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ABSTRACT

Efficient numerical methods for long term
weather forecasting are developed. One
implieit and one explicit scheme are compared
as to accuracy.

INTRODUCT ION

It has been estimated that about 30% of the error
in meteorological forecasts is attributable to the in-
accuracy of numerical schemes currently used. 1In
order to minimize this error, we have developed and
tested two new numerical methods. These schemes are
particularly designed to perform long term inte-
grations for climatological purposes, since they
conserve the global guantities: total mass, total
energy, and total potential enstrophy of the flow.

One of the schemes is implicit, while the other one is
explicit. The greater inherent efficiency of the
implicit scheme, for fine spatial grid calculations
arises from the fact that its time step At may be an
integer multiple of AX/U, and is not required to be
less than AX/(C+U) as is the case for explicit
schemes, where AX is the smallest spatial interval
size, U is the maximum speed of propagation of the
flow, while C is the much larger maximum speed of
sound waves in the flow. In other words, a much
larger time step is permitted for implicit schemes.
But, in order to derive this benefit it is essential
that the amount of computer time used to solve the
implicit equations at any time step, be a small
multiple of the time needed to make one time step with
an explicit scheme. Our application of these schemes
indicates that indeed the implicit scheme requires
less computer time than does the explicit scheme, for
fine grid sizes.

In section 2, both the iwplicit and explicit
methods are used to solve the shallow water equations
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for a single-layered atmosphere over a smooth earth
and comparisons of the solutions and of the computer
time are made. In section 3, with orography present,
a comparison is made of the solutions produced by the
explicit scheme both with and without the conservation
of the global quantities. Here it is observed that
the solution produced while conserving the global
quantities, is smoother and more accurate. In section

4, a brief description is given of the numerical
schemes.

Application of schemes

The technigue for devising an implicit scheme and
the method for modifying both implicit and explicit
schemes so as to conserve the global quantities were
applied to the solution of the nonlinear shallow water
equations for a single layered, incompressible fluid
over a spherical earth. As initial conditions, three
subtropical highs were centered symmetrically in each
hemisphere on latitudes + 30°, and at longitudes 0°,
120°E, 240°E. The initial wind speed is found geo-
strophically from the initial height field. The
initial hydrostatic "pressure" (i.e. density-height)
rose from 1036 {(corresponding to 8500 meters) to 1046
at the center of the highs. The maximum of the
initially geostrophic velocity is about 13 meters/sec.
Contour levels of the initial "pressure" field are
plotted, on a stereographic chart of the Northern
Hemisphere, along with arrows indicating the initial
wind speed and direction in Fig. 1. After 24 hours,
we exhibit in Fig. 2, appropriately scaled height
fields produced on one third of the Northern Hemi-
sphere with a fine spherical grid using 360 © jh both

longitude and latitude. Fig. 2a was produced by the
explicit scheme, while Fig. 2b was produced by the
implicit scheme. Note how closely the "high" cells
resemble each other after 24 hours. The left most
column of numbers represent %ongitudes, that is row 73
corresponds to longitude 73%5% ©., The rightmost

column corresponds to the latitude nearest the equator
and the second column from the left corresponds to the
latitude nearest the North Pole.
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For the explicit scheme a time step of 3 minutes
was used, while in the implicit scheme an interval of
15 minutes was used. The table below lists the
computing times (CPU) required on a 60 bit machine,
the CDC-6600, for each method with both the fine grid
and a coarse spherical grid of 360/64 © for latitude
and longitude.

explicit implicit revised implicit
scheme scheme scheme

coarse grid 3 min 9 min 3 min

fine grid 24 min 36 min 12 min

Computing Times on CDC-=6600

Note that the time step of 15 minutes was used in
the implicit scheme for both the fine and coarse
grids; whereas in the explicit scheme, 6 minutes was
used for the coarse grid and 3 minutes was used for
the fine grid. Both schemes produced solutions with
comparable accuracy. Furthermore, we have observed
that it is possible to revise the implicit scheme to
take advantage of the special form of the hydrodynamic
equations, so as to cut the computing time of the im-
plicit scheme in half. This feature of the equations
of motion is also present in the full hydrodynamic
equations used for general circulation models., With
this improvement the implicit scheme would run in less
time than the explicit scheme, for fine grids.

Orography effects

A major source of computational errors is found
to be the way in which current numerical methods treat
flow over and around high and extensive mountain
ranges, e.g. Rocky Mountains, Andes Mountains,
Himalayan Mountains, etc. In order to eliminate this
difficulty, Arakawa has advocated using difference
schemes that conserve the total potential enstrophy,
total energy, and total mass., We have found it
possible to modify any difference scheme, so as to
make the new scheme conserve these global quantities.
In particular, we show the effect that this conserva-
tive modification has when we introduced orography
into the shallow water model previously described in
section 2. That is, we introduced three identical
mountain ridges centered respectively along the three
longitudes 60°E, 180°E, and 300°E. The maximum height
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above sea-level of the mountain ridge is 8500 meters,
at the equator. The mountain height decre&ges to zero
at the poles. The initial velocity is again found
from geostrophic balance on the sphere. The fluid
tends to flow around the ridges, by veering to the
pole. 1In Fig. 3a, we see that the solution produced
after 24 hours without the conservation of the global
guantities has larger velocities and steeper height
gradients near the pole, than does the solution shown
in Fig. 3b, which is produced with the conservation
of total mass, total energy, and total potential
enstrophy. In the Table below we indicate the
relative change from the initial values of these
global quantities, after t=24 hours and after t=48
hours, for the explicit scheme. In the first column
the larger relative deviations are found without the
use of the conservative modification method; whereas
the smaller relative deviations in the second column
are produced with the use of the conservative modifi-
cation method.,

without with

conservative conservative
quantity modification modification
total mass (24 hours) 140-107° 0.2-107°
total energy (") 203+10"° 0.5:10°°
total pot.enstrophy 576610 ° 10.0-107°
total mass (48 hours)]| 235-107° 0.5-10"°
total energy (") 260.10"° 1.1.10°°
total pot.enstrophy ||17,750-107° 16.0.10"°

Relative errors in total guantities.

The Numerical Schemes

The explicit scheme is a so-called leapfrog
scheme in which the solution is advanced from (t-At)
and t to the time (t+At). The first order time
derivatives are replaced by differences centered at
time t while the first order spatial derivatives in
latitude and longitude, are replaced by fourth order,
five point, centered difference expressions. At the
latitudes closest to the pole, the values of the
solution determined by this difference scheme are
smoothed by using the fast Fourier transform. This
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program has been adapted from the ideas of Kreiss and
Oliger [4] and Williamson and Browning [6], and is
described in Isaacson and Stoker [5].

The implicit scheme is roughly speaking a Crank-
Nicolson type scheme in which the solution is advanced
from time t to time (t+At). Here the fourth order
accuracy is obtained by using a Pade rational fraction
in the spatial difference operators. After clearing
fractions, by multiplying all terms by the denominator,
we obtain a compact three point spatial difference
expression. The resulting simultaneous difference
equations are simplified by writing the spatial
operator as the product of a longitudinal factor and a
latitudinal factor. These factors have a block tri-
diagonal matrix representation, that is easily
invertible. This idea and its implementation were
proposed by A. Harten based on the methods used by
Beam and Warming [1,2] in aerodynamics. Considerable
effort was needed to find an efficient and stable
factorization method. Finally, it was found necessary
to use a fourth order Shapiro filter at each time step
in order to maintain stability.

The conservative modification method is described
in general terms in Isaacson [3]. Here the work in-
volved in modifying the solution found at time (t+At)
is of the order of the amount of calculation used in
one time step of the explicit scheme.

*Acknowledgement: The authors were supported in part
under NASA grant, NSG-5034. The first author was
supported in part under DOE contract EY-76-C-02-3077.
The DOE computing facility at the Courant Inst., with
a CDC 6600, was used for most of the numerical
experiments. The computing facility of the Labora-
tory for Atmospheric Sciences at NASA-Goddard Space
Flight Center, including an Amdahl computer system,
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Fig. 1. Contour levels of the initial pressure field.
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Fig. 3a. Contour levels of pressure, after 24 hours, found without
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the conservation of the total mass, total energy, and
total potential enstrophy.

TR ST
T PP e A e N 0
EESEIEAIEE s S m N
141 B Pyl AR
AT O o DT
ISH/ASESEES SN A THA T
T NN e T !
T DR ey
= > HAIR N 1Y 57__,é,ﬂ _;,\ RIS
X = s " i g N 1
a8 ik S :ﬂséb'i'i?; ‘tﬁ’% L 0
AnSREANE. HES I ] = s IR -
T Ass e WS AR
R A N A ST
NEDNNE TS e s
Ny IS EN S B S b e
At B a S Ss SR F AT
PR e N A
- {-afae gec {—-;-»-‘3 = 5..1.47( o JY HN S G I
11 O ; -+ -_‘\ ,:,N_..A,-’ /i I R SO A
cHe e A e b e

Fig. 3b. Contour levels of pressure after 24 hours, found with
the conservation of the total mass, total energy, and
total potential enstrophy.

190




