something.

A Long-Range and Long-Life Telemetry Data-Acquisition System for Heart Rate and Multiple Body Temperatures From Free-Ranging Animals

Gordon F. Lund, Richard M. Westbrook, Thomas B. Fryer, and Rafael F. Miranda

(NASA-TM-78590) A LONG-RANGE AND LONG-LIFE N79-26762
TELEMETRY DATA-ACQUISITION SYSTEM FOR HEART
RATE AND MULTIPLE BODY TEMPERATURES FROM
FREE-RANGING ANIMALS (NASA) 74 P
Unclas
HC A04/MF A01 CSCL 06B G3/51 23482

May 1979

A Long-Range and Long-Life Telemetry Data-Acquisition System for Heart Rate and Multiple Body Temperatures From Free-Ranging Animals

George F. Lund
Richard M. Westbrook
Thomas B. Fryer
Rafael F. Miranda, Ames Research Center, Moffett Field, California

Ames Research Center Moffett Field, California 94035

A LONG-RANGE AND LONG-LIFE TELEMETRY DATA-ACQUISITION SYSTEM

FOR HEART RATE AND MULTIPLE BODY TEMPERATURES

FROM FREE-RANGING ANIMALS

Gordon F. Lund, * Richard M. Westbrook, Thomas B. Fryer, and Rafael F. Miranda

Ames Research Center

SUMMARY

A long-range and long-life telemetry system for heart rate and multiple body temperatures from free-ranging animals has been designed. This system includes an implantable transmitter, external receiver-retransmitter collar, and a microprocessor-controlled demodulator. The size of the implant is suitable for animals with body weights of a few kilograms or more; further size reduction of the implant is possible. The ECG is sensed by electrodes designed for internal telemetry and to reduce movement artifacts. The R-wave characteristics are then specifically selected to trigger a short radio frequency (RF) pulse. Temperatures are sensed at desired locations by thermistors and then, based on a heartbeat counter, transmitted intermittently via pulse interval modulation. This modulation scheme includes first and last calibration intervals for a reference by ratios with the temperature intervals to achieve good accuracy even over long periods. Pulse duration and pulse sequencing are used to discriminate between heart rate and temperature pulses as well as RF interference. The implanted transmitter might be used alone for experiments on animals that frequent particular locations within a large territory; on animals in virtually any kaboratory situation; or on animals in moderate-sized enclosures, such as those in a zoological garden. The implanted transmitter is otherwise interfaced with the receiver-retransmitter collar that employs commercial tracking equipment to achieve the long-range transmission. Peak energy is consumed only during the short RF pulses so that average current drain of either transmitter is in the range of tenths of milliamperes. The RF pulses from either transmitter are processed by the microprocessor controlled demodulator for the characteristics of pulse durations, intervals, and sequence. The output provides analog beat-to-beat heart rate and periodically updated temperatures as well as digital display. Heart rates to several hundred beats per minute (BPM) and body temperatures within a range of zero to 50° C with 0.1° C in resolution of change or better seem feasible. The objective of the design was to achieve a high degree of experimental flexibility and overall high quality in performance. The system was tested in prototype form on a dog.

^{*}National Research Council Assoc.; Adj. Assoc. Prof., San Jose State Univ., CA

INTRODUCTION

This report presents the design details and rationale of an experimentally versatile, long-range, long-life, telemetry data-acquisition system for heart rate and multiple body temperatures. The design comprises an implantable transmitter for short to medium range, a receiver/retransmitter collar to be worn by the animal for long-range transmission, and a micro-processor-controlled demodulator with a signal conditioner interface circuit. The other receivers and equipment that were used, including the collar transmitter, were obtained commercially.

The parameters of heart rate and temperatures were selected for this design for two major reasons. First, they have a low data rate requirement so that signal modulation is compatible with the same principles of operation of the small, long-range, long-life, telemetry tracking systems. Specifically, the radio frequency (RF) pulses can be infrequent and several milliseconds long as well as frequency-stable. These pulse characteristics allow narrow-band reception and pulse width discrimination in order to achieve the effective long transmission range at low power costs. Tracking systems have long been available and widely used (refs. 1,2).

Second, these parameters are substantially influenced, either directly or indirectly, by both the autonomic and central nervous systems, by the endocrine system, and by metabolism. Heart rate and temperatures, particularly in combinations, can therefore inherently serve to index many and various interactive responses of animals to their environments. These responses would include changes in activity, emotions, health, energy allocations, behavioral patterns, and biological rhythms. Illustrative examples have been presented elsewhere (e.g., refs. 3-5).

These parameters also require animal instrumentation techniques that are acceptable and not too difficult to use in a diversity of studies and environmental situations. That is, compared to the data of a tracking signal only, the gain of information from physiological data about the responses of an animal can far outweigh the added costs in the necessary initial procedural efforts of animal instrumentation.

Reviews and reference lists of the state of the art of physiological telemetry have been presented periodically (refs. 2,6-8). Pulse-interval modulation (PIM) in the telemetry designs for heart rate or temperatures is not uncommon (refs. 9-14). At least one design effort also has been able to obtain heart rates at long range with implanted and external relay transmitters (refs. 15,16). A temperature channel has recently been added to that system (Long, Department of Engineering, University of Wyoming, personal communication). Also, statements for the justification of studies that require physiological data from free-ranging animals and for the needs of associated research and development were prepared as a report from a NASA-sponsored 1973 Santa Cruz Summer Study and a subsequent Program Plan on Wildlife Monitoring (ref. 17). In short, the technical feasibility of a research approach and the justification for it have been demonstrated.

From the practical experimental point of view, however, the critical factor is the achievement of the quality of performance required to realize sampling procedures in experimental designs that are inherent in the idea of the use of indices. That is (except in the simpler applications), indices based on physiological parameters, such as heart rate and body temperatures, to assess animal responses will often require more or less continuous records over time in order to note relative changes. These changes can then be related to the experimental context and to the stimuli that give rise to the responses. Thus, large volumes of data are generated, and a high degree of automated data processing is virtually mandatory.

The system to be described here offers a heart rate and multiple body temperature capability but, in addition, has a number of features and advantages to improve signal quality and to increase experimental flexibility. The specific details of the circuits presented here represent a prototype that was designed, constructed, and tested in a Labrador dog at the Ames Research Center. A descriptive overview of the performance characteristics and design problems is presented first.

This work was initiated under the support umbrella of The National Research Council's Resident Research Associate Program and was continued, in part, through a grant (NSG 2293).

OVERVIEW

The implantable transmitter generates a radio frequency (RF) pulse of several milliseconds duration for each heartbeat. These pulses are triggered from the specifically selected biopotential R-wave characteristics of the electrocardiogram (ECG). Tests with the prototype show that the R-wave detection is highly reliable. A crystal controlled oscillator is used to achieve the narrow-band, high-power density, and frequency-stable RF pulses.

Periodically, the transmitter's operation changes as determined by a heartbeat counter. This is set to be every 50 heartbeats in the prototype. A series of PIM temperature RF pulses are then transmitted within an approximate 1-2-sec window. This temperature pulse series is at the same RF as that for the heartbeats, but the pulse durations are approximately doubled. The modulation scheme includes a two-point interval calibration that helps to achieve continued accuracy over time with good measurement resolution over a wide temperature range.

These RF signal characteristics are then received either directly at short to medium range or after relay through the collar for long range. In either case, the received signals are appropriately conditioned by an interface circuitry and then processed by the microprocessor. The interface circuitry is adapted to condition a tone-burst output, in order to make it compatible with commercial tracking receivers and field tape recorders that might be used for temporary data storage. The microprocessor then sorts the

pulses according to their widths and to the programmed data treatment for the other signal characteristics to give digital or analog outputs.

Since temperature variations occur slowly, the periodic cycle for transmission of data avoids unnecessary redundancy and conserves power both for transmission and for circuit operation. Also, the rates of change in temperature data are often correlated with heart rates so that sampling redundancy inherently increases with heart rate. The R-waves are still detected and counted by the implanted transmitter so that no information on the number of heartbeats is lost during temperature transmission. Because the temperature window is short, only a little heartbeat-to-beat information is lost.

On the other hand, the transmission of each heartbeat does not involve unnecessary redundancy. That is, animals that weigh only a few kilograms spend most of their time resting or engaged in moderate activity; their heart rates are then slow and match approximately a convenient pulse rate for location and tracking. The transmitter's duty cycle is still low so that further power reduction through reduced transmission rates is not really necessary. Operation time from several months to more than a year can be achieved, even within a small animal. Also, many experiments will require combinations between average heart rates for periods of time and beat-to-beat changes at other times. Such decisions about these formats are better made when processing the data. In this regard, the temperature cycle can be flagged optionally to obtain averages.

Figure 1 illustrates the various ways to interface the equipment for experiment flexibility.

Temperature Modulation

The modulation scheme for temperatures is illustrated in figure 2. The scheme involves ratios with the calibration values that are based on fixed resistors within the transmitter's circuitry. The fixed resistors determine the first and last intervals of the series of temperature pulses. The intermediate intervals of the series are assigned sequentially to the respective thermistors; there could be several thermistors if desired, but only two are used in the prototype design. The interval between the 50th heartbeat that triggers the series and the first temperature pulse is also determined by the same calibration resistor. After the last temperature pulse, a brief delay is insured before the next transmitted heart pulse is permitted so that pulse separation always occurs. The fixed-calibration resistors are selected to correspond to the highest and lowest resistances of the thermistors used and the range of temperatures anticipated in experiments. A measured temperature interval is therefore a percentage of the range defined by the calibration intervals and is then related to the known thermistor temperature curves.

The ability to define limits for acceptance in demodulation of the pulse durations, intervals, and sequence characteristics helps guard against

error. In addition, however, it allows the absence of error to be recognized automatically. That is, the microprocessor will not update unless conditions are met, and this fact can be known in an automated way. This is important when a telemetry system is used near the limits of its capabilities. Under such conditions, the feature of doubling the temperature pulses also inherently yields a periodic stronger signal. This flag, at least, helps to maintain the record of average heart rates when the noise interference for good beat-to-beat information is too great.

Because the relationship between the fixed resistors and thermistors is proportional, changes in circuit characteristics and power levels over time minimally influence accuracy. Because all the information for the PIM is transmitted in a short period of time, the variation in detection of the leading edges of the pulses ("jitter") within the pulse series should be slight. The degree of jitter from one pulse series to the next is of little concern. For example, a temperature range of 50° C with 0.1° C measurement resolution seems feasible within an average time requirement of less than 0.5 sec per temperature channel. The average from sample redundancy should improve this resolution.

R-Waye Detection

The quality of performance of this and similar heart-rate telemetry systems depends first on the reliability of the R-wave detection independent of the animal's activity. Body movements and the choice of electrode locations may cause variations of amplitudes, waveforms, and polarity of the ECG signals. There may be large and rapid changes in the regularity and frequency of heatbeats, and unwanted signals from various sources may cause false triggering. The idea of a chronic implant within a healthy and free-ranging animal must be kept in mind when trying to achieve an optimum degree of success to correct for these problems. The implant must be packaged adequately, and appropriate surgical procedures must be followed in addition to giving considerations to both sensor and circuit design. Simplicity and economy are desired for any solution, but not at the expense of experimental objectives and performance requirements. The optimum also will not be identical for different species or, for that matter, for different experiments with the same species. The direction taken here allows design and procedural variations to be made easily and noninteractively.

A reasonably good first approach when the transmitter is implanted is to locate the electrodes subcutaneously on the thoracic region. The R-wave amplitudes tend to be greater when one electrode is referenced to the other located near the apex of the heart and relative to the heart's electrical axis. Amplitudes within the ranges of several tenths of a millivolt to several millivolts will often be obtained, but this depends on the species as well as on electrode location.

The frequency spectrum for the ECG is 0.1 - 100 Hz. Empirical examination with the use of filters will indicate that dominant frequency

components of R-waves occur at about 20 Hz. This is somewhat dependent on heart size and rates. Filtering above that frequency substantially reduces the electromyogram (EMG) in which the frequency components begin at about 30 to 50 Hz. The amplitudes of the EMG tend predominantly to be less than a few tenths of a millivolt unless a major muscle mass is involved. Skeletal muscle is anatomically unlike that which produces the behavior of an electrical syncytium in cardiac muscle. A strong electrical axis between highly coordinated polarized and depolarized regions over a long distance, as from the heart, does not occur. Location of electrodes away from muscle is therefore beneficial.

Low-frequency signals within a few hertz, such as those caused by respiratory movements, are filtered also. But amplitude changes in the signals of successive heartbeats can be substantial because of the influence of thoracic changes on the electrical axis. Changes in body position, which shift tissues and organs, also influence the electrical axis. Beat-to-beat changes in amplitudes in excess of 40% tend to be very rare and are usually much less if care is taken; however, amplitude changes over time are of course greater. It is important, therefore, to select electrode locations to reduce this variation as well as to maximize R-wave amplitude. Signal polarity changes are controlled by rectifying the signals. Automatically adjusting thresholds help to compensate for amplitude variations and to maximize noise discrimination whenever possible.

There is a variety of other signal detection problems. Excessively large potentials, which can occur, can overdrive the amplifier; discontinuous signals can cause ringing oscillation within circuits; and accentuated T-waves may occur with respect, in part, to electrode placement and cause double triggering. . T-waves can usually be controlled to be less than 50% of the R-waves. P-waves tend to be much smaller but do precede the R-wave. Fortunately, the wave forms of the ECG tend to keep a degree of amplitude proportionality so that automatically adjusting thresholds have considerable benefit. Triggering from RF feedback within the circuit or · through external leads requires appropriate preventive measures, such as filtering and packaging. Spikes from stress at lead connections can occur if proper care is not taken. Lead movements can induce potential differences at the transmitter's input when the leads are separated and when there is a high impedance. This problem is reduced when the transmitter is inside the animal's body but might be heightened by a strong RF field during signal outputs. Changes of the transmembrane potentials of cells due to pressures of electrodes, and as different from activation potentials, might occur also.

In practice, many of the unwanted noise artifacts occur in the form of spike bursts rather than single spikes. A few of the spikes in a burst will have higher amplitudes than most of the others. Although these spikes are often close together, their amplitudes may exceed a triggering threshold. Rapid retriggering might occur unless limited. Nevertheless, such limits must not exceed requirements for maximum heart rates. Maximum heart rates of animals that weigh more than 1 or 2 kg rarely exceed an upper limit of as much as 8/sec. This allows 125 msec as a minimum limit, for retriggering

and that limit could be extended if maximum rates are lower. This minimum limit for retriggering also helps to traverse the intervals of rectified waveform complexes and might be extended to overlap T-waves. Electrode movement artifacts can be a major problem because their signal amplitudes and frequency components range widely and overlap those of R-waves. Appropriate electrode design and implant procedures are critical here, and some suggestions will be made shortly.

In effect, the circuit design for the detection of R-waves places a window for signal characteristics among those anticipated after appropriate animal instrumentation procedures are followed. Sharp high— and low—pass filtering limits the frequency components above and below about 20 Hz. A limit on the accepted rate of change of slope of an incoming signal is also used. Amplifier gain control during RF pulses helps reduce feedback in addition to filtering. Full—wave rectification reduces polarity reversal problems and is combined with limits on retriggering rates. An absolute minimum amplitude threshold is set at about ±0.3 mV to keep above low—level signals and noise. Minimum R-wave amplitudes therefore must exceed this level. In addition, the triggering threshold automatically and proportionally adjusts itself above this minimum to accommodate beat—to—beat amplitude variations and anticipated durations of rectified waveform complexes, such as noise bursts. Precautions are taken to ensure rapid recovery in performance of the circuits, should unusual input signals occur

Again, the design is flexible so that adjustment in the specifications for performance requirements are largely noninteractive. The design is complex, but makes efficient use of available low-powered integrated circuits for construction. Also, the advantages that can be gained, if R-wave detection is accomplished reliably by the implanted transmitter, substantially overshadow the subsequent problems and limitations associated with complex waveform transmission of the ECG when only heart rate ultimately is required.

Electrodes

Relatively small structures, such as wires, needles, and lead-loop extensions of stainless steel are often suggested for chronically implanted ECG electrodes (refs. 18-22). Stainless steel is a convenient metal to use and is tolerated reasonably well by tissue; an alternative metal like silve is less durable and somewhat toxic (ref. 23). The small mass is advocated to reduce inertia problems and, because the skin boundary encountered by external electrodes is absent, the impedance of an internal stainless steel electrode is relatively low even for small structures that have areas of only a few square millimeters (refs. 19,20,24). Secure suturing, the promotion of tissue imbedding, and an appropriate choice of locations where body movements are minimal are often indicated procedures to reduce movemen artifact problems. Neuman (ref. 22) recently illustrated that a multistranded lead-loop extension is a typical design commonly used for internal telemetry.

These electrode styles are not recommended here. A large distributed area, smooth, thin, and inflexible stainless steel disc is a better yet still simple design that is suitable for chronic subcutaneous implants in active animals. An example that is compared with a lead-loop extension is illustrated in figure 3. This particular construction involves a groove and plurality of holes into which the lead is fitted with support tabs and spot welded into place. Silicone RTV coats and supports the entire region of connection and binds to itself across the holes in the disc as well as to the disc. The RTV also is tapered to the lead to reduce flexture stress. The four holes near the periphery allow the disc to be firmly sutured in place so that lead movements do not dominate electrode movement, as is the case with a small mass electrode.

Figure 4 shows the considerable difference in signal quality that can occur between the disc and lead-loop extension electrodes that were illustrated in figure 3 and when in vivo. For these records, the electrodes had been implanted 1 week earlier in a dog; they were placed side by side subcutaneously in the lead II configuration across the sternum. The leads passed transcutaneously and were connected by clips to the recorder with one pair for recording while other test pairs served for ground. Filters were set at 1.0-100 Hz; the preamplifier input impedance was 200 kohms. The dog was kept walking in a circle with side steps of the forelegs. The records were made sequentially with disc electrodes in A, and then with lead loop extensions in B. Rubbing the skin directly over the electrodes produced an even greater difference in signal quality.

Figure 5 illustrates $\underline{\text{in}}$ $\underline{\text{vitro}}$ records from these two electrode styles when one member of a pair $\underline{\text{in}}$ a 0.9% saline bath was rubbed between the fingers in an attempt to simulate the in vivo condition. The records of the potential changes of disc electrodes (A&C) and lead loop extensions (B&D) are labelled respectively. The records A&B show the direct current potential changes; filters were set at $10-\tilde{1}00$ Hz for the records in C&D. A 10 Mohm input impedance probe was used. Polarity of the disturbed electrode is defined by the potentiometer connections. In A, the negative electrode was disturbed; in B, C, and D, the positive electrode was disturbed. Note that the artifacts are directed in sign opposite to that of the disturbed electrode. This as well as the severity of the artifacts depends on metal type; a steel electrode produced an opposite result. Electrode polarity orientation when implanted can therefore help differentiate between R-waves and movement artifacts. Large pieces of copper, silver. silver-silver chloride, and aluminum exhibited polarity changes similar to stainless steel. The half cell of stainless steel was positive. to all of these metals; aluminum was most negative. Magnitudes of artifacts were least from silver and silver-silver chloride, but again, their use as for chronic implant is not recommended. A few of the more exotic electrode metals or materials might be preferred. However, comparative tests of electrodes should be based on an emphasis on resistance to perturbation as well as on rate of recovery, and on tissue response and physical shape that includes lead connections in order to relate theory to practice.

The records in figures 4 and 5 show that at least an order of magnitude of difference in the susceptibility to produce major spike-like disturbance artifacts can be noted under either of the <u>in vivo</u> or <u>in vitro</u> conditions. Even though the disc, by virtue of a larger area, should have a somewhat lower impedance, the impedance of the lead extension with a calculated peripheral area in excess of 10 mm² would not be expected to be high (ref. 24). But the induced variance in half cell potential is obviously high and occurs sharply for the lead extension when under nonstationary conditions. Even the use of a 10-Mohm input impedance probe in the <u>in vitro</u> tests was not adequate to counter this difference.

Aside from the structural suitability for an implant, some of the advantages of the disc seem to derive from the fact that the design widely and evenly distributes current flux and bridges large areas of tissue. Localized regions of either disturbance or cellular activity therefore would not dominate the entire electrode's behavior as would be the case with a small structure. On the other hand, large size would not diminish the ECG signal as expected if the biopotential were localized. Again, the ECG is generated throughout the body because the heart behaves as an electrical syncytium. Polarized and depolarized regions are created over a substantial structural distance. Even a large electrode cannot easily traverse that distance and thus tend to minimize its own net potential change relative to a distantly located reference electrode.

A plurality of electrodes or a flattened tube that is open at one end and insulated on the outside are alternative suggestions. A tube would increase the distance from surrounding tissue and tend to isolate the electrode interface from physical movements against tissue. A plurality of electrodes would further distribute current flux and may offer some advantage for minimizing amplitude fluctuations in R-waves as the heart's electrical axis changes. Maximum amplitudes, however, might be reduced because of the net potential difference across the separated parts of an individual electrode. These suggestions are secondary options, the implementation of which increases the procedural complexity; they may not be necessary. Also, flexible stainless steel mesh cloth of large area has been tried but was found unsuitable because of problems with lead connections and suture locations that seem to produce spikes. Also, the base potential difference produced by rubbing the mesh cloth when in vitro was substantially greater than that for the disc, but the spikes produced this way were about the same. A small disc has been routinely used for small animals and has been illustrated elsewhere (ref. 25). For example, good quality records can be obtained from rats running on a treadmill; a larger disc is better if animal size and skin thickness for revascularization after implant permits.

RF Interference

Problems of RF noise interference and signal strength variations can, of course, cause difficulties with reception. At the implant to collar relay interface, a crystal-controlled, commercial, tracking transmitter was

used. The transmitter was modified so as to be a complete slave to the output of the collar receiver and its associated logic circuitry. The logic circuitry delays the incoming pulse characteristics and then regenerates them for retransmission. Thus, the strong retransmitted RF cannot normally interfere with reception from the implant. The pulse width and intervals are maintained through the relay but the RF is changed to that of the retransmitter. The RF of both the implant and the collar transmitter are selected to be nonharmonic to reduce possible interaction. This separation is also convenient for experimental reasons. The use of different receiver bands is helpful in any new experiment to check coupling requirements between implant and collar. During experiments, the distance between the animal and the investigator's receiver will vary. When that distance is short, interference could occur if both transmitters had a similar frequency.

Because the implant produces a relatively strong RF signal, variations in signal strength are less troublesome when an attempt is made to achieve a good coupling with the collar receiver as the animal moves and changes body positions. Also, the collar receiver sensitivity can be minimal and less susceptible to extraneous RF interference. A wider receiver bandwidth is more feasible, and the power requirements are reduced in that a passive or only a slightly active gain need be employed. Thus, the size and weight of the external collar is not greatly increased over that required for the basic tracking condition.

The similar kinds of noise problems that occur at the output of the investigator's receiver are dealt with in the demodulation interface circuit in three basic ways. First, sharp band-pass filtering selects the tone burst generated by the incoming RF. Second, the RF sensitivity gain of the receiver is coupled to threshold detection; this involves a combination of manually set and autotracking modes to accommodate signal strength variations. Third, since much of the remaining extraneous RF noise involves short random pulses, pulse width discrimination of the received signals is used to block this noise and to sort the heart rate from the temperature pulses.

The tone bursts will not always be perfectly formed, particularly when near the limits of range; that is, the individual sine waves may be amplitude-modulated. A conversion to a square wave for pulse width discrimination is used and the top of the square wave is sustained for a brief period to stretch past a temporary attenuation. This period of pulse stretching must be short, however, so that only severe random noise could produce an output that is long enough to be accepted as a heartbeat.

Packaging and Implant Procedures

Some comments and suggestions about packaging and surgical implantation procedures follow. The units should be hermetically sealed with appropriate headers, such as glass to metal, for lead passage out of the unit in order to prevent moisture penetration. The outer coat of the unit must be tissue compatible — silicone RTV can be used. Tissue, however, does not adhere to

RTV and a layer of Dacron coarse-weave cloth will facilitate tissue imbedding. This is strongly advised so that the unit can become firmly anchored within the body where it was originally sutured. When the implant is abdominal, some Dacron should be added to the leads where they will pass through the muscle wall to run subcutaneously. Appropriate sutures should be taken in that region to prevent slippage, to promote healing and reclosure of the abdominal cavity, and to prevent lead flexure at that point from pressing outward against the skin. Revascularization of the overlying skin might otherwise be inhibited.

Sensors located subcutaneously should be placed to the side of the skin incision to facilitate revascularization of the skin. All such objects should be sutured in place rather than left to float, in which case they may be more easily rejected or change location. The electrodes in particular must be well sutured for stability. An appropriate amount of lead slack is necessary so that sensors will not be stressed when the animal extends its body. Flexure stress at the lead/sensor junction is minimized also if the lead path into the sensor is not curved. Again, in no case should the leads or sensors exert an outward pressure against the overlying skin; even if healing occurs initially, a constant outward pressure to the skin may later cause rejection. A conservatively placed suture will usually alleviate problems of pressure from lead flexure and help to guide the lead path. Tight sutures around the leads or sharp angles, of course, cannot be The job of channeling subcutaneously is not difficult, even in fairly large animals if appropriate tools are used (ref. 26).

A good flexible lead can be made with multistrand stainless steel wire, silicone tubing, and self-leveling silicone RTV. In some cases, it is adequate simply to insert the wire into a section of tubing and then inject the tube with the RTV. Greater flexibility can be achieved by coiling the wire within the tube. This can be done by coiling the wire around a piece of small-diameter metal tubing which is then inserted into the silicone tubing. The metal tube is then withdrawn. If necessary, the silicone tube can be temporarily expanded by soaking it in xylene; the xylene later evaporates and the silicone shrinks approximately to its original shape.

The common practice of using solder and solder flux to make connections to leads can cause problems. Tissue toxicity responses and the deterioration of the connection due to the battery potentials that arise from the metal discontinuities and due to the flux chemistry are likely. Spot welding, bolting, and crimping are better ways of making connections. Coating these connections, with RTV, for example, adds protection, reduces flexure stress, and offers an increased impedance boundary against electrochemical potentials.

The use of gas sterilization techniques, for example, with ethylene oxide, is recommended. The gas penetrates the outer potting materials. Zephiran chloride can then be used as a surface cleaning agent during implantation to reduce the possibility of contamination. Because heat and pressure are often used with gas sterilization, care should be taken to avoid damage to the potting materials or to the transmitter unit.

After the implant, closure of the skin might best be done with steel or a monofilament suture. Silk can act as a wick that might promote infection. It is best to use permanent sutures for the implant and for abdominal closure, however, rather than absorbable sutures. Antibiotics should be generously used, and their direct application to the implant and surgical area seems helpful in preventing initial infection problems. During surgery, skin separation from the underlying tissue should be kept to a minimum; the loss of vascularization promotes subsequent edema and results in cold regions that inhibit rapid healing. It is recommended that the animal's fur be shaved sparingly and that a temporary bandage be applied for support and warmth (the bandage should still allow exposure to the air). Talcum powder along with the topical antiseptic helps to keep the area dry. Of course, animal behavior after surgery and within the experimental situation influences procedures. An implant under field conditions should be done only after these things are known, particularly if the animal is to be released immediately without a day or two of confinement for purposes of observation.

IMPLANTABLE TRANSMITTER CIRCUITRY

Figure 6 is a block diagram of the implantable transmitter; figure 7 shows the entire circuit design. The major functional stages are indicated by capital letters to correspond with waveform outputs of these stages as shown in figures 8 and 9.

The RF bypassed input voltages to the R-wave detector stage are first limited by a voltage follower whose "slew rate" is set at ±1 mV/msec (fig. 6) (A). This allows normal excursions of the QRS complex while greatly reducing the magnitude of large-amplitude, sharp signals which might drive the filter and amplifier circuitry into distortion (refs. 27,28). The next stage is a six-pole, low-pass filter (ref. 29). It provides a 36 dB per octave rolloff with a 3 dB point (70% amplitude) at 31 Hz (B). Its output is connected to a two-pole, high-pass filter with a 3 dB point at 18 Hz and a rolloff of 12 dB per octave (C). This filter circuitry provides a band-pass centered near 26 Hz with a sharp rolloff at higher frequencies and a lesser rolloff at lower frequencies. These filter characteristics select the fundamental frequency component of the R-wave while greatly attenuating other components. An AC coupled amplifier with a gain of 56 is next (D). Gain was set to accommodate ECG amplitudes within a range of ±5 mV. A precision full-wave rectifier converts the amplifier's output to an absolute value so that all signals are then positive regardless of the polarity of the input signal (E). Total gain is reduced to unity during RF transmission as a further precaution against spurious responses; this circuit is indicated later.

The remaining circuitry generates a constant-amplitude, 5-msec-wide pulse each time an R-wave occurs. It does this by identifying the highest peak in the rectified and filtered QRS complex by means of a peak pulse detector (ref. 30). The detector follows the amplitude envelope of the

rectified QRS complex and stores the maximum level on a capacitor \bigcirc . As long as the input signal is positive-going and greater than the stored charge, this stage \bigcirc functions as a voltage follower. When the input waveform reaches a point of inflection and starts negative, the stored charge back-biases the diode decoupling the negative feedback loop. With the feedback loop decoupled, the stage functions as a comparator. Thus, the output swings into negative saturation since the inverting input is more positive than the noninverting input. If subsequent peaks do not exceed the stored charge, the output remains locked in negative saturation. Thereby, the last negative output transition occurs at the highest peak of a pulse complex.

The detector's output is connected to a biased CMOS line driver whose output (H) controls a retriggerable monostable device. Unless retriggered, the monostable resets in 110 msec. But in the case where the peak detector is responding to a cluster of pulses with intervals less than 110 msec, the monostable may be retriggered several times, not resetting until 110 msec from the detection of the highest pulse. The reset (J) drives a second, nonretriggerable monostable with a time constant of 5 msec. Thus, a 5-msecwide pulse is generated (K) for each detected R-wave. That pulse triggers the crystal-controlled RF oscillator (S) via the combination of gate control circuitry (Q,R). The fixed delay of 110 msec does not affect the beat-to-beat measurement of heart rates less than 545 BPM. But this delay effectively is increased by a period selected in the gain control circuitry that leads back to the amplifier and rectifier (D,E). For example, the addition of 20 msec through that circuitry yields a rate limit of 461 BPM.

The 5-msec pulse (K) also provides a reset control for the peak pulse detector. Reset is done by closing a normally open gate for 5 msec, discharging the capacitor on the detector (G). The level of charge left after the switch reopens is a function of RC values (G,I) and of the 5 msec. For example, a discharge voltage of half the previous peak amplitude allows the detector to track, on a beat-to-beat basis, changes in R-wave amplitude of 2 to 1. Thereby, the detector's threshold is automatically adjusted to provide a trigger level which is proportional by a desired amount to each measured R-wave amplitude. A resistive bridge in the discharge path of the detector sets the absolute minimum threshold level to ±0.3 mV and lower referred to the transmitter's ECG input. This ensures that the detector will not trigger on baseline noise when an adequate ECG is not present.

A restart circuit is provided in the event that the detector is driven into positive saturation such that the charge on the capacitor might remain higher than the subsequent incoming R-waves. In this condition, no triggering would occur to automatically adjust the threshold level. The restart circuit, which allows the capacitor to discharge until it reacquires the R-wave, activates 1 sec after the last detected heartbeat. The 1-sec delay is related arbitrarily to the expected lower heart rates. With a 1-sec value, the search mode would be employed at all beat-to-beat intervals of rates less than 60 BPM. For many animals, this may be a resting state when artifacts from EMG and electrode movements are least

expected, except in such special physiological conditions as diving bradycardia.

The restart circuit itself consists of a resistor and capacitor connected across the battery supply. When the charge on this timing capacitor approaches $V_{\rm dd}$, a gate connected to it closes. The detector's storage capacitor G is now discharged through the gate via resistor to ground. The resistor determines the search rate as the threshold lowers to its absolute minimum. The RC combination G that controls the gate provides the delay between the last heartbeat and the start of the search mode. Another gate is connected to the timing capacitor so that the search mode can be canceled. When closed, it discharges the timing capacitor to $V_{\rm SS}$. This gate is closed each time the detector G indicates a new pulse has been received. The search mode, therefore, is never employed at heart rates greater than the delay time, as seen in figure 8.

Besides keying the RF oscillator and adjusting the threshold on the peak detector, the 5-msec pulse generated by each heart beat initiates a counter divider chain and signal control to allow sampling of two temperatures periodically. The circuit diagram is included in figure 7. The significant waveforms are shown in figure 9. The R-wave pulse is divided by 50 using two CD 4017 decade counter dividers. A reset pulse (M) every 50 counts initializes the second CD 4017 and starts a third CD 4017 ①. The clock for the third counter (pin 14) is a multivibrator oscillator and has its period controlled by a resistance bridge. Four independent bridge circuits are provided, two with thermistors and two with the fixed resistors that provide a 0° C and a 50° C calibration. The four bridges are sampled sequentially by four CD 4066 switches controlled by the CD 4017 that advances one step following each pulse.

The oscillator operates as follows: A D30A3 is used as a constant current source to charge a 1-µF timing capacitor with the current-level variable proportioned to the voltage level derived from the resistance (thermistor) bridges (T). An NPN D26El emitter follower is used to compensate the emitter-base diode voltage of the D30A3. With the constant current from the D3OA3 charging the 1-uF capacitor, a linear voltage ramp is generated starting at Vss. The ramp signal is connected to the negative terminal of the L161 comparator and the positive side is connected to the L161 output by a 2-to-1 attenuator. With the ramp signal below the positive terminal voltage, the L161 output is saturated at Vdd, and the 2-to-1 divider places a 0 voltage at the positive terminal. As soon as the ramp crosses this 0-V threshold the L161 comparator switches to an output of Vss and the positive terminal is also Vss. The L161 holds the Vss level until the $1-\mu F$ capacitor is discharged and then the entire cycle starts over again with the charge current from the D30A3. The ramp signal is operated between Vss and O since the L161 allows operation of the inputs all the way to the negative rail; but with a Vss to Vdd supply of 2.7 to 3.0 V, it will not work with a common mode voltage closer than 1 V to the Vdd rail. This ramp generator voltage range also provides the necessary collector voltage for the D3OA3. The reset after each ramp period (proportional to the bridge voltage) is accomplished with a CD 4066 switch which is connected to the L161 output via

a CD 4001 inverter. The return reset cycle is very short because of the low impedance in the switch. By adding a 3.3 kohm thermistor in series with the switch the reset period can be adjusted to 10 msec for the pulse width for transmitting temperature data (N). The enable circuit (P,Q) allows a time delay to capture the duration of the last temperature pulse and, in combination with the gain shutdown control (Q,D), ensures that a heartbeat 5-msec pulse will not overlap with that temperature pulse.

A number of considerations suggested that a thermistor bridge circuit would be more satisfactory than a direct resistor charging circuit for the timing RC. Since at least one of the thermistors and possibly both would be located remote from the electronic package, it was desirable and probably essential to use a low impedance thermistor. For instance, whether a 30-kohm or a 3-kohm thermistor is needed depends on the adequacy of moisture protection, and that is difficult to evaluate; therefore, the lower the thermistor value, the better the chance of maintaining consistent results. A 3-kohm thermistor at 25° C is about 10 kohms at 0° C (lower temperature extreme). For a 0.1° C temperature accuracy, a 0.04% resistance accuracy is required so that a shunt impedance of 2 Mohms across the thermistor would cause a 0.1° C error. A 20-Mohm shunt would give the same effect on a 30-kohm thermistor. This indicates that even with low-impedance thermistors, careful protection from moisture is essential.

If low-impedance thermistors (most desirable because of moisture problems) are used directly in RC timing circuits, two other problems occur. One is the switch impedance of the CD 4066 which is of the order of a few hundred ohms and deteriorates rapidly as the power source is reduced from 5 V to 3.0 V. This could represent a substantial impedance in series with the thermistor. Any significant variation in this impedance is likely to cause data errors. Because about 1 sec is allocated to retrieve the temperature data, very large capacitors would be required to obtain a suitable time constant with low impedance devices. Both of these problems can be circumvented by using a resistance bridge.

A D30A3 is used as a switch to power the four resistance bridges only when the approximate 1-sec temperature data are taken. The D30A3 is driven by a D26E1 so that the D30A3 can be properly saturated without loading the CD 4017 output. With the base current levels used, the voltage drop across the switch is typically 10 mV. Even this low voltage drop would cause readout errors if a bridge circuit were not used. Since all the bridge circuits (four each) are turned on with a common switch (D30A3), whatever voltage drop occurs in the switch is corrected for by the 0° C and 50° C calibration readings.

Minimizing the total power consumption is important to achieve an operational life of more than 1 year with a modest-sized battery. Although the CMOS devices are on continuously, they require very minute currents except during the short microsecond transitions between on and off states. The low-impedance thermistors would, however, represent a drain of many milliamperes if they were on all the time. Since the temperature is only sampled for 1 sec every 50 heartbeats, assuming an average heart rate of

100 BPM, this gives a duty cycle of 1 sec "on" and 30 sec "off." With typical thermistor values of 3 kohms and bridge resistors of 3 kohms, the "on" current for the four bridges is 2 mA; the average is 1/30 of 2 mA or about 60 μ A. Switching each of the four bridges independently, which could further reduce the average current, did not seem advisable because extra parts would have been required and because of the possibility of error introduced by impedance variations in different switches.

Figure 10 shows a typical thermistor resistance vs temperature plot as well as various thermistor resistance bridge combinations. The tabled values were obtained with a breadboard bridge circuit and substitution of resistance to simulate thermistor impedances. Over the 0° to 50° C desired operating range, the thermistor changes about 10 to 1 in resistance and also is a nonlinear curve. Although a 3-kohm thermistor has been used for the data of figure 10, the shape of the curve would only change very slightly with a thermistor of a different impedance. The use of various bridge configurations results in a variety of possible curves. Limitations in the timing accuracy that can be transmitted within a limited RF bandwidth and using about a 1-sec interval for all temperature readings indicate that the raw thermistor 10-to-1 dynamic range is too large for proper use in this system. The approximately 3-to-1 range for the bridge curves seems about the best. A 1-kohm resistor is placed in series with the thermistor side of the bridge so that if the thermistor resistance were to short-circuit, the oscillator period would not be infinite. Such safeguards must be made in case a shorted or open thermistor lead causes the entire system to otherwise shut down. The bridge circuit plus some series resistance with the thermistors prevents such a failure and also yields identification intervals of such mishaps.

Some further manipulation of the bridge arrangement or resistance values could probably improve the dynamic range. This involves some sacrifice of the linearity but linearization can be done more easily through the demodulator. Calibration curves for the thermistor bridge in the transmitter circuit and with a 30 kohm thermistor are shown in figure 11.

As shown in figures 7 and 9, the temperature circuitry controls gating () and (R) to the RF oscillator's input (S) and to the control circuitry to the amplifier gain (D). During a temperature measuring cycle, the 5-msec heart-rate pulses are replaced by the 10-msec temperature pulses, thereby doubling the oscillator's on-time. The R-wave counter nevertheless continues to advance so that the start of each temperature cycle represents the 50th heart beat exactly; only the dynamic beat-to-beat variation is interrupted temporarily.

The single stage RF oscillator is base-emitter tuned with a third-overtone crystal employed as the frequency determining device. The base-emitter circuit operates at the crystal's third harmonic of 54 MHz. The collector circuit is also tuned to 54 MHz. This configuration provides good frequency stability in a single-stage oscillator because the output load is effectively isolated from the base-emitter tuning loop. The oscillator's output is connected to the thermistor leads. These leads serve as the

antenna, thereby optionally eliminating the need for a separate antenna. Bypassing RF is provided at the resistance bridge as well as at the ECG input and battery supply. The oscillator is keyed "on" and "off" by the ECG and temperature pulses so that it is active only during each pulse period. Turnon time to full RF amplitude is within a few cycles of the 54-MHz operating frequency. Thus, the resulting wavefront slope is less than 20-µsec wide compared to the data pulse intervals of over 100 msec. Peak RF output power is about 8 MW.

The system uses two center-tapped mercury cells to provide $\pm 1.4~V$. Power consumption is the sum of the continuous current drain of the circuit plus the average peak current, which is heart-rate dependent. At a heart rate of 100 BPM, the average current drain is about 350 μ A, of which approximately 250 μ A is continuous.

Figure 12 shows the transmitter at various stages of prototype packaging for implantation and testing. The prototype unit was fabricated with discrete parts and integrated circuits. A further reduction in size would be possible using hybrid construction techniques, since the active components used are available in chip form. The battery shown has a 2400-mAhr capacity, thereby providing a maximum operating life of about 9 months at an average heart rate of 100 BPM.

The AM receiver used with this transmitter operates at 54 MHz, with an output frequency response from 0 to 10 KHz. The low-frequency capability is important since the received pulses can have durations as long as 10 msec. The amplitude is adjusted to provide the 0 to +5 V pulse heights necessary for driving the demodulator.

RETRANSMITTER COLLAR CIRCUITRY

The retransmitter consists of an RF receiver, logic circuitry, and a commercially available animal tracking transmitter, all packaged within a collar. Figure 13 shows a prototype collar and field receiver equipment for a dog. Dimensions of the electronics package are 5 by 5 by 7 cm; weight is 320 g. Most of the size and weight is due to the tracking transmitter, which is 3 by 5 by 7 cm and weighs 277 g. The transmitting and receiving antennas are incorporated within the collar.

Figure 14 is a circuit diagram of the retransmitter; a circuit timing diagram is provided in figure 15 (the labeling with capital letters start over). At the input (A) of the circuitry there is a passive RF receiver consisting of two tuning stages and a hot carrier diode detector. The stages are tuned for a bandwidth of about 8 MHz with a center frequency at 54 MHz. The receiving antenna is a flexible lead configured within the collar strap. Figure 16 shows the arrangement of the antenna lead. As can be seen, the lead begins and ends at the electronics package, with maximum extension to the collar's tip. The outgoing and return paths are separated for the width of the collar. Following the tuning stages, the hot carrier

diode circuit detects the negative envelope of the incoming RF pulse (B). This detection provides an audio frequency pulse which is amplified (C) and then reshaped by a comparator (D). Receiver sensitivity is adjusted by raising or lowering the comparator's threshold level. When practical, this adjustment is made with the collar on the animal. Otherwise, it is done prior to use by estimating the expected field strength and background noise for the particular application. Figure 17 shows an alternate receiver with a single stage of RF gain. This active receiver is used in the event that signal transmission from within the animal is exceedingly weak. occurred during testing because of an antenna break. Variations in gain requirements can be expected for procedural reasons and size limitations among animals. The active receiver requires a greater current drain to operate, about 700 µA compared to less than 5 µA for the passive receiver. The antenna in either case is the same. The stage of RF gain in the active receiver causes a polarity reversal at the input to the comparator. This is easily remedied by interchanging the comparator's inputs.

The comparator drives the CMOS logic circuits which in turn generate a control pulse for actuating the RF tracking transmitter. The control pulses are delayed from the incoming receiver pulses, yet keep the same width and interval as received. The delay prevents interference of the strong retransmitted RF pulse with the reception of the weaker RF signal from the implanted transmitter.

To generate the delayed pulse train, the output of the comparator (D) is connected in parallel to the inputs of a pair of monostable devices. monostable triggers on the leading edge of the incoming pulse, the other on the trailing edge. Each provides a 20-msec-duration pulse which is complementary to the other. These outputs (E,F) operate a pair of gates (G) that activates the transmitter (H) when both are closed. As seen in figure 15, the delay and pulse width of the RF retransmission are the result of subtracting the outputs of the two monostables by means of the control gates. Receiver squelch during the RF retransmission is done by a blanking gate (I) at the inputs to both monostable devices. closes (F) to (I) before the retransmitted RF pulse and remains closed for about 100 msec. This insures that the retransmitter will not be selftriggered during that time and allows the receiver circuit a recovery time after each transmitted pulse. The blanking gate is controlled by a circuit which stretches the pulse output from the trailing-edge-triggered monostable. Because the collar was relatively insensitive to RF noise, it did not seem necessary to include circuitry to prevent the occurrence of a noise spike from triggering the monostable device. If that did occur however, the receiver would not accept another pulse for a period of about 120 msec; the occurrence of a heartbeat or temperature pulse could then actually be missed within that period. Initial pulse width discrimination in the logic circuitry could, however, be done with little added cost in terms of size or power requirements.

The tracking transmitter is a Telonic's Model MK-3A-TA-4 (fig. 13) with a factory-modified input. That is, the standard internal control of the RF pulse rate is omitted with control brought instead to a pair of

external inputs. The companion receiver provided by Telonics is a hand-held model designed for field use. The receiver is crystal-controlled, as is the transmitter, and operates within the RF spectrum normally utilized in animal-tracking work. In this case, a frequency of 148 MHz is used. The output of the receiver is a tone burst applied to either a self-contained speaker or a headset. The duration of the nominal 2 kHz tone is determined by the width of the incoming RF pulse, in this instance either 5 or 10 msec. The tone burst is retained, rather than modifying the receiver to obtain a standard pulse, because it is readily recorded without distortion on a hand-held cassette tape recorder. Also, since the operator must adjust the receiver's output in the field without benefit of an oscilloscope, the tone is easily recognized using only the headset or speaker.

RECEIVER DEMODULATOR INTERFACE CIRCUITRY

Once a field recording has been made, the magnetic tape is brought to the laboratory where it is replayed through a circuit that converts the tone bursts back to rectangular pulses compatible with the demodulator's input. Figure 18 is a diagram of the interface circuit. At the circuit's input is a band-pass filter (ref. 29). It is centered at 2 kHz, which is the receiver's output tone. A peak detector and a comparator then convert the sinusoidal waves within each tone burst into a group of rectangular pulses. The peak detector provides an adaptive threshold level for the comparator. Controls mounted on the front panel of the unit allow selection of automatic tracking rates and triggering amplitudes for the adaptive threshold. In addition, a fixed threshold level can be selected.

After the sinusoidal pulses have been changed into rectangular shapes, they are further filtered by means of a digital band-pass filter centered at 1.8 kHz. The filtered rectangular pulses are applied to a digital envelope detector which converts each group into a single pulse with a width of either 5 or 10 msec, as determined by the original transmission (ref. 31). The envelope detector can be adjusted to bridge across a single, missing pulse within a group. This allows the envelope to remain unchanged in the event that the comparator misses a single, sinusoidal pulse within a tone burst. This could result from an instantaneous amplitude fluctuation to which the adaptive threshold could not respond. These single pulse-to-pulse amplitude variations result from superimposed noise or quick changes in RF signal strength. Adjustment of the bridge duration is done by altering the time constant of $R_{\rm 3} {\rm C_3}$.

Additional noise rejection is provided by a circuit which sorts out envelopes with less than 3-msec periods while passing those of greater periods, such as the 5 and 10-msec data pulses. Thus, single, spurious pulses within the 2 kHz band-pass are eliminated. Pulse rejection is determined by the time constant of $R_{\mu}C_{\mu}$.

The output of the interface circuit uses two voltage followers (E). One drives a lamp mounted on the front panel which indicates acquisition of

data pulses. The other provides pulse height of the proper amplitude for driving the demodulator.

Front panel controls, besides allowing for selection of threshold functions, also allow the selection of frequency band passes in the event that the receiver has an output tone other than the nominal 2 kHz. This flexibility allows the recorded data to be retrieved according to the experimental conditions in the field or laboratory. As an example, data recorded in the field from a fast moving animal, with resulting RF signal strength fluctuations, would be handled differently from data recorded from a resting animal with nearly steady-state signal reception.

The interface circuit is low powered and can be operated either with batteries or a direct current power supply.

DEMODULATOR CIRCUITRY

The microprocessor-based demodulator is used to accurately determine the time interval between pulses from the telemetry receiver output. It discriminates against unwanted noise and performs heart rate and temperature calculations based on the time-interval information.

To accomplish the accurate timing, a 2 MHz clock signal (ϕ 2) used to generate basic timing operations inherent to the microprocessor is divided down to a 1 kHz signal (1-msec interval).

Figure 19 is a top view of the demodulator showing the internal component layout consisting of a central processing unit card (CPU), D/A output ports and converters; IK RAM/2K ROM card and a front panel/interval timer/interrupt generator, card. All microprocessor signals use the S100 bus system as a common element for communicating between the peripherals and the CPU card. The S100 bus provides, at a low cost, a variety of peripheral interfaces popular among the home computer hobbyists that are easily available at any local computer store (ref. 32).

A detailed description of the circuit operation of the demodulator follows.

The output of the telemetry receiver and interface circuit (fig. 20 pin J64) is buffered by IC 21 and fed to a positive and a negative edge triggered "D" type flip-flop (IC 5, pins 3 and 11). Their negative true outputs are connected to an eight-bit priority decoder (IC 6, pins 1 and 2).

The highest level of priority is pin 3 of IC 6. This input is reserved for a 1-msec timing interval generated by decade counters IC 2, 3, 4 and a divide by two flip-flop IC 1. The negative-going edge detector signal (IC 6, pin 1) has the next highest priority. The positive-going telemetered signal (IC 6, pin 2) is the lowest priority request.

When an input signal level change or a 1-msec interval occurs, the priority decoder generates an interrupt signal to the microprocessor (IC 6, pin 15). The interrupt signal causes the microprocessor to stop processing and to execute a vectored interrupt-service routine. A detailed description of the software routines is included in the appendix. Using the continuator to the service routine, the CPU (microprocessor central processing unit) reads either the time interval, R wave to R wave timing, or temperature cycle data. It then processes it and returns to the interrupted task.

The CPU acknowledges the interrupt request by sending an interrupt acknowledge signal, IRACK (ref. 33). The IRACK signal is used to clear the "D" type latch holding the interrupt request. It also allows the lower priority requests (if any) to be serviced in the same manner.

Figure 21 shows the view of the demodulator front panel for entering the command modes in the operation or calibration of the demodulator and displaying the real-time data. The switches are sensed by input port No. 7 to the 8080 card (fig. 22, IC 14, pin 8 and IC 15, pins 3 and 5).

The microprocessor reads the input instruction immediately after the power is "ON" or at any time the RESET key is depressed in the front panel. The RESET switch is connected to the CPU RST line and causes the displays to be initialized to zero, clears all memory, resets the time interval, clears all the interrupt latches and initializes the microprocessor program counter (internal to the CPU) to location zero. The calibration level (HI or LO) is read as an input when the software branches to the internal calibration routines.

Data to the front panel LED display is gated by the action of a demultiplexer (IC 13) and the output instruction status line IC 13, pin 6. The data, in BCD form, is latched to the LED displays by the six enable lines from the demultiplexer and held until a new reading is made.

The analog outputs are generated by three 12-bit D/A converters that require one's complement BCD data. The software complements the data and transfers the first 8 bits to two quad D type flip flops. All 12 bits are presented to the digital to analog converters when the software outputs the last 4 inverted bits to a quad D type flip flop and an 8212 is enabled, latching the 8 bits stored in the two 74LS175 latches.

The output of the converters are buffered and connected to the three analog output lines on the back of the demodulator.

RESULTS AND DISCUSSION

The prototype of this system was tested on a dog. Preliminary tests were made with a transmitter breadboard mounted in a backpack worn by the animal. A standard ECG transmitter was also placed in the backpack. Two ECG electrodes were implanted subcutaneously with the leads brought out to the

backpack where they were connected to both transmitters via an RF isolation junction. Chart paper recordings were then made while the dog was exercised within the range of the transmitters or on a treadmill. The recordings allowed the heartbeat pulses, derived from the new system, to be compared directly with the clearly identifiable ECG waveform. Results were positive with only an occasional heartbeat pulse being lost by the new system during periods of heavy exercise. ECG recorded during the same sequence of exercise showed R-wave amplitude fluctuations of ±35% on a beat-to-beat basis. The triggering threshold of the R-wave detector had been set for a tracking rate that would accommodate amplitude changes of less than this and seemed to account for the occasionally missing beat. A nominal tracking rate of 40 to 50% of R-wave peak should alleviate the problem. Signal artifacts occasionally occur also, but appeared to be due to movements of the external leads and connections rather than to the electrodes.

Next, the packaged transmitter was implanted in an 18-kg dog. Two ECG electrodes and one thermistor were attached subcutaneously. Another thermistor was located near the liver for measurement of deep body temperature. After 1 week, tests with the dog in a kennel were begun. The RF signal from the implanted transmitter was received, without retransmission, using a standard AM receiver. The output pulses were applied directly to the demodulator. The three analog outputs of the demodulator and the pulse train from the receiver's output were recorded on chart paper. This allowed the heart rate, on a beat-to-beat basis, and the two body temperatures to be correlated with the transmitted pulse train. Several recordings were made, the longest being 24 hr. The demodulator and receiver maintained lock during all recording sessions, as indicated by the analog outputs which followed the pulse train without dropout.

Tests of the retransmitter collar were made next with the dog still in the kennel. In this instance, the retransmitted pulses were compared to the directly transmitted pulses. This was done by recording the outputs from each system on a chart recorder. But this time the demodulator was driven by the RF transmission link. Again, the three analog outputs were recorded for correlation with the two pulse trains, representing the direct and indirect transmissions. The retransmitted RF signal proved to be intermittent. Also, one temperature channel was in a continuous state of saturation. (Later investigation showed that a thermistor lead had broken.) Since the thermistor leads also serve as the transmitting antenna for the implanted unit, RF field-strength measurements were made to determine the effect of the broken lead. The RF pulses from within the animal were very weak at the normal operating frequency of 54 MHz. The first harmonic at 108 MHz was nearly 20 dB stronger, but still weak. Therefore, the receiver in the collar was returned to the stronger 108 MHz signal and a single stage of RF amplification added. The previous tests were repeated. This time the retransmitter collar locked onto the pulses from the implanted transmitter with no loss in data.

Next, both the retransmitter and the implanted transmitter were tested for maximum range. As can be seen in figure 21, the test site was located in a heavily industrialized area with numerous power lines and metal

buildings nearby. In A, the view is over a salt marsh toward the receiving station which was a metal building indicated by the arrow; the distance is 1 km. In B, the view is in the opposite direction which shows the instrumented dog and the investigator within a fenced ranging area. The implanted unit had a range of about 12 m. The AM receiver had an output bandwidth of 10 kHz and a sensitivity of 1 µV. The antenna, which was mounted on a 3-m mast, provided a gain of 6.5 dB. Because the transmitter, with its broken antenna lead, was operating in a greatly impeded mode, an estimate of maximum range was made. This estimate for the improved range was based on a previous comparison of the measured field strength at the normal operating frequency of 54 MHz, with that of the 108 MHz harmonic. This measurement, made with the transmitter placed within saline filled bags, showed the 54 MHz fundamental to be 42 dB greater than the 108 MHz harmonic. Additionally, simulated heart rate was transmitted successfully under these conditions over a distance of 175 m using the 54 MHz operating frequency and with receiver and antenna characteristics similar to those used in the later tests in which the lead was broken. These indications suggest that the range of a Improvement to a properly operating transmitter should be about 150 m. useful range greater than 200 m should be possible in an ideal, rural environment, particularly if a higher gain receiving antenna were used.

Range tests of the retransmitting system were conducted within the same industralized location. The retransmission system included the collarmounted retransmitter, tracking receiver, cassette recorder, and interface unit. The receiver was located in a large one-story metal building with the antenna mounted on a 4-m mast placed on the roof. Total height above ground This antenna provided a gain of 14.5 dB. As before, a chart recorder was used to provide real-time measurement of heart rate and body temperatures using the demodulator's analog outputs. However, the tracking receiver, with its tone-burst output, drove the demodulator via the interface circuit. Again, the transmitted pulse train was recorded on one of the chart recorder channels. In addition to these real-time recordings, the receiver's output, along with voice commentary, was recorded on magnetic tape for subsequent analysis in the laboratory. Included were data taken while the dog was field-exercised on a leash. Two-way voice communications between the investigator in the field and the operator in the station were maintained during these tests. Next, the dog was placed within a chain-link fenced enclosure 1 km from the receiving station (fig. 21(b)). While in the 2-acre enclosure, the dog was allowed to roam about freely. Visual observation was maintained using a telescope. Finally, with the dog still in the enclosure, the receiver and a hand-held antenna (fig. 13) were taken to various remote locations to simulate tracking conditions.

These tests indicated that it was possible to retrieve data with a signal-to-noise ratio of unity at the receiver's output as viewed on an oscilloscope. This corresponds to the conditions present at about 80% or greater of the maximum tracking range. At this distance, the operator begins to experience problems hearing a tone distinct enough from background noise to allow effective tracking. The tracking system used was indicated by the manufacturer to have ground-to-ground tracking capability up to 18 km under ideal geographical conditions. Thus, the modified system

should provide some physiological data at a distance perhaps as much as 14 km, but many things would limit that capability substantially.

Analysis of the accuracy of the temperature data gave a result closer to ±0.3° C rather than the desired ±0.1° C. This was not accounted for in the transmission link, since the intervals of the temperature pulses could be resolved repeatively within 200 µsec. The minimum pulse interval, representing 0° C, was 176 msec. Additionally, the temperature data are scanned within a second or so at each reading, including the high- and low-temperature calibrations. Thus, the resolution of the RF-transmission link, plus the continuous updating for drift during the temperature scan, should provide the desired ±0.1° C accuracy during the life of the unit (an unknown being the effects of moisture on the thermistors). However, at the time of these tests, the demodulator was set up to resolve increments of 1 msec, which does not provide the required resolution. More resolution can be had by extending the intervals at the transmitting end, or by increasing the resolution within the demodulator itself. Increasing the transmitted intervals would of course enhance the RF link, but at the expense of interrupting more of the beat-to-beat heart rate. On the other hand, the demodulator could be changed to provide the added resolution without changing the data format. The temperature cycle could be less frequent also. As indicated before, the system has sufficient flexibility within its basic design to allow a variety of easily implemented options for operation.

CONCLUSION

The system described here provides heart rate and two body temperature measurements. The implantable transmitter is pulsed at each heartbeat with an interruption of 1-2 sec every 50 beats for transmission of temperature data. Low-powered, integrated circuits allow the system to be operated for a year or longer in animals that weigh a few kilograms or more. Direct transmission to an AM receiver operating at 54 MHz is possible at maximum ranges estimated to be 200 m. A retransmitter collar allows long-range transmission at 148 MHz. Radio-frequency links, originally designed for animal tracking, are used for retransmission. Physiological data can be recovered at distances within 80% of the maximum tracking range.

The system is designed to provide flexible capabilities, both at the transmitting and receiving ends. The transmitter's circuitry can be readily altered to sample more temperature sensors, and at different heartbeat intervals, or to transmit only the heartbeats or only the temperatures at the decade counts of heartbeats. The demodulator is microprocessor controlled so that software changes and added memory can accommodate transmitter modifications, along with linearization of data parameters.

APPENDIX

TEMPERATURE AND HEART RATE BIOTELEMETRY

DEMODULATOR PROGRAM

TEMPFRATURE AND HEART RATE BIOTELEMETRY DEMODULATOR

```
8008
                                                                           ÷
                      UUIG :*
0000
                                     HASA AMES RESEARCH CENTER
                                                                           *
6666
                      0015 :*
                                                                           ...
                      0028 ; +
                                        NOUNTAIN VIEW, CA
0000
                                                                           ÷
                      0025 /*
9000
                                     WRITTEN BY RAFAEL MIRANDA, E.E.
                      0030 ;*
9909
                      9935 JA
                                            IRMURKY 1979
                                                                           ÷.
មិមិមិទី
                                                                           ·ŀ
0000
                      #. 0400
0000
                      6845 ja
                                  NÚTE: 280 ASSEMBLY LAMGUAGE COVE.
                                                                           ÷
0000
                      0050 ;#
                      อบยอ
0000
                       006D ;
                      0065 , INFUT AND OUTPUT PORT ASSIGNMENTS
8888
виво
                      0070 ;
                      OUTS PORTO:
                                   EQU
                                                   ,ECG LED READOUT MIG
      មមិមិម
                      0000 PURTI:
                                   EQU
                                         1
                                                          XIUS
      OUUT
                      S885 PURT2-
                                                   JTI LED READOUT SI
                                         Ż,
      ØDUZ
                                   E UU
                                         3
                                                          370
                      8848 PORT3:
                                   EQU
      DUB3
                      0095 PORT4:
                                                   ITZ LED READOUT NI
      6004
                                   EOU
                                         ÷
                      Uluu PORT5.
                                   EUU
                                                          210
      0035
                                                   ;FRONT PAUEL IN PORT
                      0105 PORT7:
                                   EWU
      ១២៦៤
9999
                      0110 ;
                                                    AND TBG RESET FLAG.
                      B115 ,
LICIEL
                                    JOUU
                      0120 ;
                      0125 ;
BBBB
                                    ų.
                                    +
                                          CONSTANTS .
                                                                 .t
8380
                      0130 ;
EBBB
                      0135 ;
                                    ÷
                      0140 ,
0000
                                    -0145 j
9390
                      0150 ZERO:
                                         DOH
      UUUU
                                   EQU
                      6155 ONE:
                                   EQU
                                         LIH
      9986/
                                   EUU
      0002
                      0160 TMO:
                                         92H
                      6165 EIGHT:
                                   EQU
                                         68H
      0008
      0009
                      0170 NIME:
                                   EUU
                                         02H
                      0175 TEU:
                                   EQU
                                         10
      ЙÜÜН
                      0180 ELEVA-
                                   EUU
                                          IIH
      <u> 901 l</u>
                      6185 FIFTY:
                                   EWU
                                          r_{il}
      BB32
obee.
                      0190 ;
មិមិម
                      G195 ;SIXIY THOUSAND NILLISECONDS
                      UZUU SIKIY.
                                   EUI
      EHSU
                                         60000
                      0205 INF:
                                   EWU
                                                   :INFINITY
      h&FF
                                         &FFH.
инай
                      4210 s
                      6215 ; LEMPERATURE PULSE MIDTH LIMITS
üGGB
                      0216 ; IN MILLISECONDS
BUUU
                      U220 :
egge
                      0225 INPLW:
                                         18
                                                   JLOW TEMP LIMIT
                                   EUU
      0012
                                                   ;HIGH TEMP L1111T
;LUW LIMIT ECG
                                         25
                      0230 TMPUW-
                                   ΕΩU
      ១៨/ ។
                      U235 ECGLW:
                                   EQU
                                         Ė
      0996
                                         II
                      ⊎240 ECGUN:
                                   ENU
                                                   JUPPER LIMIT ECG
      ยยย่ย
                      0245 j
មួមមួម
                      0250 ;CALIBRATION TIME FOR 600 MSEC
ឲ្យឲ្យផ្ទ
                                                   ;CAL TIME LOW (BYTE)
      9958
                                         ĭ8H
                      0255 CALIL:
                                  EQU
                                                   ;CAL TIME HIGH (BYTE)
                      0260 CALTH:
                                   ERU
                                         \Theta ZH
      6652
                      0265 ;
មមម្
                      6270 HUMBER OF PULSES IN TEMPERATURE CYCLE
9999
                      0275 FIVEDP - EQU
                                         5*2
      üÜÜÄ
                      6289
9009
                      `0285 ,16 BIT DIVISION SHIFT COUNT:
ÜÜÜÜ
```

TEMPERATURE AND HEART RATE BIUTELEMETRY DEMODULATOR

```
0290 SHFCAT: EUU - IT
     0011
និមិតន
                    6295 FINTERRUPT RESTART ROUTINES
ÜÜÜE
                    030S ;
6999
                    8385 JENABLED BY HARDWARE ONLY
2000
                     9319 i
GGGG
                    2008
                    0320 /
8888
                    8325 FRSTRT: RE-START LOCATION FORCED BY HITTING
                    0338 ) THE RESET SWITCH IN THE FRONT
6335 ; PANEL OR LURING POWER-OW START UP
EIEIEIL I
BBUU
                    0348 j
üüüüü
                               PROCEDURE.
                    0345 ;
bisisti.
9999
                    8008
                    6355 /
8638
                    0360 JORG 0000H
DBBL
                    8365 ;
0000 F3
                    0370 RSIRT: DI
                                DI
LD SPJERAM
JP RESET
                                               ,DISABLE HARDWARE INT.
6001 31 60 16
8684 C3 38 88
                    6375
                                               JSTACK TO END OF RAM
<u> មួមម</u>
                    3380
8887
                    0385 :
                    0390 j
3697
    60 00
GU97" -
                    E395
                               DH
                                      Ð
0009
    00 00
                    8408
                               PM
86 BB 86 BB
                               DM
                    8465
                                      Ëì
<u> ÚUUÜ</u>
    90 00
                    U410
                               DM
800F Q8 60
                    b415
                                DM
                                      U
0011 00 00
                    u42u
                                DH
                                      ! }
6013 80 80
                    £425
                               LM
    បម មប
                               DM
0015
                    0430
                                      Ы
    មិប មិម
                               DM
6617
                    6435
                                      į.
    00 OU
0019
                                      Ø
                    ઇનવા
                               DH
681B CD 86
                   c_{t+3}
                               ЫM
                                     Ü
    90 BB
98 I D
                    <u>8458</u>
                                DM
661F
    ΘĐ
                    6455
                                DE
                                      8
                    0460 /
BB28
b020
                    法本法公安本法共共共和国共享法律法法 电光谱电子电流电流系统 化多尔电池 化苯基甲基甲基甲基甲
8650
                    U47U i
uezc
                    6475 :NEGRST
                    0480 ; NEGATINE GOING PULSE RESTART LOCATION
0020
                    0485 j
6626
                               PST4 ... LOWEST PRIORITY
                    0490 ,
BBZU
                               CETS FLAG AND VERIFIES IF THE LAST
6626
                    6495 ;
                               - FLAG WAS AN EUG FLAG OR A TEMPERATURE
OOSU
                    8508 j
                               FLAG
ยยยย
                    0505 i
                                PRESERVES ALL REGISTERS
Ø928
                    8518 ·
                     8515 /
Lu28
0020
                     0525 i
6026
0020 F5
                   - 0530 NEGKST PUSH AF
6621 E5
                    8535 PUSH HL
LD
                    0540
                                      HL, DUMTM
                                M^{n}
6025 C3 63 60
                    8545
                                     MEGCAL EXIT TO COLDINATOR
```


TENFERATURE AND HEART RATE BIUTELENEIRY DEMODULATOR

```
6628
                   0028
                   0560 ;
BU28
                   0565 ; PUSRST:
                   0570 j
6928
                               POSITIVE GOING PULSE RESTART LOCATION
                   9575 j
                               FSTS ... PRIURITY=2 (I=HIGHEST)
0028
                               STORES TIME INTERVAL BETWEEN PULSES
                   0580 ;
8928
                   0585 ,
                               IN "TIME", TO BE USED IN COMPUTATIONS
6628
                   9590 ;
0638
                  . 6595
6628
                               PRESERVES ALL REGISTERS
                   0028
6628
                   8665 ;
                   Dala POSRST: PUSH
0028
    F5
                                   HF
99.99
    E5
                   8615
                              PUSH
                                   HL
                   OGRA
                                   HL. DUNTM
    21 01 ac
                              LD
002A
                   6625
                              JP
                                            JEMIT TO CONTINUATOR
992D
    C3 8C 88
                                   POSCNT
0030
                   0630 ,
មិខានិង
                   6635 i
                   8649 j
0030
                   0645 ;
0036
0930
                   មច5២ :
មីមីនីមី
                   0030
                   0660 ;
                   0665 :TBGEST:
0030
                               TIME BASE GENERATUR RESTART LOCATION
0030
                   8670 J
                              RST6 ... HIGHEST PRIORITY
üüäu
                   8675 ,
0030
                   9689 ;
                              INCREMENTS "DUMTM" BY ONE
                   6685 j
8030
0030
                   0690 ;
                              PRESERVES ALL REGISTERS
6030
                   0695 i
0030
                   9930
                   0785 ;
                   0710 TBGRST: PUSH
                                   ΉF
0030
    F5
ษยิ31
     E5
                   8715
                              PUSH
                                   HL
                                   HL, DUITM
0032
     21 01 00
                   0720
                              LD
                   6725
                              ĴΡ
                                    TBCNT
                                            ⇒EZIT TO CONTINUATOR
0035
    - C3 - BA - 00
```

TEMPERATURE AND HEART RATE BIOTELEMETRY DENUDULATOR

```
0638
                       9938
                       0140 ;
0038
                       6745 ;RESET:
                                   RSTRT CONTINUATOR
                       0750 j
0038
                       6755 ;
                                    INITIALIZES FRONT PRNEL LED DISPLAYS
6038
6038
                       ម៉ារី២៨ រ
                                                      LiO . B
6638
                                        ទីទី២
                                               ΘÜ. Ü
                       6765 J
0038
                       0770 :
                                   READS FRONT PANEL SWITCHES
                       0775 i
0038
9938
                       0038
                       6785 j
UU38
                       0790 RESET:
                                          A. PORTT
                                                     JREAD SWITCHES
      DB 87
                                    IH
003H
      4,
                       B795
                                    LD
                                          E.H
0038
      E6 01
                       usaa
                                    AND
                                           UNE
                                           2) CHL
ยะเริ่ม
      CA SC 62
                       6865
                                     JP.
                                                     JIF PORT?=1..CHLIBRATE `
004U
                       មិខាម ៖
     HF
                                                     JCLEHR HCC. AND CY
156415
                       8815 OHRIE:
                                    XUR
                                          HL.RAM
២841
      21 00 0C
                       9829
                                    LD
                                                     ;RAM ORG. TO HL
                       6825
8044
      66 13
                                    LD
                                          B, RAMEND
0046
                       0830 ;
                       0835 CLRLP:
                                           (HL),A
                                                     ; CLEAR RAM
6646
                                    LD
      77
      95
                                     DEC
8047
                       9848
                                           8
BP48
      23
                       B845
                                          HL
                                     IHC
      88
UÜ49
                       0850
                                     ĽP
                                           Ë
                                                     :WAIT UNTIL B=0H
                                     JP.
                                           NZ, CLRLP
₿₿4Ĥ
      C2 46 88
                       6855
0140
                       8868 :
664D
                       0865 ;CLEHR ALL LED DISPLAYS
004U
                       0870 /
0040
      D3 00
                                     OUT
                                           PORTO, A
                       8875
      D3 01
₿94F
                       9889
                                     our
                                           PURTLA
ยช51
      D3 02
                       5885
                                     aut.
                                           PORTE, A
0053
      03 03
                       0830
                                     UUT
                                           POR13.A
                                           PURTA, A
6655
      D3 64
                       8895
                                     UUT
      D3 05
                                     DUT
                                           PURT5, H
0057
                       uguü
0059
                       6965 j
                       0910 FRESET REHL TIME CLOCK
0059
                       U915 ;
0059
ยย59
      D3 07
                       0920
                                     BHT
                                           PURTT: H
665B
      3E 01
                       0925
                                     LD
                                           H. UNE
                                                     ISET UP START OF CLOCK
                                                     START I MEEC TIMER
005D
      D3 07
                       6930
                                     UUT
                                           PURIT. A
ยช5F
                       8935 )
005F
      FB
                       0940
                                     ΕÏ
                                                     ;ALLOW HARDWARE INT.
8968
                       6945 ;
0960
      C3 60 00
                       0950 WHIT:
                                     JF
                                           MH1T
                                                     JUAIT FOR AN INTERRUPT
```

TEMPERATURE HAL HEART RATE BIOTELEKETRY DENODULATOR

```
0063
                        US60 ) ተቀተና ተቀቀቀቀቀቀቀቀቀቀቀ
6663
                        0965 ;
0063
                        0970 ;NEGCNT:
8663
                        6975 j
                                     CONTINUATUR ROUTINE TO NEGRET
                        , טצעש
0083
                                     CHECKS TIME INTERVAL BETWEEN PULSES
                        6985 i
                                     IF IT CHECKS WITHIN THE PRE-SET LIMITS
6063
                        0993 ;
                                     UPDATES THE ECG OR TEMP. FLHG
WD63
                        6995 ;
6063
                        0063
6063
                        1865 :
UU63
                        TOTU NEGCNT: LD
                                            A, TRPLU
                                                      GET (EMP LOWER LIMIT
      38 13
                        1615
                                     \mathcal{CP}
8665
      BE
                                            (HL)
      D2 6F 00
                        1020
                                     JP
                                            NC, NXTST
                                                      ,1F G.T. CONTINUE
0066
                                                      TEST UPPER LIMIT
                        1025
0069
      7E
                                     LD
                                            H_{L}(HL)
006H
      FE 19
                        1038
                                     CH
                                            TMPUN
                                                      ; IF L.T GO TO TEMPF
      DA 2F 88
                                     JF
                                                      ; IF NOT CONTINUE
                        1835
                                            C. TEMPE
686C
                        1040 ;
006F
     3E 06
                        1045 NXTST:
                                                      GET ECG LOWER LIMIT
UBSF
                                     LD
                                           H, ELGLW
                        1050
                                     CP
0071
      BE
                                            (HL)
      D2 7B 68
                        1655
                                     JP
                                            NC : NFLG
                                                      JEKIT IF SMHLLER
0072
0075
      7E
                        1860
                                     LD
                                           A. (HL)
                        1665
                                     LF
                                            EUGUN
                                                      · IF L.T. GO TO ECGF
BBF6
      FE BB
                                     JP
                                            C, ECGF
                                                      FIF MOT CONTINUE
0078
      DA 84 00
                        1070
                        1875 ,
087B
                        1080 NFLG
                                     HIR
                                                      .CURRENT FLAG=0
007B
      ĤΕ̈́
                                            H
UUTU
      C3 86 66
                        1685
                                     JF
                                            ENDHEG
EIEI7F
                        1890 :
BBTF
      3E U≥
                        1095 TEMFF.
                                     LD
                                            A, TWU
                                                      FULSE WATH TEMP LIMIT
0081
      C3 86 00
                        1190
                                     JP
                                            ENDNEG
ยยิ84
                        1165 ;
0084
      38 01
                        IIIU ECUF:
                                     LD
                                           H, UNE
                                                      JPULSE WYIN TEMP LIMIT
686
                        III5 i
9889
      28
                        1120 ENDNEG: DEC
                                            HL
                                            \langle HL \rangle_{i}R
                        1125
                                                      ;STORE RESULT IN "FLAG"
មិម៉ម៉
      77
                                     LD
                        1130 ,
ÜUSS
                        1135
                                     FIIF
6688
      EI
                                            HL.
                        1140
                                     FUP
                                            HF
9089
      FΙ
                        1145
      FB
                                     ΕI
                                                      ;ALLOW HIGHER
₩BBH
                        1150 ;
0086
                                                      PRIORITY INTERPOPTS
                        1155 ;
ยยยย
      C9
                        1160
                                     RET
DB88
```

TEMPERATURE AND HEART RATE BIGIELEMETRY DEMODULATOR

```
BUSC.
                       668C
                       1175 \pm
098C
                       II80 ; POSCNT:
                       1185 ;
BUSC
                                     CUNTINUATOR ROUTINE TO PUSEST
4080
                       1190 ;
                                     STORES TEMPORARY VALUE OF "DUMIN"
6080
                       1195 ;
                                     INTO "TIME". CLEARS TEMPORARY VALUE
008C
                       1200 j
                                     OF 'DUMTM'; COMPUTES H.R. OR TEMP
808C
                       1205 .
008C
                                     CHECKS 'BUSY' FLAG (IF 'BUSY') RETURNS
                       1210 ;
888C
                       1215 ;
                                    WHITS FOR INTERRUPTS
008C
                       1220 ;
668U
                       008C
                       1230
üdət
      D3 87
                       1235 PUSCN1: OUT
                                           FURTT H
                                                     FRESET I MSEL TIMER
UBSE
      řΕ
                       1240
                                    LD
                                           H, (HL)
                                                     JGET LOW BYIE OF TIME
BBBF
      32 82 60
                       1245
                                     LD
                                           (TIME), H
                                                    - :STURE IT IN "I)ME"
0092
      AF
                       1.259
                                     SOR
      77
6693
                       1255
                                     LD.
                                           (HL),A
                                                     CLEAK TEMPO, STURHGE
      23
0094
                       1260
                                     INC
                                           HL
                       1265
8035
      ïΈ
                                     LD
                                           H_{2} (RL.)
                                                     JOU THE SHME FOR
                       1270
0096
      32 03 0C
                                     LL
                                           (TINE+I), A; HIGH ORDER BYTE
egyy
      ËΕ
                       1275
                                     NUR
      27
009A
                       1289
                                     LD
                                           (HL)_{2}H
                                                    ;CLEAK TENPO, STORAGE
BB9B
                       1285 3
0098
      38 12 DC
                       1290
                                     LD
                                           A,(BUSY) ; CHELF: 1F BUSY
      FE SI
                       1235
009L
                                     ĽP
                                           ШÆ
                                                     GIF NOT DONE RETURN
      C2 A7 00
                                     JP
UOAU
                                           NEUSKIPIT JIF DONE GO TO SKIPIT
                       1300
BBH3
                       1365 j
UÜH3
      EI
                       1310
                                     PUP
                                           HL
     FI
                                           HE
ยมิทิ4
                       1315
                                     POP
00HS
                       1320 j
UJH5
      FB
                       1325
                                     Εì
                                                     JALLUN HARDNARE INT.
ØBB8
      \mathcal{C}\mathcal{Y}
                       1330
                                     RET
60H7
                       1335
BUAT
      Εİ
                       1340 SK1F11: POP
                                           HL
BBH8
     FI
                       1345
                                     POP
                                           Hŀ
                                                     ;FLAG NAS DONE
00H9
     FB
                       1350
                                     ΕÏ
                                                     JALLOW 18G TO INT
EUAA
                       1355 :
BUAA
      3H 00 0C
                       1360 CHLOUT: LD
                                           A, (FLHG)
utiHU
      47
                       1365
                                     LD
                                           ₿. Ĥ
                                                     *PREVENT CHRIGING THE
UUHE
      E6 01
                       1370
                                     HND
                                           ONE
                                                     JIME VALUES
0080
      1375
                                     JP
                                           NZ,ECGSUB , IF FLAG=1 THEN ECGSUB
0083
                       1380 ;
UUB3
      70
                       1385
                                           H.B
                                     LD
0984
      E6 82
                       1398
                                     AND
                                           TMO
                                                     JIEMP CALCULATION?
00E6
     C2 64 61
                       1395
                                           NESTMPSUB SIF NOT RETURN TO WAIT
                                     iF
ยนย9
                       1400 .
0009
      C9
                       1405
                                     EET
```

TEMPERATURE AND HEART RATE BIOTELEMETRY DEMODULATOR

```
DOBH
                       ййВн
                       1420 ;
UGEA
                       1425 : [BCNT:
                                   CUNITAUATOR ROUTINE TO TEGRST
                       1430 :
88B
                                   INCREMENTS TEMPORARY STORAGE FOR TIME
                       1435 :
80Вн
                       1449 ;
ÜÜBH
                                   BY ONE MILLISECOND. RETURNS
                       1445 ;
₽₿₿H
                       1450 .
0088
                                   HLL REGISTERS PRESERVED
                       1455 ;
668H
OOBA
                       【【4色包】】 宝宝大学出来的未说 卡伊尔伊尔水水水源学 化伊尔克水平 化中水和水平水平水平水平水平水平 化基苯甲基
COBR
                       1465 :
ийвн
                       1470 ;
មមBH
                       1475 TBCHT:
                                    LD
                                          A. UNE
                                                    ; INCREMENT "DUMTM"
      3E 01
                                    HDD
                                          (HL)
uubc:
                      - 1480
                                                    ;BY ONE
      88
      27
                                          (HL),A
BuBb
                       1485
                                    LD
                                                    iSTURE IT
UBBE
      23
                       1420
                                    INC
                                          HL
                                                    ;INCR. HIGH ORDER BYTE
UGBF
      3E 55
                       1425
                                    LD
                                          A. ZERO
uac i
      ЗE.
                       150U
                                    ADC
                                          (HL)
                                                    JADD CY TO (HIGH) BYTE
USUZ
     77
                       1595
                                    LD
                                          (HL),A
                                                    ;BYTE AND STOKE IT
0003
                       1510 j
66C3
     ΕI
                       1515
                                    FOP
                                          HL
                                          HF
                       1520
UÜÜ4
     FI
                                    FUF
euu5
                       1525 /
ยยตร
     FB
                       1530
                                    ĔΙ
                                                    ;ALLOW HARDWARE INT.
BBC6
     C9
                       1535
                                    KET
```

TEMPERATURE HAD HEART RATE BLOTELEMETRY DEMODULATOR

```
BBUT
                        UUU?"
                        1550 ;
SEC7
                        1555 JECGSUB:
BBCT
                        1560 )
                                      COUNTS NUMBER OF ECG PULSES:
                                      CHLUULATES HEART RATE
BBUT
                        1565 )
BBC?
                        1570 ;
                                      CONVERTS BINARY RESULT TO BCD
0007
                        1575 i
                                      OUTPUTS RESULT TO FRUNT PHNEL
0007
                        1580 ;
                                      RETURNS TO URLT FOR A NEW
00U?
                        1385 /
                                      INSTRUCTION OR INTERPUPT
OUC?'
                        1590 :
                        1595 , *****************************
GGC7
UUCT
                        1629
BBCP
      38 69 6C
                        1605 ECGSUB: LD
                                            HILLECGUNT):GET NUMBER OF F. HAVES
                                                       JIS IT THE FIRST BEAT?
                                             ZERU
ÜÜÜH
      FE 00
                        1610
                                      CF
                                      JP
                                                       ; IF YES, CONTINUE
GOCC
      C2 DE 60
                        1615
                                            MZ, CUNTI
BBCF
                        1620 ,
BULF
                        1625 JEIRST BERT INDICATES A T CYCLE UR ECG BEAT
BUCF
                        1638 3
                                            R. (CTRTEM ) GET # OF TEMP. FULSES
BBCF
      3H 05 0C
                        1635
                                      LD
                                      UF
                                                       :15 # UF PULSES
00D2
      FE OH
                                            FIVEDP
                        1640
                        1645 JEQUAL TO FIVEPY, IF YES GO TO IMPOUT
68D4
                        1650 JTO CALCULATE TEMPERATURES & OUTPUT RESULTS
UUL 4
                                      JP
taf8()#
      CA CS BI
                        1655
                                             2. IMPUUI
geb?
                        1669 3
      ΗF
3607
                        1665
                                      SUR
                                                        INUT A TEMP CYCLE
                                             Ĥ
                                             COTRTEND AFRESET TEMP COUNTER
99D8
      32 US UC
                        1679
                                      LU
BUDE
      C3 E4 U8
                        1675
                                      JP
                                             GUBHUK -
MODE
                        1680 .
                                            FIFTY ;56 R WAYES COUNTED?
NZ;SKPCLR ;IF AUT CONTINUE
      FE 32
                                      CF'
BODE
                        1685 CUNT1:
      C2 E9 00
                                      JP
00EU
                         1699
ØØE3
      ΗË
                         1695
                                      SUK
                                                        ;CLEHR R WHYE COUNT
DÜE4
                         17'00 រ
BBE4
      30
                         1703 GUBHCK:
                                      INC
      32 09 0C
DUES
                                             (ECGCAT) A:STORE VALUE OF ONE
                         1710
                                      LD
UUE8
      LУ
                         1715
                                      KET
0bE9
                         1720 ;
                         1725 SKPCLR: INC
                                                        JUPDATE R WAVE COUNT
EGE9
      30
      32 U9 UC
                         1739
                                             (ECGCNT), H; STORE IT
UUEH
                                      LD
BUED
                         1735 /
                         1740 ;START CALCULATING HEART RATE
ÖÜED
                         1745 j
BUED
      CD 25 01
                         1750
                                                        ;SET BUSY FLAG
00Eb
                                      CALL
                                             BSYDNE
                         1755
OUF U
      11 60 EA
                                      LD
                                             DE, SINTY
                                                       ;DlVIDEND=60000 MSEC.
UUF 3
                         1760 .
                         1765 ;DIVIDE 60000 MSEC BY RK INTERVAL IN "TIME"
66F3
ÙÐF3
                         1770 j
      CD 37 81
BEF3
                         1775
                                            DIVIDE
                                                        JUEN BINARY HEHRI KATE
                                      CHLL
ØdF6
      CD 71 01
                         1780
                                      CHLL
                                            BINSCO
                                                        ;BINHRY TU DECINHL
                         1785 /
buF9
      79
                         1799
ийгэ
                                      LΦ
                                             H.C
                                                        ;GET H.R. X l
BUFA
      D3 60
                                      ÜUT
                                             PURIUS H
                                                        ;LEAST SIGNIFICANT LED
                         1795
üüF'L
      78
                         1899
                                      LD
                                             H. B
                                                        iGat Heart rate % 100
                                                      . :Nost significant HR
BBF D
      D3 81
                                      uUT
                                             PURTLA
                         1865
                                                        CLEAR BUSY FLAG
ÜÜFF
      ĤF.
                                      XUR
                         1810
                                             Ĥ
                                                        STORE II
      32 12 BL
មាមមា
                         1815
                                      LD
                                             (BUSY),H
                         1829 7
8103
6/63
      L9
                         1825
                                      RET
```

TENPERATURE AND HEART RATE BIOTELEMETRY DEMODULATOR

```
8184
                      0104
                      1840 74
                                                                       +
U/U4
                      1845 j* [MPSUB:
                                                                       Ή.
                      1850 ;*
0104
                                     STURES TEMPERATURE INTERVAL IN
                                                                       7
8184
                      1855 ; #
                                    SEQUENCE: TBUREF), T1, 12, T50(REF)
0/04
                      1860 ;*
                                    CLEARS & WAVE COUNT
6/84
                      1865 /*
6104
                      6/84
                      1875 >
U104
    - CD 25 01
                      1880 IMPSUB: CALL BSYDME
                      1885 7
8187
3137
      38 06 EC
                      1899
                                        A. (CTRTEN); GET TEMP. CYCLE COUNT
                                  LD
BIGH
     3L
                      1895
                                   IMC
                                        H
810B
     JC
                      1903
                                  INC
                                                  JUPDATE IT BY THU
                                        Н
LIBU
      32 86 80
                      1.465
                                  LD
                                        (UTRTEIT), A, STORE IT
UI Dr
                      1910 .
B / EF
      21 68 60
                      1915
                                  L.L:
                                        HL. SAYTIN JASHYE 11
0112
     85
                      1920
                                  HDD
                                        L
6113
      5F
                      1925
                                  LD
                                        LiH
                                                 JUPDATE T CYCLE PTR
0114
      3H 03 0C
                      1335
                                  LD
                                        A. (DIMTH)
#117°
                      1935
                                  LD
                                        (HL),A
                                                 JSTORE TIME INTERVAL
0118
                      1940 ;
8118
      23
                      1345
                                  1RC
                                        HL
0119
      3H 04 OC
                      1950
                                  LL^{\gamma}
                                        A. (DIVIM+1)
BIIC
     11
                      1955
                                  LD
                                        (HL.) A JHIGH ORDER BYTE
     ЯF
BIID
                      1260
                                  MOR
                                                  JULEAR EUG COUNT
                                        H
     32 89 8C
BILLE
                      1965
                                  LD
                                       (ECGUNI),A
8121
                      1978 ;
8121
      32 12 66
                      1375
                                  LD (BUSY), A
0124
                      1980 .
6124
     CЭ
                      1985
                                  RET
0125
                      1990 ;
0125
                      1995 ) ******************************
0125
                      2009 ;*
6/25
                      2665 /* ESYDNE:
                                                                         <u>.</u>
0125
                      2010 ;*
                                    SETS UP BUSY FLAG
0125
                      2015 ;*
                                    MUVES TEMPORARY TIME INTERVAL
                      2020 /*
0125
                                    10 "DIVIN"..TINE TO BE USED IN
8125
                      2625 4
                                    COMPUTHTIUMS
                                                                         ж
0125
                      2939 :#
0125
                      0125
                      2049 ;
6125
     3E 01
                      2045 BSYDNE LD
                                       A, UHE
                                                - ;SET UP BUSY FLHG
0127
                      2050 ;
U127
     32 12 GC
                      2055
                                  LE
                                        (BUSY),A
     21 02 00
0128
                      2969
                                  LD
                                        HLITIME
6120
     ĩŁ.
                                                 GET LOW ORDER TIME
                      2005
                                  LD
                                        H_{\mathcal{A}}(HL)
BIBE
     32 03 UC
                                        (DIVIN), A STORE IT IN PERMIT.
                      2070
                                  LD
₩131
     23
                      2075
                                  IHC
                                        HI...
     PΕ
                      2089
0132
                                                 ;HIGH ORDER TIME
                                  LD
                                        H_{\ell}(HL)
     32 84 GC
0133
                      2665
                                       (DIVTM+1),H,STORE IT
                                  L.D
0135
                      2090 ;
0136
                      2895
                                  KET
```

TEMPERATURE AND HEART RATE BIOTELEMETRY DEMODULATOR

```
6137
0137
                         2110 14
6137
                         2115 14
                                   DIVIDE:
                                          DIVIDES A 16 BIT DIVISOR IN THE BC
0137
                         2129 :*
                                          REGISTERS BY A TO BIT DIVIDEND IN
                                                                                  ŗ
6137
                         2125
                              1. 1
                                                          RESULI IS RETURNED
                                          THE DE REGS.
                                                                                  4:
0137
                         2130 :#
6137
                                          IN THE DE & HL REGISTERS.
                                                                                  热
                         2/35 *
0137
                         2140 1#
                         0137
0137
                         2158 3
                         2155 DIVIDE: LD
                                              HL.; BNUH
                                                        ;COUNTER ADDRESS
6137
       21 65 60
UI3H
       36 11
                         2169
                                       LD
                                              (HL),SHECNT;START SHIFT COUNT
                         2165
613C
                                       LD
                                              BC,ZEKU
       61 00 80
913F
                         2170 3
                         2175 DLOUP:
                                                         POTATE DIVISOR
613F
                                       LD
                                              H.E
       "E
                         2130
                                                         :LEFT ONE BIT
0149
       17
                                       KLH
       3F
                         2185
                                       LD
                                              E,A
8141
                         2190
                                       LD
                                              H.D
       70
0142
6143
                         2195
                                       EL.H
       18
                                              D. (HL)
                                                         ;DECREMENT BIT COUNTER
U144
                         2200
                                       LD
       عاد
5145
       15
                         2205
                                       DEC
                                              L^{2}
       72
                                       LD
                                              (HL)D
0146
                         2210
6147
       57
                         2215
                                       LD
                                              D \cdot H
       CH 6F 01
                         2220
                                       JP
                                              Z, ENDDIV
                                                         ;RETURN IF COUNT=0
0148
                         2225 /
U14B
                                       LD
                                              A.L
                                                         ;ROTATE RESULT
       74
                         2230
014B
       17
                                       ELB
                                                         ;LEFT ONE BIT
6141
                         2235
       4F
                                       LD
                                              CAR
Ü14U
                         2240
614E
                                       LD
       78
                         2245
                                              A_{J}B
       17
                         2250
                                       RLH
0145
0150
       4.
                         2255
                                       LD
                                              B, B
0151
          83 OC
                         2260
                                       LL
                                              HLJDIVIH
                                                         JGET DIVIDEND ADDR.
0154
                         2265 /
0154
       711.1
                         2270
                                       1.13
                                              HOC
                                                         ;SUBTRACT LOW
@155
       96
                         2275
                                       SUE
                                              (HL)
                                                         ;ORDER BYTE OF
0156
       45
                         2269
                                       LD
                                              C.A
                                                         JUIVIDEND
                                       IHC
0157
       EU
                         2285
                         2299
                                       LD
                                              H_2B
                                                       . ;SUBTRACT HIGH
0158
       76
                         2295
                                                         JURDER BYTE
6159
       ЧË
                                       SBU
                                              (HL)
015A
                         2300 ;
                                       LD
                                                         ;NO BORROW?
. B15H
       47
                         2305
                                              B.H
                                              NC, DSK1P
                                       f_{I}^{L}
                                                         ;1F YES ADDRESS LO BYTE
0158
       D2 66 WI
                         2310
                                       DEL
BISE
       \mathbb{Z}D
                         2315
                                              H_{\mathcal{F}}C
                                                         JADO DIVIDENU BACK
#15F
       13.
                         2320
                                       LP
       86
                                       RDD
                                              (HL)
B166
                         2325
       45
                         2330
                                       LLY
                                              C.A
0161
                                       INL
       ĽÜ
                         2335
                                              L
4162°
                                              H, B
 0163
       78
                         2340
                                       LD
                                       AUC
                                              (HL)
 6164
       3E
                         2345
                         2359
                                              B, A
 0165
       47
                                       LD
 0/66
                         2355 /
                                                         JRESTÖRE ALDR. OF CNTR
 0166
       21 05 00
                         2360 DSKIP
                                       LD
                                              HL : BNUM
                                       chi.
 6169
       9F
                         2365
                                              14
                                                         ICOMPLEMENT CAPRY
                                        SBC
                                              asaH
       DE 80
                         2376
 ÜlőH
          3F 01
                                        ĴΡ
                                              DLUUP
                                                         PEPEAT
                          2375
 616C
 016F
                         2380 :
                                                         STUFE RESULT IN HL
                         2385 ENDDIV: EN
                                              I.E. HL
 016F
       EB
       C\mathcal{F}
                                       RET
 9170
                          2390
```

TEMPERATURE AND HEART RATE BIOTELEMETRY DEMODULATOR

```
0171
                      244B i
8171
0171
                      2405 ; 8INBCD:
                      2410 ;
                                    16 BIT BIMARY TO BUD CONVERSION
6171
9171
                      2415 )
                                    BIMARY NUMBER IN HL:
                      2420 j
3171
                                        H-HIGH L-LOW ORDER BYTE
                      2425 /
                                    RESULT: A=X10,000 B=X100 C=X1
0171
GITI
                      2436 /
0171
                      6171
                      2440 :
      1E 11
0171
                      2445 BINBCD: LD
                                         E, ELEVN
                                                  SET BIT COUNTER
B173
     CD 84 G1
                      2450
                                   CALL
                                         BCD
      4F
                                         CH
                      2455
                                   LD
                                                  ;SAME L.SIG. BCD BYTE
0176
0177
      1E 11
                                         E. ELEVA
                      2460
                                   LD
0179
     C3 7E 01
                      2465
                                   JF
                                         BNEXT
B17C
                      2476 /
017C
      1E 03
                      2475
                                   LD
                                         EJMIME
                      2480 BNEST:
017E
     CD 84 31
                                         BCD
                                   UHLL
0181
      47
                      2485
                                   LD
                                         8 B
0182
                      24213
                                   LD
                                         A.L
      TD
0183
      CS
                      2495
                                   RET
                                                   . DUNE
6184
                      2566 /
0184
     HF
                      2505 BCD:
                                   NDR
                                         Н
                                         Ë
0185
     10
                      2516 CYT-
                                   DEU
8188
                                         2
                      2515
                                   I-E1
     \mathcal{L}S
                                   HDD
14188°
     _ ⊣
                      2520
                                         HL. HL
      SF
                      2525
                                   HDU
                                         Ĥ
មាខេត
                      2536 7
8189
0189
     27
                      100
                                   DÀĤ
618H
     DZ 85 61
                      2546
                                   JP
                                         MC J CVT
UISD
     23
                      2545
                                   INC
                                         HL
618E
     U3 85 81
                      2558
                                   JΡ
                                         CVT
```

TENPERATURE AND HEART PATE BIOTELEMETRY DENUGULATOR

```
6191
                        2566 j+4********************************
0191
                        2565 i
6191
                                            ١
                        2570 ; MULT:
0191
                        2575 ;
                                    16 BIT BY 8 BIT MULTIPLICATION
                        2586 /
6191
                                     BC=MULTIPLICAND X H(MULTIPLIER)=
                                    DECAROUUCT). BC M H=DE REGISTERS
0191
                        3585 ;
                        259U /
6191
8191
                        2595 , ********************************
                        2600 )
E191
0191
      11 89 80
                        2605 MULT:
                                     LU
                                           DE JERU
                                                       ; ERASE PRODUCT
6194
                        2618 /
0194
      87
                        2615 NLOUP:
                                     OR
                                                       ;CLEAR CARRY
                                            Ĥ
8195
      70
                        2620
                                      LD
                                            H.H
0196
      1F
                        2825
                                      RRH
6197
      67
                        2638
                                      LD.
                                            H_2H
0198
                        2635 /
6198
                        2646 JIF MULTIPLIEK BIT-TJRDD MPUND TO PRODUT
U198
      DC H7 91
                        2645
                                      CALL C, MADD
                        2650 j
6198
9198
      70
                        2655
                                      LD
                                            A,H
                                                       JEXIT IF MPIER IS 0
6190
      H7
                        2669
                                      KND
                                            Ĥ
0190
      C8
                        2665
                                      RET
                                            ∴"
                                                       ; RETURN
BISE
                        2670 ;
      19
0198
                        2675
                                      LD
                                            H_{\mathcal{F}}C
                                                       : OTHERWISE
019F
      17
                        2680
                                      RLH
                                                             SHIFT
UTAU
      45
                        2685
                                            C_2H
                                                       ; MULTIPLICAND
                                      LD
BIHI
      78
                        2690
                                      LD
                                            R.B .
                                                          LEFT
01A2
      17
                        2695
                                      RLH
                                                            HND
                                                       j
BIH3
      47
                                      LD
                        ZIBU
                                            BAR
                                                            REPERT
Ø1H4
      C3 94 UI
                                      JF
                                            MLOOF
                        2795
BIHE
                        2710 ;
BIAT
      79
                        2715 MADD:
                                      LD
                                            A.C
                                                       JADD PHRTIAL
81A8
      83
                        2720
                                      ADD
                                            Ë
                                                       ; PRODUCT
11119
      5F
                        2725
                                            E.A
                                      LD
₿1HH
      78
                        2736
                                      LD
                                            H.B
BIAB
      έĤ
                        2735
                                      HDC
                                            D
81AC
      5,
                        2740
                                      LD
                                            D_2H
BIAD
      Ľ9
                        2745
                                      RET
```

TEMPERATURE AND HEART KATE DIVIELEMETRY DEMODULATOR

```
UIHE
UTAE
                       2766 ,
UTAE
                       2763 , MPYKIO:
                                                                          j
                       2078 1
GIHE
                                     MULTIPLIES DE REGISTER BY 16
                                                                          j
UIAE
                       2775 j
                                     AND PLACES RESULT IN DE
MIHE
                       2780 7
BIHE
                       2735 /
                                     REGISTERS AFFECTED: HL, AB, DE
BIRE
                       2790 /
GIAE
                       BIHE
                       2800 /
UTHE
      68
                       2805 HPYNIU: LD
                                          LIE
                                                    ; NOVE HL TO DE
DIRF
      62
                                    LD
                       2816
                                          H.D
0180
      UG FU
                       2815
                                          B_2 - 3
                                    LD
                                                    SET UP COUNT
6182
      B7
                       2820
                                    UF:
                                          Ĥ
                                                    JULEAR CARRY
0183
                       2825 j
                                          В
61B3
      64
                       2830 LUOFIU: INC
0184
      ZD
                       2835
                                    LD
                                          H.L
0185
      17
                       2840
                                    KLA
01B6
      6F
                       2845
                                    LD
                                          LJA
                                                    :NULTIPLY RESULT
      70
BIB?
                       2850
                                    LD
                                          B_2H
                                                        BY
0188
      17
                       2855
                                    RLA
                                                       EIGHT
      67
6189
                       2866
                                    LD
                                          H_{\ell}R
0188
      78
                       2365
                                    LD
                                          A,B
61BB
      C2 B3 81
                       2870
                                    JF
                                          NZ,LOOPIØ ;X8 IN HL REG.
BIBE
                       2875 ;
GIEE
      87
                       2886
                                    UR.
                                                    :MULTIPLY
318F
      78
                       2335
                                    LD
                                          A.E
                                                    ; AGAIN
0100
      12
                       2899
                                    RLH
                                                        BY
      51-
                       2895
Ø1CT
                                    LD
                                          E, B
                                                       THU
8102
      FH
                       2966
                                    LD
                                          R.D
BICS
      17
                       2905
                                    KLH
      57
6164
                       29/6
                                    LL^{j}
                                          D. H
                                                    3X2 IN DE REG.
01C5
      19
                       2915
                                    H(d)
                                          HL,DE
                                                    :HDD X8 + X2
6106
      EE
                       <u> 2928</u>
                                    ES'
                                          DESHL
                                                    JRESULT TO DE
OIL!
                       2925 ;
                       2936
BICK
      U^{\omega}
                                    FEI
```

TEMPERATURE AND HEART RATE STOTELEMETRY DEMODULATUR

```
#1C8
                        01C8
                        2945 j
61 C8
                        2950 : TMFOUT:
                        2955 j
ørcs.
                                      COMPUTES II AND T2 (UNKNOWN):
61C8
                        2968 ;
01C8
                        2965 ;
                                T(UNKNOWN)=((T(UNKNOWN)-10)/(150-T0))*50
                        2970 ;
BICS
                        3975 ;
0108
                                      IF TSO WAS NOT UPDATED OR
0108
                        2980 ,
                                      IF T(UNKNOWN)-[0 IS NEGHTIYE OR
0108
                        2985 ;
                                      IF RESULT IS G.T 50 IT ABORTS
6/08
                        2990 j
01C8
                        2995 ;
                                      OUTPUTS RESULTS TO FRONT PANEL
6108
                        3000 ;
01C8
                                      DISABLES INTERRUPIS DURING CRITICAL
                        30U5 ;
0108
                         3010
                                      CALCULATIONS
0108
                        3015 ;
GICS
                        3026 () ********************************
aics
                        3025 ;
6108
      3E 61
                        3630 TMPOUT: LD
                                             R. OHE
                                                        ,SET BUSY FLAG
OICA
      32 12 0C
                        3035
                                      L.D
                                                       STURE 1T
                                             (BUSY), H
BICD
      32 89 60
                        3640
                                      LD
                                             (ECGUNI),A;ECG LOUNI≃I
01b0
      H
                        3945
                                      XHY
                                             Н
                                                        JULEAR CARRY
6101
      32 06 00
                        3656
                                             CUTRTEMS, A. TEMP CTP≈0
                                      LD
91D4
                        3055 /
611D4
      21 10 00
                        3660
                                      LD
                                             HL, TEMPST+6; GET T5Q(REF)
81D7
      7'E
                        3865
                                      LL^{i}
                                             H_{\ell}(HL)
                                                        iA HAS TSB
      FE BE
01D8
                        3679
                                      CF
                                             ZERU
                                                        JUPDHTED?
      CC ID 02
OIDA
                        3975
                                             ZJIEST2
                                                        ; IF NOT, RETURN
                                      CHLL
BIDD
                        3888 ;
DIDD
      21 OH OC
                        3885
                                      LD
                                             HLJTENPST JGET 10 (REF)
BIEB
      46
                        3036
                                      LD
                                             6,(HL)
                                                        JC HAS LOW URDER BYT
UIEI
                                      SUB
      4:-
                        3095
                                             (HL)
UIES
      32 63 60
                        3 | EU
                                      LL
                                             KD1VTH)JA JPARTIAL RESULT
UIES
      21
         11 OC
                        3105
                                      LD
                                             HL, TEMPST+7;847E 2
      FE
&1E8
                        3116
                                      LB
                                             HIGHL)
0129
      21 08 0C
                        3115
                                      LD
                                             ML, TEMPST+1; TO (REF) HIGH
BIEU
      FЗ
                        3120
                                      EI
DIED
      46
                        3125
                                      LD
                                             B.(HL)
BIEE
      9E
                                             (HL)
                        3/30
                                      SBC
                                                        ∍150-16 KlGH ORDER
HIEF
      DA 08 02
                        3135
                                      JP
                                             C.CLRFLG
                                                       JIF NEGATIVE ENIT
                                             CDIVTM+13.A:STORE IT
UIF2
      32 04 60
                                      LD
                        3/40
01F5
      23
                        3145
                                      IMC
                                                        JGET TI FOINTER
SIFE
      C5
                        3/50
                                      PUSH
                                             EL:
BIF?
                        3153 ;
SIFI"
      CD 27 62
                        3160
                                             THPGU
                                                        CHLCULATE TI
                                      CHLL
DIFA
      03 02
                        3165
                                      our
                                             FURT2, A
                                                        ill Tù LED diselar
BIFC
      78
                        3170
                                      LD
                                             H_2B
                                                        .Most significant
SIFD
      1:3 U3
                        3175
                                      our
                                             PORTS, A
                                                        rresult to I!
61FF
      CI
                        3186
                                      FDF
                                             ЬÚ
MEBU
                        3185 ;
BEULi
      21 UE 60
                        3190
                                      LP
                                             HL, TEMPST+4, GET T2 POINTER
0203
      CD 27
                        3195
                                      CALL
            32
                                             TMPGO
                                                        JUALCULATE TE
0246
                        3366 ;
                        3245
0206
      D3 04
                                      UUT
                                             PURT4, H
                                                        ;L.S. BCD out
6268
      78
                        3216
                                      LD
                                             fl.B
                                                        iMost significant
9299
      D3 95
                        3215
                                      OUT
                                             PURTS, H
                                                        iresult to 12
```

TEMPERATURE AND HEART RATE BIOTELEMETRY DEMODULATOR

```
0298
                       3225 ;
                                         BEBB
                       3236 /
                                         ÷.
0208
                       3235 /
                                         *
                                              TMPOUT (CONTINUATION)
DESE
                       3240 /
                                         ж.
0208
                       3245 /
                                         **********
BŽÜB
                       3250 /
020B
      Fb
                       3255 CLRFLG: E1
                                          A
026C
      ΗF
                       3268
                                   SOR
                                                   ;CLEAR BUSY FLAG
0200
      32 10 90
                       3265
                                   L.l.
                                          (TEMFS1+6), H; CLEAR TSO(REF)
      32 11 BC
02/0
                       3270
                                   L.D
                                          (TEHFST+7).H
0213
      32 12 00
                       3275
                                   LU
                                          (BU57)2H
6216
      C9
                       3286
                                    RET
                                                    JRETURN TO MRIN FROG.
0217
                       3285 /
6217
                       3290 ;
0217
      21 98 02
                       3295 EMENU: LD
                                          HL;CLPFLG ;EXCHANGE
BETH
     UI
                                   POP
                       3386
                                         BC STACK
021B
                                          (5P);HL
      E3
                       3305
                                   EX
                                                   J& RETURN TO CLR FLG
8210
      5,5
                       3316
                                    KET
921D
                       3315 /
0210
                       3326 /
                       3325 TEST2:
8210
      ·+/-
                                    LD
                                          CAR
                                                   ⇒STURE HIGH 8Y1E
      23
ti21E
                       III
                                    IHC
                                          HL.
U21F
                       3335
      ïΈ
                                   LD
                                          A, (HL)
0220
                                          EERU
      C6 88
                       3340
                                   HDD
                                                    TEST LOW BYTE
0222
      CH 83 82
                       3345
                                    JP
                                          Z. CLRFLG
B225
      720
                       3359
                                   LÜ
                                          H_{\bullet}C
                                                    FRESTORE (HIGH) BYTE
0226
      13
                       3355
                                    RE I
BEER
                       3366 /
0227
                       3365 j
922T
                       3326 THFGC:
      FF
                                    BUE
                                          Ħ
                                                    ; CALCULATE TEMP
0228
     ïΕ
                                          H. (HL)
                       3375
                                   LD
Beer
      91
                       3380
                                    SUB
                                          C
022H
      4/-
                       3385
                                   LD
                                          C_2H
UZZB
                      3396 ,
0228
                       3395
                                   INC
                                          HL
                                                    ;SUBTRACT
622C
      ĩΕ
                       उपशंखें
                                   LD
                                          H. (HL)
                                                    , [56k REF)-10kREF)
0220
      98
                       3485
                                   SHU
                                         o'
GCEE
      DR 17 52
                       3416
                                   jt'
                                         CARSEMO
                                                    JIF NEGRTINE RETURN
0231
      et.
                       3415
                                   LD
                                         Ball
                                                    FIENP STURE
8232
                      3420 /
uz32
      21 03 00
                      3425
                                   LD
                                         HL DIYTH
6235
                      3430
                                         As (HL)
                                   LD
0235
     30
                      .34.3.5
                                   IHC
                                         14
                      3444
6237°
     377
                                         C
                                   SUB
                                                    JBU=TI UR T2-TG(REF)
9238
      23
                      3445
                                   INC
                                         HL
6239
     ïΕ
                      3450
                                   LD
                                         Ho (HL)
023A
                      3455
      98
                                   SBC
                                         8
                                                   ;(T50-10+1)-(T1-T0)
023B
     DH 17 02
                      3466
                                   JP C. EXEMD
                                                   ; IF NEG.RETURN
0232
     26 32
                      3485
                                   L.D
                                         HJEIFTY
                                                   :DEGREES
6246
                      3470 /
U240
     CD 91 01
                      3475
                                   CHLL MULT
                                                    ;CALCULATE IT OR TE
6243
     CD 4B 62
                      3480
                                   CHLL DIVSP
U246
     CD 71 01
                      3485
                                   CHLL SIMBCD
6249
     75
                      3496
                                   LD
                                         A.L
                                                   :Result XI
024H
     C9
                      3495
                                   RET
```

TEMPERATURE AND HEART RATE STUTELEMETRY VEHODULATOR

```
0248
                       金属化基础基础 计标准电影化电影电影电影电影电影电影电影电影电影电影电影电影电影电影电影 COOK
                       3510 .
0248
0248
                       3515 ;DIVSP-
124B
                        3520 j
                                  CRLLED BY TEMPOOL 11 CHLCULATES
BESB
                       3525 /
                                  <(11 OR T2)-1U(REF)*50\/(T50-T0)</pre>
0248
                       3536 /
                                  PREUTSE TO UNE DECIMAL PLACE MY.M.
                       3535 ;
                                  DUES NOT ROUND OFF RESULT
U24B
C24B
                       3548 j
0248
                       6248
                       3555 x
                       3555 /
U2:18
UZSB
     2H 03 6C ·
                       3560 DINSP: LD HERODIVIMORGET DINISOR
CERE
                       3565 ·
024E
                       3570 ; DIVILE I-TO+50, T50-T0
024E
                       3576 /
624E
      CD 68 02
                       3586
                                     CALL
                                           DIVIEW
0251
      ÉĐ
                       3585
                                     PUSH HL
                                                     JSAVE REMAINDER
                       3590 i
B252
220E
      CD HE OI
                       3595
                                     CHLL
                                           MPUNIS
                                                     ;DECRESULT>=UEXIG
0255
      El
                       3668
                                     PUP
                                           HL
                                                     JSAVE RESULT
825a
      05
                       3685
                                     FUSH
                                           ЭE
8257
      EB
                       3610
                                     E
                                           DEL HL
                                                     JREMAINDER IN DE
      CD AE UI
0258
                       36/5
                                     CHLL
                                           MPYHIS
                                                     FREMAINDERENS IN DE
025B
                       3620 ;
0258
      28 03 00
                       36.35
                                     LD
                                           HLJ(DIVIN);DIVIDE AGAIN
B25E
      6D 6B 02
                       3636
                                     CALL
                                           DIYIOR
                                                     ⇒KESULT IN DE REG
                                                     :KESULT 10 HL
0261
                       3635
                                     E...
                                           DE . HL
      EB
uzez
                       3040 /
0262
      131
                                     POP
                       3645
                                           DE
                                                     ⇒GET F1RST QUUITENT
6263
                       3650 /
0263
                       3850 JADO QUOTIENT TO RESULT
6263
                       3666
9263
      19
                       3865
                                     HDD
                                           HLIDE
B264
      3E 01
                       3678
                                     L.D
                                           H. OHE
                                     r.F
2255
                       3675
      ВН
                                           D
                                     RET
19267
      DU
                       3688
                                           NL:
                                                     FRETURN IF POSITIVE
     03 17 02
uess
                       3685
                                     JΡ
                                           ESEND
```

TEMPERATURE AND HEART RATE DIDTELEMETRY DEMODULATOR

```
3695 ; *******************************
0268
U.LoE
                         3766 /
0268
                         3705 ; DIVIGQ:
626E
                         3716
                              į
                                       CALLED BY DIVSP: IT CALCULATES
                                       TOUNKNOWN) BY DIVIDING DECDIVIDEND)
0268
                         3715 /
026B
                                       BY HL (DIVISOR AND REMAINDER)
                         3220 i
0268
                         3725 i
                                       DE=RESULT
826E
                         3730 /
0268
                         826B
                         3740
      22 07 0C
                                              (TEMP), HL , SAVE DIVISOR
026B1
                         3745 DIVIEQ: LD
      21 85
026E
                         3750
            ÜÜ
                                       LD
                                              HL.; BNUM
                                                        ;STORE BIT COUNT
                         3755
0271
      36 11
                                       LD
                                              (HL) ELEVN
6273
      01 66 66
                         3760
                                       LD
                                              BC J ZERO
                                                        JINIT RESULT
0276
      CS
                         3765
                                       PUSH
                                              BC
8227
                         3.70 /
0277
                         3775 LUOPD:
                                              A.E
      . B
                                       LD
                                                        GGET LWR DIVIDND BYT
      17
B278
                         3780
                                       RLFI
0.279
      SE
                         3785
                                       LD
                                              E_{J}H
                                                        ;SHIFT DIVIDEND
027A
                         3790
      ïΗ
                                       LD
                                              H.D
0.76
      17
                         3795
                                       RLA
                                                        LEFT ONE BIT
      57
BEZZÜ
                         3800
                                       LD
                                              () F
0.270
                         3895
      35
                                       DEC
                                              (HL)
                                                        ;DECR COUNT
BZTE
      E.I
                                       FÜF
                         3816
                                             HI_
                                                        ;RESTORE TEMP RESULT
0277
                         3815
                                       REI
      €8
                                                        ;ZERO COUNT?
                                             BJ ZERU
BZSB
      JE UU
                         3826
                                       LE
6283
                                       HDC
      CE 90
                         3825
                                              ZERU
                                                        ; ADD CARRY
6284
      29
                         3830
                                       RDD
                                             HL, HL
                                                        SHIFT LEFT ONLE
0285
                                                        JHL TO ACC.
      44
                                             B_{i}H
                         3835
                                       LU
8328
      85
                         3840
                                       HDD
      28 87 OC
                         3845
9287°
                                       1.15
                                             HL, (TENP) ; GET DIVISOR ADDR
ษยยล
      0.5
                         3856
                                       SUB
                                                        ;SUBTRHCT IT
                                             L
028B
      -45
                                       LD
                         3855
                                             C, A
6280
      78
                         3860
                                       LD
                                             H.B
                                                        ;TEMP RESULT
9280
      90
                         3865
                                       SBC
                                             Η
BESE
      7,5
                         3876
                                       LD
                                             B_{\ell}H
028F
                         3875
                                             BC
                                                        SAVE TEMP RESULT
                                       PUSH
6296
         95 E2
      D2
                         3868
                                       JF
                                             MU, SK1PD
0293
      29
                         3885
                                       HDU
                                             HLIBU
                                                        JALO DIVISUR BACK
8294
                         3890
                                       EX
                                             (SP) HL
      E3
                                                        FREPLACE TEMP RESULT
0295
         U5 8C
                         8895 SKIPD.
      -1
                                       LU
                                             HL : BNUd
                                                        ;RESIORE HL
0298
                                       CLF
      35
                         Iybb
                                                        JUNIFLEHENT CHERY
         77 02
0299
      L3
                        3505
                                       JP
                                             LUUPD
                                                        REPERT
```

TEMPERATURE AND HEART PATE BIOTELEMETRY DEMODULATOR

```
ULYC
BEFC
                        3936 :
029U
                        3925 / CHL-
BESU:
                        3938 ,
                                  - EMERCISES ALL SUBMOUTINES USED 14
OBSU
                        3935 /
                                    CALCULATING HR. OF TEMPS.
0290
                                    GUTTUTS RESULTS TO FRONT PHMEL
                        3244 /
4226
                        3945 /
0290
                        0290
                        3955 /
LESU
      3E 51
                        39GC CHL:
                                            the UNE
                                      L.I.
                                                       SET UP FLHG
U29E
                        3983
      32 00 OC
                                            (FLAG),H ,FUR HR NUCE
                                      1.13
      32 BY DC
                        3976
udii l
                                      LD.
                                             CLOGENT NAMES OF AR ROUTINES
      72
0264
                        37775
                                      1.17
                                            8.8
6283
                        3586
                                      BMD.
      E6 82
                                            THO
                                                       JIESI LAL FLG
      CH CF 02
UCH?
                        3983
                                      .112
                                            Z.HICHL
                                                      .lf LOW CAL,CONTINUE
G2Firt
                        3900 /
      HF.
02AH
                        3995 LUCAL:
                                      Mik
                                            44
32HB
      32 62 60
                                      10
                                            CLUMESH
                        4bbb
      JE FF
JEMIC
                                                       JLARGE INT. BET R UHVES
                        4899
                                      LD
                                            A. INF
      3A 03 80
GPEC
                        4640
                                      1.0
                                            HJ (TIME+| DISTORE IT
G2B3
      CD DZ 03
                        1815
                                      UH.L
                                            GUCHL
uz'E6
      11 13 62
                        40.70
                                      LR
                                             LE, TABLE
                                                       ;CAL THOLE
      CD DE GE
                        4025 ENDOHL:
UZEJ
                                      CHLL
                                            PCHL
                                                      -;äET CAIA UUT
                                      JP
SEBU
      U3 00 05
                        4836
                                            PSTRI
                                                       JRE-START PROGRAM
                        1035 /
JLEF
      3E. 58
                                                       JCHL TIME LOW URDER TO
JUST TIME≃600 MSEC
GZEF
                        4646 HILHL:
                                      LD
                                            H. CALTL
      32 02 06
321.1
                        11: 45
                                      LD
                                            RIME J. H
0264
      3E 62
                        4650
                                      1.5
                                            A) CALTH
                                                       JUHL THE HIGH OFCER
92Cá
      32 03 UC
                        4955
                                     LD
                                            (TIME+1)A
USLS
      SD D2 62
                        44.6.6
                                      CHLL
                                            GUUNL.
      1: FB U2
UECC
                        1635
                                      LL
                                            DESHTABLE SHIGH CAL TABLE
GBCF
      C3 D9 UZ
                        fui u
                                      510
                                            E.H.C.CHIL
3202
                        4075 /
6212
      UD HR UB
                                                       JECG UUT
                        4USU DUCHL.
                                      i.HLL.
                                            CALOUT
      BF
BBDS
                                                       JUET TEMP REHDY
                        49850
                                      20k
                                            A
      32 09 00
U2D6
                        40915
                                      LD
                                            (EUGUNT), H
#209
      ЗЕ ИН
                        4095
                                      LD.
                                            ALFITEDP
                                                       JGET BY CYCLE #
SECE
      32 bi bu
                        4/66
                                      LE
                                            CCTRTEMINAISTORE IT
JELE
                        4183 .
BEUE
      21 DR BU
                                            NL. TEMPST
                        4113 FUIL.
                                      L.12
UPE I
      tiF
                        4115
                                      \mathcal{L}(d)
                                            H
3272
      06 08
                        4126
                                      L.C.
                                            B, EllaHI
                                                       JUET THELE CUCHT
                        4125 FLORT:
1264
      13
                                            H_{2}(0E)
                                      LO
üZE5
      77
                        4138
                                      LD
                                            \langle HL \rangle, H
                                                       JIABLE TU FAM
⊎∷E8
      13.3
                        -1135
                                      OEU:
                                            2
                                      JI^*
UZŁ?
      UH EF 62
                        4/30
                                            L. PENI
                                                       JUNITAUE IF NOT DOME.
                                      INC
U. CH
      13
                        1145
                                            ÜΕ
&ZED
      23
                        4150
                                      INC
                                            FL.
                                                       JUPDATE FOINTERS
W. E.C.
      C3 E4 03
                        4155
                                      JF.
                                            PCCNT
GEEF
      CD AA 66
                                            CHLOUT
                        4160 PEND:
                                      CHLL
                                                       JRET TO NORMAL
                                                 ad.
92F2
      63
                        4165
                                      RET
```

TEMPERATURE AND MEART PAIR BIOTELEMETRY DEMODULATOR

```
azr3
                       4175 J
62F3
                       4186 j
                                          CALIBRATION TIME TASLES:
UZFS
                       4185 ;
                                                                         +
                                   .÷.
                                                                         :4:
aar 3
                       4190 >
                                   #
                                   :}-
                                          MOTE: USED BY CAL ROUTINE
                                                                         ÷
                       4195 1
22F3
                       4200 /
32F3
                                   ń.
                                                                         ....
02F3
                       4205 j
                                   "本中中水中中洋中水水平洋土中 医牙子子干燥 计未未水水水水水水水水水水水水水水
                       4216 j
UEF3
                       4215 JOHL INTERVAL FOR TOJITIJIZ HND T50(REF)
92F3
                       4220 JEMPRESSED IN MILLISECUNDS
02F3
92F3
                       4225 ;
      62F3
                       4230 THELE:
                                     E.IJU
02F3
      1E 01
                       4235 TQL:
                                     DH
                                           286
                       4240 TiL:
                                     DM
                                           340
02F5
      5A G1
                       4245 TZL
32F."
                                     DW
                                           340
      SA ÛI
62F2
      96 01
                       4250 J56L:
                                     DИ
                                           486
02FB -
                       4255 /
                       4260 /
GEFB
      92F8
                       4265 HTHBLE EQU
B2FB
     IE UI
                       4278 T3H:
                                     LH
                                           280
     95 OI
                       4275 TIH:
                                     DM
                                           495
CZFD.
      56 81
                       4285 T2H:
                                     DU
82FF
                                           446
                       4285 T50H:
                                     DH
                                           486
0301
      98 01
```

TEMPERATURE AND HEART PATE DISTELLEMETRY DEMONSERIOR

```
0303
                       4295
                                    URG
                                          UCUUH
                       李墨树。 :宋本本帝未永未未 4年年年月 4年本本帝帝朱本本帝帝未未未未未未未未未未未未未未未未未未
9099
                       4305 ;+
BCOU
                                                                        ÷.
                                                                        r
Ent. de
                       4310 14
                                            RHM MEMORY
                       43/5 16
                                                                        ÷
oceu
                       EUUE
                       4325 /
ucao
     BCDB
                       4330 RAH:
                                  EWU 🚅
                                                   - BEGIN SYS PAN
BCBB
                       4335 j
BUBB
                       4340 FLRG:
                                    LEF \Xi
     UUS I
                       4343 DUMTH: DEFS: 1
4350 TIME: CEFS 1
                                                   :TEMPURARY TIME
000 I
     0001 %
6063
      ĿBBI
                                                    :TIME INTERVAL
                       4355 DIVIM:
ÜCU3
     9993
                                    DEFS
                                          \geq
EIL 135
     EUU
                       4360 ENUM:
                                    DEFS
                                          1
                       4365 CIRTEM: DEFS
<del>UCBa</del>
      eue!
                                          1
                                    DEF5
BUBA
      មិមិមិ!
                       4370 TEMP:
                                          İ
                       4375 SHVIIN; DEFS
ÚCOS.
     MÜÜl
                                          i
                                                 * JR HAVE COUNT
                       4380 ECUCNT: DEFS
BOLLY
     GDBT
                                          1
                       4385 TEMPST: DEFS
9CUH
     ивии
                                          13
                                                   -:T CYCLE STORE
                       4396 .
0012
                       4395 BUSY: . DEF3
UCTE
     0091
                                          4400 RMMEND: EUU
      6613
BC13
                       44UJ :
                                                 I END OF STACK
      1006
                       4416 ERNK: EQU 1666H
```

REFERENCES

- 1. Werber, Morton: A Bibliography of Wildlife Movements and Tracking Systems. NASA CR-130380, 1970.
- 2. Ysenbrandt, H. J. B.; Selten, Th. A. L.; Verschuren, J. J. M.; Kock, T.; and Kimmich, H. P.: Biotelemetry, Literature Survey of the Past Decade. Biotelemetry, vol. 3, 1976, pp. 145-250.
- 3. Lund, Gordon, F.: Time and Energy Budgets by Telemetry of Heart Rate from Free Ranging Black-Tailed Prairie Dogs in Natural and in Model Environments. Ph.D. Thesis, Dept. of Zoology, University of Iowa, Iowa City, 1974.
- 4. Lund, Gordon F.; and Folk, G. Edgar, Jr.: Simultaneous Measurements of Heart Rate and Oxygen Consumption in Black-Tailed Prairie Dogs (Cynomys ludovicianus). Comp. Biochem. Physiol., vol. 55A, 1976; pp. 201-206.
- 5. Sebesta, Paul D.; and Lund, Gordon F.: Overview of NASA Wildlife Sensing Projects. Paper presented at the Pecora IV Symposium on Application of Remote Sensing Data on Wildlife Management, Oct. 10-12, 1978, Sioux Falls, South Dakota. Sponsored by the National Wildlife Federation, Washington, D. C.
- 6. Fryer, Thomas B.: Implantable Biotelemetry Systems. NASA SP-5094, 1970.
- 7. Fryer, Thomas B.; and Sandler, Harold: A Review of Implant Telemetry Systems. Biotelemetry, vol. 1, 1974, pp. 351-374.
- 8. MacKay, Ralph Stuart: Bio-Medical Telemetry. Second ed. John Wiley and Sons, New York, 1970.
- 9. Baldwin, Howard A.: Instrumentation for Remote Observation of Physiology and Behavior. Ecological Energetics of Homeotherms, Gessaman, J. A., ed, Utah State University Press, Logan. Monograph Series, vol. 20, 1973, pp. 67-76.
- 10. Fell, Roger B., Skutt, H. Richard; and Waterfield, Allan: A Four-Channel Ultrasonic Telemetry System for Obtaining Physiological Data from Ocean Divers. Biotelemetry, vol. 1, 1974, pp. 50-59.
- 11. Lin, Wen C.; and Pillay, Sasi K.: A Micropower Pulsewidth-Modulation-Pulse-Position-Modulation Two-Channel Telemetry System for Biomedical Applications. IEEE Transac, BME vol. 21, 1974, pp. 273-280.
- 12. Pauley, J. Donald; Reite, Martin; and Walker, Stephen D.: An Implantable Multi-channel Biotelemetry System. Electro-encephalography and Clinical Neurophysiology, vol. 37, 1974, pp. 153-160.

- 13. Smith, E. Norbert: Multichannel Temperature and Heart Rate Radio-Telemetry Transmitter. J. Appl. Physiol, vol. 36, 1974, pp. 252-255.
- 14. Winter, David A.; and Trenholm, Brian G.: Reliable Triggering for Exercise Electrocardiograms. IEEE Transac, BME vol. 16, 1969, pp. 75-79.
- 15. Cupal, Jerry J.; Weeks, R. W.; and Kaltenbach, C.: A Heart-Rate-Activity Biotelemetry System for Use on Wild Big Game Animals.

 Biotelemetry III, Fryer, T. B., H. A. Miller, and H. Sandler, eds.,
 New York, Academic Press, 1976, pp. 219-222.
- 16. Weeks, R. W.; Long, F. M.; and Cupal, J. J.: An Improved Repeater Heart Rate Telemetry System for Use on Wildlife. Proceedings of the First International Conference on Wildlife Biotelemetry, July 27-29, Laramie, Wyoming, 1977, pp. 2-8.
- 17. Sebesta, P. D.; and Arno, R. D.: Report on 1973 Santa Cruz Summer Study on Wildlife Resource Monitoring. NASA TM-78578, 1979.
- 18. Ferris, Clifford D.: Introduction to Bioelectrodes. Plenum Press, New York, 1974.
- 19. Geddes, Leslie A.: Electrodes and The Measurement of Bioelectric Events. John Wiley and Sons, New York, 1972.
- 20. Geddes, Leslie A.; and Baker, L. E.: Principles of Applied Biomedical Instrumentation. Second ed. John Wiley and Sons, New York, 1975.
- 21. Miller, Harry A.; and Harrison, Donald C., eds: Biomedical Electrode Technology, Theory and Practice. Academic Press, New York, 1974.
- 22. Neuman, Michael R.: Biopotential Electrodes. Medical Instrumentation Application and Design, J. G. Webster, ed., Houghton Mifflin Co., Boston, 1978, pp. 215-272.
- 23. Dymond, Anthony M.: Recording Electrodes for Chronic Intracerebral Implantation in Man. Biomedical Electrode Technology, Theory and Practice, Miller, H. A. and D. C. Harrison, Academic Press, Inc., New York, 1974, pp. 41-66.
- 24. Geddes, L. A.; and Baker, L. E.: The Relationship Between Input Impedance and Electrode Area in Recording the ECG. Med. Biol. Eng., vol. 4, 1966, pp. 439-450.
- 25. Fryer, Tom B.; Lund, Gordon F.; and Williams, Bill A.: An Inductive Powered Telemetry System for Temperature, EKG, and Activity Monitoring. Biotelemetry and Patient Monitoring, vol. 5, 1978, pp. 53-76.

- 26. Lund, Gordon F.; Simmonds, Richard C.; and Williams, Bill A.: A Subcutaneous Channeling Probe for Implanting Long Leads. Lab. Anim. Sci., vol. 27, 1977, pp. 1040-1041.
- 27. Larsen, J. L.; Dillman, R. F.; Nardizzi, A. M.; and Tverdoch, R. N.: An Effective ECG Telemetry System. Hewlett-Packard Journal, vol. 23, no. 8, April 1972, pp. 2-8.
- 28. Wright, M. J.: Use Slew-Rate Filtering. Electronic Design, vol. 24, no. 19, Sept. 1976, pp. 110-12.
- 29. Deboo, Gordon J.: An RC Active Filter Design Handbook. NASA SP-5104, 1977.
- 30. Courtin, E.; Ruchay, W.; Salfeld, P.; and Sommer, H.: A Versatile, Semiautomatic Fetal Monitor for Non-Technical Users. Hewlett-Packard Journal, vol. 28, no. 5, Jan. 1977, pp. 16-23.
- 31. RCA COS/MOS Integrated Circuits, Databook SSD-203C. RCA Solid State, Somerville, New Jersey, 1975, pp. 518-538.
- 32. Morrow, G.; and Fullmer, H.: Proposed standard for the S-100 Bus Computer, vol. 11, no. 5, May 1978, pp. 84-90.
- 33. Intel 8080 Microcomputer System User's Manual. Intel, Inc., Santa Clara, Calif., Sept. 1975, pp. 2-11.

Figure 1.- Telemetry data-acquisition system for heart rate and multiple body temperatures.

·

RF PULSE TRAIN OUTPUT

Figure 2.- Modulation scheme for heart rate and multiple body temperatures.

Figure 3.- Implantable ECG electrodes.

Figure 4.- Activity ECG records from different electrodes implanted in a dog.

Figure 5.- Disturbance artifact susceptibility of different electrodes <u>in vitro</u>.

Figure 6.- Block diagram of implantable transmitter.

Figure 7.- Circuit diagram of implantable transmitter.

- A ECG, B LOW-PASS FILTERED ECG, C HIGH-PASS FILTERED ECG, D AMPLIFIED ECG,
- 1 SETS MINIMUM TRIGGER LEVEL (270K, 10K), NORMAL THRESHOLD ADJUST (10K), SEARCH MODE-TRACKING RATE (5.6M), L SETS START OF SEARCH MODE (2.2M)

Figure 8.- R-wave detector stage functions for threshold control.

Figure 9.- Temperature waveforms for circuit modulation.

Figure 10.- Thermistor bridge outputs.

Figure 11. - Thermistor bridge calibrations.

Figure 12.- Transmitter at various stages of prototype packaging.

Figure 13.- Collar prototype and field receiver equipment.

OF POOR QUALITY

Figure 14.- Collar transceiver circuit diagram.

Figure 15.- Collar transceiver timing diagram.

Figure 16.- Collar antenna arrangement.

Figure 17.- Circuit diagram for active gain stage.

Figure 18.- Interface circuit diagram.

Figure 19.- Top view of demodulator.

Figure 20.- Circuit diagram of demodulator.

Figure 21.- Front panel of demodulator.

Figure 22.- Continued circuit diagrams of the demodulator.

Figure 23.- Views of field test station.

OF GINAL PAGE IS

1. Report No. NASA TM-78590	2. Government Access	ion No.	3. Recipient's Catalog	No.
4. Title and Subtitle A LONG-RANGE AND LONG-LIFE TELEMETRY DATA-ACQUIST HEART RATE AND MULTIPLE BODY TEMPERATURES FROM FR			5. Report Date	
ANIMALS	RED-RANGING	6. Performing Organiz	ration Code	
7. Author(s)			8. Performing Organiz	ation Report No.
Gordon F. Lund,* Richard M. Westl Rafael F. Miranda		A-7824		
			10. Work Unit No.	
9 Performing Organization Name and Address			199-71-02	
NASA Ames Research Center Moffett Field, Calif. 94035			11. Contract or Grant No. NSG 2293	
			13. Type of Report ar	nd Period Covered
12. Sponsoring Agency Name and Address		Technical Memorandum		
National Aeronautics and Space A Washington, D.C. 20546		14. Sponsoring Agency	Code	
15. Supplementary Notes				
*National Research Council Asso	ciate, Adj. Assoc	. Prof., San Jose St	ate Univ., San	Jose, CA
A long-range and long-life free-ranging animals has been descreceiver-retransmitter collar, and is suitable for animals with body implant is possible. The ECG is movement artifacts. The R-wave of radio frequency (RF) pulse. Tempossed on a heartbeat counter, transmodulation scheme includes first temperature intervals to achieve sequencing are used to discriminate ference. The implanted transmitt particular locations within a large on animals in moderate-sized enclumitter is otherwise interfaced with tracking equipment to achieve the short RF pulses so that average of milliamperes. The RF pulses from trolled demodulator for the characteristic provides analog beat-to-beat hear display. Heart rates to several to five zero to 50° C with 0.1° C in design was to achieve a high degree formance. The system was tested	igned. This systed a microprocesso weights of a few sensed by electro haracteristics are fratures are sensed intermited intermited and last calibrated good accuracy event between heart er might be used ge territory; on osures, such as the the receiver-relation of either transmitted trate and period hundred beats per resolution of chales of experimenta	em includes an implar-controlled demoduly kilograms or more; des designed for interested at desired location intervals for a mover long periods rate and temperature alone for experiment animals in virtually hose in a zoological etransmitter collar mission. Peak energister transmitter is er are processed by se durations, intervically updated temper minute (BPM) and beinge or better seem if I flexibility and over	antable transmit ator. The size further size recently telemetry selected to triple tons by thermistic erval modulation reference by rate pulses as well as on animals the any laboratory garden. The interpretation of the microprocess of als, and sequence ratures as well ady temperatures its easible. The old service of the microprocess of the micr	ter, external of the implant duction of the and to reduce gger a short ors and then, a. This tios with the a and pulse as RF inter- at frequent situation; or applanted trans- ammercial aly during the f tenths of sor con- ce. The output as digital within a range bjective of the
17. Key Words (Suggested by Author(s))		18. Distribution Statement		
Long-range telemetry		Unlimited		
Radio telemetry Heart rate		on interest		
Temperatures		STAR Category - 51		
Data acquisition				
19. Security Classif. (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22, Price*
the manager of the more called at		·		·

\$4.50

73

Unclassified

Unclassified