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SUMMARY

A low speed airfoil design and analysis program has been developed which
contains several unique features. In the design mode, the velocity distribu-
tion is not specified for one but many different angles of attack. Several
iteration options are included which allow the trailing edge angle to be
specified while other parameters are iterated. For airfoil analysis, a panel
method is available which uses third-order panels having parabolic vorticity
distributions. The flow condition is satisfied at the end points of the
panels, Both sharp and blunt trailing edges can be analyzed. The integral
boundary layer method with its laminar separation bubble analog, empirical
transition criterion, and precise turbulent boundary layer equations compares
very favorably with other methods, both integral and finite-difference.
Comparisons with experiment for several airfcils over a very wide Reynolds
number range were very favorable. Applications to high 1ift airfoil design
were also demonstrated,

INTRODUCTION

The application of potential flow theory together with boundary layer
theory to airfoil design and analysis was accomplished many years ago. Since
that time, high speed computers have allowed results to be obtained more
cheaply and quickly than through the use of wind tunnels. Accordingly, the
tendency today is toward more and more commonly applicable computer programs.
The programs reduce the amount of requirec¢ wind tunnel testing to that of
fundamental phenomena and allow airfoils to be tailored to each specific
application.

The program described in this paper has been developed over the past 20
years. We hope to demonstrate that it has reached a stage where some progress
can be made in low speed airfoii design and analysis.

This paper does not repeat ali of the details included in other papers.

Special emphasis is given, however, to those features which are new or
divferent from those in other matnematical models.
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SYMBOLS
skin-friction coefficient
airfoil chord
section profile-drag coefficient
section 1ift coefficient

section pitching-moment coefficient about quarter-chord point
)

ot

shape factor,

(=] (=]
N

shape factor,

ol
N W

length
point
Reynolds number based an free-stream conditions and airfoil chord

Reynolds number based on local conditions and boundary layer
momentum thickness

thickness of airfoil

free-stream velocity

local velocity on airfoil

velocity; main pressure recovery design variable
airfoil abscissa; length

angle of attack relative to zero-1ift line, deg

angle of attack relative to zero-lift line for velocity specification
in design method, deg

boundary layer displacement thickness
boundary layer momentum thickness
boundary layer energy thickness
kinematic viscosity

total amount of pressure recovery



S

w' initial slope of pressure recovery

Subscripts:
1 lower surface; local point on airfoil
‘
m Tower surface main pressure recovery
N last point oﬁ airfo{{ N
n variable number
u upper surface
um upper surface main pressure recovery
® free-stream conditions

DISCUSSION
Inviscid Method

The potenitial flow part of the mathematical model is incompressible at
this time. Two different modes of operation are available.

Design mode.- The first mode is the inverse or design method described
in references 1 and 2, This method differs from other inverse methods in that
the velocity distribution is not specified for only one angle of attack.
Instead, angles of attack which will result in constant velocity over speci-
fied segments of the airfoil are input. In other words, pairs of parameters
are specified: the first being the segment of the airfoil; the second, the
angle of attack relative to the zero-1ift line, o*, which will result in
constant velocity over that segment. (See fig. 1.) Of course, some matching
conditions must be met to guarantee a smooth velocity distribution for all
angles of attack. Toward the trailing edge, on both surfaces, a main pressure
recovery can be specified, Finally, a short closure contribution must be
introduced to insure that the trailing edge will be closed. The example air-
foil shown in figure 1 is specified by the following:

(1) For the ugper surface segment from the trailing edge forward to about
x/c = 0,15, o* = 89, Within this segment, the main pressure recovery is
specified starting at x/c = 0.50.

0.15 to 0.05, a* = 10°.

For the upper surface segment from x/c

(2)
(3% For the upper surface segment from x/c = 0.05 to the leading edge,
a* = 120,

(4) For the entire lower surface, a* = 2°.  The main pressure recovery
on the lower surface is specified starting at about x/c = 0.45.
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In reality, the segments corresponding to the various o* values are
not specified in x/c but rather in the conformal mapping plane in whick the
airfoil is vepresented by a circle. So far, no difficulties have arisen in
correlating the arcs of the circle with the segments of the airfoil.

It should be remembered that for any given velocity distribution there
does not necessarily exist a "normal" airfoil. For example, the closure con-
tributions could be quite large which would result in a very large trailing
. edge angle. The closure contributions could also give rise to a region of
negative thickness near the trailing edge. Accordingly, several iteration
options have been included which allow the trailing edge angle to be specified
while certain o* values or the total amount of pressure recovery ic iterated.
The choice of iteration option allows questions such as the following to be
answered: What laminar bucket width is possible given a certain amount of
pressure recovery? What amount of pressure recovery is required to produce
the desired laminar bucket width? The iteration option selected for the
example airfoil iterates the amount of upper and lower surface pressure recov-
ery while holding the o* values fixed.

Analysis mode.- The second mode of operation is an airfoil analysis
nethod. ¥He method employs panels with distributed surface singularities

(fig. 2). The panels are defined by a third-order spline fit of the airfoil
coordinates with the end points of the panels being the input airfoil coordi-
nates themselves. The surface singularities consist of a parabolic vorticity
distribution. The flow condition, which requires the inner tangential
velocity to ba zero, is satisfied at each airfoil coordinate (i.e., at the
end points of the panels, not the mid-points). Thus, no restrictions are
piaced on the point distribution, no smoothing or .rearranging of the coordi-
nates is performed, only the original airfoil coordinates are used. An
option is included, however, by which additional points can be splined in
between the original coordinates. This option is helpful if a portion of the
airfoil has a sparse number of points or if purt of the airfoil ic to be
geometrically rotated about a flap hinge point. In the latter case, the
connection between the forward portion of the airfoil and the flap is defined
by an arc consisting of additional points which are generated automatically
according to an input length.

As in other panel methods, a singularity arises from the circiation
around the airfoil which is unconstrained unless required to satisfy a Kutta
condition. Two different cases are involved.

The first case is a sharp trailing edge having either a zero or non-zero
angle. The inner tangential flow condition fails in this case at the trail-
ing edge. Therefore, it is replaced by the condition that the normal
velocity, relative to the bisector of the trailing edge angle, be zero. This
condition can only be satisfied if the vorticities on the upper and lower
surfaces approach the same value but with opposite cigns as the trailing edge
is approached. This means that the velocities have to be the same on both
sides of the trailing edge. Thus the normal flow condition along with equal
velocities on both sides of the trailing edge can be considered as a
Kutta condition.
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Unfortunately, a second singularity is caused by a finite change in the
circulation around the airfoil which results in an infinite change in the
velocity at the sharp trailing edge. No wonder the equation system is singu-
lar for every Kutta condition. Thus, an additional equation is required while
one equation already in the equation system can be omitted, This additional
equation consists of an extrapolation of the vorticity to the trailing edge
and an averaging at the trailing edge. The omission of one of the equations
in the sysiem can sometimes caus- errors at the point whose flow condition is
governed by the omitted equation. In other words, the equation system is not
exactly singular, due to small numerical approximations. So, none of the
equations is omitted and the entire equation system is multiplied by the
transposed matrix. This impiies that all the equations are solved as accurate-
1y as possible in a least-squares sense. The results of this procedure are
very precise,

The second case is a blunt trailing edge (fig. 3) - one in which the
upper and lower surface trailing edge points are not the same. For this case,
two different procedures have been examined,

The first procedure extends the airfoil along straight "wake 1imits"
having constant opposite vorticity (fig. 3, top). At both the upper and lower
surface trailing edge points, a normal velocity condition must be satisfied.
No flow condition is satisfied in the wake,

The second precedure introduces at the base of the airfoil not only a
vorticity but also a source distribution (fig. 3, bottom). Both are linear
distributions over the base length and determined such that no flow singular-
itites occur at either of the two trailing edge points.

Both blunt trailing edge models have one more flo~ condition than
unknown vorticities. The n + 1] equations for n unknowns are treated in
the same manner as the sharp trailing edge case even though they are much less
critical with respect to circulation changes.

For all cases the computing times are moderate; the results, very precise.
A comparison of the design and the panel methods for the example airfoil is
shown in figure 4,

Viscous Method

The Taminar and turbulent boundary layer development is computed by a
simple method (ref. 3) using, like many others, integral momentum and energy
equations. It has been shown that laminar bourdary layer development is pre-
dicted quite well by this method. The turbulent boundary layer routines are
based upon the best availabie empirical skin friction, dissipation, and shape
factor laws. No further errors are introduced by mathematical simplifications
iike integrating the ordinary differential equations from the momentum and
energy laws by averaging the right sides of the equations.
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Of special interest are the predictions of transition from laminar to
turbulent boundary layer and the separation of the turbulent boundary layer.
The tendency toward separation is determined solely by the shape factor

H =

83
32°7%,

where §3 is energy thickness and ) is momentum thickness. (Note that H32
has the opposite tendency from Hyo which contains the displacement thick- . .
ness &, instead of the energy thickness.) For laminar boundary layers

there exists a constant and reliable lower limit of H32, which equals 1.515

and corresponds to laminar separation. For turbulent boundary layers no such
unique and reliable limit has been determined. It can be stated, however,
that the turbulent boundary layer will separate if H32 goes below 1.46 and

will not separate if H32 remains above 1,58, It has been noticed that
thicker boundary layers tend to separate at lower H32 values. In the
present method, turbulent separation is predicted if H32 drops to 1.46.

This is a fairly geod assumption because the method usually predicts relative-
ly Tow values of H32. The uncertainty is not as bad as it first appears in

that H32 changes rapidly near separation. Nevertheless, results must be
checked carefully with respect to turbulent separation.

The second feature of special interest is the prediction of transition.
Two different procedures are in vogue today - the amplification method and
the shape-factor — Reynolds-number method. The first procedure requires much
more computing time because many frequencies must be traced to find the one
wave which is suddenly amplified to the ratio set as the transition limit.
The better procedure cannot be selected until we know more about transition.
The differences between the two procedures are small for normal airfoil appli-
cations as the local Reyrolds number changes quickly near transition. So, we
still use the simple criterion shown in figure 5. Thus, the transition
Reynolds number depends only on the shape factor H32. Adverse pressure

gradients and, hence, low values of H32 result in lower transition Reynolds
numbers and vice versa. As will be seen later, it is very informative to plot
the boundary layer development in this form.

It must be pointed out that the boundary layer development inmediately
after transition has a significant influence on the entire flow. In our
program the prediction of transiiion results in a switch from the laminar
skin friction, dissipation, and shape factor laws to the turbulent ones,
wichout changing H32 and e This is also done if laminar separation is

predicted before the transition criterion is ieached. The H32 development
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for the linearly decreasing velocity distribution defined by
V=V_(1-xN)

is shown in figure 6 for Reynolds numbers ranging from 0.125 x 106 to 32 x 105
where Reynolds number R = V_t/v. This plot illustrates the well-known fact
that the laminar boundary layer shape factor H32 and laminarr separation are

independent of Reynolds number. It also shows that for high Reynolds numbers,

transition occurs before laminar separation. _For turbulent-boundary-layers, ~

H32 -and separatiofl do depend on Reynolds number. The most important infor-
mation to be gained from figure 6 is the behavior of H32 at the beginning
of the turbulent boundary layer. For higher Reynolds numbers, H32 increases

immediately to values greater than about 1.7. For Tower Reynolds numbers this
increase is less rapid and the maximum values of H32 are lower. For a

Reynolds number of 0,125 x 106. H32 remains below 1.58 which means that the

method cannot determine whether or not an attached turbulent boundary layer
exists. Such results must be studied in more detail. In figure 7 the iaminar
and turbulent skin-friction laws, Cf(R6 . H32) are presented. The laminar

2

law has an exponent of -1. The turbulent law is a slightly modified Ludwieg-
Tillman law with an exponent of -0.232. This law is experimentally derived and
tested for R6 between 10° and 105 as shown by the phantom lines in figure 7.

Below R6 equal to 103, these lines continue in some manner. The flat plate
2

case has been investigated in more detail and the rest1ts indicate that the

flat plate 1ine continues more or less steadily and finally bends down to the

Yaminar law line rather steeply, depending vn roughness and free-stream

turbulence.

In our method, the Ludwieg-Tillman law is extrapolated along straight

Tines. This probably represents an upper limit for Cf for R6 less than 103.
2

But it is obvious that for R6 equal to 102 the laminar and turbulent laws
2

differ little and for lower Rs the turbulent Cf values are below the
laminar ones. V4

For results such as chose shown in figure 6, it is interesting to look at
the C; values computed by our method. For every point x/t, R(52 and H32

are knowﬁ and, hence, Cf is known. The variation of Cf Wwith R62 is shown

in figure 7. The result is remarkable. The curves for R = 0.125 x 105 and

R = 0.25 x 10° do not even come close to an area where one can confidently
speak of a turbulent skin-friction law. Such "underdeveloped" turbulent
boundary layers exist *n nature only in the form of laminar separation bubbles.
After examining many different cases, it was determ’-ed that there is a certain
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analogy between the predicted "underdeveloped" turbulent boundary layers with
Tow H32 values and laminar separation bubbles. The boundary layer results

computed by our method show a stronger bubble analogy as Reynolds number
decreases and as the adverse pressure gradient after transition becomes
steepor. If the analogy occurs in the results, the only way to alleviate it
is to reduce the adverse pressure gradient after transi.ion. The experimental
results for laminar separation bubbles show the same tendencies. Accordingly,
it is very helpful to have this bubble analog in the ccmputed results.

" In ‘Summary, the bouridiry layer méthod has yenerated good results for-many,
very different cases. It should be noted, however, that no fundamental
problem exists in replacing the boundary layer subroutines in our program with
other subroutines. Some applications will be discussed in the ncxt section.
But Lefore that a few comparisons with other boundary layer mechods will be
made.

Two shape factor developments computed by a program written by Konhauser,
which uses the Cebeci-Smith met-od (ref. 4), are shown by dashed curves in
figure 6. The two curves, whicii are for the Reynolds numbers of 8 x 10 and
16 x 106, agree quite well with the present method for x/1 up to about.O0.2.
Then as x/1 increases, the results computed by the Cebeci-Smith method show
considerably less tendency toward separation. This demonstrates that the
separation limit of ng equal to 1.46 that we use is conservative with

respect to turbulent separation. Comparisons for Tower Reynolds numbers are
not possible at this time because Mr. Konhauser has been unable to obtain
results from the Cebeci-Smith method at lower Reynclds numbers.

The development of displacement thickness along the upper surface of an
RAE 101 airfoil for an angle of attack of 8.c° and a Reynolds number of
1.6 x 106 is shown in figure 8. This case was computed by J. L. Hess using a
Cebeci-Smith program with different numbers of elements and different smoothing
procedures (ref. 5). The results from the program as indicated by the symbols
agree very well with those computed by Hess with the greatest number of
elements. This agreement is remarkable indeed knowing that this is the first
comparison of this type which we have made and is not the result of a careful
choice of data.

The curves in figure 9 demonstrate that, in using integral momentum and
energy laws, the introduction of mathematical simplifications can cause much
larger errors than those which result from the use of a one parameter method.

In figure 9, our method and a method developed by L. Truckenbrodt (ref. 6) are
compared with experimental results obtained by Wortmann (ref. 7). Truckenbrodt's
method is based upon the same skin-friction and dissipation laws as the present
method, but includes further mathematical simplifications which produce an

error of about 50 percent for the adverse pressure gradient shown.

in the present method, the momentum thickness at the trailing edge is

used for the calculation of the drag by a Squire-Young type formula. We have
found that our method predicts slightly higher drag values than those measured
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experimentally. We hesitate to change the skin-friction laws or other parts of
the program, however, as the differences between our predictions and experi-
mental measurements depend upon the wind tunnel in which the experiments were
performed. (See figs. 10 and 11.)

It should be mentioned that the program includes a 1ift coefficient
correction due to boundary layer separation but, as yet, does not include one
due to boundary layer displacement thickness.

As a final remark, the development of the laminar boundary layer should

be discussed. It is very informative to plot this development as shown in
figure 5. This plot reveals several important points. For a constant velocity
segment (a = o*), the boundary layer approaches the Blasius solution having a
shape factor H32 of 1.573 and increasing momeatum thickness 7Y This

corresponds to the vertical lines in figure 5. As the angle of attack is
increased, the velocity distributions become concave over the forward portion
of the airfoil or, in other words, the airfoil "pulls a peak" at the leading
edge. These concave distributions are similar to thuse which produce Hartree
boundary layers. But, whereas the Hartree boundary layers result in lower but
still constant shape factors, the curves in figure 5 show increasing H32 with

increasing R, for a greater than u*. This means that these velocity
V2

distributions are more concave than the Hartree (power law) distributions.
Thus, as the angle of attack is increaseu even more, these distributions will
result in Taminar separation at the leading edge. This problem is eliminated
by the introductioi of segments having higher o* values near the leading
edge. Obviously, it is much easier to control the levelopment of the shape
factor by manipulating o* values than by changing a given velocity distribu-
tion at only one angle of attack.

Applivations

In this section, we shall apply the mathematical model tc a variety of
airfoil problems. The final result is always a plot which includes <
versus ¢y, ¢, versus a, C_  versus o, and transition and separation

versus ¢, as is normally plotted for wind tunnel results. It is, of course,

very easy to obtain more details such as pressure distributions, boundary
layer development, and laminar separation bubble analogs.

The first application is a_sailplane airfoil designed for low drag at a
Reynolds number of about 3 x 106 and a soft stall at a Reyrolds number of about
1 x 10°,  The soft stall can easily be achieved by introdu:ing a moderate
concave pressure recovery on the upper surface and by preventing iaminar
separation and the rapid forward movement of transition with increasing angle
of attack. The latter feature requires only increasing c* valuas toward
the leading edge.
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The theoretical results agree well with the experimental measurements
obtained by D. Althaus as shown in figure 10. In the wind tunnel experiment.
transition location was determined by the stethoscope method which seems to
detect only fully develcped turbulence and, thus, the experimental transition
locations 1ie somewhat downstream of the theoretical ones although the trends
with angle of attack agree well, The stall observed in free flight was very
soft.

Thé next aﬁplication shows that the program produces rcasonable results
for higher Reynolds numbers as well. The coordinates of an NACA 643-618

airfoil were input and the theoretical results are compared with the experi-
mental measurements (ref. 8) in figure 11.

The program can also be applied at very lTow Reynolds numbers. Airfoil 387
was designed for model airplanes. At these Tow Reynolds numbers, the bubble
analog indicated that only very slight adverse pressure gradients were poss ble
and, accordingly, a relatively thin airfoil (t/c = 0.09) resulted. This air-
foil was recently tested by Volkers (ref. 9). The theoretical results compare
favorably with experiment for a Reynolds number of 2 x 105 (fig. 12), even
though the measurements do show the typical effect of laminar separation
bubbles. For a Reynolds number of 1 x 105, the experiment shows even more the
effect of laminar separation bubbles, but still with attached turbulent flow
at the trailing edge. For a Reynolds number of 6 Xx 104, both experiment and
theory indicate a large znount of separation. It seems remarkable that the
experimentally determined critical Reynolds number agrees so well with that
predicted by the theory.

High 1ift airfoils can also be designed and analyzed with the program,
One such airfoil designed by Chen (ref. 10) is shown in figure 13. Notice
that the panel method has predicted some oscillations in the velocity distribu-
tions. (The occurrence of these oscillations is common for the newer airfoil
designs as opposed to the older NACA airfoils for which the panel method
predicts smooth velocity distributions.) The objective of this airfoil design
was to achieve on the upper surface a certain length of constant velocity
followed by a Stratford pressure recovery (ief. 11). The boundary layer
development for this airfoil showed early transition due to the oscillations
in the velocity distributions. These results, of course, were unrealistic and,
accordingly, a new airfoil, 1220, was designed with the same objective (fig. 14).
To demonstrate that the oscillations in the velocity distributions for the
Chen airfoil were not produced by the parel method, the velocity distributions
from the panel method are included for the new airfoil.

The boundary layev results for this airfoil are quite interesting. If
the transition point is just ahead of the pressure recovery, the predicted
boundary layer remains atuvached until the closure contribution is reached.
This occurs at a Reynolds number of 6 x 106 (fig., 15). This demonstrates that
the method predicts tie boundary layer development for an extreme pressure
recovery quite well, (This had already been tested by M. Schulz.) At a
Reynolds number of 3 X 106, an intense laminar separation bubble was predicted
at the beginning of *he nressure recovery. At a Reynolds number of 9 X 106,
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trunsiticn is predicted further ahead of the pressure recovery and a thicker
(turbulent) boundary layer arrives at the beginning of the pressure recovery
than if the flow had remained laminar up to that point. And so, again the
precise initial conditions for the Stratford pressure recovery are not satis-
fied and early turbulent boundary layer separation is again the result. This
must be true fnr every airfoil having a Stratford pressure recovery derived
from one initial condition.

Accordingly, a new airfoil was designed which would not exhibit the
undesirable characteristics of the previous airfoil. Because maximum 1ift
normally occurs, in flight, at lower Reynoids numbers, the objective of the
new design was to develop a high 1ift coefficient at a Reynolds number of
1 x 120 while still maintaining a soft stall for practical reasons. The air-
foil which resulted is shown in figure 16. The o* distribution for the
forward portion of the upper surface was chosen such that no sudden movement
of laminar separation or transition is possible. This feature is demonstrated
in figure 17 in which all the curves show decreasing H32 with increasing RGZ.
The pressure recovery is concave but not nearly as extreme as the Stratford
distribution., It should be mentioned tnat the total amount of pressure
recovery for this distribution is only slightly less than that of the Stratford
distribution. Thus, the moderate pressure reccvery results in more lift.

Another feature of this design is that the upper and lower surface
velocities aheau of the closure contribution were not required to be equal as
in the case of the Chen airfoil. It has already been demonstrated by the NACA
6-series airfoils that this condition is not necessary.

The theoretical results for this new airfoil are shown in figure 18. The
maximum 1ift coefficients to be achieved by such airfoils are surely above 2.

CONCLUSIONS

The present program system of combined potential flow and boundary layer
theories has been discussed. Applications and comparisons with experiments
over a very wide range of Reynolds numbers have been shown. The results are
most satistactory and open the door to the tailoring of airfoils for specific
objectives.
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WAKE 1: PN = -P1 (KUTTA-CONDITION)
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NORMAL FLOW CONDITION AT Pl AND PN
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SINGULARITY EXISTS AT P1 AND PN' FLOW CONDITIONS: INNER TANGENTIAL
AND INNER NORMAL VELOCITY EQUALS ZERO AT THE MIDOLE OF THE BASE

Figure 3.~ Blunt trailing edge.
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Figure 7.- Skin-friction coefficients.
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Figure 12.- Comparison of experiment and theory for EPPLER 387 airfoil.
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Figure 17.- Boundary layer development for EPPLER 1228 airfoil.
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