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ING FIELDS
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ABSTRACT

Formulas are given for determining a conserved property

of a storm and its centroid from any scalar field that

has a tendency equation. The velocity of the centrold

is also given. These formulas depend only on fields that
are external to the storm.

INTRODUCTION

The propagation of storms may be characterized by the move-
ment of local disturbances in many fields, such as density,

moisture, internal energy, vortlcity, divergence, pressure,

stability, convection, etc. It is appropriate, then, to attempt
to define a centrold for the disturbance in each of these fields

and to characterize the movement and dynamics of a storm by the

velocities and relative velocities of these centroids. The pur-

pose of this paper is to show that this can be done for any

scalar meteorological quantity s that satisfies a tendency
equation of the form

_S

_-_ + b = 0 (i)

where b represents the remaining terms. We shall also show that

the centroid and its velocity are determined completely from

fields that are outside the disturbance. This is a significant

feature since measuring fields within a storm, either in situ or

remotely, is often more difficult than measuring the fields that

surround a storm. The scalar s may also represent the Cartesian

components of vector quantities, such as the convection, and the

vertical component of vorticity.

Approach-Throughout this paper, a disturbance in a field is

defined by _(field)/_t _ 0; and a local disturbance is a distur-

bance that is surrounded by a layer of finite thickness where

_(field)/_t = O. Instead of treating the scalar field s

directly, we shall consider its Laplacian

L = V2s (2)
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the source of the field s. A storm may be considered as a local

disturbance in L, since _l/_t is much larger within a storm,

due to the movement and growth or decay of the storm, than in the

quiescent surroundings.

Take V to be the volume of the storm, or, more specifi-

cally, the volume of the local disturbance in L, as illustrated

in fig. i. Within V, the disturbance
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Fig. 1-Volume V that contains a local disturbance in L. Within

V, the disturbance _L/Bt = -V2b is generally nonzero;

in the surrounding layer V o of finite thickness SL/_t

= - V2b = 0. Also shown is the closed interface S between
A

V and V o with its outward unit normal n.

_L/_t = - V2b is generally nonzero; however, V is surrounded by

a layer V o of finite thickness where _L/Bt = - V2b = 0. The

volumetric integral of L +in V is conserved and is termed the

efflux E. Its centroid R E may be regarded as a centroid of the

storm, and the centroidal velocity _E may be regarded as a

propagation velocity of the storm.

Centroidal Equations-In a previous paper (ref. I), the movemen$ of

a local disturbance in a vector fleld v was treated, where v

satisfied the equation _/Bt + _ = 0. The vector field _ was

characterized by its curl and its diverBence, as the scalar field

s is now characterized by its Laplacian. The scalar formulation

can be derived from the previous vector formulation by taking the

gradient of eq. (i), and making the identifications _ = Vs and

= Vb in the previous vector formulas. This gives for the
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conservedefflux

E = fffV2s d V = _ d S (3a)

its centroid

+= -lfff;v2sdv -l +as= (r -_n - _s)dS (3b)

and the velocity of the centroid

_ = E-l_(b - x)dS (3c)

where X is a scalar field that must be constructed by solving

Laplace's equation

V2X = 0 (in V) (3d)

with the Neuman boundary condition

3X 3b

_-n : _nn (on S) (3e)

where S is the surface that encloses volume V and has an out-

ward unit normal n, as shown in fig. i.

According to these formulas, it is only necessary to know

s, 3s/_n, b, and 3b/_n on the enclosing surface+ S in order to

determine the conserved efflux E, its centroid _, and the

centroidal velocity _. This contrasts with the previous vector
formulation (ref. i), Which included volume integrals that could

not be transformed to surface integrals.

Classical Center of Mass-Eqs. (3) also contrast with the classical

formulas for the center of mass and its movement, as derived from

the continuity equation

_-_+ div Pu = 0 (4)

+

where P is the density and u is the fluid velocity. The

classical formulas apply to an arbitrary volume T and give for

the conserved mass

M = fffodT

for the center of mass

fff
and for the centroidal velocity

= fff

(5a)

(5b)

(5c)

The volumetric integrals in eqs. (5) cannot, in general, be trans-

formed to surface integrals. Therefore, in order to de_ermine the

center of mass and its movement, we must know P and u through-

out the volume T.
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Comparative Example-Since eq. (4) has the same form as eq. (i),

we may apply eqs. (3) to the volume V of a local disturbance in

the Laplacian of the density f_eld 0 by making the identifica-

tions s = 0 and b = div 0u, as follows:

E = _ndS (6a)

-= E-If (_ _-_ no)dS (6b)3n

= E -I n(div 0u - x)dS (6c)

where X satisfies

V2X = 0 (in V) (6d)

_-_ = _ div O] (on S) (6e)
_n _n

Only surface integrals appear in eqs. (6), in contrast to eqs.

(5) where volume integrals occur. Also, E represents the con-

served efflux of V0 for a storm, R E its centroid, and R E its

propagation velocity. Caution is appropriate, however, for

although 0 is positive, V20 may take on positive and negative

values, and the centroid may conceivably lie or move outside the

storm.

CONCLUSION

Any scalar meteorological quantity for which a tendency

equation exists may be used to define a conserved property of a

storm and its centroid. The movement of each such centroid is

determined wholly from fields that are external to the storm.
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