NASA Contractor Report 159018

A Turbojet-Boosted Two-Stage-to-Orbit Space Transportation System Design Study

A. K. Hepler, H. Zeck, W. Walker, and W. Scharf

N79-239

Boeing Aerospace Company P.O. Box 3999 Seattle, Washington 98124

Contract NAS1-15204 April 1979

Langley Research Center Hampton. Virginia 23665 AC 804 827-3966 NASA Contractor Report 159018

A Turbojet-Boosted Two-Stage-to-Orbit Space Transportation System Design Study

A. K. Hepler, H. Zeck, W. Walker, and W. Scharf

Green Contin

Contract NAS1-15204 April 1979

NASA

FOREWORD

A Turbojet-Boosted Two Stage to Orbit Space Transportation System Design Study was conducted by Boeing Aerospace Company; Kent, Washington from January 1978 through December 1978. The study was sponsored by NASA/Langley Research Center under Contract NAS1-15204.

Principal investigator was Mr. Howard Zeck under the administration of study manager Mr. A. K. Hepler. Boeing Aerospace major contributors were:

George A. Dishman	Documentation
Andrew K. Hepler	Structures
William H. Scharf	Propulsion
William H. Walker	Design and Subsystems
Howard Zeck	Aerodynamics and Performance

Acknowledgement is expressed to the following NASA/Langley Research Center personnel for their helpful guidance and technical assistance during the course of the study:

J.	Α.	Martin	Performance
L.	R.	Jackson	Vehicle Definition
₩.	J.	Sma 1 1	Aerodynamics
J.	D.	Watts	(Study Monitor)

iii

CONTENTS

	Page			
SUMMARY	1	STUDY ACHIEVEMENTS		
INTRODUCTION	. 3	OPERATIONS		
LIST OF SYMBOLS	5	COST ESTIMATES		
ANALYSES LOGIC	6	TECHNOLOGY ASSESSMENT		
AERODYNAMICS	8	STUDY OBSERVATIONS		
Turbojet Propulsion	19	REFERENCES		
Performance	26	APPENDIX		
VEHICLE DESIGN AND SUBSYSTEMS	5 34	Appendix I - Flight Profile & Performance		
Configuration Evolution	40	Appendix II - Aerodynamics		
Final Detailed Configura	ation 50	Appendix III - Turbojet Propulsion		
Orbiter Weight	64	Appendix IV - Wing Analysis		

<u>Page</u>

73

75

81

100

104

106

.

107

123

126

14[,]5

Summary

The next generation of advanced earth orbital transportation systems have recently been studied by NASA to assess their potential payoff in terms of cost, performance and utility. Most of these studies have only considered all rocket propulsion systems. An alternative approach proposed by NASA Langley has considered air breathing engines for the first boost stage. Their novel concept proposed to use twin turbo-powered boosters for acceleration to supersonic staging speed followed by an all rocket powered orbiter stage. This effort is a follow-on design study of such a concept with performance objective of placing a 29483 kg (65000 lb) payload into a 92.6 X 195.3 km (50 X 100 n.mi.) orbit for an eastern launch from Cape Kennedy. The study was performed in terms of analysis and trade studies, conceptual design, utility and economic analysis, and technology assessment.

Design features of the final configuration include:

Strakes and area rule for improved take-off and low transonic drag, variable area inlets, exits and turbine, and low profile fixed landing gear for turbojet booster stage. To inject a 29483 kg (65000 lb) payload in orbit required an estimated GLOW of 1.27 X 10^6 kg (2.8 X 10^6 lb). Each twin booster required (8) afterburning turbojet engines each with a static sea level thrust rating

of 444,800 N (100,000 lb). Life cycle costs for this concept were comparable to a SSTO/SLED concept except for increased development cost due to the turbojet engine propulsion system.

Technologies in need of development for the turbojet booster concept include: advanced aerodynamics, orbiter structure and thermal design, and booster propulsion integration.

Future studies of this approach should also consider subsonic staging with both single vehicle boosters and twin boosters.

INTRODUCTION

Recent studies of fully reusable advanced space transportation systems (Ref. 1) have utilized all rocket propulsion engines. An alternative approach has been proposed (Ref. 2) which utilizes twin turbojet powered boosters for acceleration to Mach 3.5. This concept illustrated in Figure 1 offers take-off from conventional runways and potential advantages of offset orbit insertion, self-ferry and intact-abort. This 7-month study is a follow-on of NASA's prelininary findings of the twin-turbojet powered booster systems. The present study explores the technical considerations, the vehicle definition, subsystems, and the life cycle costing. The initial configuration of the orbiter rocket powered stage was generic to that developed during the NASA funded studies. The study objectives were divided into the following tasks: Task I - Analysis and Trade Studies, Task II - Conceptual Design, including identification of unique problems, development of solutions, and incorporation into a vehicle design; Task III - Utility Economic Analysis; and Task IV - Technology Assessment.

Study Guidelines

- Twin Boosters
- Takeoff Speed = 121.9 m/sec (400 FPS)
- Design Payload = 29483 kg (65,000 lb)
- ΔV in orbit = 1981 m/sec (650 FPS)
- Injection Orbit = 92.6 X 185.3 km (50 X 100 n.mi.)
- Entry Cross Range = 2038 km (1100 n.mi.).

- Staging Mach = 2.7
- $\triangle V RCS = 30.5 \text{ m/sec} (100 \text{ FPS})$

Figure l

Advanced Space Transport Concept

LIST OF SYMBOLS

A _c	Inlet Capture Area Turbojet Engine	LCC	Life Cycle Cost
A.C.	Aerodynamic Center	M	Free Stream Mach Number
с _D	Drag Coefficient	q	Free Stream Dynamic Pressure
C _D	Minimum Drag Coefficient	s _b	Booster Reference Area
CL	Lift Coefficient	SF	Scale Factor Turbojet Engine
CLa	Lift Curve_Slope	S _{REF}	Orbiter Wing Area, Reference for Aerodynamic Coefficients
C _m	Pitching Moment Coefficient	SFC	Specific Fuel Consumption Turbojet Engine
C _N	Normal Force Coefficient	т	Net Thrust per Turbojet Engine
СТ	Thrust Coefficient ($oldsymbol{approx}$ T/qA $_{ m C}$) Turbojet Engine.	W	Weight
D	Drag	a	Angle of Attack
GLOW	Gross Liftoff Weight	\$/kg(1b)	Dollars per kg (lb)
L _B	Orbiter Reference Length	S e	Elevon Deflection Angle
1	lift		

5,

Analyses Logic

The approach used to accomplish the task objectives is shown in the analyses logic diagram of Figure 2. The subtasks were conducted by the various technical disciplines (propulsion, etc.) leading to the development of baseline configurations. A series of iterations were required to arrive at the finalized configuration. The mid-term briefing at NASA resulted in a major reconfiguration to incorporate area rule and vortex lift features. This required a major reallocation of manpower effort. Much assistance was supplied by NASA for this updated configuration. The final configuration for which detailed inboard profiles were drawn and analysed did not meet the 29483 kg (65,000 lb) payload requirement. However, it was performance-scaled to this payload for its GLOW and life cycle costing. Since the iterated configuration development overran the planned effort, it was decided to reduce the times spent on Task III (Utility and Economic Analysis) and Task IV (Technology Assessment).

Figure 2

Analyses Logic

7 .

Aerodynamics

The mid-term configuration did not use area variation design techniques and most confidence in the aerodynamic characteristics were for the orbiter (isolated) since wind tunnel tests data is available for a similar configuration (See Ref. 3) except for a thinner wing profile (t/c from 0.105 to 0.09) and slightly finer body. For the twin boosters, past test data of large clustered Nacelles and engines have shown drag interference factors from 1.2 to 3.0. Thus, with an average affect of about 25 percent increase in the minimum drag over the isolated stages, it became very desirable to employ area variation techniques to reduce the transonic drag of the mated configuration. With the cooperation of NASA using the Harris wave drag computer program (Ref. \subseteq), estimates were made for the final mated configuration shown in Figure 3.

Another feature of the final configuration was the inclusion of full vortex lift at high angles of attack and subsonic take-off speeds (M \approx 0.36). Vortex lift effects were based on John Lamar's (NASA/Langley) theoretical techniques (See Ref. 4) which predicted a 30 percent increase in take-off lift. Without the benefit of wind tunnel tests of the mated configuration, it is anticipated that these aerodynamic characteristics have an uncertainity from 10 to 20 percent. Further details of the aerodynamic character - istics are given in Appendix I.

Figure 3

Turbojet Boosted System

Sixteen Turbojets.

Figure 4 10.

Lift and Drag

Mated Two-Stage Turbojet Booster

Takeoff Speed (Mated Vehicles)

Takeoff performance is based upon the lift coefficient characteristics shown in Figure 5. The angle of attack required to not exceed the takeoff speed design goal (400 fps) is 18.6 degrees. For a 20 degree angle of attack at this design speed, the excess vertical force is about 8 percent of the weight of the mated vehicles. The takeoff phase is followed by pull-up phase from the runway in which the normal load factor, $(\frac{D SIN\alpha + L COS \alpha}{W})$, is set to not exceed 1.25 until the desired initial climbout flight path angle is reached (see Figure 14 for detailed trajectory characteristics). The effects of turbojet thrust are included in the take-off speed estimates.

Subsonic Stability

Longitudinal static stability was estimated in terms of the aerodynamic center of both isolated and mated orbiter. For the isolated orbiter, the main factor is the wing planform with the body contributing only secondary effects. For the mated configuration, the uncertainty of interference effects could considerably alter the values shown in Figure 6. The estimates indicate an unstable configuration in pitch over most of the anticipated C.G. range. Wind tunnel tests would be required to substantiate the estimated values of stability and trim for the mated configuration.

ANGLE OF ATTACK \sim DEG

Figure 5 12 Take-Off Performance - Mated Vehicles

A. C. Travel (Booster Only)

14

The travel of the Aerodynamic Center (A.C.) of the booster alone with Mach number is presented in Figure 7. Except for subsonic speeds, the booster is neutrally stable (or slightly unstable) for a C.G. position of 65 percent of booster body length. At subsonic speeds, the booster is about 8 percent unstable. A 2 to 3 percent unstable margin is considered acceptable to the authors. This instability can be negated by increasing T.E. wing sweep or by an aft movement of the wing relative to the body.

Figure 7

Aerodynamic Center Travel - Booster Only

Orbiter Stability

Compared to the booster stage, the orbiter is very stable. At subsonic speeds, see Figure 8, the orbiter is very slightly unstable and at transonic speed it is about 10 percent stable for a C.G. position of 0.72 of body length. With increasing speed the A.C. moves slowly forward. This high degree of pitch stability may cause some trim problems with up elevons.

The very stable orbiter configuration at supersonic speeds carries over to the hypersonic speeds as indicated in Figure 9. The neutral point is aft of 0.74 L_B at entry angles of attack (25 to 50 degrees). For an entry C.G. of 0.72 L_B , up elevons to -20 degrees are required for trim even with the body flap up -10 degrees. To improve these characteristics requires a small forward shift of the wing relative to the body or removal of some of the planform area near the wing trailing edges. This is not considered to be a serious problem area.

Aerodynamic Center Travel - Orbiter

Orbiter Hypersonic Stability and Trim

Orbiter Landing Speed

Due to the low wing loading the orbiter has no difficulty in not exceeding a design landing speed of 85 m/sec (165 knots) at an angle of attack of 15 degrees. For an orbiter landing weight 133397 kg (250,000 lb), the required angle of attack is 8 degrees at the design landing speed (see Figure 10).

The booster stage was also designed to not exceed the same design landing speed and the objective was met by proper selection of wing loading with the maximum lift coefficient characteristics.

Turbojet Propulsion

Trades and selection for the turbojets are outlined in Figure 11. Preliminary parametric trades verified the selection of a design with the following characteristics:

After burner Thrust Augmentation No Fan Bypass (i.e. BPR=0) Low to Medium Compressor Pressure Ratios (CPR = 13) Variable Area Turbine (VAT for Controlling Airflow) Large Size Engines 445,000 Newtons (100,000 lb of thrust) Common 2-D inlet and nozzle

Figure 10

Landing Speed - Orbiter

Figure 11

Propulsion System Selection Rationale

At mid-term of the study, the engine chosen was designed as MK-35. The final selected version was designated MK-15 and detailed comparisons are presented in Figure 12. The T/q and D/g are compared at a fixed sea level static thrust of 444820 N (100,000 lbs) which has the effect of relatively changing the required engine capture area. Further details of capture area engine drag components and scaling are given in Appendix III. These characteristics were generated by a Pratt and Whitney Advanced Technology Parametric Engine Cycle Computer program along the design trajectories. Since the turbojet booster accelerated the vehicle to Mach numbers in excess of 2.5, a mixed compression inlet was used for maximum efficiency. The refinement in engine airflow scheduling from the mid-term engine, MK-35, to the final selected engine, MK-15, resulted in a lower internal drag as shown in Figure 13 in terms of drag over dynamic pressure, D/q. Also compared are the C_T , T/q and SFC versus Mach number. The refined airflow scheduling for MK-15 resulted in an increase in net thrust available at transonic speeds for a constant sea level static thrust rating. The net thrust increase of 4.5 percent was accompanied by a reduction in inlet capture area of 17 percent. These improvements are due mostly to the reduction in transonic spillage drag. For Mach numbers above 1.5, the net thrust or T/q is reduced along with the reduced airflow scheduling. However, specific fuel consumption, SFC, continues to be favorably reduced.

Figure 12

Comparison of Turbojet Characteristics

Variable - Geometry Turbine After Burning Turbojet

The basic engine is sized at sea level static conditions at an airflow of 181 kg/sec (400 lb/sec). The installed static thrust, weight and dimensions are presented in Figure 13. The engine size, weight and performance may be scaled using the scale factors presented. A schematic of the engine is presented to illustrate the dimensional nomenclature. The nozzle depicted is axi-symmetric, however, and would be replaced by a two-dimensional nozzle for this booster configuration. By choosing (8) engines per booster thrust rating of 467,000 Newtons (105,000 lb) optimized payload. This resulted in net thrust minus drag values during ascent acceleration of the Turbojet Booster Vehicle of about 25 percent. Further details of the Turbojet Propulsion System are given in Appendix III.

Variable - Geometry Turbine Afterburning Turbojet

25

Figure 13

Performance

Trajectory

²⁶

Ascent heating constraints on the orbiter hot structure played a very significant role in shaping the ascent trajectory. To avoid exceeding these limits, the staging Mach number had to be limited to about 2.7 at an altitude of 19.5 km (64,000 ft). Along with these conditions, maximum dynamic pressure, q, and qa are important parameters. These maximum values were:

> Q = 69426 Pascals (1450 PSF) Qa = 397,404 Pascals Deg. (8300 PSF Deg)

The final tailored trajectory is presented in Figure 14 and represents the results of many trajectory runs to obtain near optimum payload performance. Just prior to staging a pull up maneuver (α increasing from 3.5 to 8 deg) is initiated to avoid exceeding the heating limits for the particular hot structure design used in this study. Other structural approaches could allow increased staging velocity at higher dynamic pressure with a resulting performance improvement. For more details of finalized trajectory, see Table 17 of Appendix I.

Ascent Trajectory

Performance Trade - Number of Turbojets

28

The effect of varying the number of turbojets for the first stage on payload is shown in Figure 15, for three fixed values of GLOW. For a GLOW of 1.211×10^6 kg (2.67 million 1b), the final baseline had (16) turbojets with a resulting payload of about 24494 kg (54,000 1b). Adding (2) turbojets to (18) slightly increased payload. Subtracting (2) turbojets reduced the payload to 21319 kg (47,000 1b). These engine trades indicated that the excess thrust margin over drag at transonic/supersonic speeds should be at least 25 percent. As expected, the higher GLOWS required the number of turbojets to increase.

Performance Trade - Number of Turbojets

Performance Trade - Payload/GLOW

30

For a GLOW of 1.211 X 10^6 kg (2.67 million 1b), a detailed weight statement for the final baseline was determined. Using this information, parametric weight relationships were established in order to scale the size of the vehicle to a 29483 kg (65,000 1b) payload. This trend of payload with GLOW is shown in Figure 16, for (16) and (18) turbojets. To meet the design payload, the vehicle was increased to a GLOW of 1.302 X 10^6 kg (2.80 million 1b). These performance trades were verified by ascent trajectory runs.

Performance Sensitivity - Drag

Since there is not an existing aerodynamic data bank for mated configurations of the type used for this study, it is important that the sensitivity of payload to drag be established. By using a drag ratio relative to the estimated minimum drag and running a series of ascent trajectories, the sensitivites were determined. Both minimum-drag and drag-due-to-lift (dCD/dCL²) sensitivites were established as shown in Figure 17. The number of Turbojets was held constant at (18). For large increases in drag, it would be better to also increase the number of Turbojets as the excess thrust margin dropped below about 20 percent. This also has the effect of reducing the slope of the payload sensitivity to drag increases. Therefore, the number of turbojets should be reoptimized for each drag level. Because of its cascading effect on performance, drag reduction for this class of vehicle could result in significant performance gains.

Figure 17

Performance Sensitivity - Drag

Vehicle Design and Subsystems

The study was initiated under the precept that the maximum effort would be expended on the booster vehicle(s) to provide a complete detailed definition of the vehicle(s) such that concept feasibility could be established. To facilitate this approach, the ALRS 205 configuration was selected for the orbiter. To accommodate the reduced propellant volume, the body height and length were reduced, and the wing thickness reduced maintaining the planform area. The body width was reduced compatible with the reduction of the number of SSME engines from four to three.

The booster configuration selected was the configuration with the twin boosters symmetrically located under the orbiter wing with eight 355857 N. (80000 lb) thrust SST type engines located in each booster (Fig.18). The basic booster concept could be summarized as a multi-engine pod with adequate wing area for fly back and landing and a landing gear suitable for taxi and takeoff of the loaded configuration. Subsystems were to be minimal compatible with operational requirements. The engine pods were to be located under the wing of the orbiter similar to the usual turbojet engine installation.

Turbojet Boosted System Sixteen Engines

FIRST CONFIGURATION

A number of problem areas were revealed as the configuration evolved requiring effort to develop solutions which would least adversely impact the system. These are discussed as follows:

- ▶ Booster engine nozzle plane The orbiter lower wing surface and trailing edge surfaces would require additional structure and heat shielding to withstand the plume acoustics and thermal environment. As shown on Figure 19 the acoustic environment is in excess of the normal maximum of 160 db within 7.62 m (25 feet) side line of the plane of the exhaust. However, the inherent feature of honeycomb construction of a stiff light structure lends additional acoustic dynamic resistance. Consequently, no weight penalty was encountered.
- Thrust Line Offset The high thrust to weight relative to usual turbojet applications became evident as the combined thrust line of the boosters was displaced below the vehicle such that the necessity for thrust vectoring for control at takeoff was indicated. Significant design and development effort has occurred in the area of two dimensional vectoring nozzles over several years and configurations have been developed for thrust deflection which have been wind tunnel tested for deflections as high as 26⁰.

Orbiter Support Impacts - As configured the orbiter is supported symmetrically by attachments under each outboard wing. These attachments must carry vertical support loads as well as thrust loads, and torsional loads as a consequence of yaw, pitch, and roll. These loads increase the orbiter wing weight as much as 6804 kg (15, 000 lb) over the ALRS 205 baseline. This was reduced to about 5130 kg (11,400 lb) by moving the attachments inboard. A further orbiter wing weight

Turbojet Booster Nozzle Acoustic Environment

reduction is possible if the booster wing span could be reduced, allowing a further inboard movement of the attachments. In addition, a runway bump load criterion should be established for vehicles of this weight class. The 2 "g" load used in this study may be too high.

- Takeoff Gear The takeoff gear to support the gross weight of 1.179 X 10⁶ kg (2.6 million 1b) and the speed of 122 m/sec (400 feet per second) designed to the usual aircraft standards weighed in excess of 32658 kg (72,000 lb) per booster, or approximately 5.4% of takeoff gross weight. The combination of high load and high speed severely impacted this element of the design. This was significantly reduced by utilizing a fixed gear for takeoff utilizing the multiple tires for small surface irregularity shock absorbing. This reduced the weight of the takeoff gear by approximately 72%, to about 9,000 kg (20,000 lb) per booster.
- Supersonic engine inlets The configuration selected initially was for a cluster of individual inlets for each engine of the external compression configuration. This inlet was suitable up to approximately M = 2.5. The common inlet selected, although longer, was shown to be lighter due to reduced inlet wetted area. Higher speeds than M = 2.5 necessitated utilization of a mixed compression inlet with an increase in complexity, weight and cost. In addition, concern for the shock from the orbiter nose crossing the inlet at the higher Mach numbers indicated a forward placement of the inlet.
- Transonic Drag The baseline configuration was not area ruled and as a consequence more and larger turbojets were required in an effort to achieve the desired payload. This in

. 38

turn required more cross section area compounding the problem for a very small gain. Through area ruling the maximum drag coefficient was reduced approximately 20%. An optimum area distribution has yet to be defined.

- Increased GLOW Effects The vehicle growth to achieve the payload goal of 29483 kg (65,000 lb) required a scale up of approximately 20%. This in turn could have required a wing reference area increase of approximately 185.8 m² (2000 ft²) for an estimated weight penalty of approximately 5897 kg (13,000 lb) as a result of the 122 m/sec (400 FPS) takeoff speed. However, with vortex lift, the lift coefficient increased approximately 20% thereby eliminating the wing size and weight increase. The Ogee wing planform was incorporated for both the orbiter and the boosters to produce the lift coefficients desired. This had the beneficial effect of relocating the aero-center aft such that vehicle stability was much easier to achieve.
- Aero Interference Effects This problem area was one which remained unresolved. While the location, magnitude, penalty, etc. were undefined, this problem area was one which was pointed to by numerous reviewers. It appears that this area can only be resolved by wind tunnel testing to establish the impact of such effects and the penalty, if any, of these effects. These tests should explore the benefits of geometrical arrangement to minimize the penalties.

Configuration Evolution

Second Configuration - The second configuration developed to respond to the problems noted on the first configuration is shown on Figure 20 The engine size was increased to 507097 N (114,000 lbT). To minimize the penalty on the orbiter, the attachments were located at

B. L. 336 and 605, with B. L. 336 the primary support. To reduce booster frontal area, the main load carrying gear was arranged in tandem and retracted into a pod arranged along side of the engines. The wing carry through was centrally located with the engines located above and below providing good engine access for maintenance. The engine inlets were bifurcated horizontally with four engines per inlet. The exhaust nozzles were individually arranged 2-dimensional nozzles with thrust vectoring with the exit plane located at the trailing edge of the orbiter to minimize acoustic thermal effects. Subsystems were arranged in the forward section of the asymmetric booster with fuel in the wings and center section. An outboard tip gear retracted into the wing. Although this booster configuration did respond to the problems of the preliminary configuration, the design required development of two different booster vehicles and this was considered to be too great a penalty on system development costs.

Turbojet Boosted System Sixteen Engines

Second Configuration

Mid-Term Configuration - The mid-term configuration was the evolution of the second configuration revised to provide symmetrical boosters and is shown on Figure 21. The weights are given in Table 1. This configuration was developed in detail. However, symmetry required attachment to the orbiter at BL 496 which did impose a weight penalty on the orbiter wing. This configuration exceeded the booster target weights by 123377 kg (272,000 lb) and the orbiter target weights by 24947 kg (55,000 lb). Thus this configuration had essentially no payload. Configuration problems were compounded by high drag, excess weight, and low lift coefficients which increased fuel consumption and reduced performance.

The secondary power requirements were very high, compounded by landing gear retraction, engine starting system (Figure 22), and fuel boost pump power requirements of the fuel system (Figure 23). This in turn added to the weight problem. The aft location of the boosters to avoid plume impingement problems created an aft c.g. problem of the combined configuration which preliminary analysis indicated would be difficult to control for takeoff rotation as well as subsequent flight path control.

Figure 21

Turbojet Boosted System Sixteen Engines

Mid Term Configuration

Table 1_ Air Breather Booster

. .

	<u>kg</u>	<u>1</u> b	-	
STRUCTURE	690	49	152227	
WING	12076	26622		. :
VERTICAL TAIL	1474	3250		
BODY	10711	23613		•
MAIN NOSE AND WING LANDING GEAR	32848	72418	•	
NACELLE AND COWLINGS AND MOUNTS	9037	19924		
ORBITER SUPPORT PYLON AND MECH. (3000)	2903	6400		
PROPULSION	59	96	132203	
ENGINE (13492) X 8	48959	107936	<u></u> ,	;
ENGINE CONTROLS AND ACCESSORIES .04 X ENGINE WT.	1958	4317		
STARTING SYSTEM	456	1006	•	
FUEL SYSTEM	3723	8208		
THRUST VECTOR 1342 X 8	4870	10736		
FIXED EQUIPMENT	90	30	19922	
SURFACE CONTROLS	711	1567		
HYDRAULICS SYSTEM (2075 HP)	4988 ·	10997		
ELECTRICAL (200 HP)	762	1680		
ELECTRONICS	1270	2800		
EMERGENCY EQUIPMENT	276	608		
ECS	77	170		
APU	953	2100		
10% WT GROWTH	138	05	30435	
·	1518	56	33	4787

-

Figure 22

Air Breather Booster Pneumatic System

Air Breather Booster Fuel System

Initial Area Ruled Configuration - Several approaches were utilized to attempt to overcome the problems of the mid-term configuration. These included a higher velocity staging which required booster flight up to M = 3. This necessitated a change to a mixed compression inlet configuration. The number of engines per booster was reduced to six to aid in reducing maximum cross sectional area of the overall configuration. The orbiter body was area ruled as much as feasible and the base area was redesigned to reduce the base area from 41.8 m^2 (450 ft²) to 29.7 m² (320 ft²). The booster areas were then nested and adjusted to provide the minimum cross section area at M = 1. This forced the boosters forward in the configuration necessitating a longer exhaust duct. To minimize the weight penalty, the exhausts were combined leading aft to the combined two dimensional nozzle in which area control was provided by flaps deflecting toward the centerline. Pitch thrust vectoring was provided by a vane located on the horizontal centerline of the nozzle. The main load carrying gear was fixed with the tires used to accommodate surface irregularities. This configuration is shown in Figures 24 and 25. The results of these efforts were that drag was reduced and the configuration showed a payload of approximately 9072 kg (20,000 lb). The c.g. of the configuration was far enough forward to indicate that control was feasible. Although the payload goals had not been achieved, positive payload to orbit was shown with 75% of the thrust of the mid-term configuration. Section EE Figure 24 illustrates the engine stacking arrangement to provide structural paths below the engines for wing carry through structure and between the center

Figure 24

48

Turbojet Boosted System - Twelve Engines

Area Ruled Configuration

Figure 25

Turbojet Booster Six Engine Configuration

engines for orbiter support structure. Sections A-A, B-B, and C-C Figure 25 illustrate the inlet arrangement and ramp for supersonic shock control. Section D-D illustrates the one inlet diameter length separation provided for each engine inlet to avoid adverse inter-engine inlet affects. Section F-F shows the location of the fixed main gear, the closure door configuration and the structural load path between exhausts for the orbiter to main gear loads. The folding ruddervators are shown in the deployed position in Section G-G as well as the thrust vectoring vane in the center of each exhaust nozzle. The problem of controlling booster lift during takeoff, climb, and staging was attacked by the use of active leading and trailing edges to effectively vary wing camber from plus to minus. This is shown in Section H.H. Control studies of this nature are under development for high maneuverability vehicles.

Final Detailed Configuration

• The final detailed configuration was derived from the initial area ruled configuration. The configuration was parametrically scaled up to accommodate the specified payload to orbit. This required eight engines per booster. This indicated an increase in take-off lift of approximately 20% was needed to maintain the 122 MPS (400 FPS) takeoff speed at the increased gross weight. To avoid increasing wing area and the associated weight penalty, the wing planform was revised to take advantage of the benefits of vortex lift. This appeared to improve the lift coefficient by approximately 20% to 25%, sufficient to accommodate the increase in weight without an increase in wing area.

The vehicle was area ruled with the help of NASA Langley personnel. The configuration is shown on Figures 3 and 26 through 31. Figure 26 illustrates through selected sections the structural arrangement of the orbiter which features mold line tankage with internal truss bracing. The booster configuration is illustrated on figures 27, and 28. The Ogee wing planform is shown on Figure 27. The folding vertical fin is shown in the deployed position. The radome extends forward of the inlet to provide an additional plate to prevent inlet stall during the staging pitch up maneuver. Fuel is stowed behind the radome above the inlet, behind the nose gear below the inlet and in the wings and wing leading edges. The collected nozzle and deflector is shown on Figure 28. Flaps close toward the center flap from the top and bottom for nozzle area control. Afterburner flame holders are located immediately forward of the center deflector. The center engines have their own inlet and exhaust for improved flyback operations. Figure 29 illustrates the main gear. The forward set of three wheels is retractable and is a servo controlled actuator loaded trailing swing arm gear which is the landing gear and during takeoff carries its proportional share of the load. Closure doors for the wheels are shown on Figure 28 .

Section A-A illustrates the axle assembly. Brakes are provided on the outboard wheels only. The main load carrying take-off gear is the two aft sets of three wheels each. The center wheel has two tires mounted on it with sufficient clearance for sidewall deflection and cooling. The tires illustrated are advanced design low aspect ratio utilizing advanced cord.

Turbojet Boosted Orbiter Final Detailed Configuration

52

Figure 26

BOTTOM VIEW

* Performance section shows improved results achieved at the conclusion of the study.

Figure 27

Turbojet Booster Eight Engine Configuration

Turbojet Booster Eight Engine Configuration

Turbojet Booster, Landing Gear - Fixed

Figure 30

Turbojet Booster Loads

- c 1

Turbojet Booster Structure

-57

material for the plys to permit the high loading. Tread depth is minimum to avoid tread separation problems. The forward axle is spaced slightly further from the center pivot than the aft axle. This compensates for the rotation associated with rolling resistance which would tend to increase the load on the forward wheel set. Structural mountings are a high durometer elastomer to provide some additional shock absorbtion and to permit low frequency deflections for turns and tracking. A small centering actuator positions these gear after takeoff for door closure. The nose gear is a steerable dual wheel configuration which folds aft for stowage. The landing gear is center line mounted without outboard or tip gear. However, the wheel spacing is such that the outboard gear is considered unnecessary for the booster alone and the tip gear appears to be undesirable for the mated configuration.

Figure 30 shows the principal loads imposed on the vehicle and Figure 31 is a montage of section cuts to illustrate the structural arrangement. The vehicle is configured about the center box section containing the engines, inlets, orbiter support pylons, wing attachments, and main landing gear attachments. The concept is planned to minimize tooling for the limited production run.

One aspect of the configuration which was initially ignored and which became dominant as the study progressed was the necessity for area ruling of the combined vehicle to reduce transonic drag. The mid-term configuration highlighted this aspect. The drag coefficients imposed the requirement for still larger engines which in turn increased the cross-section area further increasing the thrust problem. Through area ruling the drag coefficient was reduced by approximately 20% making a configuration possible. Figure 32 illustrates the changes in area distribution optimized for Mach 1.0 as the configuration evolved. These changes are subtle with the exception of the mid-term configuration which demonstrates possible problems if area distribution is not considered. The initial area distribution configuration was designed to utilize 75% of the thrust of the mid-term predicated on a reduction in drag of 25%. This initial configuration approached this goal and the iterated configuration achieved the desired results. From this the final configuration was developed. The mass properties of the final detailed configuration as well as the elements of the orbiter and boosters are shown on Tables 2 through 4. The final configuration achieved a payload to orbit of 23133 kg (51000 lb) with a GLOW of 1.217 X 10^6 kg (2.68 X 10^6 lb). It is noted that subsequent to the completion of the study, the performance data has been iterated with significantly improved payload to orbit values. These data are shown in the performance section.

Turbojet-Boosted System Area Plot

Figure 32 60

Mass Properties

Turbojet Boosted System 16 Turbojet

Final Detailed Configuration

	kg	(1b)	STA.	AC WE kg	TUAL IGHTS (1b)	STA	TARGET WEIGHTS
BOOSTERS		· · · · · · · · · · · · · · · · · · ·		450705	(993634)	1519.4	456314 (1,006,000)
BOOSTER (EA) JP 4 ORBITER EMPTY PROPELLANT	114197 111155 -112800 630493	(251762) (245055) (248700) (1,390,000)	1629 (70.5%) 1406.8 1805 (72%) 1743.2	743138	(1638300)	1752.7	737088 (1,625,000)
PAYLOAD				Ż3133	(51,700)	1655	29483 (65,000)
GLOW				1217276	(2,683,634)	1664 (67%)	1222885 (2,696,000)
STAGE				1013053	(2,233,400)	1716 (69%)	
FERRY				551005	(1,214,759)	1568 (63%)	

Mass Properties Turbojet Booster Final Detailed Configuration

,, _,	· · · · · · · · · · · · · · · · · · ·					
	kg	1b	STA	kg	16	STA.
STRUCTURE BODY VERT. FIN. WING ORBITER SUPPORT & ATTACH.	8587 2692 5088 2902	18931 5936 11217 6400	1347.5 2080 1752 1950	19270	(42484)	1647.4
PROPULSION ENGINE (8) EXHAUST INLET MOUNTS COWLS FRAMES ACCESSORIES AND CONT. START SYSTEM FUEL SYSTEM	40341 9064 7476 7620 1613 456 3723	88936 19982 16482 16800 3557 1006 8208	1632 1920 1320 1632 1632 1632 1632	70294	(154971)	1636
SUBSYSTEMS CONTROLS HYDRAULICS 559 kW (750 HP) ELECTRICAL 149kW (200 HP) AVIONICS EMERG. EQUIP. ECS APU 969 kW (1300 HP) LANDING GEAR	575 1803 762 1270 276 77 486 9003	1267 3975 1680 2800 608 170 1071 19849	1800 1650 1600 800 1600 800 1600 1650	14252	(31420)	1570.4
10% GROWTH				10381	(22887)	
	• <u></u>		· · · ·	114197	(251762)	1629

Orbiter Mass Properties

· .	[`] kg	(16)	STA	kg	lb	C.G. LOC. ST
STRUCTURE	· · · · · ·			74300	(163800)	1742
BODY	30450	67100	1496			
PAYLOAD DOOR	2098	4626	1610			
CREW COMPARTMENT	2440	5380	1140			
HEAT SHIELD	204	450	2250			
WING	35834	79000	1827			
TAIL	3766	7200	2335			
SUBSYSTEMS				23881	(52649)	1920
PERSONNEL				263	(580)	900
FLUIDS				14361	(31660)	1957
FLT. PERF. RES	1823	4020	1220			
RCS	1089	2400	2190			
OMS	4309	9500	2270			
RES. & UNUSEABLES	5579	12300	. 1920			
SUBSYST. FLUIDS	1560	3440	1920			
		· ·	INJECTED	112800	(248700)	1805
			RE-ENTRY	100545	(221625)	1787.3

NOTE: ALL WEIGHTS INCLUDE 10% GROWTH

Orbiter Weight

The orbital vehicle ALRS 254-22108 used in this study is generic to the ALRS 205 of reference 1 . The orbital vehicle utilizes an airframe structural concept and subsystems identical to the ALRS-205. Both vehicles have the same wing reference area. Prime difference is in the size of the forward body, change in engine size and wing thickness. This similarity was used as an aid to establish weight for the orbital vehicle. The ALRS 205 weights are given by subsystem in reference (1). Weight changes from the ALRS 205 are calculated for the study orbital vehicle.

The ALRS 254-22108 weights are summarized in Table 5. The center of gravity location for each major system is given in distance from the nose of the orbiter. The weights include a 10% growth for all non-off-the-shelf items. The resulting weight 113101 kg (249,345 pounds) represents an increase of 6360 kg (14,000 pounds) over the weight targeted for this vehicle. (Ref. Table 2).

Orbiter subsystem weights are shown in Tables 5, 7 and 8 for each of the major subsystems. The base for the subsystem weights, the ALRS-205 subsystem weights are shown. Under "Comments" the general rationale for establishing the orbiter weight is shown. The major change is in the weight of the rocket engines, reflecting the reduced thrust requirements for the turbojet boosted system.

Orbiter System Weights

Table 5

COMPONENTS

ITEM	WT AI kg	RS 205 (1b)	∠ ₩ 2 kg	T FOR STAGE (1b)	★ 2ND STAGE ▲ (c.g. LOC.	kg (1b) m IN.)	COMMENTS
PAYLOAD DOOR	2098	(4626)	0	(0)	★ 2098 ▲ 39.88	(4626) (1570)	SAME DOORS
CREW COMPT.	2440	(5380)	0	· · · (0)	★ 2440 ▲ 27.94	(5380) (1100)	SAME CREW CMPT.
VERTICAL TAIL	3270	(7210)	0	(0)	☆ 3270 ▲ 59.31	(7210) (2335)	SAME AREA AS ALRS 205
LAUNCH SUPT.	680	(1500)	0	(0)	☆ 680 ▲ 47.75	(1500) (1880)	(EST. BASED ON TWO RIBS @ q _s =7200 #/IN)
HEAT SHIELD	272	(600)	-68	(-150)	≄ 204 ▲ 56 .1 3	(450) (2210)	REDUCED BASE AREA
				-	☆ 8709	(19200)	

▲ CENTER OF GRAVITY - DISTANCE FROM NOSE

Orbiter System Weights

FLUIDS			•	· ·		
ITEM	WT ALRS 205 kg (1b)		WT 21 kg	ND STAGE (1b)	COMMENTS	
FLT. PERF RESERVE	2218	(4890)	1823	(4020)	RATIO OF FUEL WTS	
REACTION CONT. PROP.	1253	(2763)	1089	(2400)	RATIO OF INJECTED WTS.	
ORBIT MANU. SYS.	5114	(11275)	4309	(9500)	RATIO OF INJECTED WTS	
RESIDUALS/UNUSABLE	6158	(13576)	5579	(12300)	RATIO OF INJECTED WTS	
SUBSYS. FLUIDS	1562	(3443)	1562	(3443)	SĪMILAR POWER REQ'S	
	16305	(35947)	14362	(31663)		

.

Orbiter Subsystem Weights

٠

							·	
ITEM	WT. ALRS 205		△ WT. F	\bigtriangleup WT. FOR 2 STAGE			COMMENT	
	kg	(16)	kg	(16)	A m C.G	LOC. IN.		
SURFACE CONT.	998	(2200)	136	(300)	★ 1134 ▲ 52.83	(2500) (2080)	15% INCREASE SURFACES AND HINGE MOMENTS	
LANDING GEAR	3342	(7368)	-194	(-428)	★ 3284 ▲ 17.65	(7240) (695)F (1720)A	2.67% LDG. WT.	
ROCKET ENG.	13458	(29670)	-3706	(-8170)	 43.94 ⇒ 9752 ▲ 56.39 	(1730)X (21500) (2220)	EXTENSIONS (250#/ENG.)	
PROPELLANT FEED	984	(2169)	-131	(-289)	★ 853 ▲ 55,37	(1880) (2180)	3/4 VOL.FLOW RATIO	
PRESSURIZATION	725	(1600)	-218	(-480) ,	≉ 507 ▲ 21.34	(1120) (840)	(ALRS 205) - FUEL TANK RATIO	
RCS SYS.	782	(1724)	-79	(-174)	★ 703 ▲ 1.14	(1550) (45) F	RATIO OF ENTRY WTS.	
OMS SYS.	718	(1583)	-118	<u>(</u> -260)	▲ 50.04 ★ 599 ▲ 57.15	(1320) (2250)	RATIO OF INJECTED WT.	
AVIONICS	1306	(2880)	. 0	(0)	≄1306 ▲ 26.42	(2880) (1040)	SAME FUNCTIONS AS ALRS 205	

CONTD ON TABLE 8
Table 8

Orbiter Subsystem Weights (Cont)

Υ.

CONTD FROM TABLE 7

· ITEM	h ALRS	ГТ 205	△ WT. 2 S	FOR	second stage wt. kg.(1b)	COMMENT
	kg	(16)	kg	(16)	▲ C.G. LOC. m (IN.)	
PRIME POWER	358	(790)	0	(0)	✤ 358 (790) ▲ 54.10 (2130)	SAME CONTROL AND SUBSYSTEM FUNCTIONS
ELEC. CONV. AND DIST.	1619	(3570)		(0)	<pre>本 1619 (3570) ▲ 37.08 (1460)</pre>	11
HYD. CONV. AND DIST.	985	(2173)	0	(0)	≯ 986 (2173) ▲ 5156 (2030)	н
ENVIRON CONT.	1134	(2500 <u>)</u>	-91	(-200)	★ 1043 (2300) ▲ 29.46 (1160)	SMALLER LANDING GEAR WELLS
PERSONNEL PROV.	362	(797)	0	(0)	☆ 362 (797) ▲ 26.80 (1055)	
GROWTH	1349	(2975)	-157	<u>(-3</u> 46)	≯ 1192 (2629)	
	28104	(62796)	-4557	(-10087)	23560 (52249)	

SUBSYSTEM C.G. = 47.75m (1880 IN.) FROM NOSE

Table 9

Orbiter Wing Structure Weights

ITEM	ALRS 205 WT.		FROM	A WT FROM ALRS 205		ING SUPT. L. 435	
	kg	(16)	kg	1b	kg	(1.6)	
SURFACE PANEL	6985	(15400)	3447	(7600)	10432	(23000)	
FRAMES & SPARS	5851	(12900)	1225	(2700)	7076	(15600)	
SOB RIB	2404 、	(5300)	498	(1100)	2902	(6400)	
LEADING EDGE	3441	(7600)	1298	(2860)	4745	(10460)	
FWD + AFT	998	(2200)		(*0*)	998	(2200)	
BLK.							
ELEVONS	3493	(7700)	680	(1500)	4173	(9200)	
MAIN GEAR WELL	2313	(5100)	227	(500)	2086	(4600)	
GROWTH	2313	(5100)	363	(800)	2676	(5900)	
	27805	(61300)	8060	(17770)	35865	(79070)	

CENTER OF GRAVITY 4539 cm (1787") FROM NOSE

Table 10 Orbiter B ody Structure Weights;								
ITEM	ALRS 2 kg	205 WT. (1Ь)	∆ WT kg []	2 STAGE	WT.2 kg	STAGE (IЬ)	C.G. LO DIST. FI m	C ROM NOSE In
NOSE COMP	272	(600)		_	272	(600)	1.52	(60)
FWD BODY	11294	(24900)	- 3050	(- 6725)	8244	(18175)	27. 6	(1090)
MID BODY	10977	(24200)	999	(2200)	11974	(26400)	_. 43.2	(1700)
AFT BODY	1769	(3900)	499	(1100)	2268	(5000)	50.93	(2005)
AFT SKIRT	1633	(3600)	-272	(-600)	1361	(3000)	54.18	(2133)
EQUIP. COVER	376	(830)	0	(0)	376	(830)	54.18	(2133)
NOSE GEAR WELL	590	(1300)	-59	(-130)	531	(1170)	16.76	(660)
THRUST STRU	1814	(4000)	-726	(-1600)	1089	(2400)	53.85	(2120)
AFT BLK	907	(2000)	-91	(-200)	816	(1800)	54.10	(21.30)
SIDE OF BODY REINF	363	(800)	-91	(~200)	272	(600)	49.02	(1930)
PAYLOAD BAY BLK	472	(1040)			472	(1040)	40.39	(1590)
GROWTH	3050	(6720)			· 2770	(6100)		
F0	R 1690000 PO	UND ORBITER		<i></i>	30445	(67115)	36.98	(1456)

.

70

The orbiter system fluid weights are shown in Table 6 together with the ALRS 205 weights. The orbiter fluid weights were perturbed from the ALRS 205 using the rationale defined under comments. Table 4 summarizes the orbiter weights by subsystem.

A major difference between the two vehicles is in the method of support during take-off. The ALRS 205 is supported by six cradles on the ground accelerator such that the wing bending moment during take-off does not exceed the inherent strength in the wing required by other conditions. The orbiter for this study is supported at wing buttock line (WBL) 434. The resulting wing loads are shown in Figure 33. At the side of the body corresponding values for the ALRS 205 are a bending moment of 10,000,000 Meter Newtons (120,000,000 in - 1b and shear of 3,400,000 Newtons (750,000 pounds). These increases in loads represent a significant weight increase in the ALRS 254-22108 wing and wing-body carry through structure.

The orbiter wing structure weight distributed by major component is shown in Table 9. The corresponding weight for the ALRS 205 reference are shown for comparison. The increase in surface panel and frame and spar weights is the result of the large wing bending moment and shear loads during the take-off run due to an assumed 2.0 "g" bump load. Future studies of this type vehicle should include a 1.5 "g" bump load case and endeavor to locate the boosters as far inward as possible. The SOB (side of body) rib weight increase is due to the increased height and length of the wing root chord. The leading edge increase is the result of the addition of the forward strakes. The additional strakes weighed (635 kg) (1400 pounds) per side. Elevon weights were estimated on the basis of relative areas i.e. 600 square feet/side vs 500 square feet/

side for the ALRS 205. The elevon area was increased as a consequence of rear spar location.

Orbiter body structure weights are given by major component in Table 10. The ALRS 205 weights are shown for comparison and to define the base from which the orbiter weights were calculated.

The significant reduction in the forward body is the result of lower liquid hydrogen volume requirement. These weights are established primarily by changes in "wetted area" requirements.

The aft body increase is due to the requirement to transfer increased wing bending moments through the body. The thrust structure reduction results from the reduced thrust requirements, three SSME's vs 4 engines for ALRS 205.

Study Achievements

There were several significant achievements or developments of the study which evolved as solutions to the problems exposed. These are identified with a definition of each in the following:

● Fixed Main Load Carrying Gear for Reduced Weight and Cross-Section Area

The high takeoff weight relative to the landing weight dictated large oleos, high retraction horsepower requirements and correspondingly large cross-section areas to house the retracted assembly, if usual design procedures were applied. Since the takeoff would be made from improved runways, the requirement for oleos appeared to be minimal. The mid-term configuration had a

standard retractable gear which weighed 32848 kg (72418 lb) per booster. Through the change to fixed gear this was reduced to 9003 kg (19849 lb).

• Combined Inlet for Multiple Engines offers Weight Reduction

Transonic and supersonic inlets weights are composed of two main elements, first the spike and inlet shock control and second the expansion duct and engine inlet transition. The first element weight is a function of cross-section area and dynamic pressure, and therefore no significant penalty or benefit exists. However the second element weight is a function of surface area since length is approximately constant. Therefore, combined inlets of a given cross-section have the least surface area and consequently least weight.

Combined Exit Ducting and Nozzle Offers Reduced Weight

The exit duct is parallel to inlet duct parametrics; surface area is the basic variable. This is also true for the nozzle to large extent. However, the nozzle has the additional requirement of area control necessary for the wide speed range as well as accommodating engine out. This is accommodated by flaps which open or close to regulate the area at the throat. This problem was made less difficult in that the configuration did not require a low thrust high efficiency cruise condition.

TVC Design for Multi-Turbojet Configuration Evolved

A program has been underway for over a decade at Boeing to develop a thrust vectoring twodimensional nozzle for fighter aircraft. This effort has produced drawings, analyses, wind tunnel test data, and performance projections which provided a sound basis for the evolution developed

in the final configuration of this study. While the scope of this study did not permit an indepth analytical development of the concept, it was considered feasible.

 Configuration which evolved met major tests of weight fraction, drag, lift, controllability, and feasibility within limits of capability for investigation of the study.

Major concerns or problem areas were identified and solutions offered.

The above conclusions are very significant in that a wide variety of problem areas surfaced as the study proceeded. These areas ranged from inadequate mass fraction, control, and aero interference to high system costs. Many of the problems could be solved or mitigated by judicial geometrical adjustment. Additional study development and test would undoubtedly provide further enhancement of the system concept.

Operations

The main effort of the study became involved in the problem of configuration development. The configuration problems were such that without a feasible configuration arrangement, the remainder of the study could not proceed in a meaningful manner. For these reasons, a complete assessment of operation benefits or problems was not made. However, a cursory assessment did not indicate any major problems which would prevent system operation. A feasible operational sequence could be defined for the system within the scope of existing technology.

Normal Turnaround Sequence

Orbiter - The normal retrieval, payload operations, and refurbishment are essentially identical to the ALRS 205 vehicle. Preparation for assembly with the boosters is similar to that required by the 205 for assembly with the ground accelerator. Reference Figures 34 and 35

Booster fueling, propellant and storables loading, and payload operations immediately prior to launch would be similar to the sequence identified for the 205. Launch operations are different in that the booster turbojet start and power up provide the system timelines for launch. The boosters do provide a wider launch window in that azimuth, altitude, and time can be adjusted immediately prior to staging. Thus, takeoff time is less critical.

Boosters - Retrieval is an RPV operation which proceeds through touchdown, rollout, taxi to hardstand, and shutdown. Refurbishment is a normal operational sequence of systems checkout, orbiter attachment recycle as required and engine checkout. No exotic or unique structures or equipment is involved which minimizes skill level and manhours. The boosters are preflighted and positioned for assembly. Assembly may be accomplished either by (1) cranes which would place the orbiter on the prepositioned boosters; (2) ramps and jacks which would permit towing the orbiter into position over the boosters and lowering to the locked condition; (3) or by jacks and pads which raise the orbiter allowing the boosters to be towed underneath for assembly. The assembly, while significant due to the alignment necessary to assure proper attachment load carrying without excessive strain, is comparable to similar operations in many other current activities including the existing shuttle ferry system.

Figure 34

Turbojet-Boosted Orbital Transportation System Operations

Figure 35

Baseline Operations Flow

Ferry Operations

Cruise ferry operations as the vehicle is configured would appear to offer a subsonic range of approximately 1450 km (900) miles. Additional range could be achieved by installation of an engine fairing on the orbiter to reduce drag and by additional booster fuel tankage installed in the orbiter payload bay. External tanks on the boosters are also an option. The orbiter subsystems power would be supplied by the on-board APU with additional fuel tankage as necessary. Adequate ferry range would not appear to be a problem.

Remote Site Operations

Orbiter/Booster Retrieval - Booster retrieval at a remote site would not require any additional equipment beyond that normally associated with an airport of the size to accommodate aircraft of the size and landing speed of the boosters.

Orbiter retrieval operations do require skilled personnel with the necessary inerting, purge, and safeing equipment much as the current shuttle has programmed.

Similarly, cranes are necessary to assemble the vehicles for the ferry return to main base or overhaul center. Payload operations requiring specialized equipment would be in addition to the basic system requirements.

Launch Operations - The system configuration offers an option unique to this two-stage system. The system could be prepared for launch at a main site centrally located, then ferried to a remote site for launch. The hazardous materials could be retained at this site for loading immediately prior to launch. This site could be situated such that launch ground tracks would avoid population centers. It is noted that the takeoff run is approximately the length of five super tankers, thus a mid-ocean facility would be a possibility, eliminating many of the environmental objections to similar systems.

Cruise/launch operation of the system is a potential wherein the vehicle would takeoff, cruise to a predetermined launch point where it would accelerate to staging velocity and then on to orbit. This capability permits adjustment of the orbit insertion window. This option would appear to be more desirable, perhaps, as a military mission than as a NASA mission. Some military missions which require rapid acceleration and minimum launch to orbit time could be achieved with the 2-stage system by parallel burn of orbiter rockets and booster turbojets, with some loss of payload capability.

An in-depth operations and mission capability study for the system would be necessary to fully define the benefits of a Turbojet Booster Earth to Orbit Transportation System.

COST ESTIMATES

Costing Model

Booster and orbiter DDT&E and production estimates were made using Boeing's System Parametric Cost Model (PCM). This model produces program cost estimates directly from physical descriptions of program hardware with accompanying information on hardware quantities and program support levels and schedules. The PCM model itself is a collection of relationships and factors that have been developed from Boeing's historical data base. Shown in Table 11 is a summary of typical inputs; in this case booster descriptive inputs. Each major subsystem is defined by (1) its weight; (2) its hardware category, which includes PCM defined complexity factors; (3) material, as applicable; (4) subsystem redundancy; (5) consideration of subcontractor profit; (6) the degree to which hardware is a modification of an existing design or "off the shelf" or a combination of both; and (7) other less significant descriptive factors. Program level inputs are used to define degrees of support, spares, test and production. The costing ground rules and guidelines are presented in Figure 36.

All costing is for the "Final Baseline Configuration" that used eight engines per booster. Costs for configurations using alternate numbers of engines, variations in GLOW, etc. may be obtained using the parametric curves of Figures 37, 38, 39 and 40.

Table 11

BOOSTER INPUTS TO PCM

ITEM	WT	Г	. CLASS		MATERIAL	REDUNDANCY	BUY	MOD	OTS
	kg	<u>1b</u>					FEE	<u>-</u>	
Booster Structure									
Wing	4324	9534	Nominal Struct		וד	-	-	0	0
Taiľ	2288`	504 6	Simple Struct.		T1	-	- '	0	0
Body	7298	16091	Nominal Struct.		TI	-	-	0	0
Landing Gear	9003	19849	Nominal Struct.		Steel	-	-	0	0
Nacelle, etc.	6477	14280	Simple Struct.		TI	· _	-	0	0
Pvlon, etc.	2467	5440	Simple Struct.		T]	-	-	0	0
Margin	3186	7024	Nominal Struct.		·· T1	-	-	0	0
Booster Engines		Thruput	\$1.5B Dev \$9.6M Avg U	Jnit Cost	for				
3		•	32 489302N (110,000	lb) thrust	; ea.				
Booster Fixed Equip.			`	•					
Surface Controls	575	1267	Electro/Mech Mechanis	sm	-	-	10%	.20	.40
Hydraulics	1803	3975	Machinery		-	-	10%	.20	.40
Electrical	762	1680	Pwr Conditioning Equ	ip.	-	100%	10%	.32	60
Electronics	1270	2800	Medium Performance Co	omputers	-	100%	10%	.48	.40
Emer. Equip.	276	608	Machinery	- · •	. -	-	10%	0	1.00
ECS	77	170	Active Thermal Contro	ol.	-	-	10%	0	0
Margin	476	1050	Machinery		-	-	10%	.30	.50
APU		Thruput	Off the Shelf Hdwe	\$328K Ave for 4	e Unit Cost			0	1.00
Program Support Levels Sys Engr & Integ	(1.0 = 1.5	"Normal"	" Support Levels)						
Software	1.0								
Sys Test	1.0								
Support Equip. DSN	1.0								
Support Equip. Mfg.	1.0								
Tooling	1.0								
Spares 10% 2.5 Test Units 4 Production Units @ 9()% Learn	ing							

70

	v
PROGRAM (15) YEARS (114) LAUNCHES/YR (1710) FLIG	HTS
NUMBER OF LAUNCH VEHICLES	
DDT&E PRODUCTION	
ORBITER: 1.5 (EQUIV) 3 + (1) REFURB'D	
BOOSTER: 2.5 4 + (2) REFURB'D	•
<pre>90% LEARNING CURVE REFURB'D = 10% UNIT COST</pre>	•
10% SPARES	· .
IN 1976 \$ LIFE CYCLE COSTS (LCC)	
• PROPELLANT COST $LO_2/LH_2 = $0.35/kg ($0.16/1b)$	
FUEL COST JP-4 = \$0.15/kg (\$0.07/1b)	•

Figure 36

Cost Ground Rules and Guidelines

. 83

G

DDT&E Life Cycle Costs

All estimates in 1976 dollars (see Table 12).

Estimated orbiter DDT&E costs are essentially equal to estimated DDT&E cost for the sled launched SSTO orbiter. (See Reference 1, D180-19168-4, "Technology Requirements for Advanced Earth Orbital Transportation Systems; December, 1977).

The largest cost element of booster development is engine development, estimated at \$1.5 billion. The cost value is based upon a preliminary assessment by an in-house turbojet propulsion technology group along with informal contacts with engine vendor (i.e. United Technologies, P&W Aircraft Engine Group at West Palm Beach, Florida) personnel involved with advanced turbojet applications. Factors which influenced this estimate are the large thrust size of the turbojet engine and the anticipated very low production run of such an engine. As well, system engineering and integration is increased because of new engine development and because of the requirement to merge two programs (Booster and Orbiter) into one operating system.

2.5 equivalent test boosters and 1.5 equivalent test orbiters are assumed for this estimate.

DDT&E Costs

2-STAGE TURBOJET BOOSTED

	BOOSTER	x10 ⁶ \$	ORBITER
PROGRAM MANAGEMENT	117		185
SYS ENGR AND INTEG	492		486
DESIGN	2070	·.	· 1178
SYS TEST & SOFT	434		323
TEST HDWE	479		1169
GROUND SUPPORT EQUIP	145		135
TOOLING	21	· ·	31
FACILITIES	30	·. ·	40
TOTAL	3788		3547

85

Table 12

Production Life Cycle Costs

All estimates in 1976 dollars (see Table 13).

As with DDT&E, production program estimates were made using Boeing's Parametric Cost Model (PCM).

Total estimated production program cost of \$2.789 billion is \$462 million more than estimated HTO/Sled production program cost (See Reference I, D180-19168-4, "Technology Requirements for Advanced Earth Orbital Transportation Systems; December, 1977). The primary difference is booster production versus sled production.

Production Costs

2-STAGE TURBOJET BOOSTED

	BOOSTER	x10 ⁶ \$	ORBITER
PROGRAM MANAGEMENT	48		94
SYS ENGR AND INTEG	17		36
HARDWARE	679 (4)		1126 (3)
GSE	42	· •	89
TOOLING	72		323
ENGR SUPRT/LIAISON	15	• •	44
SPARES	31		101
TEST UNIT(S) REFURB	34 (2)	· .	38 (1)
TOTAL	938	• . • •	1851

87.

Operations Life Cycle Costs

88

All estimates in 1976 dollars (see Table 14).

The two-stage operations cost estimate were first scaled from HTO/SLED estimates. Then, cost allowances were made for orbiter reduced rocket engine thrust rating and propellants, elimination of (2) position rocket nozzles, removal of the sled and addition of turbojet booster costs. No reductions were assumed for orbiter ground operations, spares, or program support even though the orbiter was smaller. The resulting two-stage operations cost estimate is \$9 million higher than that estimated for the HTO/SLED. Table 14

Operations Cost - 1710 Flights

(\$M) TABLE 14

x 10⁶ \$

	HTO/SLED	LESS: ORBITER	LESS:SLED	PLUS: <u>BOOSTER</u> =	TURBOJET BOOSTED
GROUND OPERATIONS	513	\mathbb{D}^{0}	-127	+300	686
MAIN ENGINE SUPPORT	675	-107	- 170	+133	531
SPARES	195	0	- 61	+102	236
FUELS & PROPELLANTS	670	-137	- 13	+ 59	579
PROGRAM SUPPORT	249	0	- 10	+ 40	279
TOTAL	2302	-244	-381	634	2311

REPLACE ADVANCED UPRATED SSME ENGINES (I.E. 3.1×10^6 NEWTONS PER ENGINE) INCLUDING (2) POSITION NOZZLES WITH STANDARD SSME ENGINES (2.18 $\times 10^6$ NEWTONS PER ENGINE) AND FIXED NOZZLES.

Life Cycle Cost Comparison

90.

All estimates in 1976 dollars (see Table 15).

Total estimated life cycle cost for the two-stage configuration is \$4.41 billion greater than the HTO/Sled configuration.Booster engine development and booster production account for most of the difference. Further LCC comparisons obtained from previous studies are presented in the figure which follows. Recent performance improvements, shown in the performance section were not incorporated here.

Table 15

LCC COST COMPARISON

TOTAL PROGRAM \$ X 10⁶

		TURBOJET BOOSTED
	<u>SSTO</u>	2-STAGE
DDT&E	3395	7335
PRODUCTION	2327	2789
OPERATIONS	2302	2311
TOTAL	8024	12435

TABLE LCC COST COMPARISON

Cost Comparisons with Past Studies

The cost results from GRC's recent study (Reference 5) indicated a very small life cycle cost difference in favor of a HTO/SLED SSTO over a turbojet/rocket 2-stage vehicle. However, there were significant input differences between that study and the present study. These are: (Relative to present study).

More Total Number Flights Less Turbojets and Thrust Size Higher Staging Mach Number Less Turbojet Development Costs

A very preliminary estimate of adjusting the turbojet booster costs of reference 5 to be compatible with this study is summarized as follows:

relative adjust)

1. ..

Item	\triangle \$ (MILLIONS)				
Develop.					
Turbojet Engine	+ 700				
Production					
Turbojet Engine	+ 250				
From (12) Engs @ 85K Thrust					
To (16 Engs @ 105K Thrust					
<u>Operations</u>					
From 4197 to 1710 Flights	+1200 (This is a				
From Staging $M = 3.5$ to 2.7	+ 300				
From Increased Number & Size Turbojet Total Increase	+ 100 + \$2,550 Million				

Then adding this adjustment to the cost of reference 5, the result is:

Tot \$ Cost = 0.40 + 2.55

\$ = 2.95 (Billion)

93

Represents the reference adjusted increased cost of turbojet/rocket 2-stage vehicle over an all rocket SSTO/SLED vehicle for 1710 flights.

These cost are then compared with an all rocket HTO/SLED costs in Table 16. Using these adjusted values, the two studies indicate that turbojet/rocket bcoster life cycle costs are from 38 to 55 percent higher than an all rocket booster vehicle.

Table 16

Cost Comparisons with Past Studies

STUDY		* Δ \$ LCC (Billions)	** Δ Ratio \$ LCC (Percent)
Recent Study General Research Corp. (4192 Flights)	Ref. 5	+ 0.40	+ 2
Adj. Gen. Research Corp. Study to 1710 Flights and Other Factors (Very Prelim)		+ 2.95	+ 38
Present Study		+ 4.41	+ 55

* Δ = Turbojet-boosted 2-stage - sled launched

** \triangle Ratio = 100 x $\frac{\text{Turbojet-boosted 2-stage}}{\text{sled-launched}} - 1$

LCC \$/kg Trades

As the number of turbojets is varied, then the payload changes as previously indicated in Figure 15. A fairer cost comparison then is to take this payload change into account and use \$ per kg (1b) in orbit as the figure of merit, see Figure 37. The minimum cost occurs with (17) turbojets, whereas maximum payload is with (18) turbojets. The final baseline vehicle that was studied in detail used (16) turbojets at a fixed GLOW of 1.211 X 10⁶ kg (2.67 million 1b).

The sensitivity of \$/lb in orbit to minimum drag is presented in Figure 38. Here also the payload varied for a fixed GLOW. \$/lb rises at an increasing rate as the drag ratio is increased. The favorable effect of increasing the number of turbojets from 18 to 20 is also shown.

The effect of GLOW on \$/1b is presented on Figure 39 for the number of turbojets fixed at (18). For comparisons, the all rocket SSTO vehicle costs are also shown. Similar comparisons are shown in Figure 40, on the basis of costs per flight which are not affected by differences in payload.

LCC \$/kg (1b) Number Turbojets Trade

Figure 37

Figure 38

LCC \$/kg (\$/1b) Drag Sensitivity

LCC - \$/kg (1b) Comparison Vehicles

Figure 98

.à

Cost per Flight Comparison

TECHNOLOGY ASSESSMENT

Since more than anticipated effort was required to iterate and develop the final baseline configuration, the scope of the technology assessment had to be curtailed.

The orbiter closely resembled that used for a recent previous study (NAS1-13944 Contract) and thus not evaluated again except for configuration differences, like area ruled and vortex lift parameters.

<u>Aerodynamics</u>: The two outstanding Aerodynamic features chosen for the final configuration were vortex lift and area rule. The vortex lift planform permitted takeoffs at α of 20 degrees without any increase in orbiter wing area. Full vortex lift theoretically increased lift coefficient about 25 percent. The method used for determining this result is that of Reference 4. Since the vehicle selected is a three body mated configuration with relatively large round nose leading edges, some questions rise as to the uncertainty of the theoretical methods. An area ruled configuration theoretically (from Reference 6) reduced transonic drag of the mated vehicle about (20) percent. Like the vortex lift, the theoretical drag reductions by area rule should be verified by wind tunnel test data of the mated configuration. Other aerodynamic issues (such as, stability and staging dynamics) are presented in Figure 41 which are beyond the scope of this study to resolve.

<u>Propulsion</u>: Rocket engine technology development has been detailed in reference 1, and no further assessment is made in this study. For Turbojets, basic technology is being developed under the Advanced Engine Gas Generator (ATEGG) Program, in which engine vendors like P&W, G.E., and Allison Corporations are participating. Component hardware elements are being built and tested. New test facilities will permit airbreathing engines at thrust ratings up to about 444800 Newtons (100,000 lb) to be ground tested. Engine designs which employ a

variable area turbine appear to have performance advantages and should be pursued in future applications. Inlet design employs current state of art development and for staging Mach numbers up to 2.7 should employ a mixed external/internal compression inlet design.

The final booster configuration exhausted three engines into a common after burner and nozzle. This design appears attractive but has not been practically demonstrated. A key development is a system for controlling both the variable inlet and exit nozzle.

STRUCTURE - The booster structure is a simple frame-skin-stringer approach utilizing titanium which provides a basic state-of-the-art configuration for the design. This significantly reduces the development costs. The loads for this configuration are not completely defined which may locally increase weights. The orbiter structure is a very complex structural system which does not readily accommodate high local loads without significant weight impact. For this reason, it is mandatory that the local loads be fully defined for the system. This definition may significantly impact the structural configuration selection.

SUBSYSTEMS - The subsystems of the booster are simplified to the maximum extent possible within the constraints of limited load and operations definition. Although a nominal approach to weight has been utilized, this could vary as more definition becomes available. One area requiring development is the takeoff gear. The development of the high speed/high load carrying wheel and tire while not significantly beyond current state-of-the-art will necessitate dedicated funding to achieve. The secondary power and avionics systems are presumed to be at or near good state-of-the-art design.

ORBITER: SEE NAS1-13944 STUDY

BOOSTER: HAS BEEN EVALUATED AS FOLLOWS: (AND MATED)

AERODYNAMICS

VORTEX LIFT AND AREA RULED CONFIGURATIONS HAVE POTENTIALLY ATTRACTIVE FEATURES, BUT ISSUES ARE:

BLUNT AIRFOILS, VORTEX BURST AND PITCHUP INTERFERENCE BOOSTER/ORBITER GROUND EFFECTS HIGH TAKEOFF AND LANDING ATTITUDES STABILITY AND CONTROL SEPARATION DYNAMICS

(CONTINUED)

Figure 41

Technology Assessment

PROPULSION

TURBOJET ENGINE TECHNOLOGY CURRENTLY UNDER DEVELOPMENT UNDER (ATEGG) PROGRAM INLETS: EMPLOY CURRENT STATE OF ART DEVELOPMENT. EXIT NOZZLE: SINGLE EXIT FOR MULTIENGINES NOT YET DEMONSTRATED. ENGINE CONTROLS: FOR INLETS AND EXIT NOZZLE KEY DEVELOPMENT ITEM

STRUCTURE

DYNAMIC LOADINGS OF MATED CONFIGURATION OF MAJOR CONCERN WHICH INCLUDE: SIDESLIP UNSYMMETRICAL SPANWISE LOADING, PITCHING AND TORSION LOADINGS.

SUBSYSTEMS

LANDING GEAR

SECONDARY POWER

(Continued)

AVIONICS SCHEMATICS, LOCATIONS, COOLING - ANTENNA
Study Observations

Turbojet boosted two stage to orbit concepts offer horizontal takeoff from conventional runways, self ferry, and potential advantages of offset orbit insertion, 360 degree launch azimuth, inland operational siting, and controlled landing after abort.

The study focused on aspects of developing a detailed configuration design to meet performance and study objectives. The final detailed configuration was scaled to a GLOW of 1.27×10^6 kg (2.8 $\times 10^6$ lb) to attain a 29483 kg (65,000 lb) Space Shuttle type payload into an east low earth orbit. Each twin booster required (8) afterburning turbojet engines each with a static sea level thrust rating of 444,800 N (100,000 lb). Final design configuration features included:

- Wing Vortex Lift for Improved Takeoff
- Area Ruled for Low Transonic Drag
- Common Exit Nozzle for Low Weight and TVC
- Variable Area Turbine Turbojet for Performance
- Controlled Variable Area Inlet and Exit for Performance
- Low Profile Fixed Landing Gear for Reduced Weight

Life cycle cost comparisons of the Turbojet booster concept with a SSTO/Sled concept indicates that costs are comparable except for increases in development cost due to the turbojet engine propulsion system.

Technologies in need of development for the Turbojet booster concepts include: Aerodynamics (Vortex lift for takeoff and acceptable transonic drag), Orbiter Structure and Thermal Design, and booster propulsion integration.

Future studies of Turbojet Boosted concepts should pay close attention to the following cautions and recommendations:

- The large turbojet engine development could be a strong cost driver
- The concept is likely to be more appropriate for smaller and more dense payloads than the one used in this study.
- The orbiter thermal design is strongly affected by the high dynamic pressure boost trajectory to the Mach 3 staging point.

105

- Future studies of this approach should also consider subsonic staging with both single-vehicle boosters and twin boosters.

REFERENCES

- 1. Hepler, A. K. and Bangsund, E. L.: Technology Requirements for Advanced Earth Orbital Transportation Systems. NASA Contractor Report 2878 (July 1978).
- Jackson, R. L.; Martin, J. and Small, W.: A Fully Reuseable Horizontal Takeoff Space Transport Concept with Two Small Turbojet Boosters. NASA TM-74087. (October 1977)
- 3. Freeman, D. C. and Fournier, R. H.: Static Aerodynamic Characteristics of a Single Stage to Orbit Vehicle with Low Planform Loading at Mach Numbers from 0.3 to 4.63. NASA TM-74056. Nov. 1977.
- 4. Lamar, J. E.: Recent Studies of Subsonic Vortex Lift including Parameters Affecting Stable Leading-Edge Vortex Flow. Journal of Aircraft, Vol. 14, No. 12, December 1977, PP 1205-1211.
- 5. Chase, R. L.: Earth to Orbit Reuseable Launch Vehicle A Comparative Assessment General Research 709-02-CR (Feb. 1978)
- 6. Harris, Roy V., Jr.: NASA TMX-947, "An Analysis and Correlation of Aircraft Wave Drag" (March 1964).

APPENDIX I - FLIGHT PROFILE AND PERFORMANCE

Boost Profile

The final updated boost trajectory is presented in the following table. By closely matching the mass properties of the orbiter as given in Table 4 , updated booster fuel requirements and Gross Lift-Off Weight (GLOW) were determined. However, this resulted in less booster (JP-4) fuel required and a lower GLOW than that given in the booster mass properties of Table 3. The total JP-4 fuel per booster is reduced from 111,147 kg (245,055 lb) to 93,455 kg (206,048 lb). The GLOW is correspondingly reduced from 1.22 X 10^6 kg (2.69 X 10^6 lb) to 1.170 X 10^6 Kg (2.579 X 10^6 lb).

The boost trajectory is determined by a series of angle of attack commands from flight control system and are described from lift-off to orbit injection as follows. With all (16) turbojet engines set to full afterburner, the configuration is accelerated down the runway and just prior to lift-off the mated configuration is rotated to a takeoff attitude of (20) degrees. At 20.7 seconds, a speed of 122 m/sec (400 fps) is attained and lift-off occurs at 1265 m (4151 ft) down the runway. The next event is a pull-up phase with a normal load factor of 1.25 to a maximum flight path angle of about 24 degrees followed by constant dynamic pressure, q, trajectory of 67,032 Pa (1400 psf). Just prior to staging at an altitude of 15545m (51,000 ft) another pull-up phase occurs to avoid exceeding heating constraints. This pull-up is accomplished by gradually increasing the angle of attack from about 3 to 9 degrees along with not exceeding a q \propto constraint of 397,404 Pa - DEG (8300 PSF-DEG). When an altitude of 19,812m (65,000 ft) and a M = 2.62 are reached, the configuration is staged.

After separation the twin-boosters perform a 180 degree maneuver and return to launch site. The orbiter after staging climbs and accelerates with all rocket engines turned on to orbit injection. A controlled angle of attack schedule for the orbiter is initially required to avoid exceeding the trajectory heating constraints. When a Mach number of 8 is reached, the flight control is shifted over to an iterative guidance mode to injection. See Table 17 for detail trajectory characteristics

The injection conditions are:

Altitude 92,354 m (303,000 ft)

Velocity 7891 m/sec (25,890 FPS)

Takeoff

The takeoff ground run was determined using the following method:

Incremental values are = \triangle velocity = Accel. X \triangle t = a \triangle t

 Δ distance = Velocity X Δ t = v Δ t

 Δ fuel = SFC X T X Δ t

Summing up $V = \Sigma a \Delta t$, $D = V \Delta t$, etc.

For $\alpha = (0)$ Deg. Along Ground

 $a = (\frac{T-D}{W} - \mu^{2}) \qquad \mu = .025$

TIME SEC	ÁLTITUDE, M	INERTIAL VELOC M/SEC	REL. VELOCITY M/SEC	REL GAMMA DEG	MACH	THRUST N	DRAG N	LIFT N	ALPHA DEG	WEIGHT Kg	DYN PRESS Pa
0.0	6.	531.	122.	0.0	0.36	7472976.	0.	. 0.	20.0	1162730.	9193 .
40.0	231.	518. 719.	208.	5.1	0.61	8186037.	1802266.	10445495.	1.4	1143592.	53955
60.0	2021.	770.	373.	19.9	1,12	10446331	6060105.	14547493	3.3	1130645.	69156.
80.0	4277.	794.	387.	10.1	1.20	8104621	4460284	3572646.	1.0	1119958.	58635.
100.0	4824.	846.	437.	4.5	1.36	10120332.	7217235.	19059276.	5.0	1109657.	70383.
120.0	6725.	860.	456.	13.5	1.46	8723893.	4996593.	6546713.	2.0	1098532.	62988.
140.0	8066.	902.	492.	3.3	1.60	8445085.	5118873.	7220626.	2.3	1088840.	63297.
160.0	8826.	937.	529.	7.5	1.73	8816396.	6230310.	12866687.	4.1	1078716.	67585.
180.0	10354.	965.	556.	6.8	1.87	8082891.	4879567.	6912213.	2.5	1068993.	63079.
200.0	11099.	1013.	603.	1.8	2.03	8200218.	5287784.	9889790.	3.6	1059689.	65619.
220.0	11894.	1050.	640.	5.2	2.16	7964104.	5115014.	9746795.	3.8	1050002.	65570.
240.0	12851.	1093.	683.	2.6	2.30	7438374.	4517127.	7796914.	3.2	1040827.	64003.
260.0	13403.	1135.	725.	2.8	2.45	7268862.	4965483.	10473462.	4.4	1031701.	66132.
280.0	14188.	1171.	760.	2.6	2.57	6690969.	4265896.	8159558.	3.7	1022859.	64372.
300.0	14703.	1208.	798.	1.5	2.70	6386641.	4368876.	9261053.	4.3	1014395.	65308.
320.0	15204.	1239.	829.	2.0	2.81	6088/4/.	4200944.	9109394.	4.4	1006102.	65219.
340.0	10415.	1237.	830.	6.7	2.81	2020184.	4994766.	12615109.	7.3	998494 .	54262.
300.0	79902.	1194.	/90.	10./	2.08	709129	, ACCCOKC	307339.	8.9	993000.	22010.
ST ST	ART SEC	OND ST	TAGE								

Table 17

Boost Trajectory

TIME SEC	ALTITUDE M	INERTIAL VELOC M/SEC	REL. VELOCITY M/SEC	REL GAMMA DEG	MACH	THRUST	DRAG N	LIFT N	ALPHA DEG	WEIGHT KG	DYN PRESS Pa
366.0 380.0 400.0 420.0 440.0 460.0 480.0 500.0 520.0 540.0 560.0 580.0 600.0 620.0 640.0 660.0 680.0 700.0 720.0 740.0 740.0 780.0 797.6 801.6 805.6	19843. $22261.$ $27010.$ $32008.$ $36445.$ $40105.$ $42840.$ $44643.$ $45556.$ $45747.$ $45793.$ $46192.$ $47366.$ $49619.$ $53094.$ $57902.$ $63986.$ $70680.$ $77293.$ $83158.$ $87687.$ $90646.$ $92032.$ $92197.$ $92298.$	1178. 1204. 1259. 1363. 1493. 1648. 1819. 2009. 2214. 2430. 2650. 2880. 3123. 3388. 3684. 4017. 4407. 4864. 5388. 5965. 6547. 7130. 7644. 7760. 7876.	774. 802. 859. 958. 1084. 1235. 1404. 1593. 1798. 2013. 2233. 2463. 2706. 2970. 3265. 3597. 3985. 4439. 4962. 5537. 6118. 6701. 7226. 7343. 7459.	10.9 15.0 17.2 14.3 10.9 7.4 4.6 2.4 0.8 0.0 0.2 0.8 1.8 2.7 3.6 4.4 4.7 4.4 3.7 2.7 1.8 0.9 0.4 0.3 0.1	$\begin{array}{c} 2.62\\ 2.71\\ 2.88\\ 3.15\\ 3.49\\ 3.90\\ 4.38\\ 4.92\\ 5.53\\ 6.19\\ 6.86\\ 7.56\\ 8.26\\ 8.97\\ 9.96\\ 11.24\\ 12.85\\ 14.83\\ 17.20\\ 19.85\\ 22.54\\ 25.14\\ 27.35\\ 27.82\\ 28.28\end{array}$	2807525. 6719917. 6768979. 6793614. 6804134. 6806398. 6809182. 6810497. 6811046. 6811155. 6811179. 6811376. 6811376. 6812709. 6813538. 6814709. 6814545. 6814769. 6150164. 5405875. 4750981. 4229278. 4121293. 4015182.	3569943. 3151367. 1637038. 884237. 635674. 581225. 506255. 497126. 520880. 845773. 950996. 999212. 933049. 748087. 535678. 286856. 71405. 20297. 7937. 4069. 2572. 2011. 1967. 2080. 2665.		$\begin{array}{r} 9.3 \\ 17.0 \\ 17.0 \\ 17.5 \\ 20.5 \\ 21.3 \\ 21.7 \\ 22.0 \\ 20.0 \\ 20.$	766216. 745294. 715405. 685516. 655627. 625738. 595849. 565961. 536072. 506183. 476294. 446405. 416516. 386627. 356738. 326849. 296961. 267072. 237183. 208512. 183245. 161038. 143735. 140073. 136506.	27692. 20425. 11162. 6335. 4028. 2933. 2459. 2375. 2613. 4546. 5558. 6382. 6488. 5612. 4058. 2417. 1202. 550. 256. 132. 82. 63. 59. 59. 60.
805.7 805.8 805.9 806.0 806.1	92299. 92301. 92302. 92304. 92305.	7879. 7882. 7885. 7888. 7891.	7462. 7465. 7467. 7470. 7473.	0.1 0.1 0.1 0.1 0.1	28.29 28.30 28.31 28.32 28.33	4012505. 4009818. 4007122. 4004413. 4001688.	2712. 2764. 2823. 2889. 2965.	-4131. -4279. -4442. -4622. -4823.	-11.8 -12.0 -12.3 -12.6 -13.0	136418. 136330. 136242. 136154. 136067.	60. 60. 60. 60.

Using an option in minicomputer program HZ 600, the takeoff ground run is determined by summing these equations with an incremental $\Delta t = 0.5$ second. The rotation to an attitude of (20) degrees just prior to liftoff is neglected in the above estimate and is expected to have a small effect on the results (i.e. rotation at 3 seconds prior to lift-off increases drag and reduces thrust component by COS (20) degrees but, is partially compensated by increased lift and reduced wheel friction force). The take-off fuel (both Turbojet Boosters) burned is 6,943 kg (15,306 lb).

Flyback

The staging conditions to initiate the turbojet booster flyback trajectory are:

Altitude = 19,812 m (65,000 ft)

Velocity = 777 m/sec (2548 ft/sec)

Boost Range = 213 km (115 n.mi.)

Staging Weight (per booster) = 117,926 kg (260,000 lb)

The flyback trajectory for a turbojet booster is listed in Tables18-20.The flyback is controlled by bank, angle of attack and engine throttle setting in order to return to launch site with minimum JP-4 fuel burned. This flyback procedure is further detailed as follows. Initially the angle of attack is set to 10 degrees with turbojet throttle settings to idle thrust, and a 45 degree bank to initiate a turning maneuver. The angle of attack is modulated slightly to damp out altitude oscillations. When the heading has changed 190 degrees to aim towards the launch site the bank angle is removed. With engine throttles on idle (or some turned off) the turbojet

TIME	ALTITUDE HETRES	VELOCITY	GAMMANR	DYNAMIC PRES	RANGE	ALPHA	WEIGHT
-0-0	19812 o	776 430	DEG	PASCALS	K M	OEG	KG
10.0000	20994 3			29C43_8	212,980	10,0000	
20.0000	21075 7	122,000	0.07132	20469.0	220,345	10.0000	117934.
		6/783/U	6,94070	15350.5	227.251	10.0000	117934.
35.0000	22756.2			12549.7	233+825	10.0000	117934
40.0000	22791 9	635e271	1.70310	11766.7	237.016	9.27593	117934.
	22531.7	0234424	-0.374945	11355.1	240.156	10:0780	117934.
60.0000	21873.9	018 A00	-7 01460		246300		117914
70.0000	20918 8	KAR BRI	-1. 72030	1212/.0	272.293	11.0200	117934.
80_0000	19801 6	500,001	-10,3000	13/73.3	250.120	12.1720	117934.
90.0000	18692.2	559.09A		10030.3		12,4502	117914
100.000	17737 2	ST# 0/A	-10,0772	10311.7	264.384	12.3053	117934.
	17042 6		40,9430/	20173.1	274.100	11.8471	117934.
120.000	16619.3	47A 918			279,906	11.2902	117934
130.000	14194 0	414 001	-3,/3002	10000.4	284,753	10.7673	117934.
140.000			-2.04030	10002.4	289.274	10.4190	117934.
150.000	16187 7	40455F3				10.3086	117934
160.000	18943 8	3/3,104	-5,04400	12925.9	297,352	10.4310	117934.
1.70.000	15713 0	347,313	-3.50000	11520.6	300.957	10.7365	117934.
180.000	15141 8		-7 97267			11,1521	
183.126	19207 2	300,317	-/ 0325/	0003 71	307,462	11,6083	117934,
	15207 3	303.557	-0,2032/	4051.05	308.407	11.7625	117934.
190.000	14943 3	394 117				11.7625	117934.
200.000	14668 2	281 485	=0,35000	4021,76	310,441	11,3039	117934.
	14433.4	370 956	-4,72000	71/1.90	313.299	11.0120	117934.
220.000	14182 7	263 122	-5 81110	BLAE ET	310.042	11.0300	117934
230.000	13897.4	357.437			510,075	11,14//	117434.
	115A5_1	251.403	-7 77541	8344.34	521.2/4	11.3002	117934.
250.000	13264 8	360 337		8700.29		11_4857	117934
260.000	12952.3	206 987	-7 09731	809E 44	326,298	11.5026	117934.
270,000	12657.8	243.655	-1.00J21	9101 10	320,/34	11.4544	117934.
280,000	12384 2	240 218	-6 2070/	9144 30			11/939
290,000	12129.7	236.781	-5 04710	9100 24	333,304	11,2430	117954.
	11890.3	233.240	-5 7/1155	9199 16	3334733	11.6672	11/934.
310,000	11660 9	229.556		9167 71	1/10 587		
320.000	11435.6	225.932	-5.71054	9128.39	340,307	11,1020	11/934
	11210.2		=5 A1571	9096 86	3421030	11.1/20	11/734.
340,000	10982 8	219 297	-5 08373	9079 08		11.1703	
350,000	10753.2	216.317	-6.12379	9063-18	347,204	11,2284	117934.
360,000	10521-8	213.527	=6 33151	9071 40	3471431	11.23/4	11/734.
363,003	10452.2	212.711	-6 25 236	9077 36	153 100		
363,003	10452.2	212.711	-0,25226	9077 15	153 (00	11.2030	11/434.
370,000	10294.8		-5.71933	9462.88	3354177	11 1744	11/934.
380,000	10103.6	217.044	-4 37499	9838.10	155 AIA	10 APAT	117900 LL
390.000	9963.79	217.017	-3.05475	9993.62	358.001	10 6272	117880
400.000	9867.02			9987.54	360.160	10.02/6	117850
405,202	9A27 85	214.857	-1.87794	9947.78	361.278	10 1854	
410.000	9795 58	213.962	-1.73319	9901.04	362.305	10 1559	11/04/
420+000				9800.15	364.431	10.3468	117835
430,000	9668,01	210,516	-1.85059	9723.38	366.539	10.3800	117793

2

۵

Flyback Turbojet Booster Trajectory

Table 18

TIME	THRUST	LIFT	DRAG	LATITUDE	LONGITUDE	HEADING=R	BANK
380	NT	NT .	NT	DEG		050	020
-0-0		0_179485E_07				^U ^U	UU
10,0000	0.0	0.1354718 07	390178.	50.0860	-46,4432	/.3121/	43.0000
20,0000	0.0	0.106782E 07	296013.	50,1270	-04 0 200	13.3203	45,0000
						10_H.7N0	43-4044
35,0000	0.0	796564.	211721.	50.2104	-46, -373	20.0703	45.0000
40,0000	0,0	841785.	221078	70.2369	-40,410/	23,103/	45.0000
50.0000			238603	0,2067		20.1000	
60,0000	0.0	0.106316E 07	275173.	50.3328	-46.63 0	33.4113	45.0000
70,0000	0.0	0.127411E 07	329559.	50,3146	-46,7003	40,8471	43,0000
		0,153539E_07					
90.0000	0.0	0.178698E 07	461168,	50,4398	446.06/0	54.7455	45.0000
100,000	0.0	0,197895E 07	506910,	50,4597	-46,3467	71,4361	45,0000
			548910	50,4889			
120,000	0.0	0.141074E 07	478915.	50.4670	-40.4373	44.4831	N3.0000
130,000	0.0	0 175724E 07	436240.	50,4558	-40,3484	113,720	45.0000
140+000		0,160859E_07		50.4366		12/_309	
150.000	0.0	0.149700E 07	370145.	50.4123	-96.3002	141.101	45.0000
160,000	0.0	0.143122E 07	356666.	50.3849	+96,2813	155,158	45,0000
170,000		0_140766E_07	355505,	50,3562	96,2669	169,666	45.0000
180,000	0.0	0.139505E 07	346037.	20.3560	-48,204/	103,049	45.0000
183,126	0.0	0,139139E 07	338021,	50,3196	=96,2204	190,000	0.0
183+126		0,139139E_07	338021	50,3196	96	190,000	Q
190.000	0.0	g .12 8866E g7	289945.	50,3016	-96,2713	190,032	0.0
200,000	0.0	0,117518E 07	240037.	50,2763	-96,27	190,080	0.0
210+000		0,111218E_07	210724			190.128	
220,000	0.0	0,109146E 07	195979.	50,2286	-96,2916	190,176	0.0
530*000	0.0	0,110205E 07	190840.	50,2058	-46 5480	190.223	0.0
240.000		0,112485E 07	189146,	50.1834	-96,3043	190.269	0.0
250.000	0.0	0.114512E 07	186706.	50,1613	-96,3105	190,315	0.0
260,000	0.0	0,115776E 07	182513.	50,1396	-96,3167	190.360	0.0
	0.0	0.116230E_07_	176102		-96,3228	190.400	
280.000	0.0	0.116111E 07	168892.	50.0969	-46.3584	140.452	0.0
290,000	0.0	. 0,115734E 07	161561	50,0760	=96,3349	140,444	0.0
300+000		0,115151E_07_	160127	50,0553	-96,3409	190,546	0.0
310.000	0.0	0.114483E 07	158904.	50.0350	=96,3467	190,592	0.0
320,000	0.0	0.113989E 07	158217.	50.0151	-96,3525	190,639	0.0
				49,9954		190,685	
340.000	0.0	0.113756E 07	158300.	49,9760	-96,3639	190.731	0.0
350,000	0.0	0_113758E 07	198523.	49 9569	-96,3695	190.777	0.0
		0.114028E.07	159052	49,9381		190.822	
363,003	83190.7	0.114096E 07	159168.	49.9325	-96,3767	190.836	0.0
363,003	63190.7	0,114096E 07	159165.	49,9325	-96,3767	140.836	0.0
		0.1178358.07				190.868	
380.000	83836.7	0.119509E 07	162410.	49.9004	-96.5862	140.410	0.0
390,000	87101 5	0 1183665 07	157816.	49 BB13	-96,3919	190,962	0.0
	90002.3		152865.				<u> </u>
402.205	91084.1	0.115n84E 07	150779.	49.8524	-96,4005	191,036	0.0
410,000	91793.1	0.114193E 07	149273.	49,8433	-96,4032	191,060	0.0
	92477.0					191.109	
430.000	92386.4	0,112318E 07	148445.	49,8060	-46,4146	191.158	0.0

TIME	ALTITUDE	VELOCITY-R	GAMMA=R	OYNAMIC PRES	RANGE	ALPHA	WEIGHT
SEC	METRES	M/SEC	DFG	PASCALS	KM	DEG	KG
_440.000	9596.23	209.223	-2:06986	9681.97	368.634	10.4250	117772.
450.000	9517.35	208,185	-2.25241	9671.18	370.716	10,4625	117750.
460.000	9433.50	207.298	42.36138	9679.04	372.788	10,4849	117729.
47.0.000	9347.37	206.463		9693.63	374.852	10.4930	117707.
480.000	9261.05	205.618	-2.39578	9706.88	376.908	10,4919	117686.
490.000	9175.69	204.737	-2.37173	9715.15	378.955	10.4870	117665.
-500.000	9091.59	203.822		9718.20	380.993	10.4822	117644
510.000	9008.55	202.887	-2.33445	9717.57	383.022	10.4793	117623.
520.000	8926.18	201.948	-2.33208	9715.23	385.042	10,4789	117602.
530.000	B844_10	201.017		9712.68	387.052	10.4801	117581
540.000	8762.11	200.100	-2.34822	. 9710.74	389,053	10,4822	117560.
550.000	8680.13	199,197	-2.35908	9709.62	391.045	10 4844	117539.
-560.000		198.307		9709.14		10.4864	117518.
570,000	8516,23	197 428	-2.37647	9709.01	395,002	10,4550	117497
580,000	8434.43	196.556	-2.38270	9708,98	396,968	10,4892	117477.
-590.000	8352.80	195-691	*2.38801	9708.88	398,925	10,4903	117,456
600.000	8271.36	194.833	-2.39298	9708.65	400.874	10,4914	117435.
610.000	8190.11	193,980	+2.39798	9708.32	402.813	10,4924	117415.
-620.000-				9707 92	404 745	10,4934	117394
630.000	8028.14	192.296	-2.40846	9707.48	406.668	10,4945	117374
640.000	7947.42	191.464	-2.41386	9707.07	408,582	10,4956	117353
-650.000	7866.87	190.638		9706.66	410.489	10.4967	117333
660.000	7786.48	189.820	·2.42451	9706.26	412.387	10.4978	117312.
670 000	7706.27	189.008	-2.42969	9705.88	414.277	10.4989	117292.
_680.000	7626.23	186.203	=2.43474	9705.50	416.159	10.4999	
690.000	7546.37	187.404	-2.43969	9765.11	418,033	10,5009	117251.
700.000	7466.69	186.611	-2,44454	9704.72	419,899	10.5019	117231.
-710.000	7387,19	185.824		9704.32	421,258	10.5029	117211
720,000	7307.86	185.044	-2.45408	9703,90	423,608	10,5039	117191,
730.000	7228.72	184.269	-2.45876	9703.50	425,451	10.5049	117171.
740-000	7149 76			9703.07	427,286		117.151
750,000	7070,98	182.737	-2,46795	9702.65	429,114	10.5067	117131.
760.000	6095.30	181.980	-2.47247	9702.23	430.933	10.5077	117111.
770+000			==================================	9701.79	432.746	10.5086	117091.
780,000	6835,75	180.482	-2 28130	9701_37	434,551	10 5095	117071.
790.000	6757.70	179.741	-2,48559	9700.93	436.348	10.5104	117051.
800+040	6679,85		*2. 4A9A5	9700.49		10.5112	117031
A10,000	6605,18	178,276	<u>-2</u> 49407	9700,04	439,921	10,5121	117011.
820.000	6524,69	177.551	•2,49822	9699.59	441.697	10.5130	116992.
830.000					443.465	10.5138	116972
840.000	6370,29	176,117	-2,50640	9698,66	445,226	10,5146	116952.
850,000	6293.36	175.407	•2.51041	9698,20	446.980	10.5155	116932.
A60+000			=2,51437	9697.72		10.5163	
870,000	6140,08	170.000	-2,51829	9697,25	450.468	10.5171	116695.
A80.000	6063,72	173,309	-2,52215	9696.77	452.201	10.5179	116873.
	5987, 55		•2.52597		453.927	10.5187	
900.000	5911.57	171,934	-2,52974	9695.79	455,647	10.5194	116834.
910.000	5835.77	171.254	+2,53349	9695.29	457.359	10.5202	110015.
	5760,17		+2.53720	9694.7A		10.5210	
930,000	5684,75	169,907	-2,54057	9694,26	460,765	10,5217	116776,

TIME	THRUST	LTFT	DRAG	LATITUDE	LONGITUDE	HFADING	BANK
SEC	NT	NT	NT	DEG	DEG	DEG	DEG
440,000	91914.6	0.1122916 07	147394	49 7875	-96 4202	191 207	2.0
450.000	91375.0	0.112540E 07	148086.	49.7691	-96.4258	191.255	0.0
460,000	90950.4	0.112847E 07	148699.	49,7509	-96,4314	191.304	0_0
470.000	90699.6	0.113080E 07		49.7327		191.352	0_0
480.000	90597.0	0.113197E 07	149187.	49.7146	-96.4427	191.400	0.0
490.000	90583.4	0.113215E 07	149132.	49.6965	-96,4483	191.448	0_0
500.000	90599.7	0,113171E_07				191.496	0
510.000	90607.9	0.113107E 07	148858.	49.6607	-96.4595	191.544	0.0
520,000	90591.1	0.113048E 07	148749	49 6429	-96,4651	191.591	0_0
530.000	90549.8	0.113005E 07	148680	49.6252	-96.4707	191.639	0.0
540.000	90492.1	0.112979E 07	148642.	49.6076	-96.4762	191.686	0.0
550,000	90427.3	0.112965F 07	148621.	49 5901	-96,4818	191.734	0_0
560.000	90362.8	0.112955E_07		49.5726	96,4874	191.781	0
570.000	90302.0	0.112946E 07	148585.	49.5553	-96.4930	191.828	0,0
580,000	90245.4	0.112934E 07	148560.	49,5380	-96.4985	191.875	0.0
	90192.6		148529	49.5208	-96.5041	191.922	0.0
600.000	90141.8	0.1129058 07	148495.	49.5036	-96.5097	191.969	0.0
610,000	90091.6	0.1128887 07	148461.	49 4865	-96,5153	192.016	0.0
620.000	90041.6	0.112871E 07	148426	49.4696	-96,5208	192.063	0.0
630.000	89991.3	0,112854E 07	148393.	49.4527	-96,5263	192.109	0,0
640.000	89941.1	0.112838E 07	148360.	49,4359	-96,5318	192.156	0.0
	89890.6	0,112822E_07		49,4191	-96.5373	192.202	0_0
660,000	89840.9	0.112806E 07	148297.	49,4025	-96,5428	192.248	.0.0
670,000	89791 4	0,112790E 07	148265.	49 3858	-96,5484	192.294	0.0
680.000	<u> </u>	0.112775E_07	48234	49.3693	-96,5539	192.340	0.0
690.000	89694.1	0,112759E 07	148202.	49.3529	-96,5594	192.386	0.0
700,000	89646,2	0.112743E 07	148170	49.3365	-96,5649	192.432	0.0
710.000	89598,9		148139	49,3202	-96,5704	192.478	
720.000	89551 8	0.1127128 07	148107.	49.3039	-96,5760	192.524	0.0
730.000	89504 8	0_112696E 07	148076,	49,2878	-96,5814	192,569	0.0
		0.112680E_07	148044	49.2717		192.614	0_0
750.000	89412.3	0.112664E 07	148013.	49,2556	-96,5924	192.660	0.0
760,000	89366.6	0,112649E 07	147982.	49 2397	-96,5978	192,705	0.0
	89321.1	0,112633E_07	147951.	49,2238	-96.6033	192.750	
780.000	89276.0	0.112617E 07	147920.	49,2080	-96.6087	192.795	0.0
740.000	84231.3	0.1126028 07	147889	49,1922	-96,6142	192,840	0.0
		0,112586E_07				192.885	
510.000	89142.9	0.112570E 07	147828.	49.1609	-96.6251	192.930	0.0
840.000	89099.4	0,112555E 07	147797.	49,1454	-96,6306	192.974	0.0
		0-112539E-07					0.0
40.000	89012.9	0.112523E 07	147736.	49.1144	=96,6414	193.063	0.0
850,000	88970.1	0 11250BE 07	147706.	49.0991	-96,6468	193,107	0.0
000e000			147675	AY.0538		193.151	0.0
7701000 880 000	88847	0 1124772 07	147645.	47,0886	-96,05//	143.145	0.0
890.000	888A, A	0.1124618 07	147615.	44.0234	-46,0031	143.634	0.0
				· ···· 4.7+0303			
910 000	897+0 3	0.1124500 07	14/555.	44.0533	-46,0/34	173.327	0.0
920.000	00/14 0 88440 P	0,1164146 07	147525.	47,0083	-40,0/43	143,371	0.0
910.000		· ····································					
4304000	0003013	0,112303E 07	141490	40.4/85	-40*0401	1424420	0.0

TIME	ALTITUDE	VELOCITY-R	GAMMANR	DYNAMIC PRES	PANGE	ALPHA	WEIGHT
SEC	METHES	HISEC	OEG	PASCALS			
				9693.75	462.437		
450,000	3534,48	168,979	·2,54810	4642,23	404,143	10,5238	110/3/
960.000	5454.63	167.921	-2,55166	9692.70	465.025	10.5259	110/[0.
			• 2 - 35517		40/ 473	10.0264/	116679
480,000	5310.44	166,614	-2,55867	4041.05	407,102	10.3234	1166/7.
440.000	2220.20	103,4/3	-2,50210	4641.08	470.022	10.5291	1166/11
		103,333				10 5275	116622
1020 00	5066,19	100,044	-2,2007/	7007 Y/	474,12C	10,5283	116602.
1020,00	2014,48	164,067	-2,7/234	7007e41	4734703 //77 198	10.5202 .	116583.
10/10 00	4847 87	<u>103</u>	-2'57008	9449 34	1190 034	10 8305	116564
1040.00	400/ 00/	102,017	-2,5/870	7000420	477 028 480 648	10.5275	116545
1050.00	4774 20	104 177	-3 5858/	9697 00	482.264	10.5109	116526.
1070 00		++0 071	-3 68879	9686 //0		10 5316	116507.
1080 00	4540,02	160.7/1	-2 500/7	9485 94	485.477	10-5322	116488
1000.00	45/0400	100.304	-3 50530	0486 30	487.070	10.5129	116469.
1100 00		150 143		04.9.1 '4.7	188 666	10 5115	116450
1110 00	4431,32	154,102	-3 44184	9004 67 0487 AF	490.252	10.533.	116431
1110.00	4337420	130,367	-2 400134	7004.03	401 813	10 5348	116412
1130 00	4315 44	157 148	-2 40778	9692 80	493 406	10 5355	116393.
1130,00	4213,00	13/ 300		7002,00 0483 44	101 07A	10 5341	116374
1150 00		170,707	-2 01007	4004e10	196 516	10 5367	116356
1160 00	4001 67	155 640	-2'41407	9680 8/	49A 091	10.5373	116337.
1170 00	1010 40	153.044	-2 + 200/	9680 14	199 643	10.5380	116318.
1180.00	1859 80	133.077	-2,02004 -2,43109	9679.53	501.188	10.5386	116299.
1190 00	3789 37	151 000	-2 42412	9678 8/	502.728	10.5392	116280.
1200.00	37(8.82	151 184	-2 43912	9678.17	504.261	10.5398	116262.
		152.827	-2.61209	9677.4R	505.790	10.5405	116243.
1220.00	3578.46	152 273	-2 63509	9676 79	507.313	10.5411	116224.
1230.00	3508.54	151.724	2.63808	9676.09	508.830	10.5417	110206.
1240.00	3438.79	151.178	2.64104	9675.39	510.342	10.5423	110187
1259.00	3369.22	150.635	-2 64397	9674.68	511.849	10.5429	116169.
1269.00	3299.42	150.097	B8444.5e	9673.97	513.350	10.5435	116150.
1270.00		149-562	=2.64980	9673.23		10.5441	116131
1280.00	3161.53	149.030.	-2.65272	9672.50	516,336	10.5447	116113.
1290.00	3092,64	148 503	-2.65566	9671.77	517.821	10.5453	116094.
1-300.00	3023.92				519,301	10.5459	11607.6
1310.00	2955 37	147 458	=2.66139	9670.28	520,775	10.5465	116057.
1320.00	2896.98	146.941	-2.66431	9669 52	522,245	10.5471	116039.
1330.00.	- 2818.76		-2.66718	9668.76	523.709	10.5477	
1340.00	2750,71	145,918	-2.67005	9667 99	525,168	10,5482	116002.
1350.00	2682.81	145,412	-2.67290	9667.21	526.623	10.5488	115984.
-1360,00	2615.08			9666.43			
1370.00	2547.52	144 410	-2,67862	9665.64	529,516	10,5500	115947.
1380,00	2480,11	143 914	-2,68145	9664.86	530,955	10.5500	115929.
	2412,86	143,422	=2,68429	9664,05	532,389		
1400.00	2345,77	142,934	-2,68712	9663,25	533,819	10.5518	115892,
1410,00	2279,84	142.449	=2,68995	9662.44	535,243	10.5523	115874.
-1420,00	2212.07		=2,69277		536.663	10.5529	
1430.00	2145.45	141,490	-2.69562	9660.79	538,078	10,5535	112939.

Table 18 Contd

TIME	THRUST	LIFT	ORAG	LATITUDE	LONGITUDE	HEADING=R	BANK
SEC	NT	NT	NT	DEG	DEG	DEG	DEG
- 940,000		0-112368E07					0 <u>_</u> 0
950.000	88558 1	0.112352E 07	147407.	48,9490	-96,7008 .	193.544	0.0
960,000	88518 4	0,112337E 07	147377.	48,9343	-96,7061	193,587	0.0
_970.000	88479.1			48,9197	96,7115		
980,000	88439,8	0.112306E 07	147319.	48,9052	-96,7168	193.873	0.0
990,000	88400,7	0.112291E 07	147290.	48,8906	-96,7222	193./16	0.0
		0+112275E-07	147261	48,8762		193-159	
1010.00	88323.6	0.112260E 07	147232.	48,8618	-46,1324	143.001	0.0
1020,00	88285.4	0.112244E 07	147203.	48.0475	-06 7/175	143.044	0.0
			14/1/4		-04 7099	869 701	6.0
1000,00	00204.0	0.1122138 07	14/140.	40.0140	-04 75/1	493 971	0.0
1050,00	001/1.7	0.1121405 07	147117.	40.0044	-96,759/	194 013	0.0
						194 054	0 0
1070,00	88060 1	0,1121875 07	1470001	46.7438	-96 7700	194 096	0 0
1000,00	88037 6	0 1121328 07	14/032	40,7020	-94 7783	194.138	0.0
1100 00	AYOAL 0	0 112131E 07	144074	48 7160	=96 7806	194.180	0.0
1110 00	87860 4		1407104	40,7330	-04 7859	194 221	0.0
1120.00	87914 1	0 1120915 07	146740	48.7074	-96,7911	194.262	0.0
1130 00	ATA78 1	0 1130768 07	1/14898	48 4917	-94.7964	194.304	0.0
1140.00	87843 1	0.1120/02 07	105865	48 6800	-96.8016	194.345	0.0
1150.00	87806.8	0.1120456.07	146837	48.6664	-96.8069	194.386	0.0
1160.00	87771 6	0.112029F 07	146809.	48.6528	-96.8121	194.427	0.0
1170.00	87736.4	0.1120145 07	146782	48.6394	-96.8174	194 468	0.0
_1180.00	87701.1	0.111999E 07	146755		-96 8226	194,508	
1190.00	87666.2	0.111984E 07	146725.	48.6125	-96 8279	194.549	0.0
1200,00	87631 4	0.111969E 07	146701.	48 5992	-96,8331	194,589	0.0
_1210.00		0,111953E_07		48,5859	96,8382	194.630	0.0
1220.00	87562.2	0,1119386 07	146646.	48,5726	-96.8434	194,670	0.0
1230.00	87527 9	0,111923E 07	146620,	48 5594	-96,8486	194,710	0.0
1240.00	87493.6	0,111908E_07	106593	48,5463		194.750	0.0
1250.00	87459.8	0.111493E 07	146567.	48,5332	-96,8590	194.790	0.0
1260,00	87425 9	0 111877E 07	146540.	48,5202	-96,8642	194.830	0.0
		0.111862E_07	146513	A8.5071		19.4.864	0_0
1280.00	87358.7	0.111847E 07	146487.	48.4942	-96.0746	144.404	0.0
1540.00	87325,2	0,1118328 07	146461.	48,4813	=46,0/4/	144 444	0.0
1300.00				48,4684		1.98.988	QU
1310.00	87299.0	0.111 01E 07	146408.	40.4557	-40.0400	173.02/	0.0
1520,00	9,25578	0.1117865 07	146383.	48.4429	-04 0401 -49 ⁰ 0421	108 108 142°000	0.0
1330,00		0,111771E. 07		48,4302			0.0
1340.00	87180.3	0.1117562 07	1463514	40,4175	-96 910#	142.144 ·	0.0
1340 00	87485 +	0.111/418 07	1403078	40,4044	-96 9157	195,222	0.0
	87611 A	U.LLI/COL U/		UR 1701		195.260	0.0
1180 00	87010 0	0.111/11E 07	1467341	48 3471	-94 9250	195,299	0.0
1390.00	84998 0	0.1116818 AT	10627	48.3549	-96.9310	195.337	0.0
1400.00	BAGAA G	0 1116665 07	1/6178	40, 3197	-96.9361	195.375	0.0
1410.00	86935 1	0 1116515 07	1461761	48 3301	-96.9411	195.413	0.0
_1420.00	86903.S	- 0.111636F 07	.146128-	48.3178	96 9462	1.95.451	0.0
1430.00	86871.8	0.1116215 07	146103.	48.3056	+96.9513	195.489	0.0

TIME	ALTITUNE	VELOCITY-R	GAMMA-R	DYNAMIC PRES	RANGE	ALPHA	WEIGHT
SEC	HETRES	M/SEC	DEG	PASCALS	KM .	DEG	KG
1440,00	2078,98	141_015	=2.69843	9659.95	539,489	10.5541	115820
1450.00	2012.67	140.544	-2.70127	9659 12	540,894	10,5547	115801.
1460.00	1946.51	140.077	-2.70407	9658,27	542,295	10.5552	115783.
	1880.50	139.613		9657.42	543.691	10.5558	115765
1480.00	1814.64	139,153	-2.70970	9656 57	545.083	10.5564	115747.
1490.00	1748.93	138.696	+2.71253	9655.70	546.470	10.5570	115729.
	1683-17	138.243		9654.83	\$47.853	10.5575	115711
1510.00	1617.95	137.793	-2.71815	9653.96	549,231	10,5581	115693.
1520.00	1552.68	137.347	-2.72096	9653.09	550.604.	10.5587	115675.
1530,00				9652.20		10.5593	115657
1540.00	1422.57	136,465	-2.72659	9651.30	553,338	10.5599	115639.
1550.00	1357.72	136.030	-2.72937	9650.39	554,699	10.5604	115621.
	1293.02	135,598		9549.48		10.5610	115603
1570.00	1228.45	135,169	-2 73504	9648,58	557,407	10.5616	115585,
1580.00	1164.02	134.744	-2.73786	9647.67	558,754	10.5622	115567.
	1099 72	134,322	= 2 74066	9646,74	560.097	10.5627	119549
1600.00	1035.56	133,904	-2 70350	9645 81	561,437	10.5633	115531.
1610,00	971.539	133,490	-2,74630	9644.88	562,772	10,5639	115514.
	907.646	133,079		9643.93	564,103	10.5645	
1630,00	843.883	132,672	-2.75196	9643.00	565,429	10,5651	115478,
1640.00	780,249	132,268	-2 75480	9642.04	566,752	10.5656	115460.
	716,743				568.071	10.5662	115442
1660.00	653,364	131,471	-2,76044	9640.11	569,386	10.5668	115425.
1670.00	590.109	131.078	-2,76331	9639.15	570.697	10.5674	115407.
	526,979	130,688		9638.16	572.004	10.5680	115389
1690,00	463.971	130,302	-2.76901	9637 18	573,307	10,5686	115371.
1700,00	401.083	129,920	-2.77186	9636.20	574.606	10.5692	115354.
1710.00	338,316	129,541	•2.77470	9635,20	575.902	10.5697	115336
1720,00	275.667	129,166	-2 77758	9634 20	577,194	10.5703	115318,
1730.00	213-133	128,795	-2.78044	9633.21	578,482	10.5709	115301.
1740.00	150.714	128,427		9632.19	579.766	10:5715	115283
1750.00	88,4099	128.063	-2.78615	9631.17	581.047	10,5721	115265.
1760.00	26.2164	127.702	-2.78906	9630,15	582,324	10.5727	115248.
1764.22	0.119062E=02	127.550		9629.65	582.861	10.5729	115240.

.

TIME	THRUST	LIFT	DRAG	LATITUDE	LONGITUDE	HEADING-R	BANK
SEC	NT	NT	NT	DEG	DEG	DEG	DEG
1440.00		0.111606F_07	146078	48 2934	-96.9564	195.527	0.0
1450.00	66808.8	0.111591E 07	146053.	48 2812	-96,9615	195,564	0.0
1460.00	86777.7	0.1115767 07	146029.	48.2691	-96,9665	195,402	0.0
1470.00		0.111561E_07.	146004	48.2570	-96.97.16	195.639	0.0
1480.00	86715.4	0.111546E 07	145980.	48,2449	-96,9766	195,677	0.0
1490,00	86684 4	0.1115318 07	145955	48,2329	-96,9816	195,714	0,0
1500.00		0.111516E_07_	145931	48,2210			0.0
1510.00	84622.7	0.111501E 07	145907.	48,2090	-96,9917	195,788	0.0
1520,00	86592.2	0.1114865 07	145882.	48,1972	-96,9967	195,825	0.0
_ 1530.00		0.111471E 07	145858	48,1853	-97,0017	<u> 195.861 </u>	00
1540.00	86531.1	0.111456E 07	145834.	48.1735	-97,0068	195,898	0.0
1550,00	86500.9	0.111441E 07	145810.	48,1618	-97,0118	195,934	0.0
		0_111426E_07	145786	48,1500		195,971	0_0
1570.00	86440.3	0.111411E 07	145763.	48,1383	-97,0217	196.007	0.0
1580,00	86410.1	0.111396E 07	145739	48,1267	-97,0267	196,043	0.0
1590.00		0.111381E 07		48,1151		1.96.079	0.0
1600.00	86350.3	0.111366E 07	145692.	48,1035	-97,0367	196.115	0.0
1610,00	86320,5	0,1113528 07	145669	48,0920	-97,0416	196,151	0,0
_1620.00	86290.8	0.111337E_07_	145645	48.0805	-97.0466	196.187	0_0
1630.00	86260.9	0.1113228 07	145622,	48,0691	-97,0516	196,222	0.0
1640.00	86231.4	0.111307E 07	145599.	48.0376	-97,0565	196,258	0.0
_1650.00				48.0463	-97,0615	196,293	0
1660.00	86172,6	0.111277E 07	145553	48.0349	-97,0664	196,328	0.0
1670.00	86143,1	0.111263E 07	145530.	48,0236	-97,0713	196.363	0.0
1680.00	86114_0		145507	AB_0123	97,0762	196,398	0_0
1690.00	86084.7	0,111233E 07	145484.	48.0011	-97,0811	196.433	0.0
1700.00	86055.5	0.111218E 07	145462.	47,9399	-97,0860	196.468	0.0
_1710,00		0_111203E_07	145439	47,9787		196_502	
1720.00	85997.6	0.111188E 07	145417.	47.9676	-97,0959	196.537	0.0
1730.00	85968.6	0.111174E 07	145394.	47.9565	-97,1008	196.571	0.0
1740.00	85940.0	0,111159E_07_				196_606	0.0
1750.00	85911.3	0.111144E 07	145349,	47,9344	-97,1106	. 196,640	0.0
1760.00	85882.4	0.111129E 07	145327.	47.9234	-97,115 4	196.674	0.0
.1764.22	85870.9	0 1111225 07	145317.	47.9187	+97.1175	196.688	0.0

booster slows down from supersonic to subsonic speeds. At a Mach number of 0.7 the engine throttles are adjusted to maintain a 91ide slope to arrive over the launch site at M = 0.4 at an altitude for final approach to touchdown.

This procedure significantly reduces the flyback fuel burned to about 2585 kg (5700 lb) per booster. A footprint of the flyback trajectory in terms of latitude and longitude positions is presented in Figure 42 .

Booster Fuel

The component buildup to booster fuel requirements are as follows:

Phase	kg	<u>1b</u>
Takeoff (JP-4) Fuel	3471	(7653)
Boost to Staging Fuel	85448	(188395)
Flyback Fuel	2583	(5696)
Reserve Allowance Fuel	1952	(4304)
* Total	93455	(206048)

* Which is significantly less than tentative estimate of 111,155 kg (245,055 lb) used in Table 2 Booster Mass Properties. This updated fuel requirement is used in the following final performance.

Figure 42

Footprint FLYBACK - TURBOJET BOOSTER

121 .

Performance

The Mass Properties for the final baseline configuration shown on Table 2 did not have the finalized fuel requirements for the turbojet boosters as indicated in above paragraph. By taking into account these reduced requirements and through weight scaling relationships, the booster(s) inert weight can be reduced about (3000 lb) per booster. This also has an effect of reducing GLOW from 1.22 X 10^6 kg (2.69 X 10^6 lb) to 1.17 X 10^6 kg (2.579 X 10^6 lb). The reduced GLOW was used for the final trajectory characteristics presented in Table 21.

Offset Range

A preliminary assessment of offset range capability indicated that for every (1) degree of latitude range change 24,946 kg (55,000 lb) of JP-4 is burned at subsonic cruise speeds and for a GLOW of 1.18 X 10^6 kg (2.6 X 10^6 lb). This offset range of 111 km (60 n.mi.) is also equivalent to a (1) degree plane change of orbit inclination. The extra fuel required could possibly be carried by strap-on body or wing tip tanks on the turbojet boosters. To match this capability for the orbiter in terms of a (1) degree plane change in low earth orbit a $\Delta V = 138$ m/sec (453 FPS) or 3719 kg (8200 lb) of extra orbiter propellant would be required. Strap-on propellant tanks on the orbiter would be a more difficult design task than that required for the boosters.

APPENDIX II - AERODYNAMICS

Input aerodynamic values to the boost trajectory computer program are tabulated in the following tables for both the mated (twin boosters/orbiter) configuration and the orbiter only. The mated values covers a Mach range from 0.70 to 3.2 and the orbiter from M = 3.0 to 6.0. Individually tabulated are angle of attack, minimum drag coefficient, drag due to lift coefficient, total drag coefficient and lift coefficient. Mated values of C_{DO} and subsonic C₁ were based upon NASA Langley estimates. Other values were established by various techniques including: wind tunnel test data of Boeing ALRS-205, single stage to orbit configuration, linearized and modified shock expansion theory, and DATCOM sources. The effects of the mated configuration at supersonic speeds on C_1 and dC_D/dC_L^2 were approximated by assuming that the effective reference area was equal to the orbiter reference area plus (2/3) of the total booster(s) area. Since most of the boost phase for the mated configuration is performed at relatively low angles of attack (2 to 5 degrees) any discrepancies in the estimated values should have only a small effect on the overall flight profile and injected weight of the system configuration. Due to the intricacies of the mated configuration wind tunnel test data is required to establish updated values with any degree of confidence. Such tests are planned by NASA Langley and the results should be available in the near future.

123

12:

Table 21

		-									•			
	AERODY	NAMICS	TURBOJE	T BOOSTEN	R SYSTEMS									
	MATED	CONFIG.	•					MA	сн и	ALPHA	Сро	CDLIFT	CDTOT	CL
•	MACH	ALPHA	CDO	CULIFT	CDTOT	CL								
	0.70	0.0	.0371	.0000	.0371	0.000		2.2	0	0.0	.0715	.0000	.0715	0.000
	0.70	5.0	.0371	. 0199	.0570	0.315		2.2	0	5.0	.0715	.0280	.0995	0.222
	0.70	10.0	0271	0705	1166	0 631		. 2.2	0	10.0	.0715	.1118	.1833	0.443
	0.70	10.0	.0371	.0795		0.031			0	15.0	0715	2514	1224	0.665
	0.70	12.0	.03/1	.1/89	.2159	0,946			•	13.0	.0715			0,005
	0.70	20.0	.0371	.3179	.3550	1.261		2.2	U	20.0	.0715	.4469	.5184	0.886
	0.70	25.0	.0371	.4967	.5338	1.576		2.2	0	25.0	.0715	.6982	.7697	1,107
							*							
	1.20	U.O.	.0850	.0000	.0850	0.000		2,7	0	υ.Ο	.0582	.0000	.0582	0.000
	1.20	5.0	.0850	.0326	.1176	0.341		2.7	0	5.0	.0582	.0243	.0825	0.188
	1.20	10.0	.0850	.1302	.2152	0.682		2.7	0	10.0	.0582	.0970	.1552	0.377
	1.20	15.0	.0850	.2928	.3778	1.023		2.7	0	15.0	.0582	.2182	.2764	0.565
	1,20	20.0	.0850	.5204	.6054	1.364		2.7	0	20.0	.0582	.3878	.4460	0.753
	1.20	25.0	.0850	.8131	.8981	1.705		2.7	0	25.0	.0582	.6059	.6640	0,941
	1.70	U.0	.0850	.0000	.0850	0.000		3.2	o	υ.Ο	.0449	.0000	.0449	0.000
	1.70	5.0	.0850	.0306	.1156	0.265		2.د	0	5.0	.0449	.0201	.0650	0.161
	1.70	10.0	.0850	.1224	.2074	0.531		3.2	0	10.0	.0449	.0805	.1254	0.321
	1.70	15.0	.0850	.2752	.3602	0.796		3.2	0	15.0	.0449	.1810	.2259	0.482
	1.70	20.0	.0850	.4892	.5742	1.061		3.2	0	20.0	.0449	.3217	.3666	0.642
	1.70	25.0	0850	7643	8493	1 326		2, د	0	25.0	.0449	.5027	.5475	0.803
						1.120								•

NU.

RBITE	R CONFI	G					•					
ACH	ALPHA	CDO	CDLIFT	CDTOT	CL							
8.00	0.0	.0407	.0000	.0407	0.000							
.00	5.0	.0407	.0103	.0510	0.118				•			
.00	10.0	.0407	.0413	.0820	0,236							
1.00	15.0	.0407	.0929	.1336	0.353	,					.	
8.00	20,0	.0407	,1652	.2059	0.471	MACH	ALPHA	CDO	COLIFT	CUTOT	CL	
.00	25.0	,0407	.2581	.2988	0.589							
						7.00	0,0	.0348	.0000	.0348	0.000	
.00	0.0	.0363	.0000	.0363	0.000	7.00	5.0	.0348	.0013	.0361	0,015	
.00	5.0	.0363	.0074	.0437	0.085	7.00	10.0	,0348	.0054	.0402	0.031	
.00	10.0	.0363	.0300	.0663	0.170	7.00	15,0	.0348	.0123	.0471	0.046	
.00	15.0	.0363	.0683	.1046	0,255	7.00	20.0	.0348	.0223	,0571	0.061	
.00	20.0	.0363	.1238	.1600	0.340	7.00	25.0	.0348	.0357	.0705	0.077	
.00	25.0	.0363	.1982	.2345	0.425							
						8,00	0.0	.0348	82572	64E-9	.0348	
.00	0.0	.0349	.0000	.0349	0.000	8.00	5.0	.0348	82584	36E-3	,0345	-,
.00	5.0	.0349	.0051	.0401	0.058	5.00	10.0	.0348	₩1040	68E-2	.0338	-,
.00	10.0	.0349	.0206	.0555	0.117	8.00	15.0	.0348	82371	38E-2	.0324	-,
.00	15.0	.0349	.0469	.0819	0.175	B.00	20.0	.0348	84294	22E-2	.0305	
.00	20.0	.0349	.0850	.1199	0.233	8.00	25.0	.0348	8-,6876	38E-2	.0279	
.00	25.0	.0349	.1361	.1710	0.292							
						9.00	0,0	.0348	8-,17177	76E-8	.0348	(
.00	0.0	.0348	.0000	.0348	0.000	9.00	5.0	.0348	117255	9E~2	.0331	8
.00	5.0	.0348	.0031	.0379	0.036	9.00	10.0	.0348	8-,69487	E-2	.0279	01
.00	10.0	.0348	.0125	.0473	0.071	9.00	15.0	.0348	*15833	8E-1	,0190	(
00	15.0	.0348	.0286	.0634	0.107	9.00	20.0	.0348	8-,28672	7E-1	.0061	- 1
00	20.0	.0348	.0517	.0865	0.142							
.00	25.0	.0348	.0828	.1176	0.178							

2

ð

ċ

Aerodynamics - (Orbiter)

125

. .

APPENDIX III - TURBOJET PROPULSION

This section presents more detailed information on the turbojet engine performance used with the final configuration. Included are thrust, fuel flow, C_T and SFC along the boost trajectory (See Table 22) along with other engine, inlet and nozzle characteristics as presented in Figures 43 to 52. Information is also given on engine weight, scaling laws and a procedure on how they are used to size the final engine.

Base Engine and Scaling

(400 lb/sec) The base engine is designed at sea level static conditions at a maximum airflow of 181 kg/sec (51246 lb) (45973 lb) The uninstalled static thrust is 227952 N (or 204497 N installed). The weights and dimensions are given in Table 22 and Figure 43 . Engine performance for other size engines of the same family as that of the base engine may be obtained by use of the scale factors for thrust, weight and dimensions as presented in Figure 44.

Inlet Weight Scaling

Figures 53 and 54 present inlet weight scaling criteria for a mixed compression inlet. Inlet weight is shown as a function of inlet diameter and dynamic pressure for length to diameter ratio of 4.91. For inlets longer than this ratio Figure 55 shows the additional inlet duct length as a function of diameter.

Table 22

Base Turbojet Engine Characteristics Along Nominal Flight Trajectory

_												
	MACH.	ALTITUDE		тн	RUST	WEIGHT FLOW RATE		Sfc	հ			
		m	(ft)	N	(16)	kg/hr	(1b/hr)	1/hour	·			
	0	0	(0)	515871	(115973)	36776	(81078)	1.764	-			
	.36	6.1	(20)	528615	(118838)	41766	(92079)	1.885	17.38			
	.49	89.3	(293)	225946	(50795)	44311	(97690)	1.923	9.86			
	.80	522.1	(1713)	256185	(57593)	52829	(116470)	2.022	4.42.			
	1.07	1301.8	(4271)	293274	(65931)	62600	(138011)	2.086	3.11			
	1.11	2080	(6824)	281286	(63218)	59819	(131879)	2,086	3.05			
	1.21	3808	(12494)	256492	(57662)	54313	(119742)	2.077	2.92			
	1.33	4834	(15861)	250562	(56329)	54946	(121137)	2.077	2.79			
	1.43	6259	(20537)	247422	(55623)	51937	(114503)	2.059	2.80			
	1.55	7287	(23909)	245473	(55185)	50825	(112052)	2.030	2.74			
	1.69	8425	(27643)	237889	(53480)	49677	(109521)	2.029	2.65			
	1.87	10322	(33865)	212868	(47855)	44107	(97241)	2.032	2.53			
	2.08	11518	(37789)	217387	(48871)	46273	(102016)	2.087	2.53			
	2.30	12607	(41361)	206783	(46487)	45466	(100236)	2.156	2.33			
	2.54	14240	(46718)	177207	(39838)	40504	(89298)	2.242	2.12			
	2.79	15064	(49424)	170219	(38267)	40595	(89497)	2,339	1.92			
	2.83	20806	(68261)	67981	(15283)	16534	(36453)	2,385	1.83			
	2.87	15527	(50942)	161714	(36355)	39164	(86344)	2.374	1.85			
	2.87	19523	(64053)	85467	(19214)	20719	(45979)	2,393	1.83			
	2.90	17873	(58641)	112205	(25225)	27471	(60565)	2.401	1.82			
	2.91	16481	(54074)	141532	(31818)	34638	(76364)	2,400	1.83			
\vdash	(base	engine)				m (inches)						
	SLS L Inlet Base Stand	Uninstall t Ref. Ca Engine k dard Circ	ed Thrust pture Area leight cular Exit	= 22795; = 1.359 = 2587 (Nozzle)	2 N (51246 m ² (14.63 kg (5703 1	i 1b) ['] 4 ft ²) b} (with	D _{FF} ≊1.24 D _{MAX} 1.37 L _{MAX} 2.24 D _{RF} 1.15 L _{RF} 32.84	7(49.1) 6(54.2) 6(89) 58(45.6) 4(1293)	1) $D_{CC}^{=1}.259(49.6)$ 2) $L_{CC}^{=3}.573(140.7)$ $L_{CG}^{=1}.69$ (66.6) .6) $L_{ACC}^{=}.076$ (3.0) 3) $R_{ACC}^{=}.762$ (30)			

FIGURE 43 ENGINE SCHEMATIC

:

VARIABLE GEOMETRY TURBINE AFTERBURNING TURBOJET

Figure 44

Advanced Turbojet Engine Scaling Factors

129

THRUST COEFFICIENT, C_T

Turbojet Engine Thrust Coefficient Characteristics

Turbojet Engine FN/q And D/q Characteristics

 $\circ \theta$ boattail = Nozzle Boattail Angle

Figure 47

ENGINE INTERNAL FLOW AND DRAG NOMENCLATURE

Typical Buildup of Turbojet Inlet Drag Losses

MACH NUMBER

Figure 49

Turbojet Engine SFC Characteristics

Figure 50,

Turbojet Engine Airflow Schedule

136 Figure 51

MATCHED INLET RECOVERY VS LOCAL MACH NUMBER

Figure 52

Turbojet Engine Nozzle Coefficient

137

hγ

2-DIMENSIONAL MIXED COMPRESSION

2-Dimensional Mixed Compression Inlet Weight

Figure 54

Inlet Duct Unit Weight

139 -

Exit Nozzle Weight Scaling

Nozzle weight scaling is given in Figure 56 for a fixed cowl design two-dimensional nozzle with and without vectoring Figure 56 shows the basic nozzle weight with vectoring for a 1.42m (56 inch) long nozzle cowl. The weight associated with any additional duct length over 1.42 m (56 inches) is determined with the aid of Figure 55.

Method for Turbojet Engine Sizing

The following procedure with example illustrates a method for sizing the turbojet engine:

- . Determine base turbojet engine characteristics along nominal flight trajectory using advanced engine technology program.
- Required inputs are aerodynamics, trajectory, weight and reference areas.
- . Equate thrust required to drag and weight component with a margin at transonic speed.
- . Determine required inlet capture area and scale factor for engine
- . Using scale factor size turbojet engine diameter, length, weight and SLS thrust size per engine.

Example - Given:

 $W = 1.17 \times 10^{6} \text{ kg } (2.57 \times 10^{6} \text{ lb})$ $S_{\text{REF}} = 881.4 \text{ m}^{2} (9484 \text{ ft}^{2})$ Trajectory at M = 1.22 h = 3810 m (12,500 ft) q = 63935 Pa (1308 PSF), a = 4.5 Deg. Drag Coeff, C_{DO} = .09 Base Turbojet Engine Install (T_{SLS/ENG}) = 204230 N (45,913 lb)

Contd

Figure 56

Turbojet Nozzle Weight

Max (Diam) Base = 1.38m (54.2 Inch) Engine (Wt) $_{Base}$ = 2587 kg (5703 lb) Inlet Capture Area, $(A_c)_{Base}$ = 1.359 m² (14.634 ft²) C_T = 2.92 at M = 1.22 along trajectory

Total number turbojet engines = 16

Now,

 $C_{D} = C_{D0} + \Delta C_{D}_{Lift}$ 1.15 (C_{D0}) = 1.15 (.09) = 0.103 Drag = $C_{D}q S_{REF}$ = 6.4 x 10⁶ N (1.44 x 10⁶) ROD Thrust, T_{RQD} = K (D + W sin &) Where Thrust Margin Ratio, K = 1.25 (Assumed) Tot T_{RQD} = 9.15 x 10⁶ N (2.057 x 10⁶ 1b) $T_{RQD/ENGINE} = \frac{T_{RQD}}{16}$ = 572123 N (128,619 1b) (@ Transonic Speed) Now, inlet capture area, (A_{c}) $_{RQD}$ = $\frac{T_{RQD}}{CTq}$ = 3.1 m² (33.42 ft²)

Contd

The engine scale factor, S.F. relative to base engine is then,

S.F. =
$$\frac{{}^{A}C_{RQD}}{{}^{A}C_{BASE}}$$
 = $\frac{33.42}{14.634}$ = 2.284

From which,

$$RQD (T_{SLS})_{Scaled} = S.F. (TSLS)_{BASE} = 2.284 \times 204497$$

= 467061 N (105,000 1b)
$$RQD Max. (Diam)_{SCALED} = (S.F.)^{.45} (DIAM)_{BASE} = (2.284)^{.45} \times 1.3 m$$

= 2.0 m (78.6 Inch)
$$Scaled RQD Wt = (S.F.)^{.95} (Wt)_{Base}$$

= (2.284)^{.95} x 2587
= 5669 kg (12,498 1b) (for Axi-Sym Noz)
= 6264 kg (13,810 1b) (for 2-D Noz)

In actual practice, the excess thrust margin ratio, K must initially be assumed and the resulting engine size run through a trajectory and payload performance computer program (HZ 600) to arrive in the vicinity of the optimum turbojet size as presented in Figure 15.

APPENDIX IV WING ANALYSIS

Support of the orbiter at Wing Bullock Line 435 during the takeoff results in significantly larger loads and corresponding increase wing weights relative to the Boeing ALRS 205 (Base for developing orbiter weights). The takeoff condition is analyzed as follows:

The orbiter reactions are distributed uniformily between an area ahead of the main gear well and aft of the main gear well. The shear outboard of W.B.L. 435 is subtracted prior to distributing the vertical reaction. The equal distribution is based on the orbiter weight distributions which are fairly equal fore and aft of the main gear well inboard of W.B.L. 435. Forward loads are carried inboard by three spars. Aft loads are carried inboard by the aft wing box. Torsion balance occurs at the side of body.

Thrust loads are carried in upper and lower surface panels.

For structural sizing panel shears allowable of $4.13 \times 10^8 N_m^2$ for titanium and $5.17 \times 10^8 N_m^2$ for Rene'41 are used. Bending allowables of $8.27 \times 10^8 N_m^2$ are used for both materials. This permits margin for internal pressure loads. Resulting preliminary design weights are developed on the following pages.

WING STRUCTURAL ANALYSIS

NOTE: ORBITER MAIN GEAR WELL DIVIDES AFT. & FWD. WING

WING STRUCTURAL ANALYSIS (CONT.)

AFT. WING BOX

TORSION MOVING INBD = 31,345,228 Nm

$$q_T = \frac{279450000}{250(60)(2)} \times \frac{4.4482}{.0254} = 1631298$$
 N/m

ASSUME 1/2 THRUST GOES FORWARD, 1/2 AFT

$$q_{THRUST} = \frac{560000}{2(2)(250)} \times \frac{4.4482}{.0254} = 98070 \text{ N/m}$$

UPPER SURFACE $t_{REQ} = \left(\frac{9315 - 560}{60000}\right)^{\chi} 25.4 = 3.81 \text{ mm}$ (Titanium)

LOWER SURFACE $t_{REQ} = \left(\frac{9315 + 560}{75000}\right)^{25.4} = 3.556 \text{ mm}$ (Rene'41)

△ WEIGHT RELATIVE TO BOEING ALRS-205

UPPER SURFACE $\Delta t = (.15 - .05) 25.4 = 2.54 \text{ mm}$ WT. = [.1 (144)(.164) + .25] 425 (1.1) .45359 = 553.4 kg/WING LOWER SURFACE $\Delta t = (.14 - .05) 25.4 = 2.286 \text{ mm}$

WT. =
$$[.09(144)(.298) + .25]$$
 425 (1.1) .45359 = 871.84kg/WING

HONEYCOMB CORE FOR THICK SKINS

▶ FACTOR FOR JOINTS

WING STRUCTURAL ANALYSIS (CONT:)

SPAR ALONG AFT WHEEL WELL

 $q = 9315 + \frac{1042000}{9(60)} \times \frac{4.4482}{.0254} = 196929$ N/m $t = \frac{11243}{60000} \times 25.4 = 5.088 \text{ mm}$ $\Delta WT. = (.2 - .05) (1.3) (60) (243) (.16) \times .453$ = 219.92 kg SHEAR IN OTHER SPARS APPROX. 2 TIME ALRS 205 \triangle WT. = .6 (2) (425) x .453 = 231 kg \triangle WING WT. = (510 + 470 + 1220 + 1923) .453 = 1866 kg/side TOTAL △ AFT WING WT. = 2 (4120) .453 3737 kg BEAMS FWD. ORBITER MAIN GEAR WELL FWD REACTION CARRIED TO SIDE OF BODY BY 3 SPARS. $MOM_{SIDE BODY} = (1124000(243) - \frac{90(243)(100)}{1728} (72)(3)(122) (.453 \times 4.448)$ = (273, 132, 000 - 33000000) 2.015= 483,865,980 Nm

WING STRUCTURAL ANALYSIS (CONT.)

AT SIDE OF BODY DEPTH = 2.794m

 $LD/IN = \frac{240.132.000}{110 (90)} \times \frac{4.4482}{.0254} = 425556 \text{ kg/m}$ t = .2 TOP & BOTTOM @ f_c = f_t = 827.36 MPa AVE t = 3.55 mm (CONSIDERING DEPTH CHG. OUTBD.) A t = (.14 - .03) 25.4 = 2.794 mm SURFACE WT. = .11(144)(.164 + .298) + 2 (.25) $\frac{90(243)}{144}$ (1.1) (.453) = 589 kg

▷ CORE REINFORCEMENT

FWD. WING CONT.

SPAR SHEAR FLOWS $q = \frac{1124000}{190(3)} \times \frac{4.448}{.0254} = 728491 \text{ kg/m}$ $t = \frac{4160}{60000} \times 25.4 = 1.78 \text{ mm}$ INCL. STIF. t = .07 (1.35) 25.4 = 2.41 mm t = (.095 - .03) 25.4 = 1.61 mmSPAR WT. = (.065) (90) (243) (.164) (3) (.4535)

= 317 kg

WING STRUCTURAL ANALYSIS (CONT.)

FWD WING = (700 + 1300) .4535 = 907 kg FWD WING TOTAL = 2(2000) .4535 = 1814 kg/WING

 \triangle WING WT. = (4000 + 8240) .4535 = 5552 kg DUE TO TAKEOFF LOADS

▶ INCREASE RELATIVE TO ALRS 205

<u> </u>					
1. Report No.	2. Government Access	ion No.	3. R	ecipient's Catalog No.	
4. Title and Subtitle			5. R	5. Report Date	
A Turboiet-Boosted Two-Stage-to-Orbit Space			Арт	:i1 1979	
Transportation System Design Study			6. P	erforming Organization Code	
7. Author(s) Andrew K. Hepler, Howard Zeck, William H. Wa and William H. Scharf		Walker,	8. P	8. Performing Organization Report No.	
			10 W		
9. Performing Organization Name and Address					
Boeing Aerospace Company		11.0	ontract or Grant No.		
Kent, Washington 98031			N	NAS1-15204	
			13 T	13 Type of Report and Period Covered	
12. Sponsoring Agency Name and Address			for t	tractor Report Final	
National Aeronautics and Space Administrat		ion 14 Securica Amore Code			
Washington, D.C. 20546				ponsoring Agency Lode	
15. Supplementary Notes	Ico D Watts				
Langley lectifical Monitor: Joe D. Watts					
	,				
16 Abstract					
have only considered all rocket propulsion systems. An alternative approach by NASA Langley has considered air breathing turbojet engines for the first stage. Their novel concept proposed to use twin turbo-powered boosters for accelerating to supersonic staging speed followed by an all rocket powered orbiter. Both stages are fully reusable. This effort is a follow-on design study of such a concept with performance objective of placing 29483 kg (65000 1b) payload into a low earth orbit. Design features of the final configuration included: strakes and area rule for improved take-off and low transonic drag, and advanced afterburning large turbojets. Technologies in need of development for this concept are: aerodynamics, orbiter structure and thermal design and booster propulsion integration.					
-					
17. Key Words (Suggested by Author(s))		18. Distribut	ion Statement	······································	
Turbojet Booster (2) Stage Advanced Space Transportation Systems		Unclassified - Unlimited			
				· · ·	
19 Security Classif (of this report)) Security Classif 1-6 at		01 No(0	- Price*	
	The least field	lage)	21. NO. OF Pages	22. Price	
Unclassified					
* For sale by the National Technical Information Service, Springfield, Virginia 22161					