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Long Term Objectives

climatologically significant statistical properties of
the atmospheric component of the climate system.

Understanding should lead to an ability to correctly
and efficiently incorporate this component into larger

models for climate that include oceanic and cryospheric
influences and deal realistically with climate replica-
tion. An immediately usefully and critically important
consequence of successful completion of the study would

be the ability to assess the magnitude of the unpredict-
able (noise) component of long term atmospheric behav-
ior, and hence the potential for viable climatological
forecasting.

Immediate Program Content And Objectives

The Stanford program in climate is new and in proc-
ess of development. Both because of the relative nov-

elty of our approach to the problem and because our
students have minimal backgrounds in meteorology and
atmospheric sciences, we have elected to start at a

simple but fundamental level of analysis. Thus, the
initial effort is concentrating on the use of Lorenz's

"minimum hydrodynamic equations" as a prototype for
describing at least some of the non-llnear characteris,
tics of long term atmospheric behavior that we believe
are important for climate. We have two main thoughts
in mind:

a) that techniques for closure of the moment equa-
_tions that arise from treatingtime averaged
climatic variables can be tested with the mini-

mum equations. These do indeed exhibit the
counter-gradlent momentum transfer and vacilla-
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and

tory behaviors that are known as essential

features on thg non-linear behavior of the

atmosphere;

b) in view of the fact that temporal response
characteristics need to be known for developing

atmospheric climate models, it is hoped that

study of such properties of the minimum equa-

tions (hopefully with only minor modifications)

will lead to a rationale for simplified atmos-

pheric climate models via a subdivision into

more easily treated sub-components. For exam-

ple, we might consider long term, large scale

changes to be describable in terms of a baro-

tropic model that is driven baroclinically, per-

haps by stochastic forcing via quasi-geostroph-

ic turbulence, as well as by deterministic

terms. The minimum equations would represent

the simplest possible description for the baro-

tropic component of such a model.

Accomplishments

We are advocating the introduction of time

averaging for the treatment of climate questions. The

approximations that then become possible (and, we

suggest, necessary for practical viability of answering
climate problems) will vary with the averaging time

selected, which in term will vary with the particular

climate question being addressed. In every case, how-

ever, the averaging process, when applied to the (non-

linear) differential equations governing atmospheric

motions, introduces new, statistically defined varia-

bles (moments and correlations) which are formally

governed by an infinite set of equations. For large

scale motions conventional turbulence theory approaches

for closing these equations do not apply, and for the

climatological case we must resort to other techniques,

the nature of which we expect to discover only from

better understanding of the atmospheric circulation

system itself. The simplest model that incorporates

the important counter-gradient transport of momentum,

necessary for the maintenance of the atmospheric energy
cycle, is represented in Lorenz's introduction of the

"minimum hydrodynamic" system of equations. These re-

present the first three Fourier modes of a standing

wave system for a rectangular domain, with B effect

neglected, and their solution (available analytically)

describes the temporal non-linear oscillations of the

standing waves. The equations governing the time-
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variation of the amplitudes of the three wave compon-

ents, AI, A2, A3, are

dA I dA 2 dA 3
-- = CIAIA 2 ; - C2AIA 3 ; - C3A2A I ; (i)
dt dt dt

where CI . _ [_(_3 + i)]-i _ C2 = 2( 2 + i)-i ,

C3 = _ ( 2 _ 1)/2a , and a = k/Z , the ratio of zonal

to meridional wave number. Jacobian elliptic functions
constitute the analytic solution to (1):

* *, 2)
A 1 = A 1 dn(ht - t h °

* 6 2) (2)
A 2 = A 2 sn(ht - t , ho

* * 2
A 3 = A 3 cn(ht - t , ho )

9

for a > 1 and 2k_E/V < 1 , where

enstrophy and energy of the system.

A 3 are defined in terms ofA1 , A2 , , t , h and k°

E and V and a phase angle.
The description and analysis can be simplified by

a scaling transformation:

X 1 = AI/A I , X2 = A2/A 2 , X 3 = A3/A 3 ,

t, ht = A1 t (3)

E and V are the

The parameters

to give

X1 = - k2o X2X3 XI = dn(t - t , k )

X2 ' '* _ (4)= X3X 1 X 2 = sn(t - t , k )

X3 = - XIX2 X3 = cn(tl- t , k )

Provided we modify the conventional definition for

the moment of a time-averaged variable from

I T I .

Mij...l(t) = _ t£T [Xi(t ) - _i(t )]

[Xj(t') - _i(t')]...[Xz(t') - _z(t')]dt'
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to

i .ft
Mij'" "/(t) =

t-T
[Xi(t') - _i(t)] [Xj(t')

_ _j(t)]...[X/(t') - u/(t)]dt'
(5)

moment equations for the time averaging interval T

can be readily derived. It is this (infinite) system

of equations that we need to solve for the climate case,
and since the solutions (4) can be used to calculate

the moments (5) exactly for the minimum equations, we

are in position to evaluate the accuracy of any pro-

posed closure scheme, at least as far as the properties

of the minimum equations are concerned. Exact moments,

for arbitrary values of averaging time T can in fact

be derived in analytic, though rather cumbersome form,
and this has been done up to the third order moments

Tijk

A possible approach for achieving approximate
closure that has worked well in the case of stochastic

dynamics weather forecasting, is linearisation of the

moment equations. In our case, the linearisation would

be made about an assumed known climatic state, which,
for problems of the first kind would be based on ob-

served records over the period 0 > t > -T , and, for

prediction of the second kind, would correspond to

climatological mean estimates of statistically sta-
tionary states. Note that in the second case we need

to treat ensemble as well as temporal means, as situa-

tion which leads to complications in the development of

the moment equations which we are starting to look into.

Tests on the efficacy of this concept of a linearised

approximation are now being carried out by numerical

solution of truncated forms of the (linearised) moment
equations.

However, for the minimum equations we have discov-

ered an unexpected property that indeed seems to ob-

viate the need for devises such as linearisation for

closing the moment equations. It turns out that for

small values of the parameter

k 2 _ I A_ 2
o _ *2 (6)

A I

350



moments of the solutions (2) for the minimum equations

tend to decrease with increasing order of the moment.

In fact power series of the form

_i = _ k2n _i (n) [_i (0) = i]
n=0 o

_. k2(_li + 61J ) _=0 k2n o(n)• = o ij (7)
mj o

k2(_li + 6ij + $ik ) _ k 2n (n)
_ijk= o n=0 o _ijk

when 6ab = 0 a _ b , _ab = i , a = b , yield series of

of differential equations for the moments which are

automatically closed. For example, the lowest order

equations in k 2 turn out to be
o

_i = 0

_2 = _3

_3 = - _2

_22 = 2_32

_33 = - 2_32

_32 = _33 - c22

which can readily be shown to have solutions identical-

ly equal to those obtained from the exact solution (4),

when the exact moments are expanded for k 2 <<l
o

Small values of k ° in fact correspond to mild vac-

illations of the zonal flow and, as discussed by Lorenz,

represent the predominant mode of atmospheric vacilla-

2 close to 1 (which is the uppertion phenomena. For k o

bound for k 2) corresponding to large oscillations in
o

the east-west wlnd, this approach does not appear to be
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applicable.

The fact that cl_sure of the time-averaged moment

equations for the minimum equations is possible for

physically reasonable values of parameters immediately

brings to the fore the question of the applicability

of moment equation closure procedures such as (7) to

more realistic equations for atmospheric motions. It

is our intent to enter at depth into this question,

both by j_d_im_ which p_opertles of the .........LLL_*equa-

tions can be expected to hold more generally and by

modifying the minimum equations to allow for clearly

omitted features (such as B , or adding secular and

stochastic forcing terms).

One of the important results looked for in the

statistical approach we are trying to develop is the

determination of the principal tlme-scaled components

into which the atmospheric system can be subdivided.

These separate, but coupled components are distin-

guished by their disparate time scales, and their con-

tent would surely vary with climatic average of con-

cern; the aim is to obtain the simplest possible mode

of description of the atmospheric portion of the

climate system. Whether, or under what circumstances

such a form of representation is possible is still at

issue. Our investigations currently seek to evaluate

the 'response time' for the minimum equations, so as to

better understand how both long term forcing (e.g. sea-

sonal variation) and rapid fluctuations (e.g. from two-

dimensional turbulence) should be coupled to the equa-

tions. We are in process of determining how best to

proceed with this problem, and we envisage that the

coupling has at least in part to be stochastic, leading

to variability in climate evolution as prescribed by

the equations of currently unknown magnitude.
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