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NONLINEAR INITIALIZATION OF THE GLAS MODEL

F. Baer, University of Maryland, College Park, Maryland

ABSTRACT

A simplified version of the GLAS model is linearized
and the normal modes extracted. These modes show the

necessary separation for nonlinear initialization.

INTRODUCTION

The finite difference form of the GLAS model is exceptionally

difficult to put into normal mode form. A procedure is outlined

which will allow a simplification of the model and still incorpo-

rate the essential ingredients for nonlinear initialization so

that the high frequency components may be slowed. A small version

of the simplified system is presented, linearized, and the normal

modes described. Some form of this system will ultimately be
initialized and tested in the GLAS model.

INITIALIZATION

The procedure for nonlinear initialization has been presented

by Baer and Tribbia (1977). The system equations should be

written in the form,

d--K+ 6X = _ G(X,X) (1)
dt

where X is a vector of dependent variables (grid point values of
the flow field and physical variables, for example), 6 is a matrix
of fixed quantities dependent on the system, and ¢ is small param-

eter, usually the Rossby number. Since most systems of this sort
are exceptionally complicated, as in the GLAS model, let us re-
write (i) in the form

dx + gX = a G + (g-$)X (2)
dt

where _ is a "simpler" matrix, and II s-l< - )sllis of order e.

Here S is the modal matrix which^diagonalyses A.

We shall find the modes of 4, a simple version of the GLAS

model so that we may separate the frequencies into fast and slow,

a procedure essential to the nonlinear initialization scheme. Thus

we will find,
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where clearly the scaled frequencies el << 1
x y

GLAS MODEL NORMAL MODES

(3)

We begin the simplification of the GLAS model from the non-

forced version (see Somerville, et. al., 1974) described as

follows:

3\V + \V • V\V + fkxW = - V ¢ + o_V
3t o o

V • \V +
o

3¢
- c_

3o

3£n8
--+\V

3t

36 d _n (0 3_) (4)
3_ dt 3o

• V£nO + @ _v£n_ = 0
3o

P = P + o_ , z = P - P
t s t

Symbol definitions may be found in the above reference. We now

linearize this system about a state of rest, let w -_ n(x,y,t) + H

and _ ÷ _(x,y,o,t) + A(o) where _ << _ and _ << A. We include the

following definition where _ is the perturbation of _ ,

- _ + oAT , m - _ + o__o__[zn 3t ' W = (u,v) (5)

The resulting linearized system then becomes,

eikX

let

3W f_ _ + _ 03-7+ v =o

3 N 2
_-_ _ + (o)m = 0 (6)

V • W + _ = 0

If we now assume a solution in longitude of periodic form,

, we get,

u t - fv + ik@ = 0

fu + v + _y = 0
t (7)

iku + v + m = 0
y o

Co t + N% = 0

Now to separate the vertical dependence from the latitudinal,
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(u,v,_) = G(o) (u,v,_) (y,t) (8)

= H(o) _(y,t)

Substitution of (8) into (7) yields the result that

it = C2(iku +_y) (9)

N 2 (£nN2)_ N2

H =--C2 H ; GGo = Ga + --2C G (i0)

and application of the boundary conditions that _ = 0 at o = 0,i ,

gives the conditions that H(o=0) = 0 and H_(a=l) = - (HIC2)A(1)

H(1) . These conditions applied to the solution of (i0) yield

the required separation constants C 2, which are also denoted as

"equivalent depths".

The first two equations of (7), together with (9) allow for

a solution of the latitudinal structure and generate the normal

modes and frequencies. We have,

T
lax = 0 ; x = _u,iv,_

_t

li f _ (ii)

o

C 2 C2_

To better understand these modes in a simplified framework, let us

solve (ii) in a channel extending from - 60 ° _ 8 _ 60 ° latitude

with rigid walls so that 9(_60) = 0. Equations(ll) also show

that _yy (+60) = 0 and give equations on the boundaries for _ and

_. For additional simplification, we assume the channel to be

broken into 2N + i equally spaced grid-points such that Y = NAy

and - Y _ y _ Y, with y = nay. We also use centered differences

to replace derivatives. In the finite-difference form, system

(ii) becomes,

i dX+iA X = 0 X Tdt - = (U,V, _)

^

: (UN_I...u0.- ^ ,• Ul_N; (2N-I) values

V T : i!vN_ I ...... Vl_N )

_T = (_N-I ....... _I-N )

and _ is a 3(2N-I) square matrix. The roots of _ represent the

frequencies of the reduced system as specified in (3) and will

represent an approximation ofthe GLAS model.

(12)

STRUCTURE OF MODES AND FREQUENCIES

Forpilot experiments, we have chosen to break up the atmos-

phere into three equal o-layers. Finite difference solution of H

from (i0) then yields the following three equivalent depths in

units of geopotential height;
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C_ = - 8.402,104

2

C 2 = _ 4.235,103

2

C 3 = - 8.012,102

The corresponding structures of vectors HI,H 2 and H^ may be seen
on Figure i. They have the expected distribution fgr this re-

solution. For the latitudinal structure, we have taken Ay = 5 °

and Ay = i0 °. For the former case, we generate 69 modes for each

equivalent depth (C 2) and for each planetary wave (k). For the

latter case, the number reduces to 33 modes. In either case,

many of the modes are computational and presenting their struc-

tures would be overwhelming. Fig. 2 gives some indication of the

structure of the latitudinal modes. We have plotted the 49th

vector for the case of Ay = 5 ° , showing the distribution for

waves i, 6, 15 and 30 for both the external and first internal

modes. Note that the vector for wave one and the external mode

shows some truncation properties which are not apparent for the

internal mode. The other vectors all have a very similar struc-

ture. These vectors reflect Rossby type oscillations with

periods in excess of 40 hours.

In Table 1 we describe the distribution of eigenvalues for

the Ay = i0 ° truncation. We denote the number of modes which fall

into the "high" frequency as compared to the "low" frequency for

selected wave numbers and the three vertical structures. Note

that all but wave number one have very strong separation between

the gravity and rotational modes; i.e., there are twenty two "fas@'

modes and eleven "slow" ones. Separation in wave one, although

not pronounced, is apparent. This difficulty with long waves has

been seen in other experiments.

SUMMARY

The data presented indicate that normal modes may be ex-

tracted from a simplified version of the GLAS model, and mode

separation is evident to allow for nonlinear initialization. Tes_

must now be performed which will determine how important the

approximations to the true numerical model are, and how effective

initialization with the simplified model will be.

An interesting observation of the study to date shows that

some of the modes are strongly affected by truncation. Devices

for removing the amplitudes of these modes (if they have slow

frequency) are under investigation. The high frequency computa-

tional modes may be removed by the nonlinear initialization

technique.
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TABLE 1 : Periods in hours for all frequencies for model with

Ay = i0 ° and for selected wave numbers. Values in

parentheses indicate the number of modes in the

specified range.

WAVE Nb_ER EXT. MODE

t 6 < T < 16 ([9)

23 < T < 45 (7)

T • 189 (7)

30

4.!. < T < 6.5 (22)

T- IS.2 (2)

T > 85 (9)

2.3 < T < 2.6 (22)

T - 31.9 (2)

T • 198 (9)

1.24 < T L 1.28 (221

T " 58.8 (2)

T • 390 (9)!

IRST INT.

15 < T < 56 (22)

> t70 ([i)

13 < T < 29 (22)

T > 103 (it)

8.9 < T ! 11.4 (22)

T > 201 (It)

5.3 iT i 5.7 (22)

T > 312 (II)

SECOND INT.

t5 < T < 60 (20)

- tO2 (2)

> 393 (It)

15 < T < 43 (20)

T- 65.6 (2)

T • 140 (ll)

13 < T < Z6.3 (22)

T • 238 (It)

tO < T < 13.2 (22)

T • 420 (ii)

143



/ /

\
\ I

I

\ I

\ .I

\ =I

\

\

| |

0 -I,_ _I _
m i #

b b b
_Q

b

al

o

,--4

+ I:: N

T-I

0

0

1..1

N m

0

0 Ill

m

g_

I 1.1

,--I °_

_ .r.I

_._

Q)
I-i

144



i/ -__<

, / ,..' _.

V,.-:
• "I/

._ ,LI.

0 ..I

0

_-_ _ I
_"OZ

•_ N N

c_ _ -,-4

0 "_
•_ '-_ _ 0

_','_ 0

0"_ c_ 0

0
,

0 '_ 0

,_ 0

°.

145


