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Abstract

This note is part of a continuing study of future problem areas in
structural dynamics of space vehicles, conducted by the author for the
Jet Propulsion Laboratory.

The motivation for this particular piece of work is the conviction
that future space vehicles will be relatively large and flexible, and that
active control will be necessary to maintain geometrical configuration.
While the stresses and strains in these new space vehicles are not expected
to be excessively large, their cumulative effects will cause significant
geometrical nonlinearities to appear in the equations of motion, in addition
to the nonlinearities caused by material properties. Since the only ef-
fective tool for the analysis of such large complex structures is the digital
computer, it will be necessary to gain a better understanding of the non-

linear ordinary difference equations which result from the time

discretization of the semi-discrete equations of motion for such structures.
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1. Introduction

Equations of the type:

Xpp1= L(x,0)

-+

(1.1)
X =cC
o0 =

_ [»]

EI').“!"]._;f-(in’}—{-l".|.'i'].’n) (1 2.)
X =cC
uinf o} —

are known as nonlinear ordinary difference equations or point mappings.
Fquation (1.1) is known as an explicit nonlinear difference equation, while
Eq. (1.2) is known as an implicit nonlinear difference equation.

If in Eq. (1.1)
f(x,.8) = A(n)x_+ g(n) (1.3)

then (1:1) becomes

X = A, gln) ]

(1.4)
x =c
Q —
Similarly, if in (1.2)
_{_(:_:n,x;11+1,n) = A(n)§n+ B(n)§n+l+ gln) . (1.5)
Then (1.2) becomes
Xpp= Aln)x + B(a)x, , +g(n)
: (1.6)

XxX=cC

Equation (1.4) is known as a linear explicit difference equation, while (1.6)
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is known as an implicit linear difference equation.

Since Eq. {1.6) can be rewritten as;

Xoal® Cln)x, + h(n) 1

®am 2 . (1.7)

C(n) = [1-B(n)] " Aln)

h(n) = [I-B(n)] ' g(n)

Thus, there is no difference, in theory, between explicit linear difference
equations and implicit linear difference equations, Unfortunately the same
is not true, in general, for nonlinear difference eguations.
Difference equations arise in a variety of scientific and engineering
disciplines, for example:
(2) In biclogy; population genetics and dynamics are described by
nonlinear difference equations,
(b) In control theory; sampled data control system are described
by either linear or nonlinear difference equations.
(¢} In numerical analysis; in order to solve a differential equation '
on a digital computer, the independent variable must be discretized
and the differential equation becomes a difference equation. In
particula.? , nenlinear differential equations become nonlinear dif-
ference equations,

It is to this last class of problem that this note is addressed.

2. Existence and Uniqueness of a Solution of the Initial Value Problem

a) Explicit Nonlinear Difference Equations

Theorem 1 Given the explicit nonlinear difference equation

B e B o T e i oty 1 SR
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Enel” gffn)\
J (2.1)
It {i) ¥z, £(x) is continuous in %, therefore lE(E)H <co, VHEEH<°°
@) el <e.

Then there exists a unique solution of the initial value problem (2.1)

Proof

Since HEH <o
g s @ <o
ey = Ml ] <o

- -

L Ils N, D<o

Therefore there exists a solution to Eq. (2.1), satisfying the initial data.
Since the process of generating the solution is explicit, then there exists

one and only one solution of (2.1) satisfying the initial data, therefore the
solution of (2. 1) is unique. It will be noted that for explicit nonlinear differ-
ence equations, the question of existence and uniqueness of a solution is
trivially answered in comparison with the same question for nonlinear dif-

ferential equations.

b) Implicit Nonlinear Difference Equations

Let us consider nnw the implicit nonlinear difference equation
o £(511’3511-:-1 )l

X =c J
uint'o _

(2.2)
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In the general case, we can say relatively little about the existence of a

solution to Eq., (2.2). The implicit function theorem guarantees, under weak
restrictions on E-(—an’-}snﬂ)’ |
(2.2) provided | lﬁll is sufficiently small. In some special cases Eq. (2.2)

that there exists a unique local solution of

may be inverted so that it is described by an explicit equation.

. (2.3)

In the case of most practical importance, Eq. (2.2) has the

structure

(=

SELtE -—-n’z’:-n+1)

Znt1" En £1
(2.4)

(Ke)

x
-0
where ]E:\ is frequently a small quantity.

Before proving the existence of 2 unique solution of Eq. (2.4) we
will establish the following theorem.

Theorem 2  Given the implicit equation

1

x = g(x) (2.5)

and the iterative procedure

n=0,1,2 . .. . (2.6)

Then if g(x) satisfies the following conditions
(1) gl - g lsrllx-z|l for ¥ x,y€5 8: [lz-x"|]s0
. with 0s)A<] (2.7)
(1) There exists an x 2 H_g_(ﬁo)"xous (I-M)p (2.8)

then V iterates % satisfy the following conditions
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o) i byl where o s g0
(iii) ¢ is the only roof of Eq. (2.5) in ”’."EOHSP

Proof

Since x ., = -g—(En)

n%fQ\m%@%mx

<A | ‘J—{-n— -}En-l “

1fx €8s

n+l’Fn

Now |l -x= [l =(1-Me <p

1ES

ez s alley - s a(z-2)p
ey - L= They - 1+ Ve - 1]

S[A(1-A) + (1-N)]p = (1-3%)p <o

=,€8
Suppose that x , % . . . x €S
then N g Hal sty |
=2 e, x|
bl e m I el s

S I S WU L YL
s (1-N)e <o

n+1 €5

(2.

(2.

(2.

(2.

(2.

(2.

15)

- 16)

.17)
.18)

.19)

. 20)

.21}

ot ]



L, e zalls L Ko = 0 (2.22)

e giem xllste -z e ol - x ] (2.23)

(PRl B2 By e (2. 24)

: < A% (2.25)
| N ml= 0 (2. 26)

" the sequence {zi_n} is a Cauchy sequence and converges uniformly.

SoLim x .= o= Lim gx

256D Tntl ) =g(Lim x ) =gla) (2.27)

“ 00 n

. the sequence %n} converges uniformnly to a limit, o €S, whichis a

solution of Eq. {2.5).

Unicity

If o and B are solutions of Eq. (2.5) which both belong to the

set S. Then

o = g(o) o €8 (2.28)

B=gB Bes (2.29)

; Sl - Bl = Tele) - g@®=rle - gl (2.30)
‘ “e-gla-ryso Sa=p . (2.31)

Thus, under the hypothesis of Theorem 2 there -xists a unique solution of
Eq. (2.5)}.

- Returning to the question of the existence and uniqueness of a
solution of the initial value problem for an implicit nonlinear difference

equation, we have Theorem 3,
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Theorem 3 Given the implicit nonlinear difference equation

ZpaTE Y 65(3{--11’"’—{:i:vb}.)

(2.32)
X =c
- i

(i) E(En,ggn_l_l) is continuous in x and x ..
(1) £ (%%, +1) has continous first partial derivatives with respect

to = 1
(iii) le| is sufficiently small.
Then there exists a unique solution to Eq. (2.32) on some finite interval

0=sn<N.

Proof Let x= X1 - % + €:£(_::§n, E-n-l—l) = g_(g:_) (2.33)

With bypothesis (i) and (ii) g(x) satisfies

lex) - g@ll= lel NE(x %) - £(=_, v

< el lae) . lx - ¥ (2,34}
=x [l= - il
where
ME) =£, (2@, _ ¢
_ - (2.35)
E=ox +(l-a)y 0<a<1
Fox
ydlz-=l<e , ly-=ll<e (2.36)

We can always choose lal sufficiently small so that



w= el g <1 (2.37)

o . mgpa -
If we choose x = x, @sour initial iterate, then

=) - =%l = e £(x =) (2.38)

Since f(x,y) is continuous in x and y we can always choose [el suf-

ficiently small so that
le=") - %= (1-A)p (2.39)

Thus, given the hypothesis (i) and (ii) we can always choose |e¢| sufficiently

small so that the conditions of Theorem 2 are satisfied. Thus given an x ,

there exists a unique solution x L1 satisfying
Xppp =Xy tEE(ELE ) (2.40)

Thus, storting with x =c and ‘El fizxed and sufficiently small,
there exists a unique X satisfying Eq. (2.32). If, using X, and the
same value of €, conditions (2.37) and {2.39) are satisfied, then there
exists a unique x, satisfying Eq. (2.32). Proceeding in this way, we
check at each step to see if conditions (2.37) and (2.39) are satisfied. If
they are satisfied at each step, the solution can be continued indefinitely
into the future. If they are not satisfied after a finite number of steps
the solution may cease to exist or go to infinity, Thus, given condition
(i), (ii) and (iii) there exists a unique solution to Eg. (2.32), at least
on some finite interval 0 < n <N,

Theorems 1 and 3 deal with autonomous equations that is, equa-
ticas which do not contain n explicitly. The hypothesis of Theorems 1

and 2 can be relaxed to include explicit dependence on n, in addition to

domain dependent continuity properties.
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3. Properties of Linear Difference Eguations

(a) Difference Eguations with Constant Coefficients

Consider the linear difference eguations

§n+1= A‘En + fn
x =¢ lal#o

(3.1)

where A is a constant matrix with ||All= a <o, ||f(n)]| <. The solution

of Eq. (3.1) is easily formed by elementary methods

=1 il
X, = Ax. +1 =A2c+A.f + £
2 =1 =1 = -0 =1
2
. _ a3 oo2-1
53—AJ_~:2+§_2—A__+ Al ~f—1
i=o
n
Ve X =An+lc +T An-lf.
n+l = izo =i

(3.2)

(3.3)

(3.4)

(3.5)

Alternatively we can write this solution in terms of the principal matrix

solution Xn, where

Xn+1='AXn 3 X0=I
thus

X1=A

;A2

hz—A

X =A.n

(3.6)

(3.7)

(3.8)

(3.9)
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Thus, the solution to Eq. {3.1) can be written

n . .
E].'.'I.‘l']. =X +1'E +.__..; Xn-—i .Jf..
We note that X__, = ani o Ly ~(i41)
= 1= "'2 Zntl 1+1 5

(b) Difference Equations with Variable Coefficients

Consider the linear difference equation

Znt1 T A(D)En +-£n

z, =c  lalso

where A(n) is a step dependent matrix, with ||A(n)]|< co, Vn and

£l <co, va.

(3.13)

" The solution of Eq. (3.13) is also easily formed by elementary

methods.

x5 = A(l)z1 ti,= A(1)A(O)c + A.(l)f°+ £,

xg = A2)x, +1, = A)A(LA(0)c +A2)A(1) +A(2)E 4
n 1

x_., = AAR-1) . . . A(D)|c +:;Z=o LL OA(h)"lfi

(3.14)
(3.15)

(3.16)

(3.17)

Alternatively we can write this solution in terms of the principal matrix

solution Xn, where

Xy, = AMX, . X =I

(3.18)




Thus
X, = 2(0)
X, = A(1)4(0)
' n-1
X_ = A(n-1)A(n-2) . . .4(0) =71 a@)
i=o

Thus, the solution to Eq. (3.13) can be written

n
- z -1
Fn+t T 15{n+15- +.Z. Xn-[— 1 Xi+1 f—i
i=o

(3.19)

(3.20)

(3.21)

(3.22)

In general we can say very little about the structure of the solution in the

case of variable coefficients, There is, however, one special case, the

case of a difference equation with periodic coefficients,

(c) Difference Equation with Periodic Coefficients

Theorem 4 Consider the homogeneous difierence equation

Xn+1 = A(n) Xn

where

A(n+N) = A(n) lam)|#0  vn

la@)lj<e  ¥n

The principal matrix solution Xn has the form

X, =Q(n)c”

(3.23)

(3.24)

(3.25)
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| where Q(n'+N) =Q(n) is a periodic matrix and C is a non-singular con-
stant matr:tx.

Proof From (3 23)

| o _xo;:_r.,._ B C(3.26)
. : X =A(0) o | | | (3.27)
% . X, = AQ1)A®Q) o  (3.28)

N-1
X, =] AW (3.29)
1=0
k1
We note that X =ﬁ A(i) is non-singular since A(i) is non-singular
Vi, t=o
N-1
N+1— | ()-A(N)lloAl) = XX (3.30)
f"i 1 »
Xz =] Al) ﬂ AR = XX o (3.31)
1
Nlk-1 ko1
X ax® ﬂ A(3) _n AL)X = X X (3.32)
i=o i=o
3 Similarly
N X e = XN . (3.33)

Since’ Xpy is non-singular, we may write
Xn=G" , C - aconstant matrix (3.34)

Consider the matrix
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Qn) = X G (3.35)
Since
X, =1 , Q0)=1 (3.36)
Thus
(N+n) -(N+n)
X 4nC (3.37)
=N _.-n
= XnXNC C (3.38)
But
-N _
XNC =1
L Q(N+n) = X G =R(n) (3.39)
..Q(n) is a periodic mairix with period N.
Hence
X = Q(n)Cn {3.40)

+

Thus the complete structure of Xn is known for ¥n if Xh is known for
0<hsN.

We note in passing that if A is a constant matrix, then A is a
periodic matrix of period N = 1, hence, difference equations with constant.
coefficients are a special case of difference equations with periodic co-

efficients and in this case the matrix C = A and Eq. {3.40) becomes

(3.41)

4. OStability of Difference Equations

Definition Liapunov Stability (L.S.)

Given the difference equation
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§n+1=f(x,x Y (4.1)

where

£(0,0) =0 O @2)

The equilibrium solution x =0 is said to be Liapunov stable if

given any 5>0, there exists an €>0, such that if ||3;_0||< g, then

\\5“ <§ for all n>0.

Liapunov Asymptotic Stability (L.A.S.)

The equilibrium solution x =0 is said to be Liapunov asymptotically

stable if (a) it is Liapunov stable and (b) [z ||~ 0 a5 n=~ .

(a) Stability of Linear Difference Equations

(i) Linear Difference Equations with Constant Coefficients

Theorem 5 Given the difference equation

Zn+l AE.n (#.3)

A - a constant matrix

(i) If A is non-defective (i.e.has afull complement of ordinary
eigenvector) necessary and sufficient conditions for Liapunov
stability are that the eigenvalues of A should be less than or
equal to unity in modulus. |

(ii) ¥ A is defective (i.e. does not have a full complement of
ordinary eigenvectors) necessary and sufficient conditions for
Liapunov stability are that the eigenvalues of A should be less

than unity in modulus.

Proof

(i) If A is simple,ie.non-defective there exists a similarity
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matrix

1

T3 T “AT = A

where M is a diagonal matrix.
A has the representation

A =TAT !

As previously shown, the principal matrix solution of (4.3) is:

x = A" (zaT"l)" = TAR - ARyl (4. 4)
Sufficiency

If l?xi(A) |=1, then i\?(A) rerains bounded as n -~

X, is bounded and remains bounded as n - o

Lz lsM<@ , ¥n (4.5)
From (4. 3)

x =X x_ (4.6)
Sif ixll<e (4.7)
S llls s (4.9

< Me (4.9)

Joif EX{/M

lx <6 vn (4. 10)

" (4.3) is Liapunov stable at x = 0.
Necessity

If l);i(A)|>l for some i, then K?(A) cannot remain bounded as
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n~w, Hence X can.nct remain 'bou.ndecl as n-~o.
) If A. is defectlve, it cannot be reduced to diagonal form,

however, there isa s:a.m:.la.mty matrix 'I' 2

. I
é c#1
T
@y
AT = | N o (4.11)
I
“h

where the J = are Jordan blocks associated with the eigenvalues A {4)
X _
e(1,h) A has the representation

A= TIT (4.12)

As previously shown, the principal matrix solution of (4.3) is:

x_=a%=(rrrly? - ot _ (4.13)
where
19
1
Jll
%
. J_'L'J. = ] (4. 14)
J.n
%h

and
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and
[ n n-1 nfn-1) ,n-2 ]
;\-i n?\i —E-— ki . s & .
o~ S Lot (4.15)
i i
n
0 ?\.i
n
L M J

Sufficiency If "hi(A)l< 1, then J‘E . remains bounded and tends to
i

zero as n =, .. Xn is bounded and tends to zmero as n—wm.
< f
%X, =M < co¥n (4. 16)

and Lim ||X_ ||~ 0
. o B

From which we immediately deduce that if l?\i(A) | <1 vi, the system (4.3)

is not only Liapunov stable, but is asymptotically stable.

Necessity If l?ti(A.) [z 1 for some i, then Jl;. cannot remain bounded
i
as n ™o, hence Xn cannot remain bounded as n o,
Alternatively use can be made of Liapunov's Theorem,

Theorem 6 (Liapunov) Given the difference equation

x = AX | (4.17)

A - a constant matrix
Then (4.17) is Liapunov asymptotically stable at x = 0 iff there exists

a symmetric positive definite matrix P such that

ATPA -P=-0Q (4.18)
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Proof Sufficiency

Suppose that.there exists a matrix P satisfy (4.18) let

_ LT
vn_En PEII

(4.19)

Since P is symmetric and positive definite 'V'n is positive definite

R b
Vo1 T E P2

Using (4.17)

_ T
Vair = (A-}En) P(Aﬁn)
_.T,T
=x A PAx
. T, T
o AV, =V, -V, =%, (APA-Pix_

Using (4.13)

Thus
< < <
vn-i-l vn vn—l Vn"z e e a o

Since vy vanishes only at the origin

s V.0 as n= oo

n

If we define
l= | =~V
P

we see that

l\znllp< =,

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

C(4.27)

(4.28)
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I

| ERECER (4.29)
then

an“p <§ ¥n (4.30)
and

|\§n|lp-»o as n-=a (4.31)

S Eq. (4.17) is Liapunov asymptotically stable at the origin.

Necessity

Let A be a stability matrix i. e \,(A)| <1 Vi, Let P satisfy

(4.18) i.e.

ATPA -P=-Q (4.32)

We wish to show that P is symmetric and positive definite.

If we premultiply (4.20) by AT and post multiply by A, then

by AZT and Az, ete., we obtain

aTpa-pP=-0 '
2%Tpa% aTpa = - AT0a
A3Toa3 a2Tpa? o 42T 2 }
(4.33)
T T T
A" pat.aml pattto o g gal

Adding, we obtain
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n-1
(ahTpa”p=-) (ahTeal (4.34)
i=o

Since A is a stability matrix A" ~[0] as n~o

P= z (Ai)TQAi (4.35)
We note that: . T
(1) PT) (Ai)TQAi) Y (a)TaTal (4.36)
i=0
But QT = Q
pl=p (4.37)
— - T i'-
() = ngz (4% Toa's) (4,38)

But Q is positive definite

‘(Aig) TQ(AiE;:_) >0 (4.39)
provided A'x £ 0,

® If
lalzo  latjzo o x#o (4.40)

«TPx>0 xf0 (4.41)

Thus, if A is 2 stability matrix there exists a P, symmetric
and positive definite such that Eg. (4.32) is satisfied.

® Note If |a| = 0, it appears that (4.41) is not satisfied. How-
ever, if |A|=0, then A has one or more zero eigenvalues, and the dis-

placements in these modes vanish after one step, thus the problem is
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really onz in {N-h) dimensions, where h is the multiplicity of the zero

éigenvalue. Thus, if in (4.29) x € R, the range space of A, P is
positive definite.

(11) Linear Difference Equations with Periodic Coefficients

Theorem 7  Given the difference equation

En+i = A'(n)En
o (4.42)
A(n+N) = A(n)

(i) If the principal matrix solution ‘X.N is simple, necessary and sufficient

conditions for Liapunov stability are that the eigenvalues of XN should be
i' less than or equal to unity in modulus.

| (ii) If the principal matrix solution XN is defective , necessary and

! sufficient conditions for stability are that the eigenvalues of AN should be
less than unity in modulus,

Proof As previously shown, the solution of (4.42) with initial data

X =c is given b
X, =L E )i

x, =X ¢ (4.43)
where

X = Qn)C" (4.44)

- : s s ; o~ L/N .
Q(n+N) =Q(n) is a periodic matrix and C = XN is a <constant matrix,

If XN is simple, there exists a similarity matrix T 2

TFlXNT = A — a diagonal matrix (4.45)

Xy therefore has the representation

e e g
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X = TAT ? (4.46)

G = AT (4.47)

i (XN)\ <1, clearly C" and hence X, remains bounded as n-—oo,

therefore (4.42) is Liapunoy stable at x = 0.

The remainder of the proof closely follow that of Theorem 5 and will

not be repeated here.

Theorem 8 Theorem 6 can be generalized to the case of linear differ-
ence equations with periodic coefficients.

Given the difference equation

Zn+l T A(n)—}fn
(4 .48

AlmN) = Aln) , |a@)|{#£0  [|A(n)ll<e vn

Then (4.46) is Liapunov asymptotically stable at x = 0 iff there
exists a symmetric positive definite periodic matrix P(k) such that

i) P(k+N) = P(k) = PL(k) positive definite

i) AT(K)P(kH)AK) - P(k) = -Q(k) (4.49)

11) QT(k) = Q(k) = Q(k+N) positive definite
vk

Proof Sufficiency

Suppose that there exists a matrix P(k) satisfying (4.49). Let

T .
vV, =x Plax (4, 50)

Since P(n) is symmetric and positive definite for all n, V., is positive
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definite.
V.. =x . P(n+l)x (4.51)
a+l  —ntl —n+1 )
Using (4.48)}
V.. = x2 A (n)P(n+l)A(n)x (4.52)
n+l T T “n '
' AV =V -V =x (AT (n)P(a+l)A(n)-P(n))x (4.53;
" n” ‘n+tl n —n Zn e
Using (4.49°}) ii)
AV = -x Q(n)x_ <0 (4.54)
n -n ~n '
Since v, vanishes only at the origin
Vn'-*{) as n-to (4.55)

.. Eguation (4.48) is ILiapunov asymptotically stable at the origin.

Necessity

Let A be a stability matrix so that ¥ soluiions of (4.,48) tend to

zero as t~co,

Let P(k) satisfy (4.49)i.e,

AP+ A(K) - P(k) = -Q(k) (4.56)
similarly

A1) P(42) Al 41) - Pk+1) = ~Ql+1) (4.57)
If (4.57) is premultiplied by AT(k) and post multiplied by A(k) we obtain

(A(k-i-l)A(k))TP(k+2.)(A(k+1)A(k)) - A(k)TP(k-l-l)A(k) = - A(k)TQ(kH)A(k)
(4.58)

ey
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Similarly
ATk 42) P(k43) A(k42) - P(k42) = ~ Q(k42) (4.59)

If (4.59 ) is premultiplied by (A(k+1)A(k))T and postmultiplied by

A{k+1)A(k), we obtain

( Afk+2)A(k+1) AR P(c+3) (A2 A1) A(K)
o (A(kH)A(K) T P(R4Z)( A(k+1)A(K))
= - (Ak+1)AK) Tok2) Ak +1) AK))

(4.60)
Repeating the procedure n times gives
n-1 N In-1 n-2 £ ny2
W Alk+i) P(1:+n)( ﬂ Alk+i)] - ( ﬂ Alk+H) Pkn-1) H Alk41)
i=o i=o i=o i=o
02 T n-2
== 7] Aea)] QUom-1)]] Afks)
i=o i=o
(4.61)

If these n equations are added, we find that just as in (4.33 ) we obtain can-

cellation in pairs and finally we have:

- T -
. (n]f A(lc-!-i)) P(k+n) (:ﬁl A(k-i-i)) - P(k)'

. i=o i=0
nel i1 T j-
= -Z ﬁ A(k+i)) Q(k-‘}-j)( ﬂl Alk+) (4.62)
j=o \i=o i=o
Now
n_
ﬂl A(K+i)= B(k+n, k) (4.63)

i=o

o A
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where

B(m,k) = X_X

satisfies the equation
- B(n+l,k) = A(n)@(n, k)

B(k,k) =1

Since ¥ solutions of (4,48) tend to zeroas n—ow
&(m,k)~0 as m~c

Thus as n— o Eg. {4.62) becomes

P =) @(,K) Q)2 k)
J:

j=k
L8 PR =) ol.w e = PR
j=k
(0 a]
i) PkeN) =) &3, k) TQ()2(, k)
j=k4n
0
=Y 2,10 e, k) = Py
j=k since Q(j+N)=0Q(j)

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)
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Since |a(j+k)| # 0 if [A(k)] # 0 ¥V k = P(k) is symmetric, periodic
of period N, and positive definite. This completes the proof of the theovrem.

We note in passing that Theorem 6 is a special case of Theorem 8 when
N=]'

(iii) Linear Difference Equations with Variable Coefficients

Given the difference equation

%41 = M) (4.69)

We can say very 1itt1e* about the stability of equation (4.69) for the general
case of arbitrary step varying matrices A(n). If the matrix A(n) can be

represented as
A(n) = A {n) + B(n) (4.70)

where Ao(n) is either a constant or a periodic matrix, then in a number of

cases we can develop sufficient, but not necessary conditions for stability.

Theorem 8

Given the linear difference equation
Xy1 = Ao(n) X ¥ B(n) . ]Ao(n)] F0 (4.71)

where Atgn) is either a constant or a periodic matrix,

If i) ¥ solutions of Xoyy = Ao(n) X, are bounded as n +
1) B(i)||=Db, <
BRLUE
1) |ix H =llelf < =

W
See Appendix 1.
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Then ¥ solutions of (4.71) are bounded for ¥n. Before proving Theorem 9 we

shall establish two important lemmas.
Lemma 1 (Discrete Form of Bellman-Gronwall's Lemma)

-1
IF e <C+ T w(i) o(1)
i=0

(4.72)
8(i).p(1),.C 2 0
n-1
Then 8(n) < C _IIO [1+w(i)] (4.73)
'[:
Proof
From {4.72)
M) (o) < y(n) | (4.74)
C+ } (i} e(i)
=0
1 Uy yn)] (4.75)
C+ T w(i) 8(i)
i=0
n- . - nh-l - a
[c + 1___};0 p(i) e(i)] =< [C + 120 w(i) 8{1)I[1 + w(n)] (4.76)
n=1 n-2 ‘
[Cc + _IO p(1) o(1)] < [C + .ZO (1) 8(i}I01 + w(n-1)] (4.77)
1= 1=

n -2
o+ T wl) ()] < [ + 'Tzo B(1) 8(1)ITT + w(n) 1T +9(n-1)1 o.78)
) p

n
p(i)e(i)] < C IT [1+ w{i)] (4.79)
0 i=0

Re~1=

Hence [C +
i
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n
But 8,1 < C4~i§O p(i)e(i)

n-1
6(n) <€ I [1+ ()]
i=0

Lemma 2

The product series Sn:

n
S, = I (1+v.) v. >0
N oilg i

is convergent iff the series Vn

is convergent.
Proof:
1) The product series (4.82) is convergent if the series L,

Lrl =

Il 1

En(1-+vi)
i=0
is convergent. This folliows immediately from the fact that

&n S L
. no_

n

If  Lim(#n L) = L, then Lim(S ) = ek =5

n-ee N

(4.80)

(4.81)

(4.82)

{4.83)

(4.84)

(4.85)

(4. 86)

2) We know that if Sn is convergent, Vo * 0 as n+w. =~ let N be such that

1
forn >N vns_-é-.
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; Now
;—vn=vn(1-~}1-~—1-—1—)=vn('l -—]2—-13;---) (4.87)
5 (1 - 'é') 2 2
ie
| '0.",21 Vral '
?2 But Qn(l-Pvn) = (vrl e i .) (4.88)
¢ 2 |
2 v v
= Vn(] "Tn+_§'"') (4.89)
N
1
If Vn 5,'2-
ISR U
then an(T+v ) = v {1 —2?+ 7 ) (4.99)
‘ Ly <an(1+ ) < 1+'l P
: 5 ¥, < anf v, v ( EE— EE- eee) (4.91)
} 1y < an(1 + 3 2
5 ¥y, n{ vn) <5V (4.92)
, Thus
‘ o N ©
i) If } Vi < a) 7§ vy <eand J Vi < (4.93)
i=0 i=0 k+1
J o an(l+v,) < % J Vi< (4.94)
=1 i=i+1
1) If ] an(l+vy) < | (4.95)
1=0 -
then Yove<2 § oan(l+v.) <o (4.96)
EVR i=0 !

Returning now to the proof of Theorem 9, using equation (3.22),

n-1
= -1 .
X = KX ¥ ‘TEO xnxiﬂ 8(1)5_1- | (4.97)
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Taking norms of both sides of equation {4.97)
n-1 4 ]
lx, Il < %0 llell + 1‘§o WX X 1B %4 1]

. -1
But, by hypothesis 1), [[X, 11 <My, X (1 11610 < m,

k-1
x, [l < my flell +#, 1-50 B 1lx; 1
Using Lemma 1 with C =M, [lg[l , 6(1) =||x;]l and

w(i) = My |B(1)]]

we have
n-1
2,11 <M el _IIO (1 + M, {{B(])
j= :

But by hypothesis ii) } |[B(i)]l=b, <=
i=0

By Lemma 2, H (1 + M2||B(i)l|) <dy <
i=0

l1x, 01 < Mydy Hell Y
Using hypothesis iii)} we see that
[[x, 1] < o ¥n

Thus proving the theorem,

Theorem 10

Given the Tinear difference equation

Xpep = Agln)x, + B(n)x, |A ()] # 0

Wian

(4.98)

(4.99)

(4.100)

(4.101)

(4.102)

(4.103)

(4.104)
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where Ao(n) is either a constant or a periodic matrix. If

i) A (n) is a stabjlity matrix, i.e., solutions of X471 = Ao(n)x

tend to zero as n +w

it) |IB(n)ll<b, ¥n and b, sufficiently small.

Then Vsolutions of (4.104)tend to zero as n + =, and the origin is Liapunov

asymptotically stable.

Proof. As before,

n-1 -1
X, =X+ Z K Kip7 BOI)X, (4.105)

Taking norms of both sides of equation(4.105)

Ux < [z 0l llell + Z (x|l HXMHHBU)HII Al (4.106)
Usingrhypothesis i) ]Ixnll < M s, § < 1 (4.107)
I GI <, 67
Using hypothesis ii) equation(4.106)becomes
n-
01 < M fjell o™ + b T 8T |k (4.108)

i=0

Multiplying both sides of equation (4.108)by ™" and setting e(i)=!]51H 875
C = M, Hell s o(i) = Myb » and using Lemma 1

n-1 M,b :
Izgll 7" < My llell B (1 + ~52) (4.109)

n-1 M.,b M ||cl|
gl < My lle o™ €1+ 29) = (8+Myb )" (4.110)
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Hence, if hO is sufficiently small,

§ + Mzb0 <]

M )
s g < lelg

iz =0 as n+e

Therefore, the trivial solution of (4.104)is L.A.S.

Theorem 10a

(4.

Given the same hypotheses as Theorem 10, we can prove the theorem

Liapunov's direct approach.

Proof. Since Ao(n) is a stability matrix, we know that there exists a

metric, positive definite, periodic matrix P(n) such that

: Ag(n) P(nt1) A (n) = P(n) =-q(n)

Q(n) = Q(n)’ = Q(n+N) positive definite

o T
Let Vn = X, P(n);n

o Wl
then Vn+1' X0t P(n+1)5ﬂ+]

Using equation {4.90)

Voo = X (Ro(n) PUn+T) Aglnd)y + (8" n) P(ntT) Aglm))x,

)" P(n+1) B(n)x

+ x] (A(n) P(n+1)B(n)) x +x! B(n %

N0

Lo A= Vg - = -k (AT() P(ne) Ag(n) - () + x](S(n)x,

(4.

(4.

(4.

(4.

111)

.112)

using

sym-

113)

114)

115)

116)

L117)
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where S{n) BT(n) P(n+1) Ao(n) + Agin) P{n+1) 8{(n)

8T(n) P(n+1) B(n) = S'(n) (4.118)

o}

Using (4.112),equation (4.118} becomes

&= -x Q(n)x. *+ x

4,
n- =n Zn 0 Sn S(n)x, (4.119)

Since Q(n) is positive definite forvn, it is clear that by making lIB(n}] »
and hence the elements of B(n), sufficiently small, Avn can be made negative
definite.

Hence for ||B(n)|| sufficiently small,

AVn <0 (4.120)

v < Un <Vn—] I <V] <VO (4.121)

n+1

Since Vn is positive definite and vanishes only at the origin, therefore Vn
and hence lix,1| tends to zero as n+=, and since V_ is bounded above by V.
lix.|| is bounded for all n. Therefore the trivial solution of (4.104)is

Liapunov stable.

Note: Let A(n) be the smallest eigenvalue of Q{n) and uf{n) be the Targest

eigenvalue of S{n) in absolute value.

Let r = Min X{(n), r is positive, since Q(n) is positive definite.

n

f

s = Max p{n), we note that since S(n) tends to zero as b0 tends to zero,
n

s may be made arbitrarily small by making b0 sufficiently small. Now

T
AV < -gﬂ(r—s)

n )

and hence by making bo sufficiently small Avn can be made negative definite.
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b) Stability of Nonlinear Difference Equations

| (i) Stability of Explicit Nonlinear Difference Equations

Theorem 11 (Liapunov-Poincaré)

Given the nonlinear difference equation

Xop1 = Aln)x, + f(x .n)

(4.122)
'S _}50 =£
where A(n} is ejther a constant matrix or a periodic matrix,
If i) A{n) is a stability mac,ix w
iy oum L&Dy o (4.123)
Ixf =0 |]xl|
iii) lell is sufficiently small y

then Y solution of equations(4.122) are Liapunov asymptotically stable.

Proof. If A{n) is a stability matrix, then by Theorem 8 there exists a

symmetric, positive definite, periodic matrix P(n) such that

Am)T P(m1) A(n) = P(n) = - Q(n)

(4.124)
Q{n) = QT(n) = Q(n+N) positive definite
g let V. = x' P(n)x - (4.125)
; , n -1 !
1 .
T
; Vosr® Zgeq PO0t1) X0y (4.126)

Making use of equations (4.122),
V.o = x (AT(n) P(n+1) An))x. + x (AT(n) P(n+1) F(x.n))
ntl  =n - =n RRV.SUPS

+ jﬁﬁn,n)T(P(n+1) A(n))ggﬂ + fT(gﬂ,n) P{n+1) jﬂgn,n) (4.127)
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Thus Avn = Vn+] - Vn
= x1(AT(n) P(nt1) A(n) - P(n))x,
+ x1(AT(n) Pn+1) £(x on) + £ (x,.0)(P(n+1) Aln))x,

X sn) (4.128)

+ £ (x,n) P(n+1) Flx,

Using (4.124) equation (4.128) becomes

_ T
AVn ™ Q(n)ﬁﬂ

+ x1(AT(n) P(n+1) Flx ) + F(x ,n)(P(n+1) Aln))x,

+ £1(x ) Pn+1) £(x .n) (4.129)

Using hypothesis ii), || f(x,n)|| ~ O(l[gj’z) as |{xl] ~0
Hence a) Eg Q(n)ﬁg N O nglz)
b) ﬁg(AT(n) P{n+1) szﬂ,n)‘ffT(gn,n)(P(ﬁ+1) A(n))x, O(IIEnHB)

¢) £(x ) P(n+1) F(x .n) ~ o(11%,1I*)

as llx Il -0 (4.130)

Thus for l!;ﬂll sufficiently small, the sign of AV is that of the first term

AV s negative definite. Hence,

¥ <Vn<Vn_ <---<V1<V0 (4.131)

n+1 T

Thus if [lc|| is sufficiently small,
AV, <0, V¥n (4.132)

and since v is positive definite and vanishes only at the origin, there-

fore V -+ 0, and hence llﬁﬂll-+ 0 as n =+, Thus equation(4.122} is
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Liapunov asymptoticaliy stable at the origin.
Theorem 12

Given the nonlinear difference equation

X4y = [A(n) +B(n)Ix, + £(x .n)

(4.133)
%, =c
where Ah(n) is either a constant matrix or a periodic matrixs
If i) Ao(n) is a stability matrix W
ii) |IB(n)]] is sufficiently small
L) |l | (4. 134)
i11)  1im ——— =g ¥ '
Izl +0  1IX]
iv) ficl is sufficiently small y

Then ¥ solutions of equation (4.133) are Liapunov asymptotically stable.

Proof. The proof follows along exactly the same lines as Theorem 10a and

Theorem 11, and will not be repeated here.

i1) Stability of Implicit Nonlinear Difference Equations

Theorem 13

Given the implicit nonlinear difference equations

1]

Xop1 = Aln)x, + F(x .X0 0 q00)

=L [A{n)] # 0 | (4.13.5)

X
20
¥n

A < =

where A(n) is either a constant matrix or a periodic matrix. If

o st v - 2 : e v PSS . AR P R e A S R T T T
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i)  Aln) is a stability matrix

f{x.y,n)
i) lim (. .0) =0 (4.136)
Ixlsllyll =0 lix]l+ vl
i11) ||l is sufficiently small

Then ¥ solutions of equation (4.135) are Liapunov asymptotically stable.

Proof. Since A(n) 1is a stability matrix, then by Theorem 8 there exists

a symmetric, positive definite, periodic matrix P(n) such that:

i) A(n)T P{n+1) A(n) - P(n) = -Q(n)

(4.137)
i) Q(n) = QT(n) = Q(N+n) positive definite
let V= xI P(n)x, >0 x %0 (4.138)
Ve = —’igﬂ PI1)X, 1y (4.139)
Making use of (4.135),
Vos1 = 5;(AT(n) P(n+1) Afn))x, * g(AT(n) P(nt1)) £(x,sX,,720)
+ iT(_%n:_m.],n)(P(nﬂ) Aln))x,
* iT(ﬁns_&ann)(P(nﬂ)) LEY SR} (4.140)
A = Ve = Yy
= g(AT(n) P(n+1)) £x,sXp4 ,11)+:‘_E§fAT(n)P(n+l)A(n)-P(n))i_cn
¥ iT(.%ﬂsﬁ.nﬂ,n)(P(nﬂ) Aln))x, (4.141)
+ fT(§n=5n+1,n)(P(n+1)) j(gn,5n+1,n)



B LA S,

-39~

Making use of equation (4.137)

AV, = =x] Q(n)x, + X (AT()P{N#1)) £ X, en)
# £1(x % yqn) (P(01)AM) )%,

b £ (kg pon) POOFT) £(x 020 4q00)

From equation (4.135)

[ Xpeqdl + 12l < [FT+ A Hx ll + ECK %0 s0) ]

UXqeq Il + U200 2 Myl + 1120 550l
From (4. 136ii)
1% g om) ] < M 08) (LIl + [1%4q11 )2

for [Ix |l + [1x4]l =<

where Mz(s) ~0(1) as 8§+ 0

From (4. 144) and (4.145)

LS|
2pegll + 112501 = T Mol < 6

T [x,0 <—M% is sufficiently small.

(4,142)

(4.143)

(4.144)

(4.145)

(4.146)

Thus, if ||x || is sufficiently small, the first term in (4.142) is of

order || || 2, while the second and third terms are of order [[x || 3, and

the fourth term is of order |[_>5n||4. Hence, if ]|5n|| is sufficiently small,
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the sign of Avn is that of the first term, thevefore

AV, < 0 (4.147)

Thus, if |[c|l is sufficiently small, AV~ is negative for all n, there-
fore

Vn-l"l < Vn < Vn—~'l <o 0. < VI < VO (4.148)

Since Vn is positive definite and vanishes only at x = 0, therefore
\fn +0 as n -+ o, and equation (4.135) s Liapunov asymptotically stable

at X = 0, provided the initial data are sufficiently small.

Theorem 14 (Liapunov-Poincaré)

Given the nonlinear difference equations

1]

Zn 1 A(n)in * f-(511’n)

(4.149)

where A(n) is either a constant matrix or a periodic matrix,

If 1) there exists at Teast one unstable solution of the equation

a1 = Aln)x,
. .
i) Tim Jmil 0o Vn ? (4.150)
Ixll-0 x|
iii) |lc|] is sufficiently small )

Then there exist unstable solutions of equation (4..149).
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Proof. Let
I -
RE= K B = Ky
(4.151)
_ ~k
= 152
Let X = 9y, (4.152)
Substituting into equation {4.149)
Ys1 ™ Gey AN 8y + Oy (0,5, 0n)
: (4.153)
Yo T8 &
Now
-1 n+1l -n
o1, Aln)e, = R™T L An)x R
(4.154)
But an] = A(n)Xn
-1
841 A(n)en = R (4.155)
' Yoa1 = RYy * 80g,0n)
(4.156)
- ) - g1 ) -
Y, = b 3 b=19, c ; gjgﬂ,n) 9n+1 f(e ,n)

Since R = X&/N, therefore from(4.150i) , R must have at Teast one
eigenvalue of modulus greater than unity.

Suppose that R is simple, and that the first k eigenvalues have modu-
Tus greater than unity, suppose that the remaining (L-k) eigenvalues have
modufus less than unity. Since R is simple, there exists a similarity matrix

T such that
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TR = A
where' Az > 1 7 € (1,k)

|)tj| < 1 j 6 (k"l‘.[:L)

Let

Yo = T 5
Théh ;ﬂ+] = Az, + h(z .n)
| 35' -
where.  h = T"151Tgn,n)_
zg=d=T"b
. Let P = Ik I °
0 "IL—k
Lo,

It will be observed that Vn is sign indefinite.

=7 Pz

Vn+1 “n+1 ° =ntl

Substituting from (4.145),
NP A Z,

® L,k ; *
+ gn AT P gjgn,n) + h.(gn,n) p hjzn,n)

(4.157)

(4.158)

(4.,159)

(4.160)

(4.161)

(4.162)
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b Ay =V

n n+l = vn

Fp K -
gﬂ[A PA--P];n

+ (W*(z,n)P Az, + Z2A"P h(z .n))
*
+ h'(z,.n)P h{z,.n) (4.163)
APA= P 2| cmmmem e - (4.164)
0 (] = Ilj‘ )
Since
A0 > T €(1,k)
(4.165)
ijl <1 J € (k+1,L)

A*PA - P s positive definite Hermitian. Using(4.150)i4i, the first term
in(4.163) is positive and of order Ilgﬂllz, the second term is of order

[[gﬂi|3, while the fourth term is of order ||gn||4; thus for sufficiently

small llgﬂ]la the sign of AV, is that of the first term and is positive.

&y >0 for Ilgnllsufficient1y small, (4.166)
Since V_ is sign indefinite we can define a set
n >

@ vo20; Jlz ]l < (4.167)

Clearly, the origin is a boundary point of Q. In @, Vn >0, Avn >0,

therefore starting in @, zZ, cannot approach the origin. Since VD >N,

U N S
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z, only exit @ through the boundary ||z || = 65 thus the system is unstable.
Theorem 15

Given the nonlinear implicit equation

EI’H“] = A(n)ﬁn + f_(ﬁnsin,{_] an)
:  (4.168)
5 7o
where A(n) is either a constant or a periodic matrix,
! If i) there exists at Teast one unstable solution of the equation
Xop1 = Aln)x,
] F(x5y5n)
i) Tim —_—_ = (4.169)
LIy T1=0 Qi + fyll

ii1) ||le]l is sufficiently small

then there exist unstable solutions to equation (4.168)

Proof. The proof follows along the same lines as that of Theorems 13 and

14 and will not be repeated here.

Theorem 16 (Liapunov-Poincaré)

Given the nonlinear difference equation

I

Xp4q = Aln)x + £(x .n)
(4.170)

X = c
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where A{n) is either a constant matrix or a periodic matrix,
If i) the principal matrix XN of the linear difference equation A
Xoe1 = Aln)X,

has an eigenvaiue +1, or a pair of complex conjugate eigenvalues

of modulus unity ' >
HF(xan) |l
i1) im —————— =0 ¥n
lIxll+0  [lxll
i11) ||gJ| sufficiently small ’
(4.171)

then the stability of equation (4.156) cannot be decided from the stability

of the linearized equation.

Proof. If we repeat the proof of Theorem 14, we see that in this case,

(A*PA - P} is only positive semidefinite, having a zero eigenvalue corres-
ponding to A = +1, or a pair of zero eigenvalues corresponding to |A| = 1.

Since the matrix (A*PA-P) is only positive semidefinite, we see that
the sign of AV, depends on the terms in bjgn,n). Thus the stability is

not determined by the stability of the 1inearized equations.

Theorem 17 Theorem 16 is easily generalized to the case of implicit non~-
Tinear difference equations.

Theorems 16 and 17 cover what are known as the "critical cases," tHat
is, those cases in which the stability is not determined by the stability

of the Tinearized equations.
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3. DIFFERENTIAL EQUATIONS AND DIFFERENCE EQUATIONS

{a) Numerical Solution of Ordinary Differential Equations

As pointed out in the introduction, one of the more important sources

of difference equations occurs in the numerical solution of ordinary differen-

“tial equations.

Given the system of differential equations

dx
a5 = Mtlx+ f(x,t)
o (5.7)

we wish to approximate the solution of equation (5.1) by the solution of the

difference equation

Yn+1 = B0y, * Gy aYpypan)

(5.2)

such that Yy = Eﬁtn) e = b, AL n=0,1,2,+++,M

The natural requirements for the approximating difference equations are
that for any function‘f(ﬁ,t)‘in some class of sufficiently differentiable func-
tions

1) They have a unique solution,

2) This solution, at least for sufficiently smail At,, should be close
to the exact solution of equation (5.7),

3) This solution should be effectively computable.

These three points are examined in detail in books on numerical analysis and
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will not be pursued at Tength in this note.

(b} Numerical Solution of Linear Ordinary Differential Equations

Consider the system of differential equations

dx
& ° Ax t £(T) 02tsT <o }

(5.3)
x(0) = ¢ A = a constant matrix

One technique for solving (5.3) is the use of the trapezoidal algorithm

Int] ’51n+'"“‘u‘(=!n“’n-ﬂ)+ (f * fhe)

(5.4)

Y

Y, c At = T /M

Equation (5.4) may be written in explicit form:

Yor1 = by * BUE, + £ryq)
(5.5)

Yo = £

where '

J=[I~AA] [T+ A 45

(5.6)

2 =[1-a%t AL
Accuracy
Let Xap1 = x{nat)
Let Tt be the Tocal truncation error defined by

Xopp SAX, FB(F 4+ £ )+ o1 AL (5.7)
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Let g, = (5n - gn) be the solution error (5.8)

Then subtracting (5.5) from (5.7)

Bpa1 = Agp * Ty AF (5.9)

Now e =

&
ch

' ey = 1y At A
e, = (At, + 1,) At
= =2 ) (5.10)
gn = (An-1_"£-[ + An‘zl'.e + s In) At y

If the matrix A is simple, there exists a similarity matrix T such that

T1AT = A and hence A= TAT™ (5.11)

Hence if the homogeneous solutions of (5.3) are stable we know from.theory

that A(A) must either be pure imaginary or have negative real parts.

A=[1-AAE [I+A 8ty = 11-a 8E '][I+AM]T (5.12)
A=ToT! where 0 = [ej]
(5.13)
T At -1 At
85 = (1 S+ Ay o)

If Aj is pure imaginary, say Aj = imj » then

1+ (0 A127]172
o5 =| ———1| =1 (5.14)
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. . . _ . _ 2
If Aj is compiex with negative real part, say Aj amjgj + 1wj 1 cj
than P ]/2
1~w.t.0t + (w. At)'
lﬁjl - icd iz . (5

At

Hence the homoganegus solutions of (5.6} are Liapunov stable by Thegrem 5.

In either case we have

1 -1

.15)

e, = T M7l + @B g v el 17 ) (5.16)
u]_ B
Let T _L__; = P"“i
!l < 1T CIE™ byl + 116" 2oy ll + -+ i, 1l 3 at (5.17)
st ([0 = ) e "okl < T [6K] = (5.18)
=k 3=1 J J H‘]":'f J =k *
e ll < N7y I (5.19)
- If 1= Maxi|t 5.20
ox |5 g (5.20)
then e Il < Tl (17| nat = (5.21)
but\ nAt = tn,s T (5.22)
el < THTI T
(5.23)

5,K1T

Now
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dx d-x Z X 3
- . =N -n At =s &t
B TET@ M TP T e
; dé ) 3 (5.24)
f I
- n -n At —s At
T "hytge M7 ot 5
Substituting into (5.7) and using (5.3)
Ato-1 1 L1 L1 % t
fay = A GT g Rx ot g K0y e A gt + 7 5 a® (5.29)
dzfn
Then, prov1ded|lx il IIf I ,Ild — » ll Il are bounded,
e .-l < K,at?
1t = 72
_ 2
T = KZAt as At =+ 0 (5.26)
le < KK, at%  as At =0 (5.27)
The trapezoidal scheme is second order accurate as At - 0.
Application
Consider the conservative dynamical system:
MX + Ki =0
x{0) = gjgjo) = b
(5.28)

)

where M MT is positive definite

K =K' is positive definite

If gj=<» ), equation (5.28) may be written
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dz _
at - Az
a
z(0) = ¢ = (Q)
0 I
where A =
L] "‘M--IK 0
, If A is simple, there exists a similarity matrix such that
Ty .
-tuw, -
jw
TIAT = = 2

L ...J

The trapezofda1 difference equation corresponding to {5.29) is

- At
Moy =y ¥ Al ) )
v, )
W = W =2cC
= ¢ 0 =
Lo J
Alternatively,
_ é‘E - o
‘ Yor =¥ T 7 Wpey + ¥y)

¢ _ ¢ ___'_t_ -1 \
Yor =¥y T2 M Kty * 2y
From (5.33) we see that

T . T
Yor1 M ¥y ¥

Ypiq K

= constant

N —
naf—

Y1

A

(5.29)

(5.30)

(5.31)

(5.32)

{5.33)

(5.34)
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Thus the difference equations (5.32) or (5.33) conserve energy in exactly

the same way as equation (5.28) whose first integral is

;—i MX + 7 x Mx = constant (5.35)

Wpgy = AWy
(5.36)
¥, = ¢
where = [1 - 58 A771 [1 + &F a] (5.37)
Using (5.31)
A= T[1I - -‘ﬁsziifx]“1 [T+ %‘in] T (5.38)
&
A=t 0 = [o;]
(5.39)
. At
1+ 45w
g, = — L2 Vi (12w
U AL .
7 Y
Hence  |A;()] = 1 Vi (5.40)

Thus the eigenvalues of Zall have moduius equal to unity and equa-
tion {5.36) is Liapunov stable. This property‘is exemplified in t'. fact
that the energy is conserved.

Using equation (3.5), the solution of eguation (5.36) is:

y
W =(i)=uez”c (5.41)
-—.n . —
“yl"l
where " =T " T (5.42)
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Now
. AL .
5. - T+ 15 0 e1A¢j -w
1 -1 'A-‘“E U
2 >
(5.43)
At
-1 it
where A¢j = tan At 2
1 (mJ —2"") o
Ad
=4
let & = 53 (5.44)

(5.45)

:L:E
)]
/.??
\‘—T‘/
-_l
m
-
jo
[
(2
=
_.;

The solution of equation (5.29) at t, = nAt is:
x -
an w.t
= - Jjn =1
En-<_ )-T e T (6.46)
Zn

We see that the solution of the differential equation {5.29) and the cor-
responding di fference equation {5.36) have the same structure, however, in

general the time dependence is different.

Period Error

Let Tg = %E be the period of the i mode of the difference equa-

tion. Let Tj = 2w/mj be the period of the 5t mode of the differential
equation. Then

4.1,
er = JT J (5.47)
J

is the period error of the 3t mode of the difference equation.

We note that



et e e R

-54-

1wt

}"'(UJJ' 2)

Lim Q.= Lim - tan"

- (5.48)
At+0 I at-0 AT

Thus in the Timit as At + 0, the period error vanishes and equations (5.45)

and (5.46) are identical.
From a practical computing standpoint, we cannot let At go to zero.
While (mjAt) can be made acceptably small for the Tower modes of a complex *
structure, it is not possible to make (mjﬁt) small for the highest modes. Thus
by making At sufficiently small, equation {5.45) will give an accurate repre-
sentation of the low mode behavior, however, higher mode hehavior will not
be accurately modeled. In most problems in siructural dynamics, only low
mode behavior is of real significance, therefore if high mode behavior can
somehow be suppressed, equation (5.45) will give a reasonably accurate repre-

sentation of the response of a complex structure.

Methods Proposed for Suppressing the Higher Modes

(i) Use of Viscous Damping

By analogy with continuous time systems it might appear that the use
damping could be used to suppress the higher modes. As we shall now show,
the method is ineffectual in suppressing the higher modes in discrete systems.

If in equation (5.28) we add viscous damping, then the equation becomes

"\
MX+CXx+Kx =0
x(0) =a  X(0) =bh > (5.49)
M=M >0 C=0C503; K=k >0
v

X
If Z= (7:), equation (5.49) may be rewritten
X

—
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dz _
'&;E‘ = A E_ 7
== 2
2000 =c= } > (5.50)
0 I
vhere A = ‘
. | | 4k -nle y

. If A is simple, there exists a similarity matrix T such that
-w];.lﬂw”ﬁ - 1;2.!
"w]!}]‘iWn ]"C‘]
TIAT = 4 =
~whcn+iwn JT-qE
- -3 -
L WL 1wh‘/1 &
(5.51)
The trapezoidal difference equation corresponding to (5.50) is:
e} ‘
LNy "(- = Ay,
In
: (5.52)
; ¥ \io = E.
; .
i . where o
{ A=ToT!
ﬁ At , . At 2
l-w.g.—-—+ 1. '[.Q:. &
8j= S Azt . z ‘2] (5.53)
+w.r. 5~ jw. 5= 1-25
1 uhga 5 105 5 1 §J
’ -
ej may be expressed as
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63 = pj 8
At 2
1T - w,p At + (0. =~
05 = : JJ‘A N SRy, (5.54)
'[ w.ﬂ"t T"'E:,Z.
= il R §
Ap. = tan AT
J wj P
]_( 2

For the lower modes Py = 1. As mode order increases, Ps decreases initially,
then starts to increase again. For the higher modes P; tends to unity. Thus

we see that viscous damping is not effective in suppressing the higher modes.

(ii) Use of Algorithmic Damping

If equation (5.32) is modified to read

w

Mgy =ty FAEACQ - oduoy g + o)

-

In
wo (o) mee eeno

Equation (5.36) now becomes

where
ay = [I - (1-0)AtAT™! [I + @AtA] (5.56)
a4, =ToT!
o [0 4
(5.57)
T + At $w
where © J

a3 I At{1~a) w;
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Hence
8. =p @
dj "oy |
1+ (oeA‘twj)?'
9&3 ) : (5.58)
IR 1+ (1~u)Atwj)2 .
-1 ijt
Ad = tan _ -
0y 1- oz('l-a)(mjﬁt)z J
We note that
i) Ap, . = Ad, p. =1 when o= 1/2
3 J 3
i) 0<a<1/2 ps <1

J

Thus in case ii) p; =T for the lower modes, while & = T%Efsl for the

higher modes. Unfortunately, if o # 1/2, it is easily shown that

llegll < o3l -al0(at) + KK, 0(at®) (5.59)

Thus, if o # % , the modified trapezoidal altorithm' (5.54) is only of Ffirst

order accuracy as At -+ 0.

(i111) Use of Temporal Filtering

_ 1
let v o= glw g+ 2w +w o] (5.60)
where Woyp =AM, (5.61)
: I P
. v, = -@[JH 21 + ]ﬂn {5.62)



Now, for the trapezoidal algorithm

A=TeT ! (5.63)
1+ iw. ég'—
where 8. = ______J_KE (5.64)
J T = 'if-IJ.:_"
N4
v = LT[0+ 21 + 0 Ty (5.65)
-n 4 = '
: 1+ iu, F (IR N
=ET ]uiwé}l+2+]+im.9§u T Eﬂ (5.66)
J 2 J2
v =T 1 T-1 id (5 6?)
il 1 + (m AT.)Z -1 ’
i 2
We note that S = 1 for the lTow modes and tends to zero for the

1+(wj %13-)2
high modes. Since i is second order accurate as At + 0, the filter, which
is also second order accurate, still retains second order accuracy. Thus,
unlike algorithmic damping, the use of the temporal filter does not affect
the accuracy of the computational scheme.

There exist many more sophisticated algorithms Tor solving probiems
such as equation (5.28)}, however, the author's experience has been that for
linear problems, the trapezoidal algorithm with post~filtering does as good
a job as the more sophisticated schemes when applied to Targe complex struc-

tures.,

(c) Numerical Solution of Nonlinear Ordinary Differential Equations

Consider the system of nonlinear differential equations

9= ax+ £(x) + glt) DcteT <o

(5.68)
x(0) = ¢ A = constant matrix
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One technique for solving (5.68) is the use of the trapezoidal algorithm
= At
Yo = ¥y + 7 A0y + ¥p) + Elgeg) + Tl * Gpaq + 8o
Yo = & At = T/M (5.69)

Equation (5.69) may also be written as

Yor1 =AYy TBEWpeq) + Tl + Gppq T 8

(5.70)
Yo = &
Accuracy
Let Kopl = x(nAt)
Let Tt be the local truncation error defined by
- At
Xoa1 = Xt FLAG G F X)) ¥ o) ¢ E(X) g b gt 2r ]
(5.71)
Let g, = X, - ¥, be the solution errar (5.72)
Then subtracting (5.69) from (5.71)
_ At At ) At
a1 = (T + A e, + AT epyq + (E2q) - Elypy D5
* (F(x) - Fly )AE+ . at (5.73)
—'=h a7 ™ Tha ’
. N
I i) XY, are bounded ¥n & (1.M)
1) 1£(x) ~ T < K{lx-yll ¥ x,»Y,, bounded } (5.74)
i11) f(x) continuous and continuous first and second

partials J
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Thus

where
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el < (0 +IANAE e Il + AN AE Nle,

At
+ kA |le I+ k& lle Il + flt, Il at

(1+umu+m2“ 1 Mol

lewll <7 +K) 5 - CllAl + K 5
llggll = 0

Iz ll At
legll < ——

1- (Al +K) &
1+ (||A] +x) &E
le,ll < [ 2} ; X
2 [T-Hmm«)%~“”“'hﬂ 1-Clall +x) 5

Nedl < L™ oy || + w2 T At
e, iz Il + "™ el 111 Y +:<)§32“E

1+(uw+mﬂt
1 - (llall+ k) AF

T = Max ||z, ||
le Il < FE=T1 . At
T a0 B

At
: T+ (Al +K) 2 . (AL +K)
T-CIal +0 8 1Al 0§

{(5.75)

(5.76)

(5.77)

(5.78)

(5.79)
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lle, |l t "t 1]
Al vk
2 g
Now ey='l+y+3—’2-ey 0<0<]
(1+y)
2 1
1 ~-y>2 1-2y+ (2y} for y <5
. 2 2
e =1-z+ 3§-= Eé-e"ez
1 5= 13 < o2
1-2z+ %T' e %+ Eg-e"sz
]1 < 1 2582y
YT <2y + 2y
Ity 3y
T-y <€
Hence, it (|[A]] +K) %1:-<%-

RERILEDE S LRSS

= (1Al +K) “ ;
—3-( Al + K)nat
< —I &
lealls %

But nat = t, < T

3

=( JIAll +K)T
T 2
e < TR

Returning to equation (5.71),

(5.

(5.

(5.

(5.

(5.

(5.

(5.

(5

(5.

80)

81)

82}

83)

84)

85)

.86)

87)

.88)

.89)

90)



dx d-x
- N ops 25 AtS B
Xar} "Xy @ MY o7 2
dgﬂ 5
Flxoe) = £x) + x ) g dt+ - (5.91)
dgn
Gpe1 = G T g AL+ et J
Then using {5.71) and (5.68) it may be shown that .
”Inﬂu = K3(At)2 as At =+ 0 (5.92)
SCNAl+ KT
Ky(at)? e?
2 eIl <
< K (At)%2  as At =+ O

4

Thus the trapezoidal scheme is second order accurate; unfortunately, unlike
the situation for linear systems, the trapezoidal difference equations for

nonlinear differential equations are not guaranteed to be globally stable.

Application

Consider the conservative dynamical system

ME+Kx+f(x) = 0 )
x(0)=a x(0)=p
) (5.94)
M=MT>0, K=KT>0
flx) = W(x) UWx)>0 x#0 ~

Equation (5.94) has the first integral
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%—'fm X + %_&TK X + U{x) = const. (5.95)
If z= (_x_) equation (5.94) may be written
%
dz bl
= Azt glz)
z{0) = ¢ > {(5.96)
0 r 0
where A= g(z) = _J
-1 Tl
-M'K 0 M F(x)
If A is simple, it has the representation
A= AT (5.97)
- |
Twy )
-T'w.'
L - 'iw2 {5.98)
-'Iwz
ete.
L p—
The trapezoidal difference equation corresponding to (5.94) is
- At At
Wopp = Wy G Allpyy *up) + 5 (a(Wn,g) + gly))
¥, (5.99)
o =L iy = €
Y J
Alternatively, .1
_ At e .
Yor1 “ o ¥ 7 Wt * 8
v o=y - Abyirg +y V+f + f
Yor1 = ¥y = 5 M TR ey + ¥ + £y p) + £y)] (5.100)

o

Yo= b

¥, =
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From (5.100) we see that

T roT s T s T+ T T,.T
7 Waer Meq = 50 M001 * 7 Wiy Koy = ¥y Ky
by my ) (Bly ) Ry )) = 0 (5.101)
7 ey “dp! AWy I ) S .
which can be written
1T My - Ky + U = constant (5.102)
7 Lt i1 T 7 Iy Nt T Ve :
5 Ml T
where U ;= igo 7 Wie7 = %30 (Flyyeq) + £(y3)) + Uly,) {5.103a)

We note that 1f a,b are bounded, then as At + 0, (y;,;-¥:) +0 and that
(5.103) becomes

n+1
i U = i ] T 4 7 N
A'i-;1—3[-]]0 Uty 7 Ali_:TO 1-—2-0 7 (Y547 = ¥5) (Elygeq) + £ (5.103b)

Uy = Uly)

In this case, equations (5.102) and (5.95) are identical. In geﬁera1, for
At finite, ﬁn+] cannot be guaranteed to be positive, in which case equations
(5.99) and 5.100) are not guaranteed to be stable. It should be pointed

out, that equation (5.99) can be rewritten as

Wogp = AW +B{glw,4) + 9w, )) )
0T ® > (5.104)

where A= [I = %’EA]“ [T + %A]

- At p+-1 At
@= 11 - Ak At £
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Since the eigenvalues of A are pure imaginary, the eigenvalues of . all
have modulus unity, thus equation (5.104) is one of the “critical cases” in
Liapunov stability theory as discussed in Theorem 16.

To iilustrate these problems let us consider the follawing scalar

probiem:
X+ f(x) =0
F(x) = x |x] <1
{5.105)
F(x) = sgn x + u(x - sgn x) |x] > 1
Equation (5.105) has the following first integral
1 2 T
§x+F&)=wmt
_ 1.2
F(x) = 7 X |x] <1 (5.106)
- %-+ [x] + %—({x[-—1)2 s x| > 1 )

Since F{x) >0 x # 0, equation (5.105) is globally Liapunov stable
with respect to the origin.
The trapezoidal difference equation corresponding to equation (5.705)
is:
Y1 = ¥ = ey ¥ ¥,) s n = At/2
(5.707)

Yooy = 9o = Uy ) + Ry, )
which may be written

2 -, = o2
N FWpeq) * Yy = 2, =¥, 2y, - 0" Fly) (5.708)



o Thus -y = alz)

-66-

Since f(y) is piece-wise linear, equation (5.108) may be inverted to

give yn+] jn‘tefms of.zn,

o Yoy, talz) (5.109)
RO n
: ' _ 2
where g{z) = > 2 for |z} <1+ q
T R o (5.110)
= sgn z + 5 (z-—(1+n2) sgn z) for |z| > 1-Pn2
1+un
lg(2)] < jz| ¥z | | (5.111)
- . 2
Let zn+] = Vel * 2n Yp1 = M f(yn+1) ' (5.112)
Zoy = 4g(zn) - 2z, = Zo 1 (5.113)

Equation (5.113) may be written in several different forms, two of which are

given below:

2
- = - 4“ :
a) Zoa1 ™ 22, * 204 —, k3(zn) )
kB(Zn) =z, for Iznl,g (1*'n2)
| : 2 F (5.114)
= ’]-+n2) sgn z, + Eiliﬂgl{zn - (]'knz) sgn zn)
T+un
for Iznl > 1+ n2

From (5.114) we see that if n > 0, sgn(zn*1 - 2z + Zn-1) =~ sgn z, (5.115)

TR e ks, T ST L e g ame e e 0ot % - naal . T : B T I R S T AR STy R

e Y
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Thus the sign of the finite difference curvature is always opposite

to that of the displacement, thus the solutions are always oscillatory.

2 ne A
b L2a-vt) Z + z - L ATy k,(z
) nt+ (1-|-un2) n n-1 (1 +un2) 2( n)
ky(z) = L 5z  for lz| < 1+vP ?
1+n
= sgn z for |z| > 1+n2 J

Equations can also be written in the first order form,

Spe1 T8y + k(8y) A
2(1 - un°)
Zn -I'*’unz "'-l
8 = , A
n-1 1 0 P
4n? (1-11) )
{alZ
k(en) = ']+un2 2
0 J

The matrix.4 has eigenvalues

" 22
A= - J_Ziﬂﬁ.f i1 - (1 -unz)
+ N 1+un

i

-

= e

cos ¢ = (LB —HL)
T+un

Using ejuation (3.5) with p# 0

{5.116)

(5.117)

(5.118)
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_ant SR B (5.119)
_En'ﬂ B A _ ‘6'0 ¥ 1§g_A- E(B-‘) = o ; SRR E

Bt = v 5 a® e ! | o (5.120)

vihere [Ail = 1 i=1,2

S gl < TNt R el (earen

But  ||k(6,)]] < 4n° ]"“2 (5.122)
1+un _

y 21 1=~ -

8qll < KCIE M + 4n ﬁn) (5.123)

Thus, even though {5.117) may be unstable, it is only weakly unstabie, with
at most linear divergence. Now using (3.5) with p = 0, in this case

A= 1, 1= 1,2

A=T ! (5.124)

151 TIL 0TV gl 2n) + ae? J71) T g2

< KL lg, Il (2on) + anP(2(n+1) + By (5.125)

Thus, even in this case, the |l§nlf“' 0(n?) as n >, as it is only weakly
unstable. .

Equation {5.117) defines a continuous mapping M(:} such that:
841 = M(8,) (5.126)

Therefore, by the Brower Fixed-Point theorem, there exists at least one
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Tixed point, or equilibrium solution. In the case of equation (5.117), it

is easily seen that the only solution of
8" = M(8%) is 8% =0 (5.127)

Next, let Mk, k an integer, denote the mapping M applied k times. Then
theve may exist a sequence of distinct points gf(?),gf(z),---,gf(k) such
that

8%(mr1) = MN(e™(1)), m= 1,2, ,{k-1)

(5.128)

Clearly, this sequence constitutes a periodic solution of period k.

Stability of Periodic Solutions

tet 6*(m):m € (1,k-1) be a k periodic solution of equation
2 A

(5.117).

Let  &(m) = 8%(m) + &8(m) (5.129)

Then  88(m+1) = Mae(gf(m)) 86(m) (5.130)

Provided 8(m) and 8*(m) are on the same piecewise linear branches of k(9).
Thus, for 68(k) small, but not infinitesimal, and gf(m) not on a corner of

k(8),

m
88(mt1) = [ 7 M (07(1))Is8(1) (5.131)
1= =
K
Hence 8B(K+1) = [.Z]_ﬂ 8(8*(1))] 86(1) (5.132)
i= A
= A, 38(1)
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IS

If |Ai(Ak)| 1, i €(1,2), the pariodic solution is stable.

If [ (A)]

v

1, 1 €(1,2), the periodic solution is unstable.

If IAi(Ak)' =1, 1€(1,2), the periodic solution is stable, provided A, is
simple, Otherwise unstabTle. This is a property which is special to piecewise

linear systems.

Exampie
If in equation (5.116) we set u =0 andn = 1, we have
-
Zopy " 22tz = ~Akp(z)
e &
kz(z) 5 for |z| <2 (5.133)
=sgnz for [z] >2 )
(a) If Jz,|s|z;| <2 , then A
21t 2 = 0 il T T
Zp = g s 23 % =4 g (5.134)
2= 2, 25 = 7y
- n _ n
Zm T ('])_Zo Zonel T (-1) & J
Since |z |.lz;| <2, it follows that |z, | <2 ¥ K
From equation (5.117) with u=10, n=1,
0 -1
Tt o (5.135)
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Mggﬁgf(i)) = : ) Vi , provided gf(i) is not close to a corner
of kz(z). Thus
sa(Kk+1) = A, §8(1) )
" o0 1K >
K- 1 0 (?.136)
ERCWIES i=1,2 J

Thus as long as the initial perturbations are small, not necessarily in-

finitesimally small, the periodic solutions are stable

(b) If |z,|s|z7] >2, there uxist periodic solutions with [z ] > 2 ¥n.

In particular, If zy = N+T zq = aN-T , then TN = 2{N+1)

Proof. If =z, >2 ., equation (5.133) becomes

Zogy ~ 22, vz, 1= -4 (5.137)
With z, = N+1 and zy = 3N-]

z, = (1+N) + 2n(N-n) ‘ - (5.138)
Thus  zy 4 = 3N-1 =2, 3 | Zy = N+ =2z, > 2

Zygq = -{(N+1) = -z, < 2 (5.139)

If z.< -2, equation (6.133) becomes

Zos1 " Zzn tzo 1= +4 {5.1740)
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ZN+2 = '(SN"]) = -21

Thus for N < n < 2N+1, the solution for 0 < n < N is repeated with the nega-
tive sign.

Zo(nsg) = (W1} = *z, (5.141)

Thus there exists a periodic solution with initial data z, = N+T, zy = 3N-1,
with {zn] >2 V¥n and period TN = 2{(N+1). Clearly, there exists an infin-

ity of such solutions.

Stability
Since each point 8°(k) satisfies the condition |z.| > 2, each

ﬂxﬁ(e*(i)) is the same.

2 1K
Ay = : . (5.142)
2 -1 1 1
Now -7 71 (5.143)
1 0 0 1
1 K {1
0

Thus, though [Ai(AK)I = ] Vi €(1,2), AK js not simple, hence the periodic solu-
tions are weakly unstable, and will grow until 8(n) = 8%(n) + 88(n) reaches

a corner of kz(z), at which point the nature of the stability will change. As
shown in (5.125), the global rate of growth is limited to 0(n2) as n =+ oo,

which is still a rather weak type of instabiiity.

Globally Unstable Solutions

Hughes ( 1 ) and others have exhibited numerically the

a0
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instability of equation (5.107) and hence of equation {5.133).
bility of equation {5.133) can also be exhibited analytically.

equation (5.133) with prescribed initial data

Zog1 ~ 22, Y 2, ® ~4k2(zn)
ky(z) = z/2  for lz] < 2
= sgn z for fz] > 2

The insta~

Consider

bt

z = 1.5 + 2.5 , z: = 3.5N + 1.5, N=1,2,3,etc.
0 1 "

i >
Since 20’21 2

= - ke :
z, = A+Bk - 2k, provided 2z , >?2

Using the given initial data

z, = A= 1.5+ 2.5 1
2 = A+B-2 = 3.5N + 1.5 & B = 2N+ J
z) = (1.8N + 2.5) + (2N+1 - 2k)k  For k < N+2
Zye1 = 08N + 1.5 . zy5 = -(1.5N + 3.5)

To determine Zy,30 We use equation (5.145)

: Zypg = ~(3M47) - (0.5N + 1.5) + 4

~-(3.5N + 4.5)

1

Since. Znapo a3 are.les§ than minu§ two, we can write
Zysoep = [+ Brk = 2K°] k>0
where A] = -Zyo = (1.5N + 3.5)
Zyyg = ~[A;¥B - 2] LBy = 23
Zyapek = ~L1-BN+3.5+ (2N+43-2k)k] , k < N#2
CZgugn = -{0.5N + 1.5)

Zp 45 = {(1.5M + 5.5) = (z0 + 3)

——
S

(5.

(5.

(5.

(5.

(5.

(5.

.145)

146)

147)

148)

149)

150).

.151)

152)
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To calculate Zonsg We Teturn to equation (5.145), from which

Zoweg = (3.5N+8.5) =z, +7 (5.153)

Thus at the end of a complete cycle

'\'
Ty = {2N+5)
and 2. =2+ 3
oo are the initial data for the > (5.154)
7 =7 47 next cycle
T1+1 1 )
At the end of the next complete cycle
‘\
T, = AN+ 14
) (5.155)
and zT2 =z, +2x3

Z-- =z, +t 2x7
|2+1 1

At the end of the kth complete cycle

Tk = k(2N + 3+ 2k)

and zp =z + 3k . (5.156)
k are the jnitial data for the next
cycle
Z = z.+7k
Tk+1 1
Returning for a moment to equation (5.107) with n = 1, then
L2 =98 + (g -y MFly )+ F(yq)) = 0 (5.157)
2 Ynt1 " Y1 =Y A Wy Y] "

If Yoe12Y, are both of the same sign and both are greater than unity,

then (5.157) becomes
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¥ 02 )+ 5 (v -y ) san v +sany ) = O (5.158)
- %—(&ﬁ+1-&ﬁ) Y l-ly 1= 0 (5.159)

From equation (5.106) with Xt and x, of the same sign and both greater

than unity, then,

1 ;.2 2 _

2—(xn+]-xn) + F(xn+]) - F(xn) = 0 (5.160)
But  Flxp.q) - Flx ) = |x 1 = 1%,

1 ;.2 -2 -

ﬁ'(xn+1"xn) Rp 1%yl = 0 (5.161)

Thus the trapezoidal algorithm preserves the energy identity (5.161) if
Y1 and Yy, are both on the same nonlinear saturated branch. If Yot and
y, are both on the linear branch of the curve, energy is again conserved.
If Vo4 and y, are not on the Tinear branch or not on the same saturated
nontinear branch, then in general energy is not conserved.

Returning to equations (5.109) and (5.712),

Yo = 0(z,)

(5.162)

. 1
Ype1 = -7 Lz “n-1 ~ 20(z,)]

Since Iznl > 2 |yn+1| > 1, thus we need only look at the "energy" at the

beginning of each half-cycle to see how it is growing.

1.2
Ee = 7 Va1 * [V
(5.163)
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From (5.156)

_1 o2 1

B = 7 (2 + 2, +10k-2)" + [z]+7kl 1 (5.164)
As k + o,

B 0(k%) (5.165)

But from {(5.155)

As kwe, T o 0(k%) (5.165)

Therefore, combining (5.165) and (5.166)

Ek " Tk as k o e (5.167)

Thus confirming analytically what Hughes and others had obtained numerically.

Equation (5.116) was carefully examined for u = 0 and n arbitrary;
nothing essentially new was learned, except that even for n very small, but
not zero, weak instability will still occur if the initial data are large
enough.

Equatfon (5.116) was carefully examined for |u| > 0,n both arbitrary;
for |u] sufficiently small the system behaves in very much the same way as
for p = 0. It is true that the system appears to have bounded solutions,
however, the Eound is of the order of (1/u) and hence can become very large
for certain ranges of n.

Since the results of this section are essentially negative, we shall
not report all the work that was done to investigate the effect of nonzero
u, the effect of small n and the effect of damping. Instead, we refer the

interested reader to the PhD thesis of my student, B. D. Westermo (2).
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Algorithms which Consexrve Energy

As shown in the last sectionthe trapezoidal algorithm, which was
found to be very useful for linear problems, can for a certain class of non-
linearities lead to weak instability, In this section we shall look at several
new algorithms which conserve energy.

Consider the conservation nonlinear differential equation

2 ™
d
= +ix) =0 0<tzT
dt
where
x
() =L, F= | Hndn>0. x40 - (5.168)
o
and
xf(x}) >0 =x#£0
Py
The system (5, 168) has the first integral
1g2 = 5.16
7% + F(x) = const (5.169)

and since F(x) is positive definite, (5.168) is Liapunov stable with respect
to the origin.

If we rewrite equation (5,168} in the form

d%x | dF

+EE =0 : (5.170)

™

g

This immediately suggests the algorithm

. - At (0 3 - ) N
Yp41 "V T T Wt ¥y
Fy, ,.4)-Flv,)
. o 11+1 I
- = - At 5,171
Y::1-[-3. Yn (yn +1 -—yn) ? ( )
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Cross multiplication immediately shows that:
*2 02
G2V + Fly, ) - Fly,) =0

Or on summing

122 '
7 Vngp + F¥pyy) = const

If in (5. 168)

£(x) = 2% + g(x)

-~
8 = 5,00 = | gman>0 |
x70

Wi’ r g > Yx#o0
-~

(5.172)

(5.173)

(5.174)

g(x) continuous with continuous first and second derivatives then (5,171)

becomes

_At s e
Vnt1 " Yn =7 V1)

. . _ AL G(ynﬂ) - C'(Vn)

2
T w Sy, ty,) - At -
n+l “n Z n+l “n (Va1 V)

which may also.be written in the form

~ At
Wil =Wyt Al W) (W)

where

(5.175)

Y

(5.176)
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; 3
A 0 I _ Yo
= 2 En_ .
1) 0 Y &
¢ (5.177)

At G(Yn+1) - G{Yn)

X:

Vo1 n 7
Agruracy
Now
Gl¥ )~ Clv,) -y S
Wn+l Yy & . . (5.178)
€=9yn+(1~8)yn+1 0<B<] )
Thus if Vo Ve 2FC bounded Yn
Gy, =~ Gv,)
n+l k) < M ¥n (Bo 179)
Yn+1 “Yn
Iy, (71w < Mat ¥a {5.180)
Similarly if »}nv}-l’ y,, are bounded ¥n
At ‘
| = Alw, tw)ll < NAt ¥n (5.181)

Hence from equ;'a.tion (5.176)
Wi wall = (NeM)AE ~ O(At)  for At small (5.183)

As before, we define the truncation error Tal? by the equations
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I ke

_ At ; :
Znp1T En A(-z-n+1+5n) + K(in-i-l’-z—n) + 1n+lm'

. - x. (5..183)
oz

n

Using equations (5,174), (5.178) and (5.183) it is readily shown that if

-
(K X are bounded for all n;

ey~ O(a4%) (5.184)

Defining the solution error e =z ~w.» if (5.176) is subtracted from

—I1}
(5.183)

- at ‘
Snpp T En * 2z A(Enﬂ +§-n) + K(-z-n-l-l ’—%n) _Xn(y-n-i-l ’—-W-n) + In+1 At (5.185)

-

e ey qll = el + 5 lalitle, p (el + lix(zy 200 %0y g w N

+lrllat (5.186)

Using (5.178)and (5.182)

(2 g 2) X Wl = 5 Rl I+ Tl ) + 6, At

provided that z_, Zny? Wor W,y ave bounded ¥n where (5.187)
2
8,41 ~ Ofat?)
Let
2
b= Max(y, - Hir )~ O(AE%) as At~ 0 (5.188)

Using (5.186), (5.187) and (5.188)

K At
1 +(“A“ + )Az-t_- ”e ” + ¢ At {5.189)
-(lall s [

le, 1l =
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i 4 "30“ = 0 then as previously shown

exp( (Jlall+x) 3 T)

[ERIE (5.190)
- lall +x

Thus for T fixed
le | s%,8~0(at?) as A= 0 (5.191)

Thus this algorithm is second order accurate; in addition it is Liapunov
stable with respect to the origin,

We note in passing that equation (5.178) may also®be wuitten

Gly,,q)-Gly,)

le”(5,)48"(g,)-38"(5;)

_ 1 Y-
yn-{-l _.-y-n - 2’ (g(yn +1)+g(yn)) + ‘. i2 (YI'H']. Yn)
gl = Y11+1e’i+(1 “Bl)yn
0<Si<l (5.192)
Thus if Vur Ynyp 2Fe bounded ¥n, then for &t tending to zero.

G(Yn-fl) "G(Y

Yt ¥n

",

= 5 [gly,, ey )l + M(a)® (5.193)

Thus this present algorithm may be considered to be a modified "trapezoidal'

algorithm,

Effect of Viscous Damping

If viscous damping is added to equation (5.168), then using (5,174)

we have
% +2zx +0ix 4 gx) =0 ,  z>0 (5.194)

Let
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Vi, %) = %[:;:z—i- 2z -i-tuzx2 + 22%%% + 2G(x)] (5.195)

V(x,%) >0 if x,%#0

V(x,%) = %% + uk? + mace +w2§ + éz%ﬁc-& g(x)x ‘ (5.196)
Using equation (5. 194)

V= -a(%® +wPx? 1 xg() | (5.197)
But, from equation (5.174)

w2 +xg(x)>0 ¥x£0

. <0 | (5.198)

Hence V is a Liapunov function and the system (5, 194) is Liapunov asymp-

totically stable at the origin,

Consider now the discrete form of equation (5.194)

_ At e -
Va1 Vn = (G 19,) (5.199)
A Glyy, 1) -Gly,)
Va1 n = mzlRmly )y Ly ) - At oy (5.200)
Let
; _Lge 2,2 2 2 o
Vo = g lygtay)” + (2w + 26(y )] (5.201)

vn is positive definite and vanishes only when Yo = 3'r = 0.

e

= Apps 2 2 2,2
vn-l-l - "Z{(Yn+1+zyn+1) (=" )Vn+1+ ZG(an.l)] (5.202)
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=1 - .
-;2-[(*1’n o1V Y )( a2y 2]

+%[(zz+w2)(vj_,_1 -Yi)] + Gy, 1) -Glv,) (5.203)

Using equations (5.200)

Gy, .)}-Glyv,)
_1 n+l v mAL e e At 2
AVp =g |- At Yni - n 2 (Yn+l+yn) 7 W (Y Y, X
[ 2 -
LAT (Yn+l V) z(yn+1 +Yn) :I
1
+§-[z Hl) ][YnH_ v ] + Gy +1) Gly,) (5.204)
v Y ¥oe1 Y Vo1 P\ Gy, 1) -Gly,)
- . n n ((ntln ntl ‘n \ n+l n
v, = -eae [ a7 32) (=2 (5. 205)
¥ G(y) is an even monotone increasing function say
d, 2
Gy) = G¥y?) (5. 206)
G yz) is also a monotone increasing function. Hence
g
%*, 2 2
Gy .G (vo)
R A B (5.207)
¥y -y
e G (y2, ) G"‘(yz)
‘ +y ¥, n+l n
. AV_ = -zt n+l ) ( n+l )( T
Y41 yn
PR A L A
n+1 2 (“‘n+l"’n

From (5,208) we observe that:

e R AR b e ot | S i 1 i am o A I Y g e
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Af\fnso

X oAb e . _ X .
Since y_ .-V, =5 [_yn+l+yn]’ both terms in (5.208) cannot vanish

simultaneously unless y_=vy 0

n n+l =

Since w

nil "En "~ o(At)

av, = -zaf(y )P wi(y )?] + o(at?) as at= 0

The discrete system (5.199)is Liapunov asymptotically stable.

Effect of Viscous Damping and Additive Forces

If to equation (5.168), viscous damping and external forces are

added, then using (5.174) we have

%+ 22% +wox + g(x) = p(t) (5.209)

then if SBp lp(t)] = P,» 2ll solutions of (5.209) are ultimately bounded.

Let

Vix, %) = é- [:::2 + 2k +Wox2 + 22950 + 2G(x)] (5.210)
Vix,%)>0 x,%x#0

2 2

T = %% + 2%° + x4+ 0ok + 2595 + g(x)k (5.211)

Using equation (5.209)

if

. P_
ILet 8 be the set x2'+w2x2$2 (—;—’-)

V= —z(;:2+wzx2+xg(x)) + p(t) (% + zx) ‘

xg{x)>0 x¢#0

V<- z(;{zﬂuzxz) + po(lz‘:[ + z|x|) (5.212)
< - a(%%’x) + po‘-,/?.(._l +(§_Y) o2 0 2? (5.213)
2

(2 +§)2) (5.214)



Outside the set §, V<0

Let Q be the set VSe, where e is such that § is a proper subset of

Q. Then, for points (x,% outside Q, V<0

(5.215)

Starting outside Q, V> 0, V< 0, therefore, V decreases and the

trajectory must eventually enter , and once inside 2, the trajectory

cannot leave 0 since V<0 on 0Q2. Starting inside Q, V> 0, V is in

general sign indefinite, therefore V may increase, however, it is clear

that the trajectory cannot leave 0 since V<0 on 8Q. Thus all solutions

of (5.209) are ultimate bounded inT=(Q + 8Q).

Consider now the discrete form of equation (5.209)

. -- - . A-t - . 2
417, Z [Zz(ynH ) tw (V1) - (pn+l *py)]

A Gy, 41)-Gly,)
Yn+1 R

Tet
1 2 2 2,2
Vo =3y tey )" + (2% 4w vy +2G(y_)]

AVn = VoV

n n n

1r» 2 2,2 2
?[(Yn+1+zyn+l) (27w )yn+1 ¥ ZG(Yn-{-l)

- Fptery)” - (P - 2cqy )

Using equation (5,216)

(5.216)

(5.217)

(5.218)
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2 D

+ A l:(pn-i-é{'*'pn) (-;rn-i-l ) +2 Y™ )}

Using (5.207) we have:

AV, = -z [( nil Y \ . ( Vo4 Wy )( , G lrey)-G ) ):l

(5.219)

| S YL G
< —oAs (0L n) 2({’n+l'’n
AV'n-- zAL [ — +w (——————-——z )

s, (g | o] ]

(5.220)

Let

b +y
n _ ¢t ntl ‘n _
— = (yn) y —im— = (Yn)

av, < - zaf (5P +0? {y )7

+ Atpcﬂ/2(1+ (%)2) \/(S'rn)ZWz(Vn)z (5.221)

Let {8) be the set

G2 +uity 2 s 2 (22) (1+(2)) (5. 222)
Since

Wil T ¥, o(at) as t— 0.

Clearly {8}~ 8 as At= 0 and the previous arguments can be used to
show that the solutions of the discrete equations (5.216) are ultimately

bounded, just as the solutions of the continuous equations (5, 209).
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Ixtension of Energy Conserving Algorithms to Multidegree-Freedom

Nonlinear Systems

Consider the system of conservative nonlinear differential equa-

tions

Mk + Kx + vxu(_:i) =0 {5.223)

where M, X are Nx N symmetric positive definite matrices and u(:;_ﬁ)

is a positive definite potential function. For the system (5.233)

k) =y [XTME +x"

v +x"Kx +2u{x)]>0

iM
[We

(5.224)
TME+ % Kx + XV, ulx) =0

He

V =

| ¥4

Algorithm A

We may write equation (5.223) in discrete form as
_ - At = "
Y41 In =7 [—Yn-l-l +Xn]

. .. At
My g ¥a)= - = Ky, 4y, ] (5.225)

(uyy ) -aly, ) vl )+valy, )]

-At
(Lo TRV )+ V0(5,)]

Cross multiplication yields

1= T
Zz [—S-rn-l-lM-—y-;l.;.l PV B t 2u(zn+1)]

1T = T
=5 [y, My, + 7, Ky, + 2u(y))] (5.226)

Thus if

et i o e 1 b 2 i S e e a e
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1 ,oT, o T '
Vn = 5 [zr-len + XnKzn + Zu(_}:n)] >0
| (5.227)

AV =V, -V, =0

Hence the discrete equations (5.225) conserve energy in exactly the same

Wé.y as the continuous time equations (5.223).

Accuracy

Since energy is conserved, Zn’in’ are bounded for all n, provided

zo,ioare bounded. Thus as

At = 0 ~ O(At)

¢ Yny17In

(0¥, 1y ) -ulyy)) [Vuly,, 4 )+9a(y,)]

(Ypt1 T T[Vufzml )+vuly,) (5.228)
= % [Vu{lr_nﬂ) + Va(}_r_n] + O(Aﬁzj

Hence, as At— 0, the discrete equation of algorithm A became of
trapezoidal form, and hence this algorithm is second order accurate as
At~ 0. While this algorithm conserves emergy, it has two defects.

a) It is difficult to use, that is, it is not readily computable,

b} If At is not small, we have not been able to prove that:

T . . o '
(Xn+1 "Xn) [vu(ln.;.l)“fm(}[n)] =0 lmpls.'es that

Thus we are unable to prove that the last term in (5.225) is bounded when

Y zn+1 are bounded.

Algorithm B

An alternative to the discrete gradient operator in (5.225) is the
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operator
N
1 =
N2 A
Lu = = I I
Yn+l Vn
where
_ 1 2 I k+1
Aiuk - u(Yn-f-l’yzo.+.'t ‘ ‘Y412 Yn 2

Thus

Now

2 k I+l k+2

1
-u(yn+1 *Ynatt *Yn412¥n Vn

» - = A
M[Xn+l -—Yn] K [yn+1

Y]

é 1 1
z A'1 uk/ (Yn+1 _Ynﬂ

2 2
"ot B8y /(Y541 7Vn) L

. n n
LEAnulc/ (Yn+1 Tn J

Cross multiplication yields

1.7 T
7 [ Tny M3"n+1+Yn+1]EW o1
N
1 1 sT. .« T
+N§j Aiuk A [YnMXn+an—Y-n]
i,k

(5.229)

i-1 4 i+l n

Vo YosirVn - 0 V)

Vo) (5.230)
" (5.231)
(5.232)
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'%‘\T 2 Ao =uly, ) - uly,) (5.233)
i,k

To see this, consider N =2

2

l 2 1 2
b Z A:Luk ?[u(ynﬂ’y ) 'll(Y s Y. ) + u(y +1:Yn+1) = u(Yn: n+1)
i,k
1 2 1 .2 1 2 1 2
u(Yn: 1'.|.+1) = u(yn: Yn) + u(yn-[-l’yn-i-l) - u(yn,!_lf Yn)

1 1 2 T2
= 2 [2u(yn+1, Yn+1) - Zu(yn, yn)]

= u(znﬂ) - u(_;_rn) (5.234)
Thus, using (5.234) in (5.232) we have:

T
?[Vn-:_l nel T Y1 B¥ngg * 2uly, )] = constant (5.235)

Thus algorithm B also conserves energy. If the potential u(y) can be

expressed in the form u

N
u(y) =u z o:i(vi)'Z) (5.236)
. Ni=l

where u (r) is a positive monotone increasing function of =, then it

may be shown that

x.
1

N L A%
_%f_)mzao ¥i (5.237)

Application of Algorithm B to System (5.223) with Viscous Damping and

Additive Forces

If to equation (5,223), viscous damping and externzl forces are



added, we have

M% + Cx + Kx + v u(x) = p(t) (5.238)

—

Then if C is symmetric and positive definite and [p(t)|| is bounded, ali
solutions of {(5.238) are ultimately bounded provided _:ETVXu(_:gc_) = 0.
Let
1 T . T, . *
V= [2(x"(C-zM)x) + (x +zx) M(x+zx)+2u(x)] > 0

+§TK_.'§ © (5.239)

where 2z = smallest eigenvalue of |AM-C|=0

V= zET(C-zM)_;_:_ + (_;3 +2x) TM(E"-}-Z_:;_:) + éTqu(E) + _;::.TK:_;:_ (5.240)

Using (5.238), we have

V."

2% (C-zM)% - (k+2x) T[(C-2M)% + Kx +9_ulx) - p(t)]

+ERE + XV u(z)

—_—

'_%T(C*ZM)E.{_ - z(:_:TKzg_ + ETvxu(z:_)) - (:'_:+ z_zl:_)TE_(t) (5.241)

1

Since

%1y u(x)} = 0
— 3

Vs - X (C-aM)% - 2(x Kx) + (G+ax) Tp(t) | (5. 242)

Since 2z is equal to *he smallest eigen value of M_IC, C-zM is sym-

metric and positive definite, hence the first two terms in (5.242) are

negative definite. Since p(t) is bounded, and the third term contains
T

x and .;E linearly, there exists a set S _.ZETME.:_ +x"Kx s K such that

outside of 8, V <0. Let Q be the set V =C, where C is such that
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S is a proper subset of Q. Then outside of 0V <0, and applying the

arguments used previously, we see that all solutions of (5, 238) are

ultimately bounded in Q.

Now consider the discrete form of equation (5,238)

_ _ At,» . ~
Tni1 ¥y = T[zn-f-l +y—n]
M[jrnﬂ ‘in] ) K[y‘n-kl i ] C[Y n]
[ 5 .
Z Aluk/(yn—:-l “Vn
k=1
N . >
2k ) r (5.243)
N
Z %J%Hly
k: J
z (Pn-i-l )
Let
1 T - T = T
Vo= 52y, ( C-zM)y ) + (y_n-!-zzn) M(zn+zzn) ty Ky o+ Zu(zn)]
(5.244)
Then
AV‘n: n+1-vn
1
= 22 (Y41 ) “(c- “ZMNY 41 )
+(-3}-n+ “‘M(anﬂf ) M('y +1+y +z(y ne1 7y ))
* (T4 %) K(Vnﬂﬂr ) +2(u(y, )-uly )] (5.245)

Using equations (5, 243) and (5.237)
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AV, S - A (_gr_n)T(C-zM)(_f_{n) + z(zn>TK(yn>

ot (5, +my Y Tp ) | (5. 246)

where
<§n> = %: [§n+1 +?-§—n] (5.247)
Since Foil ¥ ™ O(At) as At~ 0, itis clear that the right hand side of

(5.246) tends to

as At~ 0
(5. 248)

a T . T . . T
-At [zn(C-ZM)_y_n + Z}inK-Y-n] + At ](y_-n-!-zzn) -En‘
Thus, for small At, the continuous time system (5.238) and the discrete
time system (5.243) behave in essentially the same way and the solutions

of equations (5.243) are ultimately bounded.

Accuracy

Using the fact that the solutions of (5.244) are ultimately bounded,
it is easily shown that the discrete gradient operator used in (5.244) has

the following form as At~ 0

\L Aluk/(yxiﬂ 'Yllw_)
k=1
‘%I ﬁ o L - %‘ [Vu(g,, , H Puly,)]
L el | e -
k=1 y

Thus, as At= 0, equations (5.244) are of trapezcidal form, there-
fore algorithm B is second order accurate as At tends to zero.

Algorithm B conserves energy and has some nice stability

2 )

e e e R S
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properties; it unfortunately has two major defects

| a) It is difficult to use, that is, it is not readily computable.
b} The property (5.237), which is necessary in order to prove

the ultimate boundedness properties of equations (5.243), is valid only

for a restricted class of potential functions u(y).

For this reason, we now turn to an alternate formulation using

- Lagrange multipliers. This formulation was suggested by my colleague

Dr.T.J.R. Hughes and was developed jointly with him and his student
Mr., W.K. Liu.(3)

Algorithm C

Consider the system of conservative nonlinear differential

equations

M%+K§+V£$d=0 . (5.250)

where M, K are Nx N symmetric positive definite matrices and u(}_g)
is a positive definite potential function. We know that (5.250) has the

Liapunov function
ey _ 1 =T .+ T ‘
V(x,x) =5 [ Mx + x"Kx + 2u(x)] = constant (5.251)
If we write (5.250) in trapezoidal discrete form

_ . At - -
Int1In =2 [y-n-i-l "fn]
(5.252)
[ _' At
M(F, 3 = - 5 [Kly,, +yy) + Vo, +va ]

We now wish to constrain (5.252) such that

17T . 1 T o
Z In+l Mzn+1 +’2,'Xn+1KXn+1 tuw ., = const (5.253)
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Using the first of equations (5. 252)

Yas1 = 2 Wy 2] - 3,

(5.254)
Substituting into the second of equations (5. 252)
. At )2
MlYn 41 ALy, = - '2‘) (K41 1) + Ty g du)] (5.255)
which may be written
L] At 2’
(-2_) [x Yty ] = M[y—n+At-¥n] ) (_2_) [K-Y-nwun]
(5.256)
Using (5.254), equation (5. 253) may be written
T o _ AL e
Gly, +1) “Z In+1 ¥n" T Y ) Myn-rl In~ 7 Xn-)
AtNeT1 T
* (T> l:'fzn-flKXn-l-l +un+l:l
*T..* At
yn ( ) I:-z-y Ky, +un:|-0 (5.257)

Let us now construct the functional

2
T AtN* (1T
F(y, n+1) EynHMy at (T) (?Xn+ll<-¥-n+l+un+l)

2
- T . T At )
YnMly +Aty ] LR AT S A (—2- (5.258)
Then

T oF

. A2
n+l 3y 8 ¥n41 [My

+1 2 [Kzn+1+vun+l]

by,

2
- M[Y-n+At-3:’n] + (%) [K znwun]] (5.259)



e

 Thus :ie'c'ess'ary- and sufficient conditions that equation (5.255) hold, are
tha.i: (5. 259) va.msh for a.l'bltrary yariations' 6'3; 41
-~ In order to force equations (5.252) to conserve energy we com-

bme (5 250) and (5 257) tlu ough ‘che use of a Lagrange multlpln.er A our

npw :fu.nctlona.l 1s
CF(ya G, L,) _ (5.260)

Thus

+ A +5)\G }=0 (5.261)
Intl [ayn-i-l 8Yn-f»l:l it

I (5 261) is to vanish for a.rbltrary' 8 Y041’ 8\ then equation (5.257) is

satisfied and in addition;

2 2
at) o . At
MXn+1 + (_2— [Kznﬂ W 13‘n+l] 1\/‘[[zn""m'—y11:l t\7 ) I:K-Y-n+1 +Vun:l

2
_Ats AR _
+ A My Vi1 Yn™ T * 5, By, +Ve, 150 (5.262)

Thus

Mg (B 4700,
= (1+A)[Mzn] + At (1 + %) M}".n - (-%E)Z(Kan?un) (5.263)

The new algorithm thus consists of the two systems of equations, (5.261)
and (5.263).

When zn-{-l has been determined, jn-{-l' can be calculated from
equation (5.254).

The new algorithm is solved using a variant of the Newton-
Raphson method.

If i denotes the iteration number then if we define
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i+l i _ i i+l oAl i
Tntr "Inn S A%ny 3 KT X = AR (5.264)

we have

(\"41) [MAXDL + (‘AZE)Z B(y, n+1)A +1.J

L2

At i At §
Ak [M Ini1 ) +(F (K¥p4p V0 _"MY ]

o) -

i el AN oo i iy
*(M41) ;‘_M(-Y-n-i-l Yo) + z) (Kzn+1+ Vun-l—l)_}

2 i
At .
¥ (-z_) Ky tve ] - (1+4)5 at=o (5.265)
vy WLty ) + At)zA Trx +vu ]
n+1 Tn” ¥y 2/ “ny V +1 u +1
+G(y, +1) =0 (5.266)
where
B(Y ) =K+ 3y, L)
o+l + (5.267)
T
I = gy 3 Vu'n+l
Fotl
Equations (5.266), (5.267) are of the form
At = b (5.268)
where
i i
Al . All AlZ
Ay | o0
(5.269)
i i
v, . b
z —:-l-l-i-'f'—l bt = =L
A b3

where



iy,

- D AT (“) B(xn.,.])]

A]z'g_ Dyl v, - -“—'2- ) (At)zt Kyl vl 01

i o oad T , g - : N
21 = (Ajp) | | >
| (5.270)

1

by = (1+AN)IM(y - v,) + BBkt Tug,)]

1 _
+ BB (ky o wo) - (14305 At

i i
by = By
Rewriting equation:(5;268),

.:]J.i

1
A 2

i
21 1
(5.271)

# Al Al = pl

i
Au” by, 12 44 = by

+1
From the second eguation in (5.271),
. . PR
Ay g = (A7) (b7 - A, Ly (5.272)
Using the first equation in (5.271),
(SR SR A 1, 1.
Ay A4y =854 B - AY, 1) Aja 811 = by
il 3Tad y=T0d _ 1-11
ayl, = (A1) Tpd - antal g (5.274)

It should be observed that gn+1 and AA can be obtained with only one fac-

torization of A}] and two forward reductions/back subst1tut1o Thus one

additional forward reduction/back subst1tut1on is required when compared

I

. .o * -
| Y
T B g o g b Bt i e L L



with the Newton-Raphson implementation of the trapezoidal algorithm. Thus,

unlike algorithms A and B, algorithm C is readily computable.

Accuracy

——

Using equations (5.252) and (5.263), the new algorithm may he rewrit-

ten as:
Yot = Ly = 5 gy + ] )
Baer = 3y = = F I IR+ 0) + Ty 4 g
.. [M*‘(@n ATRE NN \ o (5.27)
2 Jos1 My * 7 Doy Ry * 2]
=7 My * g Doy Ky 20, ’

From the first two equations

T 14 1T T
2 Wawy Miey = dn M1+ 7 Dy Ky = g K]

1 T 2 ..

# 7 Uy = )| (g #9) = il = 0 TRy + T - o vy,

(5.276)
Using the third equation of (5.275)
A T 2
T Carr ~ 27 DRy, * Wy - i M

-1 -y ) (WL Fve) o - (5.277)

2 =+l I n+1 n n T Une ’ ’

Thus



T (g * ) - M)

= Oy - ¥y) (5.278)
where
) 1. : j
C = 4 L) - J(E,)]
D p (5.279)
J=-§:Vu Ei=¥ﬂe'i+iﬂ+](}-97)
056, <71,1=1,2
i v
Hence, equations (5.275) may be rewritten
At A
Yor1 ~ ¥n T 7 ey Yl
y -V = - QE.M“1[K( +y )+ Vu + Yu_] & (5.280)
Int1 ~ dn 2 In+1 T Ly n+l n ’
At -1
t M C(lnﬂ h ln) J

If u has continuous first and second partial derivatives, then||C|[ < Cj

is bounded and we may apply standard techniques to (5.280) and show that:

ledl = 113, = %Il + Ny, = x,fls Dat®,  as At=0  (5.281)

Thus algorithm C is also second order accurate as At = 0.

The Légrange multiplier technique is clearly superior to the other
techniques, and while in the present analysis the constraint was that of
conservation of energy, the technique can be used with any apprepriate
constraint. For example, if the techn%que is appTlied to equation (5.238)
and we wish to ensure that the solutions of the discrete equations will

be ultimately bounded, given that the solutions of (5.238) are ultimately
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bounded, the appropriate canstraint would be the discrete form of (5.241)

obtained hy integrating from t, to t,* At, i.e.,

<

At o et T :
-5 (Y (C-32 M)ini'l + ¥ (C- 2Ny,

nel " Y T
i o o
. * 2(Yney Wy * ¥y 1
. * Y1 Wper T Yy V)
# (Geq * yup) ! Bap + Uy + 20" 2] (5.282)
Int1 ™ Fper! Bpep T g T 2 By :

Replacing -Sinﬂ by 12? (¥n+1 - gﬂ) - ln , the constraint equation becomes:

1 T 2 2 .
7 [y (€= 2Mypug + (Gllney - %) - %) Ml - v) - 1)

;

* Ynay Ripaq ¥ 20lYp)]

- rayTc -y + (3 + zy ) MG+ zy)
2 =1 =n =N b 1] =1 =N

T

* Yy Ky, + 2uly)]
g At 2 T 2 .
: t o L Woerm¥n) = &) (0= 2005 (g -4) - 1)
P Tpm e T T
F 4 (C- 20y, *+ 2y K+, Ky

T T
2(¥4q Wy * ¥y

-

Vun)

.!..

(B et ~t) = 8) T By * By + 2,07 ]

| o = Blypq) =0 (5.283)

LY

sy
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The functional F(gn+1) of equation (5.258) is replaced by:
1.7 Aty T
Flr1) = 2 Yoo Waer * ) Yney We
P B LLT oy k]
2 7 o1 Nnetr T Unet

< Yo My *+ 88 ) + 5F oy,

2
+ () X;;1[K¥n * Wnsy ~ Ppey - Ppl (5.284)

The variation of the functional (F(Xn+]) + AG(gn+])) yields the new algo-

ritnm:
oF . 3G _
A = 0
W1 W
G(Ynq) = O (5.285)

. — 2 *
Tne1 = 2% Wt = ) = 3y

It may easily be shown that (5.285) is second order accurate as ‘At - 0.



6. Application to the Dynamical Analysis of Large Space Vehicles

Consider the system of differential equations obtained by applying
finite element techniques (or other techniques) to some complex space

vehicle. The equations are Tikely to be of the form:

ME + Cx + Kx + Tu = p(t) (6.1)

M is an Nx N symmetric positive definite matrix, C and K are N xN sym-
metric positive semi-definite matrices, and u{x) is a positive semi-definite
potential function. (In the present analysis we shall neglect terms in

{(6.1) which arise due to steady rotation of the vehicle.)

Since one of the primary objectives of any structural analysis is to
determine the stresses in the vehicle, it is desirable to make N, the number
of coordinates, as large as possible so that stresses may be determined
accurately. The number, R, of modes of the structure exhibiting signifi-
cant response s usually much smaller than N. This poses a serious diffi-
culty for the divect numerical integration of (6.1), since, as we know,
the accuracy of any numerical scheme is determined not by the time step
At, but by (ijt) where w; is the highest “frequency" which can be excited.
In order that the higher modes be integrated accurately, At may have to be
very small, much smaller than is either pracfica1 or economically feasibie.
In the case of Tinear systems, the use of algorithmic damping or post-
filtering successfully overcomes this difficulty by suppressing the higher
modes, which are inaccurately integrated when a moderately small value of
At is used, thus resulting in reasonably accurate representation of the

Tower modes.
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Many analysts use algorithmic damping or post-filtering to achieve
the same result for nontinear systems, Care must be exercised when doing
this, since nonlinear systems can exhibit internal resonance, a phenomenon
in which higher modes, though not excited by external forces, can be excited
by nontinear coupling to the lower modes. To illustrate this phenomenon,

consider the following probiem:

- . 3 _ .
Xy + 2Zyk) +oxq ¥ u(x1-x2) = Pycos wt + Posin wt + Pocos3wt

(6.2)
§2 22k, + Oy * u(xz-x1)3 =0
where
Py= (1-af)A + 3 a3 )
P2 = -»221wﬁ‘- > (6.3)
Py = o A3 )

Since the second equation is not excited externally, it may seem reasonable

n

to set Xo 0; the first equation then has the solution

X1 A cos wt (6.4)

If we now turn to the second equation, regarding X, as small,

3 _ 3,3

22 + 222k2 +9 Xo & uXy = TT'A cos wt +-% A3cos 3wt (6.5)

If w~ 0(1), the first term on the RHS of (6.5) causes no trouble,
howeveyr, the second term will cause resonance, a-d if Zy is smail, will cause
significant response in X We therefore see that even though the second

equation in (6.2) is not externally excited, 1t can still be driven by the
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fert coofdinate Xqe This is a simple example of internal resonance.
zg Quite frequently as a preliminary to performing a nonlinear dynamic
analysis, a modal analysis of the Tinearized system will be carried out.
The modal analysis can be a very useful tool in structuring the nonlinear
”prob]em for dynamical analysis.

As a preliminary, let us First put equations {6.1) into canonical form:

[

A Let y = ul/? X (6.6)
‘ "
Let ¢ = 2gy1/2
| C =2 2 g (6.7)
M1 /%p(t) = gft)

Using (6,5) and (6.7) in {6.1)

Iy +Ccy +Ky + vyV(l) = q{t)

(6.8)
y(0) = a y(0) = b
3

; Let T be the orthogonal matrix which diagonalizes A.
I! let y=Tz
i
Lot THT = A
) V(y) = W(2) (6.9)

fi'i":' 9 = TTCT

Tl = £(t) = {f;(t)}




Unless (6.7} has classical normal modes, @is not diagonal. Using
(6.9) in (6.8),

I§+Q§+A£+vzmg=ﬂﬂﬂ

z (6.10)
z(0) = & z=b
Suppose that lfj(t)[ <eg for j>P,e=<<1.
Let 2
zp = ) %2 (6.11)
“p

h

If we suppose that the jt modes, j > P are at most weakly excited, let

us set z; = 0, j € (P+1,N). Then,
N(z) = w(;p) (6.12)
equation (6.70) becomes

Ié‘! = f.'[(t)
(6.13)

12y = Dppzy + Mozy + ¥, Wlzp) = 1,(t)

where

z; = . represents the rigid body modes

zZ, = . represents the first (P-6) flexible modes.
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' '9 22 -& Za is the (P-G) X (P 6) damp1ng metr1c assoc1ated with the

B 2, modes. e
B T g S

CA w

7 g ,
A
Aa‘ézﬁ{;‘:}i? $ =<8 ? v e _ (6.14)
»Ap Wy
S R

CIf P is not too 1arge we can select a At such that (u At) v,
- then- using any of the “energy conserv1ng" altor1thms of Sect1on 5 equatwons
(6. 13) can be integrated with good accuracy Having determined gﬂ, one can

~ easily compute the physical coord1nates, S

_ 172
BT g

whare Tp is the NxP matrix having as its columns the Tirst P eigenvectors
of the Tinearized problem. To check if there ié'ahy significant'respbnse
in the neglected modes, due perhaps to internal resonance, we approximate

the-remainihg modes by the system of uncoupled equations

o : - M(z _
2 ""‘”jjzj + A2 55 (6.15)

i €(PHN)

We note in passing that equations (6.15) will be exact if the linearized
part of (6.1) has cTaSSfCa] norinal modes. Mot all the modes in (G.15) need
be examined; onTy those for wh1ch

Ty
e = k
it Tq

<< 1 : ' : (6.16)
'where p and q are 1ntegers and Ak TS an e]ement of Az If no mode of (6 15)

shows 51gnvf1cant behav1ar, we can be reasonably sure that the solution. of
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equations (6.13) will give a reasonably accurate representation of the
solution to equations {6.1).

If any mode of (6.15) shows significant behavior, we can be reason-
ably sure that the solution of eguations (6.13) will not give an accurate
representation of the solution to (6.1). In this case, the modes of
(6.15) which show significant behavior must be included in the solution

~ of the problem. This presents a serious problem in the general case, ?
since we require that (wkat) ~ 0.1 for accurate integration of the system.
If only a few modes of (6.15) show significant behavior, it may be pos-

sible to treat the problem in an efficient manner.

2
2
Let 3= | : (6.17)
2
where k, £, m are the modes of (6.15) showing significant behavior.
22
Let zy = z, (6.18)
Equation (6.10) may, in this case, be written
L2y + Dpp2y + Dpg2g + 'Ea”(ia) *hyzy = Fplt)
| (6.19) .

T ]
123 + Dpgly + Dyazy + VEBN(54) t Ayzg = 0

This first set of equations is integrated using a At] appropriate to the

highest eigenvalue in A2. The second set of equations is integrated using

a At2 appropriate to the highest efgenvalue in A3, say At2 = %-At], K an
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integer. The values of Zy appearing in the second set of equations can
be obtained by interpolation from the solutions of the first éet of equa-
tions.

Internal resonance occurs most often in systems where the éigenvalues
of the Tinearized system are integrally related, and where the nonlinear
system is subjected to a steady state single frequency excitation; for-
tunately these two situations do not appear to arise too frequently in
the space vehicle probiem. Nevertheless, such situations can érise, and

the anaiyst should be aware of them.
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Appendix 1 -~ Generalization of Theorem 8

Theorem. Given the Tinear difference equation

Xopq = Alndx,  [AMD] 2 0, JIAGY] <= no>ong (A1)

then Al is uniformly Liapunov asymptotically stable at x = 0 iff there

exists a bounded, symmetric, positive definite matrix P{n) such that,

i) P(n) = PT(n) positive definite and bounded above & belaw
i) AT(i) P(n#1) A(n) - P(n) = - 8(n)

T (A2)
iii) o(n) = 8 (n) positive definite
iv) lle(n) ] < My(n,) Vn> n, and ¥ n,
Proof Sufficiency
Suppose that there exists such a matrix P(n) satisfying A2
Let V= x' P(n)x (A3}
n - =n “n
Since P(n) is positive definite and bounded,
i) Vn >0
- ' T
M) Vs xpx o Mg
V.. = x .. P(n+]) x - (A2)
ntl o =l “nt+]
Using (A1),
v o= xP AT(n) P(n1) An)x (A5)
1 =n “n

W= (V- V) = xUAT(n) P(m#1) An) - P(n))x, (A6)



Using (A2)
AV = - % g{n)x_ < 0 (A7)
n Zn Zn
Vn+]<'tfn<\ln_‘.[ < e V<V (AB)

Since P(n) is bounded ¥n , V, is finite if |[x || is, and since V_  is
zero only if x. =0, hence V_ and therefore 2,1l tends to zero as n
tends to infinity. Since the result is independent of Ngs the trivial solu-

tion x = 0 is therefore uniformly Liapunov asymptoticaliy stabTe.

Necessity As in the proof of necessity for Theorem 8, it is easily shown
that P{n) satisfies equation (4.53), thus:

P(n) = T o(d.n)T 6(d) o(d.n) (A9)
J=n

Thus if (A1) is uniformly asymptotically stable at the origin

le(d.mil < H, 53-n)

(A10)
0<6<1 s i>n, V¥Yn>n,
Using (A2iv)
D PmIl < 3R iyn,) 62 (AT1)
J=n
M i
5—1-*3-(;—-)— < _ (A12)
1-35
i) PTn) = (T oT(dm) o(d) a(a.n))T = P(n) (813)

J=n
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o

I (e(i.mxT e(d)alinx) >0
J=n

1l

i) 3<_TP(11)5

it o(j,n)x # 9
and since |o(j.,n)| #0 ,

x' P(n)x > 0 x#0 (A14)

Taus if (A1) is uniformly L.A.S. at x = 0, there exists a matrix P(n),

symmetric, positive definite, and bounded which satisfies (A2ii).

Note: It is clear that P(n) is difficult to compute, except through the
use of {A9), which requires the unknown ﬁransition matrix &(j,n). Its main

use is in proving theorems.
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