsteady motions is an

area that has hardly been scratched. '_
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Improved wall correction procedures for steady flow are still a require-
ment; the use of measured wall pressures should be pushed. Streamline-wall

test sections should be "hard wired" to computers so that the wall adjustments
can be automated.

As knowledge of flow stabillty improves, more research will be carried out

on zmtural laminar flow _nd laminar flow wlth suction. This will require, in

many cases, improvements in tunnel flow quallty and reduced tunnel noise. Con-

tinned improvement in analysis tools to account for new stability theoT_es and -

data will also be necessary.

Full-scale Reynolds number data are always desired. Only a few facilities

around the world can obtain the levels required for large-transport airfoil

sections. Detailed comparisons of the data from these facilities are required

to ferret out error sources; efforts to obtain boundary-layer diagnostic data

i should be increased.Finally, it should be recognized that airfoils are used in a three-
i dimensional environment. Considerably more effort to Include the effects of
! _,eep and taper i_ the design of airfoil sections is needed. In addition, the

different environments of the _rlng root, midspan region, and tip should be

better defined so that airfoil sections can be designed taking into account
tbese differences.

Clearly, there are m_ny research opportunities and challenges in airfoil

aerodynamics. If they are undertaken with the same enthusiasm as that applied

during the past decade, then another quantum leap in alrfoil-aerodynamlcs
capabilities can be expected.
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: APPENDIX

SYMBOLS

In this appendix, symbols which are used on the figures are defined.

p - p_

_.Cp pressure coefficient, q_

p* - p_
C* sonic pressure coefficient,
P q_

c airfoil chord

cd section drag coefficient, Dza_ forceq_c

Lift

cz section lift coefficient, q-_-

Pitching moment
cm section pitching-moment coefficient, 2

q_c

M free-stream Mach number

p local static pressure

p_ free-stream static pressure

,
p static pressure at sonic velocity

q, free-stream dynami_ pressure

R unit Reynolds number

Rc Reynolds number based on airfoil chord

t maximum airfoil thickness

V_ free-stream velocity

angle of attack

6* boundary-layer displacement thickness

p_ free-stream density
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Figure I.- Early airfoil shapes.

NACA 4412 ---__

_/_ NACA 23012 >

NACA 651-412 __

NASAGA(W)- 2; tic = 0.13

Figure 2.- Comparison of older NACA airfoils with
the NASA GA(W)-2 airfoil.
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Figure 3.- The Langley low-turbulence pressure tunnel.
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Figure 4.- Cross-sectlon drawing of Langley

6- by 19-1nch transonic tunnel.
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Figure 5.- Photograph of the Langley 6- by 28-inch
transonic tunnel.

Figure 6.- Photograph of the Langley 0.3-meter transonic
cryogenic tunnel with 20- by 60-cm two-dlmenstonal
test section.
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Figure 7.- Interchangeable test section capability

of 0.3-meter transonic cryogenic tunnel.

Figure 8.- GA(W)-2 airfoil on Beech Sundowner. .__'v _-- I
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Figure 9.- Langley low-speed airfoil family.
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Figure I0.- NASA supercrlticalairfoil family.
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Figure II.- Airfoils for AH-IG Zllght test.
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Figure 12.- Pressure distribution over an
LFC airfoil calculated by the Korn-

Carabedlan analysis program.

H = 0.73; c Z = 0.60.
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Figure 13.- Comparison of direct and inverse

Cp distributions calculated by Carlson
computer codes. Hoo= 0.80; a - -0.5 °.

l!I
-1.

Cp "':
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Figure 14.- Theoretical pressure distribution on

Korn 0.75 airfoil including trailing-edge

interaction. _ m 0.7; Cl m 0.669. 'l
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Figure 15.- Theoretical and experimental pressure
distribution comparisons for GA(W)-2 airfoil
with lerge separated flow region. MQo= 0.15;
a = 18°.
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Figure 16,- Experimental and theoretical
variations of cI with a for
GA(W)-2 airfoll.
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TRANSITION-_

i LAMI_''_NAR_ _ TURBULENT__

CAPABILITIES PROGRAM FEATURES

• I TO I COMPONENTS • POTENTIAL-FLOWSOLUTION
• VARIABLE a. MooAND R • BASIC BOUNDARY LAYER

• FIXEDAND/OR FREETRANSITION • SLOT-FLOWANALYSIS
• CONFLUENTBOUNDARY LAYERS

• COMPUTE5 c[.cd. Cm. AND • COMBINED SOLUTION
BOUNDARY LAYERS.C

P

Figure 17.- Two-dimensional viscous-flow multielement
airfoil program features.
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Figure 19.- Steady flow calculation for the

NACA 64A006 airfoil using Isogai unsteady

potential flow code. Moo = 0.875; _ = 0.
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