
/ _ _ s F •

i N79;200-4.
17

RECENT DEVELOPMENTSIN FINITE ELEMENTANALYSIS FOR TRANSONIC AIRFOILS

N. M. Hafez and E. M. Muraan

Flow Research Co., Kent, Washington

INTRODUCTION

The prediction of aerodynamic forces in the transonic regime generally
requires a flow field calculation to solve the governing non-linear mixed
elliptic-hyperbolic partial differential equations. Finite difference tech-
niques have been developed to the point that design end analysis application
are routine, an_ continual improvements are being made by various research
groups. The principal limitation in extending finite difference methods to
complex three-dimensional geometries is the construction of a suitable mesh

system. Finite element techniques are attractive since their application to
other problems have permitted irregular mesh elements to be employed. The
purpose of this paper is to review the recent developments in the application
of finite element methods tO transonic flow problems and to report some recent
results of our own study. In most cases, the reader is referred to the original
paper for the details.

Finite element methods have been quite sucessful when applied to elliptic
problems, particularly in elasticity and structures. A straightforward appli-
cation of these techniques to the transonic problem involving mixed elliptic-
hyperbolic equations with embedded shock waves has not proven successful. In
general, either the finite element method must be modified to treat the tran-
sonic flow equations or the transonic flow equations must be modified to fit
the finite element method. For the latter approach, additional terms (_th
hopefully small coefficients) are added to the equations representing arti-
ficial viscosity, artificial density or artificial time. The general mesh
shapes used for elliptic problems result in matrices which are not well
ordered. Thus either a direct matrix inversion or an explicit iterative method
is required. Both of these approaches are computationally inefficient for
realistic problems compared to the implicit methods which have been developed.
Some work reported later in this paper _ay relax this conclusion. Finally, the
higher order shape functions used in elliptic problems do not apperc as attrac-
tiv_ for mixed problems with shocks. In this paper, we review the subject by
generally grouping together methods folios;ins the same general formulation.

SYMBOLS

All symbols are dimensionals.

A matrix operator in equation Aw = f

Cp pressure coefficient
c coefficient in Tricomi equation

f right hand side in equation Aw = f i
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F function in equation (5)
G matrix i_ equations (6), (7)
I functional

L Laplace operator
Moo freestreamMach number

P pressure
Q tatrix operator
R residual operator

a stresmvlse coordinate
t rise-like variable

u,v velocity component in x,y directions
w du_y dependent variable
x,y independent variables

a,B coefficients in equation (1)

ratio of specific heats = an+i6 incremental difference operator (6a - an)

A finite difference operator (Ax= x 2 - Xl)
E coefficient in equation (1)

parameter in equation (4)
switching factor, equation (34)

U coe''tctenC in equation (1)
0 density

artificial density
potential function

* transpose operator

TIME-DEPENDENTMETHODS

The _uler equations as well as the unsteady full potential equation are

hyperbollc in time, whether or not the flow is locally subsonic or supersonic

in space. Wlth thls in mind, Wellford and Hafez (ref. 1) solved the following
augmented system for the transonic small-dlsturbance equation:

"'ooM2)u7+ 1 2 2Gut = ((I - - 2 M_u )x + Vy + Uluxx - ClU (I)

Byt - Uy - v x + U2Vyy - ¢2 v

where regularization terms Bvt , _lUxx , _2Vyy , _]u , E2v are added
explicitly. The coefficients E, _, B are assumed to be small. An implicit
Crank-Nlcholson finite difference scheme was used for the tlme derivatives and

a standard Galerkin finite element approach was used for the space derivatives.
Stability and convergence were rigorously analyzed. Ic was shown that a mini-

mum amount of viscosity Ul ' related to the magnitude of the drag, is needed.

Results shown in fig. 1 are generally in agreement wlth finite difference

results, but the accuracy is not acceptable for the element density used. The

method converged slowly, but it may be useful for unsteady problems.
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_ Hafez, WeIlford and Murman (ref. 2) considered an extentton of this method

to the full potential equation in the conservative form

Pt = -(On) x (0V)y , u t =w x , v t = Wy (2) ,,_

where w = O¥-I - (I - 2 M: (u 2 + - 1)) = _t (3) _
2

V 2

Again, artificial viscosity terms as well as damping terms (_w) are
added to the system. If we are interested only in the steady state solution, _
the transient behavior is not important and a faster iteratlve procedure may be !i_
possible. The work is still in progress.

Phares and Kneile (ref. 3) have reported finite element solutions of the
unsteady Euler equations using a time dependent method. The equations are in ,_
non-conservative form with the dependent variables being u,v,t. Isoparametrtc ,_
elements are used along with a Galerkin method for the spatial derivatives. A ,L

result from their study is shown in figure 2. The results look quite good, ii
but the rate of convergence is about a hundred times slower than relaxation
solutions of the full potential equation.

VARIATIONAL METHODS

For subsonic flows, the full potential equation is elliptic arid there are

many impressive finite element solutions. Most of this work is based on the
Bateman variational principle. For transonic flows, however, the second

variation ceases to be positive definite. Hafez, Wellford and Murman (ref. 2)

introduced mixed varlational formulations using two different functlonals. The

first given in terms of _, u and v is:

= (¢x- u)2 (4)

+ P [ (u2 - U_x) + (v2- V_y) ] + P} dA
where p = pT/_M2 , _ is a freeparameter and P = p(u,v) . Numerical
results shown in figure 3 for the case of small-disturbance approximation !
indicate approximately the right solution but some apparent inaccuracies. The
second functional given in terms of _ and p is:

' 1

X(_,O) - F(O) + _ 0(_ + _ ) dA (5)

where F(p) = -C I F_._+ C2o . The two associated Euler equations are the7-I

i continuity and the energy equations in 0 and _ . Notice that the natural -_

i boundary condition _ssociated with equation (5) admits the right Jump con-

ditions across the shock (i.e., mass is conserved). Thi_ is a consequence of

i the definition of weak solutions. The two Euler equations must be solved

simultaneously. The method appears attractive, but no solutions are yet avail-
able. As an extension to the above ideas, we note that it is possible to

construct a general gradient method
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(° :Iwhere G is 2 x 2 matrix. Notice if we choose G where
&t 2w

Wl = N_ and(7-I) w2 = At , the system (equations (6) and (7)) is hyperbolic

in time for subsonic as well as supersonic regions. Different choices of G may
lead to faster convergence. Dissipation terms will be needed for stability and
to handle flows with shocks.

Eberle (ref. 4) has recently introduced a va_iational finite element

method for the full potential equation. Artificial viscosity ter_s are added
which may be interpreted as an artificial compressibility. The density _s
retarded upstream by a small (Ax) amount. The equations are solved in a
transformed plane using a relaxation method. A calculated result is shown in

figure 4. Other results in Eberle's report indicate a noticeable dependence of
the solution on element density, element shape and the magnitude of the
artificial viscosity. We note that the work of Eberle motivated the artificial
compressibility work discussed later.

LEAST SQUARES AND OPTIMAL CONTROLNETHODS

Given the differential equation Aw = f, an associated functional whose

second variation is positive definite can always be formulated using least
squares, namely minimizing the residual

IIAw- fl[ 2 = (Aw,Aw)- 2(f,Aw) + (f,f)

= (A*Aw,w) - 2(A*f,w) + (f,f) (8)

where the usual notation of inner products, norms, and adJolnts are used.
Notice that I = (A*Aw,w) - 2(A*f,w) is the Ritz varlatlonal functlonal for

the problem A*Au = A*f which is automatlcally self-adJolnt. However, the
order of the equation has doubled, and therefore, a gradient method such as

_w = - Iw = - A*(Aw - f) (9)

will converge very slowly. In order to accelerate the convergence of the

iterative process modified gradient methods can be used. We will discuss here
three examples.

In the first gradient method, a modification is made such that a Poisson's

equation is solved at each iteration; namely

L_w = Iw or 6w = L-1A*(Aw - f) . (i0)

Notice that higher order inter-element continuity of the shape functions is
required for the least squares method compared to a Galerkin method. This

problem may be avoided by writing the differential equation as a system of
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lover order equations (see Lynn and Ar_(refs, 5 and 6)). As an example,
consider the Trlcoml equation:

A@ = c(x,Y)0xx+ @yy= 0

Minimizing SS(clxx+ Oyy)2 dA (II)

leads to:

_2

A*A_ - (_2 + _YY)_x2 _y2) (COxx+ !

= (C2*xx)xx+ *yyyy + (c*yy)xx+ (C*xx)3n/ = 0 . (12) i

)
z

Alternatively, i

+ v = 0 (131
let u = _x ' v = _y ; hence cu X Y

and minimize

(u - _x12 + (v - _y)2 + _2(CUx :.

For simplicity, _ is taken to be unity. In general, the choice of _ may
improve the rate of convergence with respect to the mesh size as well as with
respect to iteration. The Euler equations then may be written as

= + v (15)
_xx + _yy Ux y

(C2Ux)x + (Cry)x - u = - %x (16)

(CUx)y+ (Vy)y - v = - _y (17)
A straightforward Iteratlve procedure to solve equations (15) to (17) is

as follows: Given _ , find u and v from equations (16) and (17), then
: using the most recent values of u and v in equation (15), a new value of

is obtained. This procedure can be described by

i (6u)x + (6V)y= (C2Ux)xx+ (CVy)xx+ (Vy)yy+ (CUx)xx (18)

In terms of _ , equation (18) is essentlally (except for compatibility terms)

L_ = A*A¢ + .'' (19)

It should be mentioned chat the advantage of using equation (14) instead of
equation (111 is that the elements used in the approximation of the latter must
have continuous first derlvatlvest a fact which eliminates virtually all of the
important practical elements. It is also worth mentioning here that a linear

285

L ........................ -............... 1979011859-284



f. _o _

F

element approximetion leads to undesirable convergence characteristics with
respect to mesh size as discussed by Lynn and Arya (refs. 5 and 6). It is
obvious that if linear element trial functions are used for u and v , a

bilinear approximation is needed for _ .

Different least square formulations of the full potential equation are

given in Table I. Chan and Brashears (ref. 7) solved the transonic smell-
disturbance equation by least squares similar to equation (11). Fix and
Cunzburger (ref. 8) as well as Glowinski et al. (refs. 9 and lo) used a formu-
lation similar to equation (14).

For the second method, we note that A is a second order operator. The

"closest" positive operator to A*A is the Bihermonic L*L ; hence an iter-
ative procedure based on

L*L6w = - I = - A*(Aw - f) (20)
w

is expected to be fast provided the inverse of (L'L)-I is easily obtained.

Equation (20) is also equivalent to

R - Aw - f , L*Z = A-R , L6w - Z . (21)

The third method results from a more elegant decomposition of equation

(20) obtained by modifying the inner product, namely

[ - ((Aw - f) , Q(Aw - f))

- (A*QAw,v) - 2(A*Qf,w) + (f,Qf) (22)

hence,

- A*QAw - A*Qf (23)w

where Q* - Q the choice of Q - L-I makes A*L-1A effectively second order.
The gradient method gives

_w - A*L-I(Aw - f) (24)

and the modified gradient method gives

L6w - - A*L-I(Aw - f) (25)

which may be decomposed into

LZ - Aw - f , LSw - -A*Z (26)

Effectively, each step has an operator of zero order. Notice that

Y - - ((Lz) , L-I(Lz)) , " - (LZ,Z) • (27)
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Upon integration by parts, _ becomes

I/i •z - (vz,vz)- Ilvzllz . vzl2 . (z8) .
Recently Glowlnski et al. (refs. 9 and 1O) solved the full po_ ntlal transonic
flow equation using an equlvalent procedure, namely

minimize _]ilVZl2 dA w.r.t, w (29)
JJ

under the constraint

LZ = Aw - f where Z = _ - w . (30)

The discussion with Professor Antony Jameson of Courant Institute helped the
! author in the preparation of this section of this paper.

TREATMENT OF SHOCKS

In the above formulations, expansion as well as compression shocks are ._
admitted since the potential flow is reversible. In order to exclude expansion

shocks, Glowlnskl et al. (refs. 9 and 10) introduced an entropy constraint* to

the least squares formulation, namely

V2_ = M2_ss < + _ (31)

A result shown in figure 5 indicates quite good agreement between the results
and an exact solution for a shock-free airfoil. An alternative procedure has

been introduced by Bristeau (ref. 12) in which artificial viscosity terms are

explicitly added to the continuity equation in addition to the above con-

straint. A result is shown in figure 6. We notice here that the special
assembly procedure used by than and Brashears (ref. 7) may effectively produce

some sort of artiflcial viscosity in an obscure way without which the solution
cannot be obtained.

FINITE VOLUMES

Finite volume methods use general nonorthogonal coordinates and consider
the governing integral equations as balances of mass, momentum, and energy
fluxes for each finite volume defined by the intersection of the coordinate
surfaces. Rtzzi (ref. 13) applied the finite volume method to the Euler
equation for transonic flows and calculated the time-accurate solution until it
converged to a steady state. Factored explicit snd implicit difference oper-
ators were used to accelerate the calculations. Several computed examples are

given in the reference.

*A different procedure was used by Chattot (ref. 11) in his least squares for-
mulatlon of Euler Equations to exclude the expansion shock by imposing

> 0.
USx + VSy _ '_
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Jameson and Caughey (ref. 14) have recently applied the finite volume

method to the steady full-potential equation in conservation form by using

mixed-type fh]x operator_. Centered difference operators are used witb

artificial viscosity added in supersonic cells. Isoparametric mesh system is
used and the equations are solved by relaxation. The method combines the

advantage of finite elements for handling complicated geometries and the advan-
tage of using simple finite difference schemes in the transforme_ coordinates.

A typical calculation is shown in figure 7.

%.

The same concept has been recently used by Lucchi (ref. 15) with different
higher order elements and with the velocities and the densitv as variables. He

used direct inversion to solve the matrix equation.

ARTIFICIAL COMPRESSIBILITY METHODS

Following the work of Eberle (ref. 4), we have explored the application of

an artificial compressibility approach for both finite element and finite

difference methods for mixed equations. The idea behind these new methods is
to modify the density (and/or the speed of sound) in the supersonic region

slightly (within the same order of the truncation error) and solve the

resulting problem iteratively with standard methods used for the solution of

elliptic problems The dersity modification can be interpreted as an arti-

ficial viscosity effect. The modified equation _eads

(P_x)x = (P_y)y = 0 • (32)

For example, Jameson's fully conservative schemes can be approximated by this
form where

= P + _ ___- (UUxAX + VVy_y) (33)
d

and U = max (0, 1 - I/M2) . (34)

We have tested an alternative form

= P - _Ps As (35)

u V

where ASPs = q Px Ax + - py Ay (36)q

Other possibl_ forms are under study including modification of the speed of
sound.

Standard central difference formulas are used for equation (32) and

evaluated at the previous iteration. In t|,eformula for 0 , upwind differ-

encing is used in the supersonic region. Various Interatlve methods have been
testeo s,_ccessfully including SOR (vertlcal-horlzontal-SSOR), _2I, a second

order explicit method, fast solver and multlgrid method. A ..omerical result is

shown in figure 8 using "a three level explicit scheme. The rate of convergence
of this calculation is comparable to the relaxation methcd. The method is

still under development and details will be reported in a separate paper.
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CONCLUDING

, A considerable amount of work has been reported during the last few years
exploring the application of finite element methods to transonic flow problems.

In general, it is found that classical finite element aethods are not directly
applicable. Nodifications must be made either in the finite element method or
the governing equation. For the latter approach, artificial viscosity terns
must be added. Elliptic type solvers are required for the spatial derivatives
with a suitable iteratLve scheme required in the tlme-llke direction. Some,of i

the methods appear attractive and are being applied to realistic airfoil
geometries.
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TABLE I.- LEAST-SQUAREFORMULATIONSFOR FULL POTENTIALEQUATION

s = (0u)x + (0V)y

_ m 11 -- V
y x

Functlonal

I(u,v) = /_s 2 £2 _!_i
where p - 1 - _-1 M2(u2 + v 2 _ 1)T-1I

I(u,v,p) = ffs 2 + f12 + h 2

: JJ where a2 = I__ _ 7-1 (u 2 + v2 _ 1)

_(,,u,.).ffs 2+ (u- _x )2 + (v - _y)2
where 0 = I - y-1 ._2(u2 + v 2 _ !)Y-12

z(_,.,_,p).ff2 + h2 + (u - _bx)2+ (v - (_u)22 I v2
where a = _- _ (u 2 + - I)

GO
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Figure i.- Solution of transonic small-dlsturbance equations for parabolic-
arc airfoil using implicit tlme-dependent flnlte-element method of Hafez,
Wellford, and HUnCh (fig. from ref. 2).
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Figure 2.- Solution of Phares and Kneile using tlme-dependent flnlte-element
method to solve Euler equations for flow past parabolic arc (fig. from
ref. 3). "
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Figure 3.- Solution of transonic small-disturbance equation for flow past
parabollc arc using mixed variational flnlte-element formulatlon of
Hafez, Wellford, and Murman (fig. from ref. 2).
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Figure 4.- Finite-element solution by Eberle for flow past HACA 0012 airfoil.
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i
_ Figure 5.- F_nite-element solution by Glowlnskl et al. for flow past Korn
i alrfoll.
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Figure 6.- Finlte-ele_ent solution by Bristeau for flow past

NACA 0012 airfoil.
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Figure 7.- Finite-volume solution of full-potential equation by Jameson and
Caughey.

Figure 8.- Solution of full-potential equation using artificial compressi-
bility method.
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