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ABSTRACT

Severalmodels are developed for studying the impact of deviations from

course during cross-country soaring flights. Analyses are performed at the

micro-strategy and macro-strategy levels. Two types of lift sources are

considered: concentrated thermals and thermal streets. The sensitivity of the

optimum speed solutions to various model, piloting and performance parameters

is evaluated. Guides are presented to provide the pilot with criterions for

making in-flight decisions. In general, course deviations are warranted during

weak lift conditions, but are less justifiable with moderate to strong lift
conditions.

INTRODUCTION

There have been many attempts to develop optimum piloting strategies for

the vertical plane of cross-country soaring (for example, references 1 through

5), which basically yield an optimal airspeed given the airmass characteristics,

but little has been done with the horizontal plane. References 6 through 8

point out that substantial departures from the optimum speed-to-fly result in

small degradations in achieved speed. In fact, the biggest contributing factors

influencing average speed are maximizing the achieved rate-of-climb in lift and

minimizing the atmospheric sink rate between regions of lift. So it seems that

cross-country soaring performance is most influenced by the pilot's decisions

made in the horizontal plane.

This paper will address itself to developing some models reflecting typical

course deviation decisions a pilot is likely to be confronted with during a

cross-country soaring flight. The accompanying analysis should provide guide-

lines for the pilot to rationally select flight paths which optimize the

anticipated lift conditions. Two types of convective lift conditions are

considered: soaring conditions where the regions of lift are small relative to

the distance flown (circling required) and conditions where the regions of lift

are of the order of the distance flown (thermal street flying). In addition,

two categories of models are investigated. Micro-strategy models are used to

analyze the choice of lift along a desired course line. Macro-strategy models

are used for studying the influence of choosing a course line to a goal.
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The analysis contained herein assumes parabolic performance polars with

numerical examples computed for parameters typical of a modern standard class

sailplane. The pilot is assumed to fly at the optimal airspeed for all course

choices since perturbations are assumed to have a minor effect. Since final

glides are not considered and potential energy is conserved, all models begin

and end at the same altitude, cloudbase. Furthermore, all solutions neglect

survivability, i.e., they assume the pilot will complete the task no matter

which choices are made. Finally, all situations assume that the pilot is far

from a ground referenced goal and that the lift is not ground referenced so the

influence of wind can be neglected.
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Distance on course to lift source goal for thermal street model

Distance on course to lift source goal for thermal models
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Intermediate calculation variables

Intermediate calculation variable

Altitude gained climbing in street lift

Altitude lost cruisir_ between streets

Average rate-of-climb while circling in therm_o_

Rate-of-climb averaged while cruising thermal street lift

Intermediate calculation constant, defined in Appendix C, Equation 3

Intermediate calculation constant, defined in Appendix C, Equation I0

Equivalent to maximum glide ratio in still air

Distance flown along street, Fig. 12

Distance to fly along street for optimum time
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Distance to fly along street for time elual to not making course
deviation

Non-dimensionalized distance to fly along street, break-away

point

Slope of tangent line

Length of second leg of course deviation, Fig. 12

Total distance of a cruise/climb street cycle

Distance of climb phase of a street cycle

Distance of cruise phase of a street cycle

Value of definir_ polynomial for ith iteration

Total deviation distance of using a street parallel to course

line, Fig. 9

Distance of individual legs of course deviation, Fig. 9

Deviation distance ratio of parallel street model, Fig. 9

Time to fly glide/climb thermal cycle on course

Time to fly course deviation

Airspeed while cruising, knots

Optimum speed-to-fly between lift, knots

.th
Guess of V* during i-- iteration, knots

Sink rate flying at an airspeed of V*, knots

Average vertical sinking velocity of atmosphere between lift, knots

Airspeed while climbing in a street, knots

Required airspeed to cruise in street lift and maintain constant

altitude, knots

Airspeed along legs D, A, n respectively
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Average ground speed after a complete glide/climb thermal cycle, knots

Average ground speed after a complete glide/climb thermal street lift

cycle, knots

Airspeed for minSmum sink rate, knots

Speed at which (L/D)max occurs, knots

Sink rate flying at airspeed V, knots

Sink rate flying at airspeed Vn, knots

Geometry labels for course deviation models

Total deviation distance, Fig. 1

Deviation distance legs, Fig. i

Deviation distance ratio

Distance between parallel street and course line, Fig. 9

Spacing distance ratio

Ratio of average rate-of-climb on course to average rate-of-climb
along course deviation

Ratio of average atmospheric sink rate between lift sources to

average rate-of-climb in lift

Ratio of average ground speed on course deviation in augmented lift

to ground speed acheived on course with average lift conditions

A_glc between thermal street and course line

Angle of thermal model course deviation

%

PRESENTATION OF RESULTS

Thermal Models

Micro-Strategy

The first case considered is depicted in figure I. It represents a

frequent decision confronting the pilot during cross-country soaring. The pilo_
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after departing the the__mal at X at cloudbase, must-choose between staying
on course along path XZ and achieving the averse rate-of-climb for that

time of day at thermal Z or deviating along XY to the thermal at Y, which

looks as if it might yield a higher achieved rate-of-climb. Then the pilot

returns to the course after deviating to Y by flying to thermal Z. Given

the geometry, the question remains how much greater must be the rate-of-climb

at thermal Y than the rate-of-climb at thermal Z to yield the same time

for both the direct course and the extended route.

Figure 2 shows the result for a sailplane representative of the standard

class. The required r_te-of-ellmb in the thermal at Y is plotted against the

non-dimensional deviation distance ratio for a variety of average lift

conditions ass'_ning the pilot flies the optimum airspeed, the calculation of

which is shown in Appendix A. The curves in figure 2 can be treated as time

boundaries. Points to the above and left of a curve indicate that a deviation

would be faster than staying on course whereas points to the bottom and rigi_

represent conditions for which staying on course would be more profitable.

The importance of deviating for minor gains in lift when the conditions

are weak is shown by examining the curve for 1 knot avern_e rate-of-climb on

course. A 25% course elongation requires a little over 2 knots rate-of-climb

in the thermal at Y. If the expected rate-of-climb in Z were 4 knots

(moderate lift conditions), a 25% course deviation ratio would need to have an

achieved rate-of-climb better than 15 knots to result in the same time to the

top of the thermal at Z. The implication is that when lift conditions are

weak (1-2 knots average rate-of-climb), course deviations would be advantageous

for modest gains in lift. However, for moderate to strong lift conditions

(4 knots and above average rate-of-climb), sizeable gains in lift will permit

only minor deviations from the course line.

This result is further emphasized in figure 3 where the deviation distance

ratio is plotted against a non-dimensionalized lift ratio for a number of lift

conditions. The weak conditions warrant substantial deviation distance ratios

even in non-dimensional form while, in contrast, the stronger conditions begin

to coincide upon a boundary requiring large lift ratios for any appreciable

distance ratio.

The influence of sailplane performance upon the pilot's decisions is shown

in figure 4. Rate-of-climb required at thermal Y is plotted as a function of

deviation distar, ce ratio for three classes of sailplanes. Sailplane A is the

standard class aircraet considered previously; sailplane B represents _ one-

design sport class; and aircraft C r_pr_n_nt_ _ sai!Dlane in the open class.

It is readily apparent that sailplane performance has a minor effect on the

pilot's willingness to deviate from co_sc. However, there is a trend for

sailplanes of lesser performance to be willing to make slightly greater course

deviations.

The previous curves were developed with an assumed s.ver_ge atmospheric

subsidence equal to 20 percent of the rate-of-climb (_e1"erence 9). As expected,

slight course extensions with this model can be Justified with re_cc_ sink rate
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(figure 5). However, the influence of sink rate on the pilot's decision to

deviate from course, assuming that both flight paths undergo the same average
sink rate, is negligible.

An important variable in the geometry shown in figure i is d'/d. It

impacts the performance of the extended course by determining how much of the

altitude to be regained will be done in the stronger thermal at Y. The

generalized results for d'/d of .25, .5, and .75 are shown in figure 6 for

average lift conditions of 2 knots and 6 knots. It is readily apparent from

figure 6 that substantially larger course deviations can be Justified with

larger values of d'/d. The greater the distance between X and Y for a

given deviation distance ratio, the greater the altitude which is gained in the

stronger lift at Y, therebyincreasing the achieved speed.

The net result of the foregoing analysis is that the deviation angle, T,

should be kept as small as possible. This is especially true for moderate to

strong lift conditions. This result is in basic agreement with the macro-

strategy model presented in reference lO which is of similar format to the
micro-strategy model considered here.

_t should be noted that the preceding results can be directly applied to a

more generalized_model inc.__luding multiple glide/circle cycles along the course

line segments XZ and XY. This is true as l_ong as the deviation flight path

includes only one glide/circle cycle along YZ. The reason multiple thermals

do not affect the analysis is due to the simplification that net ground speed

is a function of achieved rate-of-climb, so the time to reach cloudbase at the

end of a segment will b_ the same no matter how many thermals are used.

The results of another micro-strategy analysis a_'_ shown in figure 7. Speed

ratio, achieved ground speed with vertical air motion between thermals normal-

ized by achieved ground speed with no vertical air motion between thermals, is

plotted against sink ratio, whSch is the ratio of average vertical air motion

between lift sources to achieved rate-of-climb in lift for a variety of lift

conditions. Negative sink ratios are indicative of what pilots call "reduced

sink," i.e., positive vertical air motion too weak to yield a positive rate-of-

climb, but still result in a reduction of the rate at which altitude is lost.

The curves in figure 7 are continued in the negative sink ratio direction until

"zero sir_" (the point at which the net altitude loss during cruising is zero)
ks achieved.

Speed ratios greater than 1 can be interpreted as deviation distance ratios.

For example, a spced ratio of 1.1 implies that a pilot could deviate from his

straight line course by 10% and still have the same achieved ground speed for

a complete glide/circle cycle. If the pilot deviates from course any less, for

the indicated lift and sink conditions, a net gain in cross-country speed will

resu]t. These results reiterate the necessity for minimizing sink rate by

making minor deviations during inter-thermal cruise to optimize the achieved

cross-country performance.

%
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Macro-Strate_

Macro-strategies involve the choice of courses to a desired goal rather

than the flight path selection to individual sources of lift. Macro-strategies

are used to fly through regions of improved lift conditions. So once a macro-

strategy is developed, an undetermined number of micro-strategies are used to

fly the prescribed course.

The results of the thermal macro-strategy model are shown in non-dimensional

form in figure 8. Speed ratio is plotted as a function of lift ratio for a

variety of average lift conditions. As before, the non-dimensionalized speed

ratio can be interpreted as the deviation distance ratio boundary required for

equal time to reach the goal. It is immediately obvious, by comparing figures

3 and 8, that decisions on the macro-strategy level have a much greater impact

upon the achieved cross-country soaring performance than decisions at the

micro-strategy level. A lift ratio of 2.0 yields more than twice the speed

ratio for all lift conditions for the macro-strategy case in comparision with

the micro-strategy case. The importance of choosing courses that will pass

through more favorable sectors is of greater importance for weak conditions as

opposed to moderate or strong thermal conditions.

As before, although sailplane performance and sink between thermals will

affect achieved groundspeed, they have little influence upon the pilot's
decision of when to make course deviations.

Street Models

Many times the pilot will have occasion to utilize convective lift while

cruising along course line. This condition where the regions or lift make up

a substantial portion of the flight path is usually referred to as streeting.

Making effective use of these large regions of lift usually involves speeding

up in sink and slowing down in lift. There have been several analyses of this

mode of flying, for example, references 2 through 5 and ll through 14. In this

paper, however, simplified and conservative control laws have been implemented

for studying thermal street flying. For the most part, the pilot flies at the

speed for minimum sink rate while in lift until cloud base is reached, at which

time the pilot speeds up and flies so as to maintain altitude. The pilot

cruises between lift as dictated by the equations of Appendix B. As it turns

out, this procedure is not far from the optimum as demonstrated in reference 5.

Micro-Strategy

The first model to be considered is shown in figure 9. The pilot has

reached cloud base at Point W and is trying to get to Point Z. He must

decide if flying straight to Z or deviating to use the thermal street along

XY will yield the fastest time to cloud base at Point Z. It is assumed that
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the pilot is capable of achieving an average rate-of-climb along _ equal to

h

half the rate-of-climb obtainable from circling in thermals on course s-r = 0.5.
h

Optimal inter-lift cruising speeds are obtained from Appendices A and B. The

pilot uses the control law previously mentioned for cruising in the lift along
XY.

The results are shown in figures i0 and ii for this model. Boundaries of

deviation distance ratio, s/D, yielding the same time to cloudbase at Z are

plotted against average lift conditions for a variety of street length ratios,

s'/D, in figure lO. As anticipated, the geometry of the situation confronting

the pilot has a much greate_ influence on his decision than rate-of-climb, sail-

plane performance or inter-lift sink. Obviously, the greater the length of

XY (s'), the greater the distance the pilot should be willing to transverse to

improve his cross-country soaring performance. Course deviations for weak

conditions can be about 10% longer than for moderate to strong conditions.

A more convenient way for the pilot to picture how far of a course

deviation is warranted is shown in figure ll. It is a plot of curves showing

allowable spacing-distance ratio, y/D, against achieved rate-of-climb for street

length ratios of 0.2 and 0.8. Spacing distance ratios of about 35% and 45%

respectively are Justified for weak conditions while spacing distance ratios

of about 25% and 35% are allowed for moderate to strong thermal conditions.

The second micro-strategy thermal street model is shown in figure 12. The

pilot has Just reached cloudbase in a thermal at X and desires to reach cloud-

base at the thermal at point Z. He must decide between flying directly on

course or deviating to use the street along X-_ and then flyi_@.g to Z. It is

assumed that the average vertical atmospheric velocity along XY is equivalent

to that which would yield half th__erate-of-climb from thermalling at points X

or Z. The pilot flies along XY at the speed which yields no net altitude

change and then flies along YZ at the speed-to-fly indicated by the methods of
Appendix A.

Prior to analyzing the model, it is necessary to determine the optimum

method of flying the street and the sensitivity to variations from the optimal

procedures. Figure 13 is a series of plots showing speed ratio, i.e., the

speed obtained by deviating to fly the street at angle $ normalized by the

speed obtained flyin8 straight ahead in the classical circle/glide manner, as a

function of breakaway distance ratio, A/D, for a variety of street angles.

Speed ratios greater than one correspond to flight path extensions which would

yield a faster time to cloudbase at Z than the straight-ahead choice. Fig-

ure 13 shows the following: l) there are many ways to fly the thermal street so

as to obtain a speed ratio greater than i; 2) there exists, for thermal street

angles less than about 60 °, an optimal distance along the street to break away

and begin flying toward Z to optimJz_ zpeed ratio_ _) this optimum breakaw_¥
distance is highly sensitive to street angle and not very sensitive to rate-of-

Q
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climb; h) the greatest speed ratios are obtained with small angles and weak

lift conditions; and, 5) optimum speed ratio is highly sensitive to breakaway

point for weak lift and small street angles.

The breakaway point which yields equal time to fly the street and the

straight ahead glide/circle cycle and the breakaway point for the optimum time

by f)ying the street is analytically derived in Appendix C. The locus of

bre#J_away points for equal time (straight ahead versus deviating along the

street), £'/D, and optimum time, Am/D, is shown as a function of obtainable

average rate-of-climb thermalling for a variety of street angles in figure 14.

The optimum breakaway point from the street is not greatly affecte_ by average

rate-of-climb whereas the breakaway point for equal time can be extended

along the street substantially during weaker conditions as compared with

moderate to strong lift conditions. As expected, figure 15, which shows obtain-

able speed ratio for a variety of thermal street angles, indicates that the

largest gains in speed ratio from flying the thermal street are possible with

weak conditions and/or small thermal street angles.

The influence of street angle on breakaway points for optimum time and

equal time is shown in figure 16. It is clear that deviating along a street

is not beneficial for street angles of 60e or more. In addition, it can be

observed that there is a very large margin between the locus of points equal

time and optimum time, indicating that the pilot can choose a large number of

breakaway points and still improve his performance. Even so, it would probably

be beneficial for the pilot to study this plot and develop rules of thumb for

deciding upon the optimum breakaway point given a geometry and lift condition.

For example, neglect obtainable average rate-of-climb thermalling and Just

decide by reference to street angle--15 ° fly an £/D of 90%; 30e fly an _/D

of 70%_ _5" fly an £/D of 50%; and 60e and greater fly straight ahead

ignoring the street. The magnitude of the benefits to be obtained from devi-

ating along streets as a function of street angle is demonstrated in figure 77.

Macro-Strategy

The equations for studying the effect of streeting are developed in

Appendix B. The macro-strategy model to be considered is basically the same as

considered previously except that some portion of the course deviation is under

the influence of convective lift. As before, it is assumed that the average

vertical air velocity encountered while cruising is equivalent to htlf the
achieved rate-of-cllmb in thermals.

It is assumed that after a long enough stretch of cloud street flying that

the net change in altitude is constrained to be zero. This is valid only at the

macro-strategy level because the pilot might be willing, in the short term, to

tolerate slow loses of altitude in order to make progress along the desired

course. The required ratio of distance flown while climbing to total distance

covered is plotted in figure 18 against achieved rate-of-cllmb in thermals for

3 sailplanes. The sport class sailplane requires considerably more of the flight

I_hinliftthan the other two classes studied. It should also be remembered that
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thls assumes static equilibrium flight and neglects the performance differences

due to the dynamics of pulling up and pushing over, which should increase the

differences between olasses. Some of these dynamic effects have been studied

previously, for example, reference l_.

The importance of deviating from course to be able to cruise while

climbing is shown in figure 19. Speed ratio is shown as a function of rate-

of-climb achievable by thermalling for three ratios of distance covered while

climbing in thermal streets to total distance covered. Here it is assumed,

that in order to have no net change in altitude after a long period of time,

one of two approaches must be taken: l) if there is more lift available than

necessary to maintain altitude, the excess will be used to increase speed at

cloudbase until no net change in altitude will occur; or, 2) if there is not

enough lift available to maintain altitude, the pilot will circle to cloudbase
at the end of the cruise at the average rate-of-climb expected in thermals at

that time. The fourth curve is a locus of points obtained from figure 18

showing the achieved performance if the ratio of distance covered climbing to

total distance covered were at the correct value to yield no net altitude

change from climbing by cruising at the speed for minimum sink and cruising
between lift at the appropriate speed-to-flY (Appendix B).

Several assumptions have been made during the development of the street

flying analyses which need to be considered. The authors have studied the
influence of sailplane performance and inter-thermal sink and found that,

although the cross-country performance may be significantly affected, the

pilot's decision in regards to non-dimensionalized course deviations is not
altered. The assumption that the average vertical atmospheric velocity

encountered while climbing is 50% that of the vertical air velocity obtainable

in thermals at the time does influence various parts of the analysis. It is

felt, however, that this does not have a major _.mpact upon the trends demon-

strated in this paper. Furthermore, neglecting winds in these analyses

probably would affect the decisions a pilot would make during cross-country
street flying. Thermal streets are usually fostered by gentle winds ar,d the

inclusion of this factor warrants further research. As exemplified in

reference 15, the pilot would probably be willing to make further progress

against the wind in streets than the optimum solutions for still air reported

herein.

SUN_4ARY OF RESULTS

Several trends came out of the analysis of the thermal models in this

paper. It is apparent that decisions to deviate from course are of much

greater significance at the macro-strategy level than the micro-strategy level.

A pilot can enhance his performance by choosing sectors of the sky to improve
his achieved rate-of-climb. At both the micro- and macro-strategy levels it

is clear that substantial deviations from course may be warranted for weak

lift whereas when the thermal conditions are moderate or strong, only very

minor course deviations can be Justified. In all cases, cross-country

soaring performance can be augmented by making course deviations with the
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smallest possible deviation angles. This indicates that pilots should make

course change decisions as soon as possible and be willing to ignore lift not

near the course, which is especially true for mederate or strong lift.

A large improvement in average cross-country speed is attainable by

cruising while climbing, such as in streeting conditions. In the street models

considered, the percentage of the flight path in lift had a big influence upon

the achieved performance and pilot's decision criteria. In the case of the

parallel street micro-strategy model, streets with spacing distance ratios of

30% or less could be Justified to increase the attained cross-country speed.

Deviation distance ratios can be extended by about 10% for weak conditions as

compared to moderate or strong lift conditions.

The study of streets at an angle to the course line results in some

interesting observations. There exists an optimum point of breakaway from the

street to minimize the time required to reach the top of the next thermal.

This breakaway point is primarily a function of street angle. Although the

optimum augmentation of speed is highly sensitive to breakaway point for weak

conditions at small street angles, for most combinations of street geometry and

lift conditions there exists a range of possible solutions which yields a faster

time than the straight ahead glide/circle cycle. It can be shown that cloud

streets at an angle greater than 60 degrees are not beneficial and should not

be used to improve average ground speed.

%

CONCLUDING REMARKS

Several assumptions have been made which may affect the applicability of

the results reported upon herein. A premise for all the cases studied was that

survivability is ignored. Speed was considered as the performance function

to be optimized whereas if the pilot was concerned about not being able to

complete the flight, altitude conservation would be of prime importance.

A constraint for each exercise was that net altitude loss would be zero;

hence, the results are not applicable to final glides. A possible focus of

future research may be to study the impact of course deviations upon final

glides. Also, it was arbitrarily assumed for the street models that average

lift in a street was approximately 50% of the lift found in thermals at that

time. This has an obvious impact upon the performance gains of deviating to

use streets, but general trends of the analyses are styli valid.

A significant limitation of the approach presented in this paper is the

assumption implied by considering lift as solely air referenced. This negates

the influence of winds for reaching ground referenced goals or lift sources.

It is expected that decisions reached during the street analysis will be

shifted into the wind. For example, the pilot will probably want to make more

progress into the wind while in lift than otherwise indicated by the breakaway

point solutions. Since thermal streets are usually formed in light to medium

winds, the inclusion of winds in the foregoing analyses is currently being
undertaken by the authors.
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The models developed in this paper are simplified and general in nature.

It is hoped that they or a linear superposition of more than one of them are

representative of typical llft geometries a pilot may encounter during a cross-

country soarin 6 flight. The results presented in this paper are not meant to

be cockpit aids for interpreting the most promisir_ flight paths. Instead, they

illustrate the desirability and indicate an approach, for analytically studying

typical course selection decisions beforehand, enabling the pilot to more

effectively evaluate the potential tradeoffs for arriving upon a more optimal
solution while in flight.

I
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APPENDIX A

OPTIMUM SPEED-T0-FLY CALCULATIONS FOR THERMAL MODELS

To facilitate the calculations required in this paper and in other
investigations (reference 16), analytical expressions needed to be derived for

the familiar inter-thermal speed-to-fly solution (reference 1). Although the

defining equations are easily derived and have been presented in numerous

publications (for example, references 3 and 5), a closed form analytical

solution for calculating numerical results is not generally available in the

literature and is given below. The graphical interpretation of the results

which is widely used by pilots is shown in figure 20. The first case considered

is where the sailplane performance is known and is assumed to be parabolic; the

average rate-of-climb in the next thermal is known; the ratio of sink rate

between thermals to rate-of-climb in them is known; and the optimum speed-to-

fly between the thermals and the corresponding average ground speed is desired.

The sailplane performance relation is:

/,

'!

where

V = AV 3 + _ (AI_
s V •

A = 1 (A2)

2Vo 2 (L/D )max

2
V
O

B-- 2(L/D)ma x (A3)

The defining equation can be found from figure 20 or by derivation to be

+h÷

Vs Vat d (A4)
V --d-_Vs

By applying the definition of sink ratio, n, and utilizing equations (AI),(A2),
and (A3), equation (A4) becomes the following fourth degree polynomial:

vn_6(l+q) o (AS)
2A A

The root of interest was found to be calculated by the following relations:
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(A6)

f = VF 1 + F2 . VF1 - F 2 CA7)

2/[(_. + n)_14• 6_B_._.33
F2 ='_/ 6i,Al, 27A3

(A8)

(Ag)

k

The average ground spead for a complete glide/circle cycle is given by

V% (AZO)

VG = AV .3 + B/V* + (1 * N)h

The second case considered is where the sailplane performance is known in

the form as before, the sink ratio can be assumed, the desired average ground

speed is known, and the optimum speed-to-fly and the required rate-of-climb

given the preceding are to be found. The defining equation can be easily

attained from figure 20 by equating the slope of the tangent line,

V N

s (AZl)
m = V* - (I + _)V G

to the slope of the sailplane polar found by differentiating equation (AI)

= 3AV2 _ B.. (A.1.2)s ?

The defining equation for the optimum solution becomes

q )VG V*4 Bv.5 -_(1. -_v*+ _(1 + ._)vG = o (A13)

Use Newton's method for estimating roots. Let

  vov;= , . * , 2-.-_1, n)vo (A14)
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_v-$%=._4 6(_÷_Iv_v_3 BA CA_5)

then,

, Q1
vi÷I--_ -q-- (AI6)

A good initial guess for VT could arbitrarily be V + 5(1 + n)h. A fair
i O

amount of accuracy can be obtained with Just five iterations in this manner.

The required rate-of-climb for an average ground speed of VG is given by thefollowing relation:

• AVGV*3 + B_/V*
h=

v*- (i+ n)vG
(AFT)
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APPENDIX B

OPTIMUM SPEED-T0-FLY CALCULATIONS FOR THERMAL STREETS

The defining relations and a geometric interpretation (figure 21) of the

optimum speed-to-fly between lift, given the sailplane performance, the inter-
lift sink ratio, the rate-of-climb and the speed at which the lift is trans-

versed (VcL), were presented in reference 5. The defining equation is

V +h +Vat
_!dr = s s
dV s V* - VCL

(BI)

'%

Assuming a parabolic polar, equations (AI), (A2), and (A3), the following fifth

degree polynomial can be derived

V,5 3, ,,4 l+i____V*2 B BVcL-_CL _ - 2A s -_*-_--= 0
(B2)

Newton's iterative method of estimating real roots was used to solve the

fifth degree equation for the desired root.

Let

= v_ 2v v*_
Qi i - 2 CL i

- • -_i +_vc_ (_3)2A s i

d Q = V*4 - 6VcLV_3dV* i 5 i

(i+ n_ _ _ _ (B_)
A sl A

than
. qi

V* = V. -
i+l l d

(B5)

A good value for the inizial guess of V? might arbitrarily be-the1

solution to the thermal model problem developed in Appendix A. A near optimum

value for the climbing velocity, VCL, would be the speed for minimum sink rate,

VMI N"

B (B6)
_ - 0 = 3AV2 - v-"/Tv'Vs
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[

vMI_= _/_ = VoV i/3 (BT)

VMI_ = .7598 Vo (B8)

The average ground speed for a complete cycle, as pictured in figure 22,

is calculated as follows:

s + VMI_ (B9)
VGS = 3AV,2 _B

V*2

These equations were derived assuming that the net altitude change after

each cruise/climb cycle was zero. Referring to figure 22, a relation can be

derived to yield the proportion of the flight path which must be under the

influence of lift to result in no net altitude change after each cycle

(hcR/hcL = 1).

Starting with

hCR = VcRV s

(BIO)

and

_cL_
hCL = VCL s

R F',CL
1 + --

RCR

(Bll)

(Bla)

The following equation is derived

-- _ _--+n
RCL <hcRF_ W/ .khs .7

iV) W ÷
(BI3)

A plot of RcL/R as a function of h for three sailplanes is shown in
figure 18. s
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In the event that there is a larger proportion of the flight path under the

influence of lift than required for no net altitude change, then the pilot needs

to cruise at a velocity which gives a sink rate equal to the vertical air velo-

city to keep from climbing into the cloud. This airspeed can be calculated as
follows:

Vat _ V s = AV 3 + B/V (Blh)

_-+ 2V
S

VCR- 2 2

f =_FI + F 2 +_F I - F 2 (BI6)

Vs 2

F1 = _ (B17)
2A 2

F2 = s _ 64B 3

27A 3
(BI8)
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APPENDIX C

CALCULATION OF BREAK-AWAY POINTS FROM

A CLOUD STREET AT AN ANGLE TO THE DESIRED COURSE

Using the geometry defined in figure 12, a relation can be defined to

determine the appropriate breakaway points in terms of sailplane performance

parsmeters and atmospheric lift conditions. The first case considered is

finding the breakaway point, the distance to be flown along the street, i, to

yield the same time to the top of the thermal as Z as by flying directly from

X to Z. The time to fly along the street, fly to Z and then climb to cloud-

base at Z is given by:

T n: + ÷Tn + (ci)

if
V

K= i+ s--n + r]

h

then

(c3)

Using the Law of Cosines

n

Tin = Vi + TK (C4)

2 D 2n = + i2 - 2DZ cos _ (C5)

Squaring equation (Oh) yields

n 2,___ZT 12 2

- + _ = V-_I_KTin 2 _V£ _n Vi2

Substituting equation (C5) into (C6) gives

-_£ T £2 K 2
"" = + - 2Di cos _IT%n2 2 V£ _n + _ V-_[ D2 _2

(c6)

(c7)
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From the definition of completing either route in equal time and from the

assumptions of Appendix A, Vn and VD are equal since they are both calcu-

lated based o;t the thermal at Z, the following can be written:

T£ n TD -- snV + --;-- + _ = K
n h n

Substituting (C8) into (C7) results in

(c8)

)\v_e- 2 + _ 2D x eo_, -v_/--0

If we define the following constant,

V

K' = n i

VZ K

then equation (C9) can be solved for the roots as follows

(c9)

(Cl0)

q
q= 0
D (ell)

!

D i - K '2

The second case considered is the solution for the non-dimensionalized

breakaway point, --_-, for minimum time to reach the top of the thermal at Z.

Starting with equation (CI_) and substituting the square root of equation (Cw.
into it, the following function is obtained:

K ( o o

ri
(C13)

The minimum time solution for T

and setting it to zero.
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d 1 K £ - D cos (c14)

Rearranging (C14) and substituting in equation (CIO) gives the

following quadratic equation :

_2 (i _ K'2) + £ (2D cos ,) (K'2 - i) + D2 (cos2 ¢ - K'2) = 0

(cl5)

The root of interest from equation (C15) is

(c16)
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Figure l. - _ero-strategy thermal model.
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Figure 2. - Required r_te-of-climb at Y as a function Of deviation distance

ratio for micro-strategy therms_ model.
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Figure 3. - Deviation distance ratio as a f,_ction of lift ratio for micro-

strategy thermal model.
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Figure 4. - Required rate-of-climb at Y versus deviation distance ratio

illustrating impact of sailplane performance for micro-strategY

thermal model.
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Figure 5. - Required rate-of-climb at Y versus deviation distance ratio

illustrating impact of sink ratio for micro-strategy thermal model.

Figure 6. - Required rate-of-climb at Y versus deviation distance ratio
illustrating impact of d'/d for micro-strategy thermal model.
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Figure 8. - Speed ratio versus li_t ratio £or macro-strategy thermal model.
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Figur,) 9. - Micro-strategy model with thermal street parallel to course line.

3.CF

2.8 _-

2.6L CLID),_ = ]8

i vo • 50 k_ots

2._F- "_-o.5

"_/!,
! 8,LI '1\

I b B _O t2 I_ i6 i8 20

Ave,ale r4te-of-cI1mb. M. knot_

Figure I0. - Deviation distance ratio versus average rate-_f-climb for parallel
thermal street mlcro-strategy model.
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Figure 12. - Micro-strategy model with thermal stre=t at an angle with c_le

line.
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Figure 15. - Speed ratio versus rate-of-climb for a variety of street angles
for a thermal street at an angle to course line.
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Figure 16. - Influence of thermal street angle upon breakaway distance ratio
for a thermal street at an angle to course line.
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Figure 19. - Speed ratio versus average rate-of-climb for thermal street macro-

strategy model.
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Figure 20. - Sailplane polar showing optimum speed-to-fly constructions for

thermal soaring.
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Figure 21. - Sailplane polar showing optimum speed-to-fly constructions for
thermal street soaring.
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Figure 22. - Flight profile of a glide/climb cycle for thermal street soaring.
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present paper concentrates on the derivation and intepretaticn of the
neceesary conditionn that a aailplans crc4s-country flight has to satisfy to
achieve the maximum global flight speed. Simple rules are obtained for two
specific meteorological models. The first one usem concentrated lifts of vari-

ous strengths and unequal distance. The second one takes into account finite,
non-unifom space amplitudes for the lifts and allows, therefore, for dolphin-
style flight. In both models, altitude constraints consisting of upper and
lower limits are shown to be essential to model realistic problems. Numerical
exalaplee illustrate the difference with existing techniques based on local
optimality cond i floss.

INTRODUCTION

The problems associated with the optimisation of uilplane flight paths to
achieve maximum c_oes-country speeds have recently received special attention

in the literature. This has been stimulated by the modern competitive soaring

which consists almost exclusively in racing and by the development of high

performance sailplanes allowing for new, highly efficient flight techniques.

Starting with the now classical MacCready [I] results, _ost of the investlga-
tiore have bean concerned essentially with local optimization problems, that
is, finding the optimum flight strategy for various specific zituatio_s
encountered in a short section of a flight [1 to _0].

In recent papers [2, 4, 5, 8] the optimum speeds tO fly in a variety
of atncaphecic vertical velocity distributions have been determined from the
basic assumption that the corresponding flight segments had to be _Toesed
with zero net altitude loss. Conditions under which a transition fraa the
circling mode of climb to the _olphin or assing modes has to be d_ci_ed have

been examined [4]. Although such results yield extremely valuable gul_eUnss
for selecting a flight strategy, they only optimize the speed over a limited
portion of the total flight.

It is well known, however, in optimization theory that a succession of

locally optimum solutions does not, in general, lead to a globally optimum
result [11 ]. It is worth pointing out that a globally optimum flight strate_
can only be determined if the assumption i8 made that the distribution of

atmospheric velocities over the whole flight path is known in advance and

is independent of time. Although this is never achieved in practice, it is
felt that the decivation of global optimality conditi_ allows for 8 new

insight into the sailplane flight technique by giving a po_teriori the deci-
sions that the pilot should have taken and the influence of factors that have
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