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ABSTRACT

Efficient numerical methods for long term

weather forecasting are developed. One

implicit and one explicit scheme are compared

as to accuracy.

INTRODUCTION

It has been estimated that about 30% of the error

in meteorological forecasts is attributable to the in-

accuracy of numerical schemes currently used. In
order to minimize this error, we have developed and

tested two new numerical methods. These schemes are

particularly designed to perform long term inte-

grations for climatological purposes, since they

conserve the global quantities: total mass, total

energy, and total potential enstrophy of the flow.

One of the schemes is implicit, while the other one is

explicit. The greater inherent efficiency of the

implicit scheme, for fine spatial grid calculations

arises from the fact that its time step At may be an

integer multiple of AX/U, and is not required to be
less than AX/(C+U) as is the case for explicit

schemes, where AX is the smallest spatial interval

size, U is the maximum speed of propagation of the

flow, while C is the much larger maximum speed of

sound waves in the flow. In other words, a much

larger time step is permitted for implicit schemes.

But, in order to derive this benefit it is essential

that the amount of computer time used to solve the

implicit equations at any time step, be a small

multiple of the time needed to make one time step with

an explicit scheme. Our application of these schemes

indicates that indeed the implicit scheme requires

less computer time than does the explicit scheme, for

fine grid sizes.

In section 2, both the implicit and explicit
methods are used to solve the shallow water equations
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for a single-layered atmosphere over a smooth earth

and colaparisons of the solutions and of the computer

time are made. In section 3, with orography present,

a comparison is made of the solutions produced by the

explicit scheme both with and without the conservation

of the global quantities. Here it is observed that

the solution produced while conserving the global

quantities, is smoother and more accurate. In section

4, a brief description is given of the numerical
schemes.

Application of schemes

The technique for devising an implicit scheme and

the method for modifying both implicit and explicit

schemes so as to conserve the global quantities were

applied to the solution of the nonlinear shallow water

equations for a single layered, incompressible fluid

over a spherical earth. As initial conditions, three

subtropical highs were centered symmetrically in each

hemisphere on latitudes + 30 ° , and at longitudes 0 ° ,
120°E, 240°E. The initi_l wind speed is found geo-

strophically from the initial height field. The

initial hydrostatic "pressure" (i.e. density.height)

rose from 1036 (corresponding to 8500 meters) to 1046

at the center of the highs. The maximum of the

initially geostrophic velocity is about 13 meters/sec.

Contour levels of the initial "pressure" field are

plotted, on a stereographic chart of the Northern

Hemisphere, along with arrows indicating the initial

wind speed and direction in Fig. i. After 24 hours,

we exhibit in Fig. 2, appropriately scaled height

fields produced on one third of the Northern Hemi-

sphere with a fine spherical grid using 360 o in both

longitude and latitude. Fig. 2a was produced by the

explicit scheme, while Fig. 2b was produced by the

implicit scheme. Note how closely the "high" cells
resemble each other after 24 hours. The left most

column of numbers represent longitudes, that is row 73

corresponds to longitude 73]_ o. The rightmost

column corresponds to the latitude nearest the equator

and the second column from the left corresponds to the

latitude nearest the North Pole.
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For the explicit scheme a time step of 3 minutes

was used, while in the implicit scheme an interval of
15 minutes was used. The table below lists the

computing times (CPU) required on a 60 bit machine,

the CDC-6600, for each method with both the fine grid
and a coarse spherical grid of 360/64 o for latitude

and longitude.

coarse grid

fine grid

iexplicit implicit revised implicit

scheme scheme scheme

3 min 9 min 3 min

24 min 36 min 12 min

Computing Times on CDC-6600

Note that the time step of 15 minutes was used in

the implicit scheme for both the fine and coarse

grids; whereas in the explicit scheme, 6 minutes was

used for the coarse grid and 3 minutes was used for

the fine grid. Both schemes produced solutions with

comparable accuracy. Furthermore, we have observed

that it is possible to revise the implicit scheme to

take advantage of the special form of the hydrodynamic

equations, so as to cut the computing time of the im-

plicit scheme in half. This feature of the equations

of motion is also present in the full hydrodynamic

equations used for general circulation models. With

this improvement the implicit scheme would run in less

time than the explicit scheme, for fine grids.

Orograph[ effects

A major source of computational errors is found

to be the way in which current numerical methods treat

flow over and around high and extensive mountain

ranges, e.g. Rocky Mountains, Andes Mountains,

Himalayan Mountains, etc. In order to eliminate this

difficulty, Arakawa has advocated using difference

schemes that conserve the total potential enstrophy,

total energy, and total mass. We have found it

possible to modify any difference scheme, so as to

make the new scheme conserve these global quantities.

In particular, we show the effect that this conserva-

tive modification has when we introduced orography

into the shallow water model previously described in

section 2. That is, we introduced three identical

mountain ridges centered respectively along the three

longitudes 60°E, 180°E, and 300°E. The maximum height
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• . 8500 rs
above sea-level of the mountaln rldge as _ mete ,

at the equator. The mountain height decreS_es to zero

at the poles. The initial velocity is again found

from geostrophic balance on the sphere. The fluid
tends to flow around the ridges, by veering to the

pole. In Fig. 3a, we see that the solution produced
after 24 hours without theconservation of the global

quantities has larger velocities and steeper height

gradients near the pole, than does the solution shown

in Fig. 3b, which is produced with the conservation

of total mass, total energy, and total potential

enstrophy. In the Table below we indicate the

relative change from the initial values of these

global quantities, after t=24 hours and after t=48

hours, for the explicit scheme. In the first column

the larger relative deviations are found without the
use of the conservative modification method; whereas

the smaller relative deviations in the second column

are produced with the use of the conservative modifi-
cation method.

quantity

total mass (24 hours

total ener_ (")

total _ot.enstro_h[

total mass (48 hours

total ener_[ (")

total pot.enstrophy

without

conservative

modification

) 140-10 -6

-6
203_I0

5766.10 -6

) 235-10 -6

260.10 -6

17,750.10 -6

with

conservative

modification

0.2.10 -6

0.5.10 -6

-6
i0.0-I0

-6
0.5-10

1.1. i0-6

16.0 •l0 -6

Relative errors in total quantities.

The Numerical Schemes

The explicit scheme is a so-called leapfrog
scheme in which the solution is advanced from (t-At)

and t to the time (t+At). The first order time

derivatives are replaced by differences centered at
time t while the first order spatial derivatives in

latitude and longitude, are replaced by fourth order,

five point, centered difference expressions. At the

latitudes closest to the pole, the values of the

solution determined by this difference scheme are

smoothed by using the fast Fourier transform. This
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program has been adapted from the ideas of Kreiss and

Oliger [4] and Williamson and Browning [6], and is
described in Isaacson and Stoker [5].

The implicit scheme is roughly speaking a Crank-

Nicolson type scheme in which the solution is advanced
from time t to time (t+_t). Here the fourth order

accuracy is obtained by using a Pad_ rational fraction

in the spatial difference operators. After clearing

fractions, by multiplying all terms by the denominator,

we obtain a compact three point spatial difference

expression. The resulting simultaneous difference

equations are simplified by writing the spatial

operator as the product of a longitudinal factor and a
latitudinal factor. These factors have a block tri-

diagonal matrix representation, that is easily
invertible. This idea and its implementation were

proposed by A. Harten based on the methods used by

Beam and Warming [1,2] in aerodynamics. Considerable

effort was needed to find an efficient and stable

factorization method. Finally, it was found necessary

to use a fourth order Shapiro filter at each time step

in order to maintain stability.

The conservative modification method is described

in general terms in Isaacson [3]. Here the work in-

volved in modifying the solution found at time (t+At)

is of the order of the amount of calculation used in

one time step of the explicit scheme.
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Fig. I. Contour levels of the initial pressure field.
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Conto_ levels of pressure, after 24 hours, fo_d without

Me conservation of the total _ss, total energy, and

total potential enstrophy.

Conto_ levels of pressure after 24 ho_s, found wi_

_e conservation of the total _ss, total energy, and

total potential enstrophy.
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