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This note is part of a continuing study of future problem areas in

structural dynamics of space vehicles, conducted by the author for the

Jet Propulsion Laboratory.

The motivation for this particular piece of work is the conviction	
i

M.

	

	
that future space vehicles will be relatively large and flexible, and that

active control will be necessary to maintain geometrical configuration.

While the stresses and strains in these new space vehicles are not expected

to be excessively large, their cumulative effects will cause significant

geometrical nonlinearities to appear in the equations of motion, in addition

to the nonlinearities caused by material properties. Since the only ef-

fective tool for the analysis of such large complex structures is the digital

computer, it will be necessary to gain a better understanding of the non-

linear ordinary difference equations which result from the time

_i
	 discretization of the semi-discrete equations of motion for such structures.
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1. Introduction

•
Equations of the type:

xn+1 ( n' n)

x0 -c

0

xn+1 - i(xn' xn+1 ' n)	 (1. 2)	 •

x = c
-O

are known as nonlinear ordinary difference equations or point mappings.

Equation (1. 1) is known as an explicit nonlinear difference equation, while

Eq. (1.2) is known as an implicit nonlinear difference equation.

If in Eq. (1. 1)

f (xn, ) = A( n)xn + g (n)	 (1.3)

then (1. 1) becomes

xn+1  A(n)xn + g(n)

X = co —

Similarly, if in (1. 2)

f.(x 	 = A(n) n+ B(n)xn+1+ g (n-)	 (1.5)	 y

Then (1.2) becomes

xn+1 A(n)xn+ B(n)xn+1 + g(n)
(1.6)

x=c

,i	 Equation (1.4) is known as a linear explicit difference equation, while (1. b)

3-

i
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k	 is known as an implicit linear difference equation.

	

-	 Since Eq. (1. b) can be rewritten as;

	

F	 Xn+lf C(n)xn +- h(n)
:t

xo- 

c (l.7)

	

`•	 C(n) =
 [I`B(n)]-lA(n)

h(n) - [I-B(n)J-lg(n)

Thus, there is no difference, in theory, between explicit linear difference
i

	

	 -
r;

equations and implicit linear difference equations. Unfortunately the same

is not true, in general, for nonlinear difference equations.

Difference equations arise in a variety of scientific and engineering

y	 disciplines, for example:

(a) In biology; population genetics and dynamics are described by

nonlinear difference equations.

(b) In control theory; sampled data control system are described

	

'	 by either linear or nonlinear difference equations.

(c) In numerical analysis; in order to solve a differential equation

on a digital computer, the independent variable must be discretized

^:.

	

	 and the differential equation becomes a difference equation. In

particular, nonlinear differential equations become nonlinear dif-

ference equations.

It is to this last class of problem that this note is addressed.

Z. Existence and Uniqueness of a Solution of the Initial Valve Problem

a) Explicit Nonlinear Difference Equations
3

f
Theorem 1 Given the explicit nonlinear difference equation

^i

--	 -	 --	 _	 --



(2.2)

xn+l _ L(Xn)
(2. 1)

x =c-0 ._	

S
If	 (i) Vx, j(x) is continuous in x, therefore llf(x) II <eo, m I^c < oo

I IC I I < 00

Then there exists a unique solution of the initial value problem (2. 1)

Proof

Since I Lc l l <M

:.	 IL1 it s I(^) ll <CO

I1 Sz II ^_' IIf(X1 ) I  <00

I ^n ll s 
11'f(Xn -1 ) II <Co

Therefore there exists a solution to Eq. (2. 1), satisfying the initial data.

Since the process of generating the solution is explicit, then there exists

one and only one solution of (2. 1) satisfying the initial data, therefore the

solution of (2. 1) is unique. It will be noted that for explicit nonlinear differ-

ence equations, the question of existence and uniqueness of a solution is

trivially answered in comparison with the same question for nonlinear dif-

ferential equations.

b) Implicit Nonlinear Difference Equations

Let us consider nrj:, the implicit nonlinear difference equation

n
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In the general case, we can say relatively little about the existence of a

solution to Eq. (2.2). The implicit function theorem guarantees, under weak

restrictions on f (2F. , xn+1), that there exists a unique local solution. of

(2.2) provided 1 lc 11 is sufficiently small. In some special cases Eq. (2.2)

may be inverted so that it is described by an explicit equation.
a

xn+1- F( n )
(2.3)

c
,o

In the case of most practical importance, Eq. (2.2) has the

structure

xn+l xn of l (xn' xn+1)
(2.4)

t	 x = c

where le 1 is frequently a small quantity.

Before proving the existence of a unique solution of Eq. (2.4) we

will establish the following theorem.

r"	 Theorem. 2 Given the implicit equation

(2.5)

and the iterative procedure

4	 xn+l = g(xn)	 n = 0, 1, 2 . . .	 (2.6)

o	 Then if g(x) satisfies the following conditions

(i) i 1 g (x) - g(y) 1 1 s X 112S-t - 11 for V x, y ES S: 1 17, - xo 11 s A

with 0 s s 1	 (2-7)

(ii) There exists an x 	 1 ^(x°)"x^ (1--}^)p	 8)
then Y iterates x  satisfy the following conditions



(2.9)

e

{z, IO)
e	 ^

(2.11)

(2. 12)
;t

r,̂t

(2.14)

7
( 2 a IS)

,E^
__'4

	

^^

1^9

ai 3
(2.16)(;,

(2.17)

}^-^}1SP
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(ii) nli m1 Lc,,  = cx	 where a g{^)

(iii) a is the only root of Eq. (2.5) in

Proof

Since xn+I ^ g(xn)

x  = 1(x -1)

11 xn+1 - x  I } - 11g(xn) -g(xn- I) 11

^n- xn ~III

if xn+1 ' x  E S

Now 11x1-xo}1s(I-%)P<P

Hl ES

11xZ~x1115%1^-1-x0115 -a)P

:.	 }lx2 -xO } l s 14x2 - x1 fl + 1 k1 -xa l 1

NI -7) + (1-X)3P = ( IA2 )P EP

:. x2 E S

Suppose that xo , x1 . . , x  E S

then	
1 } xn+l -xn1 } :r' X 1 Lx, -X—n- I } I

:r-)P  1kI -x011
	

(2. 1 8)

:. ^n+1 -ro ll 1I n+l -xn11 + 1kn-xn- 111 +	 11x1-xo}^	 (2.19)

..n.. n-1	 -



1 n+k - n ll s l^n+h - X—n+h -1 11 + . . . . + lkn+l - X—n 'll	 (2.23)

s (.n+h-1+Xn+h-2 + . - . 
]')( l 'x)p	(2.24)

r	 s xnp	 (2.25)

Lim ll n+k - xnll = o	 (2.26)

'. the sequence f xnI is a Cauchy sequence and converges uniformly.

Lim x	 = a = Lim g(x ) = g (Lim x ) = g(a)	 (2.27)n-co n+l — n -too — —n	 n "oo n

the sequence (n3 converges uniforzzily to a limit, a ES, which is a

solution of Eq. (2.5).

Uni city

Jf a and P are solutions of Eq. (2.5) which both belong to the

s et S. Then

a—, = g(a)	 a E S	 (2.25)

= 9{ 3)	 R ES	 (2. 29)

• Ila - R 11= lk(a) - L(R)Il s x III-rill	 (2.30)

ll Cy - ^'I ( 1 —x) s o	 :. Ce	 (2. 31)

Thus, under the hypothesis of Theorem 2 there •x3sts a unique solution of

Eq. (2.5).

Returning to the question of the existence and uniqueness of a

solution of the initial value problem for an implicit nonlinear difference

equation, we have Theorem. 3.

'l
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Theorem 3 given the implicit nonlinear difference equation

xn
+z

 - X ^ -E L (Yn , — n +l )

X =C
•-o	 --

rtf

(2. 32)

(i ) f (  ,xn+l ) is continuous in xxx 
and xn+l.

(ii) f (xn, n+l ) has continous first partial derivatives with respect

to xn+l'

(iii) lei is sufficiently small.

Then there exists a unique solution to Eq. (2.32) on some finite interval

O r. n <N.

Proof Let x = xn+l ` xn + CL (X, xn+l) `(x}	 (2.33)

With hypothesis (i) and (ii) g(x) satisfies

ll^()	 (y) it	 1^ 111 (xn, ?) - L (xn, A 11

s 1 s 1 11 J() 11 - 11	 - Ylf	 (2.34;

^^ll2E -X11 	 f
where

JM = f , x(xn, x)1 x
(2.35)

5 - ax+(l-a)y	 Ocacl

For

x,y 3 I1x - x,11 c 	 11z - xn ll cP	 (2.36)

We can always choose 1 e 1 sufficiently small so that

E

5

f

4



}

;. = ^ E 1 ^^ ^() ^^ <I
If we choose xo n as our initial iterate, then

^i g() ' ?^U ^l = ^^ sf(xn^n)l^

Since f {x, y) is continuous in x and y we can always choose

ficiently small so that

^^g( o) - x il s (I-X)P

(2.37)

(2.35)

1 6 1 suf-

(2.39)

Thus, given the hypothesis (i) and (ii) we can always choose I E 1 sufficiently

small so that the conditions of Theorem 2 are satisfied. Thus given an xn,

there exists a unique solution xnl satisfying

n+1   xn + of ( ^' 
x )

	
(2,40)

Thus, st,:.rting with x G = c and I e I fixed and sufficiently small,

there exists a unique xI , satisfying Eq. (2.32). If, using x l and the

-;^	 same value of e, conditions (2.37) and (2.39) are satisfied., then there

exists a unique ^2 satisfying Eq. (2.32). Proceeding in this way, we

check at each step to see if conditions (2.37) and (2.39) are satisfied. If

they are satisfied at each step, the solution can be continued "indefinitely

I	 into the future. If they are not satisfied after a finite number of steps

the solution may cease to exist or go to infinity, Thus, given condition
1

(i), (ii) and (jii) there exists a unique solution to Eq. (2.3Z), at least

on some finite interval 0 < n < N.

Theorems I and 3 deal with autonomous equations that is, equa-

tions which do not contain n explicitly. The hypothesis of Theorems I

and 2 can be relaxed to include explicit dependence on n, in addition to

domain dependent continuity properties,



3. Properties of Linear Difference Equations

(a) Difference Equations  with Constant Coefficients

Consider the linear difference: equations

+1= Ax fn n
(3.1)

X -c	 IAl O
—0 —

where A is a constant matrix with I}AII = a < co, JI (n)lj c co. The solution

of Eq. (3. 1) is easily formed by elementary methods

x1 = Ac + f o	 (3.2)

i 2:2 = AE l +f 1 =A2 c +Af0 +f 1 	(3.3)

2

2 3 - Apt, +f 2 = A3   +X A - -if i	 (3.4)
i=o

n
:. x'n+l = An+'c +Y An-if i	 (3.5)

i=o

Alternatively we can write this solution in terms of the principal matrix

s olution Xn, where

Xn+l - AX  ; Xo =I	 (3,6)

thus	 f

X 1 = A	 (3.7)

X2 = A2
	

(3.8)
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Thus,Thus, the solution to Eq. (3.1) can be written

n.

n+l X cn+l +Y X1l^i f.	 (3.1.0)
:L=o

a

i

We note that ' x-i An^i _ An+1 A-('+')	 (3.11)
n

I
..+l - X c + . n+1 X. +1	 (3 .: 2 }n+1— i-D

(b) Difference Equations with Variable Coefficients

Consider the linear difference equation

Xn+l - A(n)xn + f n
(3.1.3)

JA I AO

where A(n) is a step dependent matrix, with I1 A(n)f f C oo, Vn and

fl (,,)ff < co, Vn.	 4
1

The solution of Eq. (3. 13) is also easily formed by elementary

methods.

x 1 = A(0)c + f o	 (3.14)

rs Z = A(2)x l + f l = A(1)A(0)c + A(l)fo + f	 (3.15)	 I. 0

c 3 = A(2)2S 2 +f 2 = A(2)A(1)A(0)c + A(2)A(l)fo+A(2)f 
1

+f 2	 (3.16)
sF	 ,

n i

n+l A(n)A(n-1)	 A(0} c +^ r ( A(h)^ lfi 	(3.17)
i=o =D

Alternatively we can write this solution in terms of the principal matrix

s olution Xn, where

Xn+l  A(n)Xn	Xo _1	 (3.18)



r

Thus

xI = AM	 (3.19)

X2 = A(I)A(0)	 (3.20)

n-1

X  = A(n-I)A(n-2) . . . A(0) = IC A(i) 	 (3.21)
i=o

Thus, the solution to Eq. (3. 13) can be written

n.

xn+1 = Xn+1 S + Xn+ l X +^ £ i	 (3.22)
i=o

In general we can say very little about the structure of the solution in the

case of variable coefficients. There is, however, one special case, the

case of a difference equation with periodic coefficients.

(c) Difference Equation with Periodic Coefficients

Theorem 4 Consider the homogeneous difference equation

Xn+1 " A(n) X 
(3.23)

X	 =I0

where

A(n+N) = A(n)	 JA(n.) 1 0	 do
(3.24)

II A(n)if < a	 Yn



-13--

N^ k 'Ij A(z) =	 A(i)XN-- )CkXN
i=o	 z=o

I Similarlyly

X.2N+lr " XkXI (N)

Since X  is non-siagnl.ar , we may write

XN = CN C - a constant matrix

Consider the matrix



Since

X  = I	 Q(0) = 1	 (3.36)

Thus

	

Q(N-r) 
XN+nC-(N+n)

	
(3.37)	

e

	

= XnXNC
-NC -n
	(3.38)	 b

But

XN C -N I

XnC_
n 

=Q(n)	 (3.39)

4..
'.Q (n) is a periodic maLrix with period N. 	 ^, a

t	 !

Hence

Xn = Q(n)Cn 	 (3.40)

r'

	

	 Thus the complete structure of X  is known for Vn if Xis is known for

0 s h s N.

We mote in passing that if A is a constant matrix, then A is a

^.	 periodic matrix of period N = 1, hence, difference equations with constant 	 If.

coefficients are a special case of difference equations with periodic co-

efficients and in this case the matrix C = A and Eq. (3.40) becomes 	 i^ 1

Xn =A	 (3.41)

4. Stability of Difference Equations

	

	
s.~

i.

Definition Liapunov Stability (L. S. }	 4:

''	 Given the difference equation



where

f (0, 0)	 0	 (4. Z)

The equilibrium solutions x 0 is said to be Liapunov stable if

given any S> 0, there exists an e> 0, such that if lix11 < e, then

^lxn^l < S for all n > 0 .

Liapunov Asymptotic Stability (L. A. S )

The equilibrium solution x = 0 is said to be Liapunov asymptotically

k

	 stable i-f (a) it is Liapunov stable and (b) 11 x ^^ •-* 0 as n M oo.

(a) Stability of Linear Difference Equations

(i) Linear Difference Equations with Constant Coefficients

Theorem 5 Given the difference equation

xn+l - Ax
	

(4.3)

A - a constant matrix

(i) If A is non-defective (i.e.has afull complement of ordinary

eigenvector) necessary and sufficient conditions for Liapunov

stability axe that the eigenvalues of A should be less than or

equal to unity in modulus.

(ii) If A is defective (i. e. does not, have a full complement of

ordinary eigenvectors) necessary and sufficient conditions for

Liapunov stability are that the eigenvalues of A should be less

than unity in modulus.

`a
	 Proof

(i) If A is simple, i.e. non-defective there exists a similarity

i

if



(4.6)
;r

(4.7)	 b

(4.8)
w

(4.9)

Wt-
t

matrix
t..._

where A is a diagonal matrix.

A has the representation	 €,

- A= TAT 1	 °
q•.

As previously shown., the principal matrix solution of (4. 3) is:	 {

X = An = (TAT-I )
n
 TAn = TAnT-I	 (4.4)

n

Sufficiency

if IX i(A) 1, then. %n(A) remains bounded as n c

:. Xn is bounded and remains bounded as n co

II X II s M < co , do	 (4.5)n

Fr rn-r . (4. 3)

'"

	

	 x = X x—n n— o

if	 Ii xoll < E

II Xn l1 s Ilxn ll E

Me

II Xn 11	 s un

(4.3) is Liapunov stable at x 0.

Necessity

if I xi( A) I > 1 for some i, then	 (A) cannot remain bounded as



.'	 n

a

and

Jn
'^'h



n	 n7ti.n-I n(n-Z) 
An-Z

Jai -

	

	 (4. I5)n%n-I
a	 Y.

0	 ^n

f	 ^ni
Sufficiency if Xi(A) 4 C 1, then a. remains bounded and tends to 	 'r

zero as n -Co.f 	 : • Xn is bounded and tends to zero as n y co.

..	 1JXn11 s M C co Mn	
(4. Z6}

and	 Lim. ^^ X ^^ "' 0
n-co i

From which we immediately deduce that if j k i(A) < 1 'di, the system (4.3)

is not only Liapunov stable, but is asymptotically stable.

r' Necessity If IyA) I a I for some i, then Jn cannot remain bounded

``	 as n co, hence X  cannot remain bounded as n - ► co.

Alternatively use can be made of Liapunov's Theorem.

Theorem. b (Liapunov) Given the difference equation
is

x	 = Ax	 (4.17)n+l n

A - a constant matrix	 (;;

Then (4.17) is Liapunov asymptotically stable at x = 0 iff there exists

a symmetric positive definite matrix P such that

ATPA - P	 Q	 (4.18)



Proof Sufficiency

Suppose that there exists a matrix P. satisfy (4.18) let

Vn = xT P xn 	(4.19)

Since P is syrametri.c and positive definite V n is positive definite

Vn+I+1 
P xn	 (4.20)

Using (4.17)

_ (Ax ) P(AxVn+l 
	 n)	 (4.21)

= x^ ATPA n	 (4.22)

:.	 AVn " Vn+I -Vn - n {ATPA-P)xn	(4.23)

Using (4.13)

-AVn = -xn Q x < 0 (4.24)n

Thus

Vn+I <V n  < Vn- I < Vn-2 .	
<V 0 (4.25 )

Since Vn vanishes only at the origin

:.	 V 	 -' 0	 as	 n-4 oo (4.26)

If we define

11 Xnlp = ,fvn (4.27)

we s e e that

Ilxnll p < 11 X 0 11 p (4.28)



1:' 	3

.. If
ii ^Q il s ^ = s

then

iHJn	 1^S1

and

(4.29)

(4.30)

-20-

lixnIL -+0	 as n. -+ on
	

(4.31)

Eq. (4. 17) is Liapunov asymptotically stable at the origin.

Necessity

Let A be a stability matrix i. e. I% i(A) l < 1 di. .Let P satisfy

(4.18) i. e,.

ATPA - P = -Q
	

(4.32)

We wish to shove that P is symmetric and positive definite.

If we prernultiply (4.20) by AT and post multiply by A, then

by AZT and AZ , etc., we obtain

ATPA - P=- Q

A2 TPAZ -ATPA = - ATQA

A3 TPA3 -AZ TPAZ = -A2 TQA2

(4.33)

A'TPAn-An-lTPA
n-1 

= - An..1TQ.An-1

Adding, we obtain

i

w



s

n—I
(An

) TPAn-P = -	 (A^)TQA^ (4.34 )
1=o

Since A is a stability matrix An - + [0] as n	 co

00

:.	 P -	 {A1}TQA1 (4.35)

i=o

We note that:	 CO	 T	 Co

{I)	 PT= 1	 x{A) TQA	 = 7 (Ai) TQTA'' (4.36)
i=o	 i^o

But QT - Q

:.	 PT = P

,

(4.37)

Co

(2)	 xTPx =	 (Azx) TQ( A1x) (4.38)
1=o

d^	
}

Y "
	 But Q is positive definite

I
f	 i

.'.	 (Aix) TQ{A1x) > 0 (4.39)

r	 provided A x	 0. t

® if

JAI	 0	 }A1 {	 0	 :.	 x	 0 (4.40)

'.	 xTPx > 0	 x	 0 (4.41)

Thus, if A is a stability matrix there exists a P, 	 symmetric

and positive definite such that Eq. (4.32) is satisfied.

-	 ®	 Note	 If	 JAI = 0,	 it appears that (4.41) is not satisfied. How-

ever, if	 JAI = 0,	 then A has one or more zero eigenvalues, and the dis-
r

placements in these modes vanish after one step, thus the problem is



Fi

r:

r.
ik	 really oac in (N -h) dimensions, where h is the multiplicity of the zero

eigenvalu.e. Thus, if in (4.29) x E R, the range space of A, P is

-xi positive definite.
,n

n
(ii) Linear Difference Eetxations with Periodic Coefficients

k

Theorem. 7 Given the difference equation

-n+l ." A(n)--n

(4.42)
A(n+N) A(n)

l	 (i) if the principal matrix solutionXN
 is simple, necessary and sufficient

w
:.:

	

	 conditions for Liapunov stability are that the eigenvalues of X  should be

leg s than or equal to unity in modulus.

(ii.) if the principal matrix solution XN is defective , necessary and

sufficient conditions for stability are that the eigenvalues of XN should be

less than unity in modulus.

Proof	 As previously shown, the solution of (4.42) with initial data

x = c is given by

xn = Xnc	 (4.43



Cn = TAC T
-1	

(4.47)

if Ix (X N)I :!g 1, clearly Cn and hence X  remains bounded as n -► co,

therefore (4.42) is Liapunoy stable at x = 0.

The remainder of the proof closely follow that of Theorem 5 and will

not be repeated here.

Theorem. 8	 Theorem 6 can be generalized to the case of linear differ-

ence equations with periodic coefficients.

Given the difference equation

Xn+l = A(n)xn
(4.48)

A(n+N) = A(n)	 JA(n) I ^ 0	 IIA(n)11 C co do

Then (4,46) is Liapunov asymptotically stable at x = 0 iff there

exists a symmetric positive definite periodic matrix P(k) such that

i)	 P(k+N) = P(k) = P T(k) positive definite

H)	 AT(k)P(k+l)A(k) P(k) = -Q(k)	 (4.49)

iii) QT(k) = Q(k) = Q(k+N) positive definite

dk

Proof	 Sufficiency

Suppose that there exists a matrix P(k) satisfying (4.49). Let

Vn = xT P( n n	 (4.50)

Since P(n) is symmetric and positive definite for all n, V  is positive



definite.
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_ T
Vn+l . -z,1+1 P(n+1)-n+l

Using .(4.48 )

Vn+l _ xn,A,T(n)P(n+1)A(n)xn

AVn =Vn+1 -Vn = xT(AT(n)P(n+l)A(zi)-P(n))xn

Using (4.49') ii)

AVn = -xnQ (n)x < 0

Since V  vanishes only at the origin

V '-' 0	 as n -f oon

.•. Equation (4,48) is Liapunov asymptotically stable at the origin.

(4.51)

(4.52)	 •

(4.55

(4.54)

(4.55)

Necessity

Let A be a stability matrix so that Y soluLions of (4.48) tend to

zero as t - co.

Let P(k) satisfy (4.49) i. e.

AT(k)P(k+l)A(k) - P(k) = -Q(k)	 (4.56)

similarly

AT(k+l)P(k+Z)A(k+l) - P(k+1) = -Q(k+1)	 (4.57)

If (4.57) is tremultiplied by A T(lt) and post multiplied by A(k) we obtain
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Similarly

AT(k+Z)P(k+3)A(k+2) - P(k+2) - Q(k+Z)

a{

(4.59)

If (4.59 ) is premultiplied by (A(k+l)A(k))T and postmultiplied by

A(k+l) A(k) , we obtain
a

( A(k+2)A(k+I)A(k)} P(1c+3)(A(k+Z)A(k+1)A(k)

` (A(k+I)A(k) T P(X+Z)(A(k+I)A(k))

- (A(k+l)A(k)TQ(k+2)A(k+l)A(k))

(4.60)

Repeating the procedure n times gives

n-1	 T	 f n-^	 n-Z	 T	 n72

	A(k+i} P(I=+n)	 A(k+i) -	 _^ (k+i)	 P(k+n- I )III A(k+i)
i=a	 i=A	 i=o	 i=o

n-2	
T	

n-Z
A(k+i) Q(k+n-1) T f A(k+i)

i-o	 i=o

(4061)

If these n equations are added, we find that just as in (4.33 ) we obtain can-

collation in pairs and finally we have:

R	 n.- T	 n
A(k+i) P(k+r^) 	 A(k+i) - P(k)



(4.68)
4

where

cb (m, k) = X Xkl
rn

satisfies the equation

^.... 92 (n+I , k) = A(n.) cb (n, k)

cl? (k, k) - T

Since V solutions of (4.48) tend to zero as	 n	 co

CP(m., k) -0	 as	 m	 da

^.:	 Thus as n-+ oo	 Eq. (4.6?,) becomes

CO

j=k

i)

Co

P(k) T =	 chi
 (j, k) To	 } 3 (j , k)) T - P(k)

_

j_k

,. ao

ii) P(k+N) =^ ^( ,kkn)TQ(J)^'(j,k^n}

j=k+n

i
00

=	 `j'(j , k)TQ(j)`b(j,k) = P(k)
}

j=k	 since Q(j+N)=Q(J)
}}
,
t 00

xTP(h)x =	 ('(j , k}x} TQ(j ) ( j̀'(j , kL)

j =k
>0	 0

(4.64)

(4.6.6.)

(4.67)

i

(4. 65 )



or
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Since j^D(j+k)j V 0 if jA(k) j 0 0 d k : P(k) is symmetric, periodic
of period N, and positive definite. This completes the proof of the theorem.

tl

We note in passing that Theorem 6 is a special case of Theorem S when

N=l.

(iii) Linear Difference Equations with Variable Coefficients

Given the di ffe ren ce equation

4+1 = A(n 4
	

(4.69)

we can say very little 	 about the stability of equation (4.69) for the general

case of arbitrary step varying Matrices A(n). If the matrix A(n) can be

represented as

AN = Vn) + B (n)	 (4.70)

where Ao (n) is either a constant or a periodic matrix, then in a number of

cases we can develop sufficient, but not necessary conditions for stability.

Theorem 9

Given the linear  difference equation

Xn+l = AON xn + B(n) xn	 jAO(n)I ^ 0	 (4.71)

where A. (n) is either a constant or a periodic matrix,

If	 i)	 solutions of xn+l = Ao (n) xn are bounded as n

Ij B (i) jj = b0 <
i=0

jl'jl = 1j cjl <

See Appendix 1.
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Then V solutions of (4.71) are bounded for Vn. Before proving Theorem 9 we

shall establish two important lemmas.

Lemma l	 (Discrete Form of Bellman-C-ronwall's Lemma)

n-7

if	 e (n) ^ C + X ^(i) e{ i }
i=0	

(4.72)

e(i),^(i),C > 0

n-- 1
Then	 e(n} < C II	 [l + ^(i	 (4.73)

i=0

Proof

From ( 4.72)

e(n) ^'(n)..--- <, {n)	 (4.74)n-1
C + y W) e(i)

i =0

..	 l + - e(
n-1

A(n)	 <_ D + *W]	 (4.75)

i=0

n	 n-1
:.	 IC +	

4_Y , *(i } e( i I	 CC + I ^( i } em ][I + w)]	 (4 . 7 6)
i=O	 7-0	

.
7
V^

n

n 2
:.	 CC + W) e{i }a < CC  +	 (4.77)

".

1 =0 i=0

n n-2
..	 [C +	 X W) e(i }] < CC + ('i)	 e {i )][l	 + ^(n)7C1 +^(n-1 }]	 (4.78)

i=0 i=0 :x

n
Hence	 CC + (i } e( i) 3	 <

n
C E P + W )I	 (4.79) 

i=o i=0

f

`-.-.	 ...	 >- A ^	
^^.

-	 - _	 -	 -	 .rocs	 _wn.A. n-^a. e	 ..	 ..	 .- 	 - .	 ,.	 -    	 ' .



n
B ut	

en*1 
< C + 7 X0 *(i)e(i)	 (4.80)

..	 6(n} < C H 11 r 0(i)]	
(4.81}

i -0

Lemma 2

a
The product series 5n:

n
S n = n (1+v i )	 vi 20	 (4.82)

i=0

is convergent iff the series Vn

n
Vn = Y vi	 (4.83)

i=0

is convergent.

Proof:

1) The product series (4.8z) is convergent if the series L 

n
L =	 kn0 + v•)	 (4.84)
n	

i=0

is convergent. This follows immediately from the fact that

Qn 5	 L

S 
	 n = e n	 (4.85)

D

^• If	 Lim ( Qn Ln )	 L, then Lim(S n ) = eL = S	 (4. 86)
n-^	 n-x*

2) We know that if S  is convergent, v  -^ 0 as n	 let N be such that

fora>N vn <Z .



F•	

1.

f
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j Now

,. 2 vn - vn (1 -	 1	 1	 ) - vn (1	 -	 2 -	
13 ... } (4.87)

(1 - 2)	 2	 2
` v2	 v2

But kn(1 + vn ) 	 (vn 	 2 +	 n + ...) (4.88)
r 2v3

... }_ vn (1 	 2 + (489)

Y-
If vn < 2 .

then Qn(1 + vn} =
	 vn (l	 ^2	 12 	 ...}2

(4.90)

i

.. Z vn < Pn(1 +vn ) < vn (1 +L2  + 13 + ...)
2	 2

(4.91}

.. 2 vn < An(1 + vn } < 2 
V 

(4.92) ;a

Thus

.

i)
cco

If	 Y	 v• < m	 a)	 I	 v. <	 and	 < C*
i

(4.93)
i-0	

i	
i=0	 k+l

r

rJ

W	
3	

co

9.n(1 + vi } <	 v i	 < W
i =+1	 i =N+7

(4.84)
F

J
k.

;-

ii)
co

If
0
 M(1+vi ) < co (4.95)

then

W	 co

v	 < 2	 1	 kn(1 +v.) <
i

d

(4,96)
i =O 	 i=0

Returning now to the proof of Theorem 9, using equation (3.22),

n-1

n	 Xn-x-o +	 XnXi+l B(i )xi (4.97)
i=0

e
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Taking norms of both sides of equation (4.97)

11411	 _<	 IlXn ll	 11G11 +	 Il Xn ll	 Il X i+ 7 11 JI B (i)II fI x j 11
-i

(4.98)
1 =0

But,	 by hypothesis	 i) , II
Xni l1 	: Ml ,	 I I Xn I I	 I I Xi+l II	 ` M2	 Vi ,n

k--1
..	 llxn lf— M

l	1111	 +	 I1 6 (i)i1	 11 Xi 11 (4.99) 
io

Using Lemma 1 with	 C = M7 f 1c1J	 ,	 B(i)	 = I1x i 11 and

M2 II B(i )Il (4.100)

we have

n-1

112in1I 
<MI

	 (Is J1	
o	

( i 	+ m	 I1 B ( i )li) (4 . 1 01)
CO

But by hypothesis ii)	 E	 JI B(i)II = b o < -
i=0

co..	 By Lemma 2,	 11	 (1	 + M2 II B ( i ) [I }	 < do <
i=0

..	 llxnll < Mjdo 11c11	 Vn (4.102)

Using hypothesis iii) we see that

11'II < °°	 Vn	 (4.103)

Thus proving the theorem.

Theorem 10

Given the linear difference equation

xn+l = Ao (n)2^ + B(n)4	 JAo(n)1 # 0	 (4.104)

i



`

	

	 where Ao (n) is either a constant or a periodic matrix. If
G
s	 i) Ao (n) is a stability matrix, i.e., solutions of xn+l = AG(n)An

-fiend to zero as n -^
-	 i

zi)	 11B(n)1f _< b 	 V n and bo sufficiently small.

A"	 f
Then d sot uti ons of (4.104) tend to zero as n	 and the origin is Li apunov

asymptotically stable,

Proof.	 As before,

Xn = Xn c f E Xn Xi+ l B(i )xi	 (4.105)
i=o

Taking norms of both sides of equation (4.105)

n lilx,ii_< 11 ,11 ll^l! +	 E ilXn ll li x-j+1 1111 8 ( i )MIL- 11	 (4.106)
i=0

Using hypothesis i)	 11Xnll < M 1 8 n 	6 < 7

(4.107) 

^ i l I I	 M2 6n-c- 1
fi Xn ! f 11 X 

Using hypothesis ii) equation (4. 106) becomes

ll',il !^ M 1 li c lf ,n + M2bo 
^ 1 

6n-i- 1 
11X; 11	 (4.108)

=O

Multiplying both sides of equation (4.108)by d-n and setting 6(i)=11xill 6-1;

C = M 1 1 i c! 1 ; C i) = M2b o , and using Lemma 1

n-1	 M b

11 ,11 s-n _ M 1 !f c I i iI, (1 + s °)	 (4.109)

n-1	 M b	 M i!c(l
!!!I_ Ml Ili if sn ino (1 + s °) = 1 s	 (a + M2b o ) n	 (4.110)—Xn
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Fence, if b  is sufficiently sma7 l ,

S + Mzbo < 1	 (4.111 }

fix	
^ Mld^c^^	

'fin--n !^
(4. I I2}

N	 II ^ 0 	 as	 n	 00

Therefore, the trivial solution of ( 4 •. 104)is L.A.S.

`	 Theorem 10a -

Given the same hypotheses as Theorem 10, we can prove the theorem using

Liapunov's direct approach.

r

Proof.	 Since Ao (n) is a stability matrix, we know that there exists
_^

a sym-

metric, posi ti ve definite, periodic matrix P(n) such that

Aa(n )	 P (n+ l) A0 
(n)P(n) = -Q(n) (4.113)

`-	 Q(n) = Q(n) T = Q(n+N)	 positive definite

Let	 Vn = x	 P(n)x^^ (4.114)

then	 Vn+1 - 2n+1 P(n+l)xn+1
(4.115)

'	 Using equation	 (4.90)

-	 Vn+I = x (A
T
 (n) P (n+l) Ao (n))x	 + 4 (BT ( n ) P ( n+l ) Ao(n))xn

r

+(Ao(n) P(n+l)B(n))+	 B(n ) T P(n+i) B(n)x (4.116}
i

:.	 4Vn = Vn+ i - Vn = -x^(Ao(n) P(n+l) A0 (n)-- P(n))xn +xn(s(n))xr ^ (4.117)

17
.^



f`
	 where S(n) = BT (n) P(n+l) A

0
 (n)+ Ao(n) P(n+l) B(n)

+ BT (n) P(n+l) B(n) = ST(n)
	

(4.118)

Using (4.11 2 ),equation(4 .11 8 ) becomes

AVn = -x^ Q(n)xn ^ SCn)-n
	 (4.119)

Since Q(n) is positive definite fordn, it is clear that by making JIB(n)II ,

and hence the elements of B(n), sufficiently small, 
AV  

can be made negative

defi ni te.

Hence for JIB(n) II sufficiently small ,

On < 0

:.	 Vn+l < Vn 
< Vn-I	

< V1 < V 

(4.120)

(4.121)

Since V  is positive definite and vanishes only at the origin, therefore V 

and hence jI ?in jf tends to zero as n}co, and since V  is bounded above by Vo,

li xn11 is bounded for all n. Therefore the trivial solution of (4.104)is

Liapunov stable.

Note: Let X (n) be the smallest ei genval ue of Q(n) and -p(n) be the largest

eigenvalue of S(n) in absolute value.

Let r = Min X(n), r is positive, since Q(n) is positive definite.
n

s = Max P (n), we note that since S(n) tends to zero as b  tends to zero,
n

s may be made arbitrarily small by making b  sufficiently small. Now

AVn < -x^Ti(r-s)xn

and hence by making b o sufficiently small AV  can be made negative definite.

1^	 J
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b) Stability of Nonlinear Difference Equations

(1) Stabili y of Explicit Nonlinear Difference Equations

Theorem I1 (i.iapunov-Poineare)

Given the nonlinear difference equation

xn+l = A(n)xn + f(xn,n)

xo = c

where A M is either a constant matrix or a periodic matrix,

If	 i) AN is a stability mac.. ix

ii) lim	 ftx'n)i^ = D	 Yn

ilXl1 -*- p 	 1LxJI

iii) 1I .Ell is sufficiently small

(4. 122)

(4.123)

then V solution of equati ons (4. 122) are Liapunov asymptotically stable.

Proof. If A(n) is a stability matrix, then by Theorem 8 there exists a

symmetric, positive definite, periodic matrix P (n) such that

A(n) T P(n+l) A(n) - P(n) = - Q(n)

Q(n) = QT(n) = Q(n+N) positive definite

Let	 Vn = xn P(n)xn

T
Vn+l - xn+l P(n+l) 

xn+l

Matting use of equations (4.122),

Vn+l =	 tAT (n) P(n+l) A ( n )}Xn f	 (AT (n) P (n+l) f(2^,n))

+ f(xn ,n) T(P(n+l) A(n))4 + fT (xn ,n) P(n+1) f(xn,n)

(4.124)

(4.125)

(4. I26)

(4.127)
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Thus Oil = Vn+l - 
V 

= xn(AT{n) P(n+i) A(n) - P(n))x^i

+ xn (AT(n) P(n+l) f(x 'n)	 ^T(xti,n)(P(n+7) q(n)}x

	

+ fT (x r., ,n) P(n+l) f(x n ,n)	 (4.128)

Us i ng (4. 124) equation (4. 128) becomes

AVn = -xn Q(n)xn

^(AT(n) P ( n ^ l ) (xn ,n)	 fT(xn,n)(P(n^-l) A(n})"n

	

+ fT ( xn ,n ) P(n+l) f(xn ,n)	 (4.129)

Using hypothesis ii), II (x,n)lf	 0( 11x1 ;2 )	 as J+x11 + 0

i s	 Hence a)xn Q(n)x^ ti 0( jjxjj 2)

b ) xn( AT (n) P ( n +]) f(xn , n ) `^fT(^,n)(P(n+l A(n))^ ti 0{ ^^-n

C) T (	 ,n) P{n+7) f(_n ,n) % 0(^l^,l(4)
r

as	 III., fl -3. 0	 (4. 130)

Thus for IIXnI) sufficiently small, the sign of AV n is that of the first term

:• A V n is negative definite. Hence, 	 .

Vn+l < V  < Vn-7 < .	 < V  < V 	 (4.131)

Thus if IIcII is sufficiently smali,

AVn <0	 Vn
	

(4.132)

and since V  is positive definite and vanishes only at the origin, there-

fore V  -)- 0, and hence IIxn II -} 0 as n -^- -. Thus equation (4.122) is

n11 ^i	 ^..	
.+T,.. .Y	 _.	 :^	 ^	 ^	 -.NrS. .Yg_. /..^

n
 .^	 l sue, i	 ^ Y.^~. ^^..	 ..-	

..

^^' r°



Liapnnov asymptotically stable at the origin.

Theorem 12

Given the nonlinear difference equation

xn-^l = [AG (n) B(n) x n + f(xn,n)
(4.133)

a

_C

where Ao (n) is either a constant matrix or a periodic matri x.

If 1) A0 (n) is a stability matrix

ii) Ila(n)11 is sufficiently small

iii) lim 
I1f(K'n)II = 0 Vn
	

(4. 134 )

11 -Xf1 -^-0	 PH

iv) 11 c11 is sufficiently small

Then I/ solutions of equation (4.133) are Liapunov asymptotically stable.

Proof.	 The proof follows along exactly the same lines as Theorem 10a and

Theorem 11, and will not be repeated here.

ii) Stability of Implicit Nonlinear Difference Equations

Theorem 13

Given the implicit nonlinear difference equations

n+ 1 = 
A(n)x

n(xn,xn+l'n)

xo	 ^L
	

IA(n)1 ^ 
0	 (4. 13-5)

Vn
1I A( n ) I1 <

where A(n) is either a constant matrix or a periodic matrix. If
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	i}	 A(n) i s a stability matri x

ll ^(x e,^sn} ll

	

ii)	 lim	 = a	 (4.136)
IIJI Ill y ll -)-0	 II xII + IIYII

	

iii }	 IIcII is sufficiently small

	Then	 solutions of equation (4.1 3 5 ) are Li 	 asymptotically stable.i	 .I	 .	 .

i	 Proof. Since A(n) is a stability matrix, then by Theorem 8 there exists

a symmetric, positive definite, periodic matrix P(n) such that:

F

i) AM P(n+l) A{n} 	 P(n) 	 ..Q(n)
(4.137)

ii) Q(n) = QT (n)= Q(N+n) positive definite

E "'

Let	 V11 = ^ P(n)xn > 0	 x ^ 0	 {4,138)

_ T 4.139
Vn+1	 xn+l P(11+1)xn^.1 	 (	 )

Making use of (4. 135),

Vn+l 
= xT (Ar (n} p(n+1 } A(n}}	 + xT T ( 11 ) P (n+l	 ^ n , xn+l})	 ,n)

+ FT(xxn }(P(11^1} A(n))x.,

+ JQ( ,4+l,n)(P(n+1)) f(^,x11+1,n)
	

(4.140)

AV  = Vn+l - V 

xn (AT (n) P(n+l)) i:(.x xn+1 ,n}+. (AT(n)P(n+I)A(n)-P(n))x

+ fT(x^,xn+l,n)(P(n+l) A(n)}xn	 (4.141)

+ fT (xn ,xn+l ,n)(P(n+1)) f(xn,xn+1,11)



W>

r".

_3g..

Making use of equation (4.137)

AVn	 -xn Qtn)xn - xn(AT(n)P(n+])) (xn,xn+I,n)

+ fT(x̂^,xn+,,n)(P(n+l)A(n))xn

+ fT (x ,x	 ,n} P(n+l) f(xn , —n
x +1 ,n)	 (4. 142)	 (:'— ---n -n+ I 	--	 ^

From equation (4.135)

11x,,^ 1 ^1 + 11411 < 11 1 + A ( n ) II JjAn 11 + fl:E(xn,xn+l,n)11	 (4.143)

..	 f l n+ l 1 1 + l l x 1 1	 M, f l xr, l l + I1-' (,x , xn+1, n) 1 1	 (4.144)

From (4.136U)

(1 (x,, xn+ 1 = n )II < M2 ( a ll + 114+ 1 11 }2

for11x,11 + IIxn+l II < s	 (4.145)

where	 M2() ti 0(I)	 as	 0

From (4.144) and (4. 145)

M I I I x„ I I
111,+111 + I I xn I!-S 1- M (6)6 	 P9 3 11 xn I I<2	 (4.14b)

if	 11 x t^ f I <^	 is sufficiently small.

3

Thus, if JjAn l ( is sufficiently small, the first term in (4.142) is of

order II xn 1l z , while the second and third terms are of order 11 xn (l 3 , and

the fourth term is of order I1 xn I I	 Hence, if 1 I x,,11 is sufficiently small,

C	 ^^



Vn -)- 0 as n -} -, and equation (4. 135) is Li apunov asymptotically stable

at x = 0, provided the initial data are sufficiently smal1.

Theorem 14 (Liapunov-Poincard)

Given the nonlinear difference equations

xn 1 = A(n)x
n
 + f(xn'n)

(4.149)

X0 - c

where A(n) is either a constant matrix or a periodic matrix,

I  i) there exists at least one unstable solution of the equation

xn+l - A(n)x,

ii}	 lim	
IIfX,n)lf - o
	 Vn	 (4.150)

1I.?d1 0	 Ilxfl

iii)	 11C11 is sufficiently small

Then there exist unstable solutions of equation (4..149).

j



a  = X  K

Let	 xk	 @ kyk 	(4.152)

Substituting into equation (4.144)

yn+7 = 0n+ 1 A(n) onyn +'n+l (enyn,n)

(4.153)

Y o	
= ool ^	 .

Now
6-IA(n)on = Rn+lX_I

11+1
 A(n)XnR"nn+l

(4.154)

But	 XW-1 = A(n)on

:.	 6-1 A(n)on = R	 (4.155)n+l

:.	
yyn+ l 

= Ryn + 2( y, n,n)

(4.156)

Yam,	 = b	 ;	 b = 6 a l c ; 
9-

(Y i ,n) = On+l f(onyn,n)

Since R = X^	 therefore from (4. 1 50 x) , R must have at least one

ei genval ue of modulus greater than unity.

Suppose that R is simple, and that the first k eigenvalues have modu-

lus greater than unity, suppose that the remaining (L-k) ei genval ues have

modulus less than unity. Since R is simple, there exists a similarity matrix

T such that
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T-1 RT	 Q

where xi	 > 1

jajj	 < I	 3	 ( k+1 ,L)

Let y_n - T zn

Then zn+l = A Kn + h(zn,n)

' r	 d

where h = T-1	 T	 n—	 R( z
Zn , )

^z( 	 - d	 T	 b

0
Let P =

.' g ^IL-k

v	 = Z^ P z
n	 -n	 -n

It will be observed that v
n 

is sign indefini te. 

vn+l = Z
n+l 

P 
Zn+l

" Substituting from (4.145),

ynrl = -Kn A	 P A z
n 

+ h * (zn ,n)P A Zn.

+ zn A	 P h(zn ,n) + h* ( z n , n ) p h ( zn n)

r



r
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AVn = Vn+l ^ ^n

-- z [A*PA- Piz-n	 —n

+ ( ( .Kn ,n)P Azf, + 4A*P h(zn,n))

+ h *(zn ,n)P h(zn ,n)	 (4.163)

ow	 (' Ai 2 - 1	 0

(4.164)

L
Since

lAil > i	 i F(1 A)

(4.165)

laal < l	 3 (F (k+l,L)

A*PA - P is positive definite Hermitian. Using (4.1 5 0)iii, the first term

in(4.163)is positive and of order I,zn 11 2 , the second term is of order

J(zn jf 3 , while the fourth term is of order f zn 1l 4 ; thus for sufficiently

small 11zn 11 ; the sign of AV, is that of the -First term and is positive.

AVn > 0	 for (jzLn jj sufficiently small.	 (4.166)

Si nce V., is sign indefinite we can define a set
s	 ..	 r :t

n:	 Vn > 0;	 11zn1l < S	 (4.167)

Clearly, the origin is a boundary point of Q. In Q , Vn > 0, AVn > 0, t_

therefore starting in 0, z n̂ cannot approach the origin. Since V o > 0,

r i'r:
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z only exit 2 through the boundary ^f zi ^f 1 = 6; thus the system is unstable.

Theo rem 15

Given the nonlinear implicit equati on

xn+l	 A(n)xn(xn,xn+l,n)

(4. 168)
_ c

where A(n) is either a constant or a periodic matrix,

If i) there ex,sts at least one unstable solution of the equation

A(n )xn

ii) lim	 = 0	 Vn	 (4.169)
1 jxj 1'11 y 11}0 HAII + Hyll

is

iii) li c lI is sufficiently small

i	 .

r	 then there exist unstable solutions to equation (4,168)

Proof. The proof follows along the sane lines as that of Theorems 13 and

14 and will not be repeated here.

Theorem 16 (Liapunov-Poincar6)
	

0

Given the nonlinear difference equation

A(n)4 + f(xn,n)

(4.170)

f X	 -
c

xn+1 -

i



where A(n) is either a constant matrix or a periodic matrix,

If	 i) the principal matrix X 	 of the linear difference equation
k

Xn+l ;:^ A(n)xn

has an ei gen val ue +1, or a pair of complex conjugate eigenvalues

of modulus unity

lim 	 f 
(x^n) 

ll = 0	 Vn
ll4 + 0	 Hall

iii )	 l 1 ill suffi ci ently small

(4.171)

then the stability of equation (4.156) cannot be decided from the stability

of the linearized  equation.

Proof. If we repeat the proof of Theorem 14, we see that in this case,

WPA - P) is only positive semidefinite, having a zero eigenvalue corres-

ponding to X = ±1, or a pair of zero eigenvalues corresponding to lXI = 1.

5i nce - the matrix (A*PA- P) is only positive semi definite, we see that

the sign of AV  depends on the terms in h(z n n). Thus the stability is

not determined by the stability of the linearized  equations .

Theorem 17 Theorem I6 is easily generalized to the case of implicit non-

linear difference equations.

Theorems 16 and 17 cover what are known as the "critical cases," that

is, those cases in which the stability is not determined by the stability

of the linearized equations.
1

yt

	 E	 i

Y

i
	 i

F
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,

-^ ^• DIFFERENTIAL EQUATIONS AND DIFFERENCE EQUATIONS

(a)	 Numerical Solution of Ordinary Differential Equations

As pointed out in the introduction, one of the more important sources

of difference equati o ns occurs in the numerical solution of ordinary differen- r'i	 .
l
l ti al equations.

Gi ven the system of differential equations

dx
q.

Ax + 
f(x 't)

(t)
dt

r.

we wish to approximate the solution of equation (5.1) by the solution of the
1

difference equation

_ Y +l = B (n)Yn + 9-(4'yn+l,n)
f

(5.2)

yo
	

-	 C

such that	 yrt	
x(tn)	 to+l = to + At	 n= 0,1112,...,m

is

The natural requirements for the approximating difference equations are

that for any function f(x,t) in some class of sufficiently differentiable func-

rtions ^

1)	 They have a unique solution,

2)	 This solution, at least for sufficiently small 	 Atn , should be close

} to the exact solution of equation (5.1),

j
I

3)	 This solution should be effectively computable.

These three points are examined in detail in books on numerical  analysis and



J
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(b) Numerical Solution of Linear Ordinary Differential Equations

Consider the system of differential equations

dx
-:= Ax + f(t)	 0 < t < To <co

(5.3)
x(0) = c	 A = a constant matrix

One technique for solving (5.3) is the use of the trapezoidal algorithm

yn+l = Y4 + QA(Yn + yn+l) + 02 (-f-n + fn+1)

(5.4)

yo = c	 At - TOM

Equation (5.4) may be written in explicit form:

Y-n+l =-'Y-n + B( + f-n+l)

(5.5}

Y^-o = c

where

= Cz A Y 1-1 Lr + A z-^]

(5.$)

= [I - A At -1 At
2 2`

Accuracy

Let	 xn+l = x(nAt)

Let	 fl+l be the local truncation error defined by

xn+l = -Axn + 2(-fn+l + Id + In+l At	 (5.7)
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3 

f

k Let	 _ (x	 - y	 be the solution error (5.8)

Then subtracting (5.5) from (5.7)

+1 At (5.9 )

Noweo = xo--y_o^0

i
At

P-2 - (AT 1 + T2 ) At
.

i
{5.1L1)

en = (An-i	 l + An-2.12 + ... Tn} At

If the matrix A is simple, there exists a similarity matrix T such that

T l AT = A	 and hence	 A	 TAT-1

► Hence if the homogeneous solutions of (5.3) are stable we know from.theory

that a(A) must either be pure imaginary or have negative real parts.

r

At	 At[I + A fit ] 	 T[I - A At-1 [I + A ^] T 1A	 [I - A !V1	 7] (5.12) -2 	 2

k	 ^
A- T 0 T

- l	
where	 0 = [ 6^

^

(5.13)

If X^ is pure imaginary, say A^ = iwi 	then

3 + (r3 2t)2
	 1/2

j e.1	 = =	 1 (5.14)

l + (wj 2^)
2

r^

<_ 9
.E	 f



If Aj is complex with negative real part, say Aj = nwjgj + iwj 7 -

then
p 1/2

16.1	 E 1	 (5.15)
3	 —

1 + mj 3At + (wj A)2

Hence the homogeneous solutions of (5.6) are Liapunov stable by Theorem 5.

In either case we have

= T[on-iT-1T1 + an-2T-1.12 + ... T-	 At	 (5.16)

Let	 T-1 `i - bi

..	 11,11 < 1I T 11 C 1l on-1b1 11 + 11 an-2 2 11 + • - • I1b,11 ] At 	 (5.17)

But	 ilon- "b 11 = 116j1n-k1bjl < 1 1
bJ1 = 11411	 (5.18)

j= 1	 j=l

11411	 lI T` 1 11 11411	 (5.19)

..	 If	 T = Max II:EkII
	

(5.20)

n

then	 1I e I I	 11 T 11 11 T-1 I I nAt T
	

(5.21)

but	 nAt = to <_ T
	

(5.22)

..	 I1^,1I	 T 11 T II II T^ I I1 T
(5.23)

N7T

Now

At



:.	 T = K2At2 	as	 At -)- 0 (5.26)

Substituting into (5.7) and using (5.3)

2
_	 at 1 1 3	 1 2	 1 

A 
df-n T d fn	 2

	

-[I - A 2	
)

1n+l	 a	 7Z A x n	 A2 fn 4 dt	
2 dt

—^ qt	 (5.25

2

Then, provided jjx n f( , Ilfll , 11Lf 11 ^ ! f d 'fn 11 ar e bounded,
dt

J j jn+11! <_ K2At2

< KT K2 At2 	as	 At ^ 0
	

(5.27)

The trapezoidal scheme is second order accurate as At -)..0.

Application

Consider the conservative dynamical system:

MR+Kx=0

x(0) = a }x(0) = b

where M = MT is positive definite

K = KT is positive definite

X

if	 z = X	 equation (5.28) may be written

(5.28)



»5^-



i.

=	 Thus the difference equations (5.32) or (5.33) conserve energy in exactly
ti

the same way as equation (5.28) whose first integral	 is -

1 XT M X+ 1 xT M x= constant (5.35)

n

From equation (5.32)
li
k

wn+l - A Wn

'.

"- (5.36)
Yo	 =	 c

tmi
'	 where A =	 Y - ^t A]-'	 I +	

A

J1.

Using (5.31)

A= T[I -	 A] r1 	[T + ^ A] T-1 • (5.38)

:. - = T 0 T-1	 0	 [6^ ]

(5.39)

`

1 +i 2t a Vj (1,2N)
3	 1	 ^iAt.

2 J
f.

r.	 Hence f Aa (^)	 = 1	 vi (5.40) 

Thus the eigenvalues of A all have modulus equal to unity and equa-

tion (5,36) is Liapunov stable.	 This property is exemplified in V.	 fact

that the energy is conserved.

Using equation (3.5),	 the solution of equation	 (5.36) is:

wn - 
( :Ya =	 n (5.41)

yn



f ^^JLet	 SZi = Wt (5.44)

j

WjAt	 (5.43)

where A	 tan`1
1 - (w^ 2t)2

4

i^ ^
:.	 wn- (yn -T e jn T-1

Yn

The solution of equation (5.29) at to = not is:

xn	 iw•

Vin-	
_T e 

tJn	 ^1

It

I-

We see that the solution of the differential equation (5.29) and the cor-

responding difference equation (5.36) have the same structure, however, in ,t

general the time dependence is different.
E

Period Error

Let Td _-^ be the period of the j tll mode of the difference equa-
3

ti on. Let	 Tj = 2^/wi be the period of the jtII mode of the differential

equation. Then

'r

cT 	 T	
(5.47)

is the period error of the j th mode of the difference equation.

We note that



Thus in the limit as At -} 0, the period error vanishes and equations (5.45)

and (5.46) are identical.

From a practical computing standpoint, we cannot let At go to zero.

While ( wjAt) can be made acceptably small for the lower modes of a complex

structure, it is not possible to make (w At) small for the highest modes. Thus

by making At sufficiently small, equation (5.45) will give an accurate repre-

sentation of the low mode behavior, however, higher mode behavior will not

be accurately modeled. In most problems in structural dynamics, only low

Epode behavior is of real significance, therefore if high mode behavior can

somehow be suppressed, equation (5.45) will give a reasonably accurate repre-

sentation of the response of a complex structure.

Methods Proposed for Suppressing the Nigher Modes

(i) Use of Viscous Damping

By analogy with continuous time systems it might appear that the use

damping could , be used to suppress the higher modes. As we shall now show,

the method is ineffectual in suppressing the higher modes in discrete systems.

If in equation (5.28) we add viscous damping, then the equation becomes



-wn Cn 
-i wn 1- 4

(5.51)

The trapezoidal di fference equation corresponding to (5.50) is*

av t ^+l 	 A wn

wo - c

i	 where

A = TOT-1

1 - W ^^ ^ +i wj T
At
 1-^0j=

T + wj 
Ij 

pz -- i w

(5.52)

(5.53)



s
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AOj6 . -	 . ^ i
`-

p
J 

Wj ^ + (W,^^Z)2-

pj (5.54)
.41)21 + W	 + (W^j ^ jAt

w^ WjAt	 1—
.

r
-I

AOj - tan
ca^l1t

1	 (	 ) 2 a
f -	 i,

i
— r,

G

For the lower modes pj = 1.	 As mode order increases, p j decreases initially,

I then starts to increase again. For the higher modes pj tends to unity. Thus

we see that viscous damping is not effective in suppressing the higher modes.

^y (ii)	 Use of Algorithmic Damping
a

'i

If equation	 5.32	 is modified to readq	 (	 )
-^

+1 =	 + AtA ((l - a)vjn+1
'	 y

+
—n )	 ,.

t

wn	 = w^=c 0<a<i

Equation (5.36) now becomes

+i -.A 
_W_

where

, Am = CI - (1-a)MAa-i [ I + aAtA]	 (5.56)

. .
a 

= T OAT- i

(5.57)

1 + At fu.
where 6aj - 

7 - At 1-a Wj



(5.58)

`^ sz	 for the
- 1-a

r.

i	 hi gher modes. Unfortunately, if a 	 1/2, it is easily shown that

r ;:

11—en 11 _< r-3 112-- "10(At)- "10(ot) + K 1 K2 0(pt2 )	 (5:59)

Thus,if a 2 the modified trapezoidal altori thm` (5,54) is only of first

order accuracy as At D.

(iii) Use of Temporal Filtering

G
Let	 = 4-}tir, ^1 k 2wn 	wn_1 	

(5.60)
A

where wn+1 =jh n	 (5.&1)

;A;

	 44-A +  2i + ~lawn	 (5.62)



Now, for the trapezoidal algorithm

,A= TOT

I+ iwj At

where 6j --

	

	 2
I - i wj At

`.	 ..	 vn = 4 T[4 + 21 + 0-1 IT- ' wn

1+ i w At 	 At

4 T	 J 2 
+ 2+	

J t T-1 ^'^n7 - i
J 2	

I-^7^ 2

I1..	
_vn	

T	 1	

(w 
At

}2	
T wn

J

(5.63)

(5.64)

(5.65)

(5.66)

(5.67)

We note that	
1	

= 1 for the low modes and tends to zero for the
7a-fwj A2}2

high modes. Since wn is second order accurate as At -} 0, the -Filter, which

is also second order accurate, sti ll retains second order accuracy. Thus,

unlike algorithmic damping, the use of the temporal filter does not affect

the accuracy of the computational scheme.

There exist many more sophisticated algorithms for solving problems

such as equation (5.28), however, the author's experience has been that for

linear problems, the trapezoidal algorithm with post--Filtering does as good

a job as the more sophisticated schemes when applied to large complex struc-

tures.

(c) Numerical Solution of Nonlinear Ordinary Differential Equations

Consider the system of nonlinear differential equations

dx = Ax+f(x)+R(t)	 0<t<T<^



Equation (5.69) may also be written as
a

•	 yn+l = -A 4 + 2 (f (-'n+ l ) + f (yn) + ^qn+l + %)
(5.70)

Yo 
= C

Accuracy

Let	 xn+7 = x(n4t)

i^
	

Let	 1n+l be the local truncation error defined by

xn+l = x
n 

Z A(x,,+T + 4) + f(Xn+l ) + f(xn ) + gn+I + gn + 2rn+l

(5.77)

:,.	 Let	 en = xn	 be the solution error	 (5.72)
r7
r.

Then subtracting (5.69) from (5.77)

en+l = (I + A ^2 } ^n + 
A ©2 _ +l + (^i+l } L(Y-n+l } )Q2

•	 + (1(.^n ) - f(Y-n )7 + Tn+l At
	 (5.73)	 ^.

If	 i) x,Y, n are bounded 'fin E (l ,M)

!	 i i	 f(y_)	 : K L -i	 xn Fyn bounded	 (5.74)	 1:

M)i) f(x) continuous and continuous first and second
partials

I

,	 3
7

1 

i



^- 2 1' ,=n+l I I	
,, 2 l I- n I 1	 11 ' n+1 "	 (5. 75 )

11	 II < 0	
Ii A l1	 K) 2 A 

11	 II + Il1,
+i Il At

	

--n+1	 (1 -	 A + K) 2) -^'	 i -( 	 IIAII + K) 2

11, it	 =	 0

Thus lit,	 —

	

II	
111, II	 At

 i - ( II A f1 + K ) zt

li e 11 _	
i+( II A II +K) At 

11 T	T2	 --	 A + K) ^t	 iii +11 2 II	 i -
	 A

II^
	

t
i	

+ K)
t II	 II	 ^	 11	 ^

(5.76)

Ile,,ll
[,n-i 111i 11 + *n `2 [IT 2 11 + ... iITnII	

At
i - ( II A II	

K) At
2

where
i + ( I I A II +K) 2	

(5.77)
i - ( IIAII+ K ) 2t

if	 z = Max 111211

lie„11 , ^*n - i] T

	

	 At	
(5.78)

i - ( II A I1 +K)



2
Now	 ey = I + y + 2 e$Y	 0 < 0 < 3	 (5.81)

..	 (I +Y) < eY
	

(5.82)
.

I - y ? I -2y 7 (2Y) 2 	 for y < ?	 (5.83)	 { Y ,
2	

—
2

1	 e-
Z

- 3 -z+Z2-z2e»ez2	 (5.84)

I	 2 -	
33	 < e z	 (5.85)

I _ z	
e
-z	

a - ez

I-Y 3 - 2y + 27
E	 _

1+y< e3y
	

(5.87)I ..y	
a

Hence, if ( IIAII + K) 2 < zr :r

'	 3 + ( II A II + K)2 	 z( II A II + K)At
<e

	

- 3 = { I I A II + K} At	 (5.88}

2

.. T 	2(I I A II + K)not
! y	 IIe^,1l < 

II A 11	 K 
e	 (5.89)

T	 But	 nAt = to < T
F

2 ( II A II + K)T

III, II	
11 a I1	 K 

e	 (5.90)

Returning to equation (5.73),	 -



z z{ h a ll + K)T

(5.93)

< K4 (At) 2 	as	 At 0

Thus the trapezoidal scheme is second order accurate; unfortunately, unlike

the situation for linear systems, the trapezoidal difference equations for

nonlinear differential equations are not guaranteed to be globally stable.

Appl i cati on

Consider the conservative dyrami cal system

M x+ K x•.+ f{x) = 0

x{0} - a	 x(0) - b

M MT >0, K=Kr>0

f(x) = VU(x)	 U(x) > 0	 x V 0

Equation (5.94) has the first integral



(5.95)

.-

2 JM x + z xT K x + U(x) = const.

if	 z = X equation (5.94) may be written
X

dz

R =Aza ^(z)

z(0) = c

0	 I'

where A =

-M1 l K 0

(5.96)

0

WM T f(x)

If A is simple, it has the representation

A = TAT-]

iw1

-im,

A =	 'w2

' w2
etc.

The trapezoidal difference equation corresponding to (5.94) is

w_ , + 2^ A(wn+l + wn) + 2 (R(,w +, ) + S ( wn ) )

Y

(5.97)

(5.98)

(5.99)

Al to rn ati ve ly, ,

Ot
yr^fT -	 22 (Y +T	 in)

yn+T 
= yn - 2t 

M-1 CK(Ynfl 
+y_n ) + 

f (yn+l ) + f(yn)^

Y-0- a	 yo= b

(5.100)



From (5.100) we see that

CYO+1 _ynfl - 'fin d + 2 C +1 K+1 -	 K1

z (Y-,+1 - -n ) T (±(yn+l ) +f(Y-n))	 0	 (5.701)

which can be written

2 4+1 
Nf_yn+1
	 Z 4+1 K yn+1 + U

n+l = constant	 (5.102)

n+1 1
	 T

whereUn+1 = JO 2 (Yi+l - Y-i ) (^(Y i+l } +f(yi )) + 0( +^ t,)	 (5.103x)

We note that if a,b are bounded, then as At ^ 0, (y-i+l - yi ) -} 0 and that

(5.103) becomes

n
Lim Un+l = Lim	 2 (Yi +1 - ^i ) T (^'(^i+l ) ^ f (Y i )^	 (5.103b)

At a- {^	 At^O i ^0

+ U (yo ) = U (yn+1)

In this case, equations (5.102) and (5.95) are identical. In general, for

At finite, Un+l cannot be guaranteed to be positive, in which case equations

R	
(5.99) and 5.100) are not guaranteed to be stable. It should be pointed

out, that equation (5.99) can be rewritten as

wn+1 = ,awn + 2 (R(wn+1 ) + (Wn } }

—0 = c
(5.104)

where A	 - Al-1 [I + d2 A]
4

M`}	

CI - zt Al-1 At

E
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P

r
^r

Since thr ei genval ues of A are pure imaginary,  the ei genval ues of A all

have modulus uni ty, thus equation (5.104) is one of the "critical cases" in

Li apunov stability theory as discussed in Theorem 16.

To filustrate these problems let us consider the -Following scalar

problem:

x + f(x) = 0

f 	 = X	 +X' < 1
(5.105)

f(x) = sgn x + p(x - sgn x)	 IxI > 1

Equation (5.705) has the following first integral

si2 x2 + F(x) _ const.

F(x) = 2x2 	1XI _< 1	 (5.106)

-	 + 
1XI +	 (1XI 

-l)2	
, XI 

> l

Since F(x) > 0	 x	 0, equation (5.105) is globally Liapunov stable

with respect to the origin.

The trapezoidal difference equation corresponding to equation (5,105)

Yn+l - Yn = n (Yn+l.	 Yn )	 n = of/2

(5.107)

Yn 1 - .n = -n(f(Yn+l) + f(Yn))

which may be written

p2 f(yn^ 1 ) + yn^ l = zn = Yn } 21j n - TI f(Yn )	 (5.108)



a

,

Since f(y) is piece-wise linear, equation (5.108) may be inverted to
i

gi ve y	 in terms of zn

Thus yn+l 	g(zn)

Yn+n y  + {fin}	
(5.109}

where g(z) =

	

	 l 2 z	 for IZI < 1 + ^2
T +n

= sgn z +	 1 2 (z - (1+rj 2 ) sgn z) for IzI > 1 +-n2
T+

WWI < jzI	 Vz	 {5.111}

Let	 z	 = Y	 + 2n Y	 T12f{Y	 )	 (5.112)n+1	 n+l	 n+1 -	 n+T

zn^,l = ^g(zn ) - 2zn = znyl	 (5.110

Equation (5.118) may be written in several different forms, t qo of which are

given below:

a)	
zn+1 _ 2zn + zn -T = - 1 

4r^2
*n 2 k 3 ('zn)

k3(zn)
 = zn	 for	 (zn I : ( I + n2 )

2 (5.T14)

_ `l +q 2 ) sgn zn +u(1+n2 (zn - (T +r^ 2 ) sgn zn)
1 + Po

for I zn 1 > 1 + n2



Thus the sign of the finite difference curvature is always opposite

to that of the displacement, thus the solutions are always oscillatory.

	

2 1 . un2	 V2 1-ubi )	 zn, 1	 1	 na zn ^ zn-1 = - ^ 1---- (- 1 k (zn )

z	
k2(z) =	 1 2 z	 for ! z( .5.1+n 2

1+

s gn z	 for Id > 1+ ri2

(5.116)

Equations can also be written in the first order form,

en+l = In } (—Gn )

2 1 -- izi tE.'
15

_	 zn1 un 2	-1

zn-I	 l	 0	 (5.117)	 za:



1

_	 n+l	

n 	

n--i
&+I

0.119}

i=O I

But	 -A TAT-]	^. ilk = TAkT-1 (5.120)

where	 1	 1= 1,2

ller,+1 11	 II T II 	 II T-1 11 	 11	 11	 +	 II T II	 [IT- 1 lI	 I	 Ilk(%- ) Il (5.1 21)
i.

i -0

But	 !!(e,) II _< 4112 	 1 - u2
1 + ^n

I
(5.122)

;.	 !1 e^,a 1 II K(4 .
02 1 - u2

1 + un
TO (5.123)

Thus, even though (5.117) may be unstable, it is only weakly unstable, with

at most linear divergence.	 Now using (3.5) with j = 0, in this case

i	 =	 1 ,2

A = T
1	 1

T-1 (5.124)
0	 1

..	 11 on+ ,11	 11 T11	 II T 1 I1	 Ile^ll	 ( 2^n)	 ^	 4n2 	 I T I!	 1I T-1 11 . 	 (2+i)
=a

< K[ 116,,11 (2+n) + 4il2 (2(n-r1) + n(n+l -- (5.125)

Thus, even in this case,	 the	 Illl	 o(n2 )	 as n	 as it is only weakly	 a
unstable.

Equation	 (5.117) defines a continuous mapping r1(•) s uch that:
U:	 .

e	 -	 r^^-n+l -	 (--en} (5.126)

Therefore, by the Brower Fixed-Point theorem, there exists at least one
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fixed point, or equilibrium solution. In the case of equation (5.117) , it

is easily seen that the only solution of

a* - M(e*)	 is	 e* = 0 (5.127)

;Next, let Mk , k an integer, denote the mapping M applied k times.	 Then

there may exist a sequence of distinct points	 0 `(1),8* (2), •• - ,8* (k) such

^-	 that

k e*{ m^1}	 -	 ^I	 (8*(1}},

	

in -	 1,2,...,(k -1)

8* (1) =	 t_gk (fl o))
(5.128)

Clearly, this sequence constitutes a periodic solution of period k.

Stability of Periodic Solutions

Let 8*(m) ^ m E' (l ,k-1) be a k periodic solution of equation

'	 (5.117).

Let	 e(m) = e*(m) + 68(m)
	

(5.129)

Then 88(m+1) = M 8 (8* (m)) S8(m) (5.130)

`	 Provided B(m) and 8* (m) are on the same pi ecewise linear branches of k(6}.

Thus, For 68(k) small, but not infinitesimal, and 8* (m) not	 on a corner of
•	 k(8)'

.. ^8(rml) -	 M 8W (i}}]88{1) (5.131)

K
Hence de(!(+l) =	 [	 M^8(8*(i))] S8(1} (5.132)

- AK	S8(i)

a
i

^



if lx i (Ak )j < 1, i E(1,2), the p .^riodic solution is stable.

if Ixi (Ak )l > 1, i E(1,2), the periodic solution is unstable.

if JA i (Ak )( = 1, i E(1,2), the periodic solution is stable, provided Ak is

simple. Otherwise unstable. This is a property which is special to-piecewise

l inear systems.

Example

If in equation (5.116) we set ji = 0 and rt = 1, we have

zit+l - 2z 11 + zn-1 = - 4k2 (z n )

k 2 (z) = 2	 for I z I < 2

= sgn z	 for (zj > 2

(a) if Jzo ,,jz 1 I < 2 , then

zn ^ l + zn _ 1 = 0	 zn, l = -zn-1
jP

z2 = - zo '	 z3 - -z1

(5.133)

(5.134)

(5.135)

z4 = z 	 ,	 z5 = 
z 

zzn	
(-1)nzo	

z2n+1 = 
{-7)n z l

Since }z.1Ez,j <2, it follows that 1z,.j < 2	 V k

From equation (5.117) with U = 0, Tj = 1,

0	 -- 7

$n+l r	 1	 0	 on

a

a^

it

T	 '..

F
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0
Psi &(6'^(i)) —

l

of k2 (z). Thus

6a( K+I) = AK 68(1)

0	 -1 K

AK ^	 1	 0

..	 1xi(A01 = 1

Yi , provided e*(i) is not close to a corner
0

(5.135)

i-1,2

Thus as long as the initial perturbations are small, not necessarily in-

finitesimally  small , the periodic solutions are stable

(b)	 If jzo +,jz l l >2, there exist periodic solutions with Jzn ( > 2 Vn.

In particular, If zo = N+l , z1 = 3N-1 , then T,, = 2(N+l)

Proof.	 If zn > 2 , equation (5.I33) becomes

(5.137)

(5.138)

(5.139)

(5.140)

zn+1 - 2zn + zn-I	 -4

Wi th	 zo = N+l and z1 = 3N-1

z 	 (I+N) + 2n(N-n)

Thus	 z 	 = .3N - 1 = z l	 zN = N+l = zo > 2

'd

ztq+1 = -(N+I) _ -zo < 2

If zn < --.2, equation (5.133) becomes

zn+l - 2z  + zn-1 = +4



..	 zM+2 = -(3N-1) = -z1

.-7Z-

Thus for N < n < 2N+l , the solution for 0 < n < N is repeated with the nega-

tive  sign .

7=2(N+2) = (N+1) = +z o 	(5,141)

Thus there exists a periodic solution with initial data zo = N+1, z 1 = 3N-1,

with ?zn I > 2 Vn and period TN = 2(Nfl). Clearly, there exists an infin-

ity of such solutions.

Stability

Since each point 0*(k) satisfies the condition I zn + > 2, each

M(0*(i)) is the same.

	

AK	
2	 _1 K

.. 

	

1	 0	 (5.142)

Now	 2	 -1	
T 1
	

1 T-1	 (5.143)

	

1	 0	 0	 1

1	 K
..	 AK = T	 ]T-1	 (5.144)

0	 1

Thus, though Ia i ( AK )1 = 1 Vi E(1,2), AK is not simple, hence the periodic solu-

tions are weakly unstable, and will grow until e(n) = e (n) + de(n) reaches

a corner of k2 (z), at which point the nature of the stability will change. As

shown in (5.125), the global rate of growth is limited to 0(n2 ) as n

which is still a rather weak type of instability.

Globally unstable Solutions

	

Hughes (	 ) and others have exhdbited numerically the
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instability of equation (5.107) and hence of equation (5.133). The insta-

bility of equation (5.133) can also be exhibited analytically. Consider

equation (5.133) with prescribed initial data

zn+l - 2z  + zn-1 = -4k2(zn)

k2 {z} - z/2	 for	 IzI	 <_ 2	 (5.145)

a	 = sgn z	 for	 Izf	 > 2

zo = I.5N + 2.5	 zI = 3.5N + 1.5	 N = 1,2,3,etc.

Since	 z
o ,z
	 > 2
i

_	 -	 2	 >

k	

zk - A	 Bk	 2k	 provided	 zn _ 1	 2	 (5.146)

I Using the given initial data

lY	
za=A=1.5N+2.5

(5.147)

z1	 =A^-B-2=3.5N X1.5	 8=2N+1

z k =	 (1.5N + 2.5) + (2N+1	 - 2k)k	 for	 k < N+2	 (5.148)

••	 zN+1	
= 0.5N + 1.5	 zN+2 = -(1.5N + 3.5)	 (5.149)

alp To determine z r	 N+3, we use equation (5.745)

:.	 z
N+3.= 

-(3N+7)	 -	 (0.5N + 1.5) + 4

= -(3.5N + 4.5)	 (5.75Q),

I^
Since. zz	 are less than minus two, we can writeN+2	 N+3	 '

zN+2+K = -[AI + B1 k _ 2k2	 k > 0

where	 A l	 = -zN+2 = (1.5N + 3.5)

(5.151}

zN+3 - -[A I + B - 21	 :. Bi	 2N+3

^. 	 ..	 zN+2+k = -[I .5N + 3.5 + (2N+3 - 2k)k] 	 k < N+2

F.

z2w+4	
= -(Q.SN + 1.5)	 (5.152)

z2w+5 r (1.5N + 5.5) _ (z o + 3)

-	 _	 ,	 ...	 .	 .	 _	 -•: V	 v	
- 	 ;^.:^...{.max
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:i

To calculate 
z2N+6 

we return to equation (5.145), from which

z2N+6 = 
(3.5N+8.5) = z 1 + 7 (5,153)

'x
'. Thus at the end of a complete cycle

T7 - (2N+5)

and	
zTl	

z0	3 (5'154)
are the initial data for thei

z	 =Z + 7 next cycle
T7+1	 1

,i
At the end of the next complete cycle

T2 = 4N+14

y (5.155)
and	 zT	= zo + 2 x 3

2
:} 3

z 
	 +1 = z 1 +	 2x7
2

M . At the end of the kth complete cycle

Tk = k(2N+3+2k)

and	 zT	.=	 z	 + 3k
(5.156)

o
k	 are the initial	 data for the nexti

M, cycle
zTk - z l	 7k o+l

Returning for a moment to equation (5.101) with n = 1, then
1

On	 n)- yn) + (Yn+l - Yn ) (f (Yn+l ) + f (Yn+l ))	 0 (5.157)

If	 yn+l ,yn	 are both of the same sign and both are greater than unity,

then (5.157) becomes



(5.154)

From equation (5.106) with 
xn+1 

and x  of the same sign and both greater

than unity, then,

•	 I (x2̂ l - k2) + F(xn{l ) -- F(xn ) = 0	 (5.160)

But	 F(xn+l)	 F(xn ) = lxn+ll - 1xn1

2
 (Xn -- xn+l	 ) + (xn+l l - f xn f = 0	 ( 5.161)

N	
a

Thus the trapezoidal algorithm preserves the energy identity (5.761) if

yn+l and yn are both on the same nonlinear saturated branch. If y, +, and

Yn are both on the linear branch of the curve, energy is again conserved.

If yn+l 
and yn are not on the linear branch or not on the same saturated

-.	 nonlinear branch, then in general energy is not conserved.

Returning to equations (5.109) and (5.112),

Yn+l . _ 9(zn)
1

(5.162)

•	 Yn^-7 - - 2 Czn + z n 
-7 - 2g(zn)]°

since lz n l > .2lyn+li > 1 	 thus we need only look at the "energy " at the

beginning of each half-cycle to see how it is growing.

a

Fk = 2 vk+l 
+ 1yk}l1	 '.

(5.163)`

lyn+l _ ^zn - sgn znl = (z n l -- l



F !^

Ek ti 0(k 2 )	 (5.165)

But from (5.155)

Tk ; k(2N+3 + 2k) .

	

2 )	 (5.166)As k m	 7k ti 0(k 

Therefore, combining (5.165) and (5.166)

Ek ti T 	 as	 k 4- CO	 (5.167)

Thus confirming analytically what Hughes and others had obtained numerically.

Equation (5.116) was carefully examined for u = 0 and n arbitrary;

nothing essentially new was learned, except that even for n very small, but

not zero, weak instability will still occur if the initial data are large

enough.

Equation (5.116) was carefully examined for jpj > O,r1 both arbitrary;

for	 sufficiently small the system behaves in very much the same way as 	
0

for = 0. It is true that the system appears to have bounded solutions,

however, the bound is of the order of (1/u) and hence can become very large

for certain ranges of n.

Since the results of this section are essentially negative, we shall

not report all the work that was done to investigate the effect of nonzero

u, the effect of small n and the effect of damping. Instead, we refer the

interested reader to the PhD thesis of my student, B. 0. Westermo (2).

`a
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Algorithms which Conserve Energy

x
As shown in the last section the trapezoidal algorithm, which was

found to be very useful for linear problems, can for a certain class of non- ; "-

linearities lead to weak instability, In this section we shall look at several

new algorithms which conserve energy.
fl	 :^

Consider the conservation nonlinear differential, equation

where

f(x) = dF

and

xf(x) > 0

F(x) W

xr0

f('n) dTj > 0 x A 0
0

(5.168)

(5.169)

The system (5.168) has the first integral

1 k z + F(x) = coast

and since F(x) is positive definite, (5. 168) is Liapunov stable with respect

to the origin.

If we reunite equation (5.168) in the form.
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Cross multiplication immediately shows that:

7 (yn+1-yn) + F(yn+l) " F( n)= a	 ( 5.172)

Or on summing

t Y11+1 + F(yn+l ) = const	 (5. 173)

1f in (5. 168)

Ax) = W 2x + g(x)

x
g(x) = d , C(x) _	 g(TI)d'q 3 0	 (5.174)

CUE

xO0

W 2x2 + g(x) > V x# 0	
J

g(x) continuous with continuous first and second derivatives then (5.171)

becomes

At
yn+l yn -	 (yn.+1 +Y

o
 n)

(5.175)

pt 
w 

2	 }	
- At 

G(yn+l) - C Yn)

yn+1 ^yn 	 (Yn+l yn)(yn.+l )'n
I

which may also-be written in the form

Wn+1 - ^'n + 7"^(-n+1-Wn) + x,(-wn+l' En)	 (5.176)
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^ 1	

(Yn'

n^
A-	 w

Wz 0

0

At r(yn+z ) - G(yn)

n+1-yn

Ac r-u ra cry

Now

(5.1'77)

G(yn+1 ) - Gtyn) _	 r	 yn+l ryn	 a	 (yn+l -yn)

= 8 yn+ (1 -  8)yn+1	 0 < 0 < 1

Thus if yn, yn+l are bounded Vn

G(yn
+l) - G{yn}

yn+l - Yn

:.	 III (fin+l'r^ll	 < MAt vn	 (5. 180)

Similarly if yn+l , yn are bounded. 'fin

II `
At

 A(w +w Ij < NAt Vn	 (5, 18 }n+l

Hence from equation (5.176)

IlWn+l--nll	 (N+M)At — O(At)	 for Qt swall	 (5. 1$2)

As before, we define the truncation error 'f n+l , by the equations
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E

At

Zn+l- En + -T A( as+x +an) WEn+l' zn) + Tn+IAA'

{5..1}
'En - •x n

Using equations (5. 174), (5.178) and (5.183) it is readily shown, that

xn , xn are bounded for all n:

ll^r;+lll	 O(At2 }	 (5.184)

Defining the solution error e = z
xx -w , if (5.176) is subtracted frQm

i1	 i^

(5.183)

©t

en+l - e
n - - A{ e

n+l den) '^ _
(
—n+l f -^.n) -X( 

n+l' `Nip.) + Tn+l At (5.185)

Ile n+l ll ^ 11 en11 + -	 Il A1l (ll S^n
+l (1 +1Ln1D + bx(zn+l' zn ) -X(Nn+l , f,) 11

+ 1,lT,+l l1At	 (5.186)

Using (5. 178)and (5.1$2)

^ gt n +I' zn)-X( n+l' n)115 of K(lLn+1 11 + lLer 11) -4 8n +lAV,

provided than zn, zn+1' Wn , wn+l are bounded Vn where	 (5.187)

6u+1 " 0(4t2)	 f
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If 11e ol! = 0 then as previously shown

ex p ( (jj Ajj -Fly) -3ZT)

^^ en^^ ^	 ^	 (5. 190)

J All +x

Thus for T fixed

Il e nI ^--K3 0 . O(At2) as At - 0	 (5.191)

Thus this algorithm is second order accurate; in additior it is Liapunov

stable with respect to the origin.

We note in passing that equation (5.178) may also°be vyl-!+-rt

G(yn+1)-G (Yn) 	 1	
g( 1)+g"(^2)_3g„( ^	

Z--
-yn+1 

Wy
n 	

= T (9(yn+1)+ 9(Yn)) +	 l Z 	 (yn+l"Yn)

^i = yn+16i+(1-0dyn

0 < 9 i < 1	 (5.192)

4 s	 Thus if yn , yn+l are bounded Vn, then for nit tending to zero.	 j

[^

	

	

9

i

G(Y	 ) "G(Y)
y

n+1
•_y 

n 
= [g(Yn+l)+g(Yn)] + M(At) 2	(5.193)

n+1 n

Thus this present algorithm may be considered to be a modified "trapezoidal"

algorithm.

-	 Effect of Viscous Damping

H viscous damping is added to equation (5. 168), then using (5. 174)

we have

+ 2zx +W x + g(x) - 0 	 z > 0	 (5.194)

Let
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V(x, Y) _	 2+ 2z	 ^- tu 2x2 + 2a2x2 + 20(x)]	 (5.195)

V(x,) > 0 if ^:, x 0

•	 ,., 2	
2%:V (x,) %@ 	zx + zxx + w	 + 2z2z^- F g{)x	 (5.196)

Using equation (5.194)

V = - Z(x2 +w 2x2 + axg(x))	 (5.197)

B-Lit, from equation (5.174)

w 2x2 + xg(x) > 0	 x 0

'^.0	
(5.198)

Bence V is a Liapunov function and the system (5. 194) is Liapunov asymp-
totically stable at the origin,

Consider now the discrete form of equation (5.194)

_ At
Yn+l _ Yn -' Z- (Yn+l +Yn) (5-199)

yn+l -yn - 2 [2z(y 1 ^ Yn) -(Yxl+l +Yn)] -/fit `.`(^y ^l ) - ^yn) (5,200)
n+1 n

Let
-	 yrn = lyn +zYn) 2 + (z 4W2+ 2G(yn)]	 (5.201)

Vn is positive definite and vanishes only when y = Y = 0 ,
n n

Vni-I - 2 (Yn+l +zy,+l )2 + ( Z2gW2 )y	 + 2G(Y	 )]	 (5.202) +l	 n+l



.:	
AV = Vn+l -V n

1	 10

2 [(Yn+i yn + zyn+l-zyn)(yn+l+yn+zyn+i+"yn)]

+ 2 [(z2-^w2){yn+l yn)] + G(yn+l)-G(yn)
	

(5.203)

Using equations ( 5. 200)
V

I	 G(yn+I) W G(yn) _ zAt •	 _AVn = " At 
yn+l yn	 (yn+l +yn) -T

At 2

 
L) (yn+i +yn) X

LE (yn+l -yn) + z(yn+i +yn).]

+ z2 2ffYn+1 Y- ] + G(yn +i) - G(yn)	 (5.204)2	 2
.:	 !^ _ zOt [(LnjI Yn }	 {Yxi+ n ) + (yn+I	 ^G

CYn +i) - GCYn} r C	 }
n	 !	 \	 1	 5.205

yn+l Wyn

If G(y) is an even monotone increasing function say

G(Y) = G*(y2) 	 (5.206)

G*(y2) is also a monotone increasing function. Hence



(b) Since yn+1 yn _ Z- Iyn+l + n1' both terms in (5.208) cannot vanish

simultaneously unless yn = yn+l = 0

(c) Since n+l -wn •' 0(At)

:.	 Avn -zot[(Yn) 2gW (yn)2s	 I + o(At2) as At -r 0

f
:.	 The discrete system (5. 199)is Li.apunov asymptotically stable.

Effect of Viscous Damping and Additive Forces

If to equation (5. 168), viscous damping and external forces are

added, then using (5.174) we have

+ 2zx +W 2 x  + g (x) = p(t)
	

(5,209)

}

	

	 then if sup p(t)! = P o , all solutions of (5.209) are ultimately bounded.

Let
9

V(x,x} _ [X + 2zxx +W x.2 + 2z2 x2 + 2G(x)I	 (5.210)

V(x, x) > 0 X, x 0

	x + zx2 zxx + UU 2xx + 2z2ilx*  + g(x}x	 (5.211)

Using equation (5.209)

Vz(-€' 411 2x2 +xg(x)) + P(t) (x+ zx)

if xg(x) > 0 x 0

V s -- z(x2 f 2
x2 } + P,(I * + z I x I)	 (5.212)

z
s- z(^2 4W 2x2 ) + p ,2(I +  U	 r- x	 (5.213)0

02 P ^ 2	 2

Let S be the set	 +c2x2 s2 z' ^1 +^^	 (5.214)



'
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Outside the set S, V <0

Let 0 be the set Vs e, where a is such that S is a proper subset of

0. Then, for points (a,4 outside 0, VE 0	 (5.215)

Starting outside 0, V > 0, VC 0, therefore, V decreases and the

trajectory must eventually enter S% and once inside 0, the trajectory

cannot leave 0 since	 0 on M. Starting inside Q, V > 0, V is in

general sign indefinite, therefore V may increase, however, it is clear

that the trajectory cannot leave Q since Vs 0 on 80. Thus all solutions

of (5. 209) are ultimate bounded in-12 =(Q + 8S3),

Consider now the discrete form of equation (5.209)

_	 At •	 s
Yn+l Yn Y 2 (yn+l +Yn)

Lat•
n+l

y1 +1 -yn _ 2 [2z(y +Y) + w2n	 (yn+l *Yn) - (Pn+l +pn)]

- At G(yn+l ) - G(Yn)

Yn+l Yn

Vn = .1 [(yn+zyn) Z + (z" 4W2) Y2 + Z G(yn),

AV Vn	
n+l - Vn

-(yn+l +zyn+1 )2 + 
( ,, 2- 4W 2) 2

'yn+l + 2 G(yn+1)

Let

(5.216)

(5.217)
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+ 2	 G^' 2	 G' 2+ (yn+l yn ) (w2 + (Yn+1 ) 	(yn)
Y-n+l -yn

O

	

1( 
—2 	 9 —

	

pn+l +pn
)
 
(
yn+l +Yn 	 Yn+1 +Yn

Using (5.207) we have:

2	 2
DV: -zit yn+1 +yn +W 2 yn.+1 +yn

nK 	^	 \	 2

+L1t PO 
( l y 

n+^ +z Yn+
---2^ I

Let

yn+l +Yn ` (^ >
	

3r,+, +y n Cyn^

AV  s - zot[V +LO, (yn)2^

+ Atpo 2 \ Z+ (.)	 (

Let (S) be the set

(yn^ 2 +u^2(yn)2 s 2 \) 2 1, 1+^w^2)

Since

(5.219)

(5. 220)

(5.221)

(5.222)

0

w
n+I - fn — 0(At) as t - ► 0.

Clearly (S} -+ S as At -* 0 and the previous arguments can be used to

show that the solutions of the discrete equations (5. 21.6) are ultimately
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?	 Extension of Energy Conserving Algorithms to Multidegree -Freedom

Nonlinear Systems

Consider the system of conservative nonlinear differential equa-

tions

MK + Kx +: vxu(x) = 0	 (5.223)
A

where M, K are N X N symmetric positive definite matrices and u(x)

is a positive definite potential function. For the system. (5.233)

V (x, x) = 2 [JM x + XT  x + Zu(x)] > 0

V = xTM x + x TK x + x Tvx u(x) = 0

Algorithm A

We may write equation (5.223) in discrete form. as

(5.224)

(5.225)

At e_

yn+Z yn - T [yn+I +zynl

M 
[Yn+Z -in]- - Qt K[yn+Z+yn^

-At (u(Yn+l)-u(Yn))[^i(Yn+l) +vu(Yn)]

(yn+l -YT [vu(Yn+1)+'Vu(y'n)]

Cross multiplication yields

&T	
•

Z [yn+ZM--yn+l 1 n+l K yn+l + 2u(yn+l )]

_ Z [yn M yyn + yn K yn + 2 u(Yn)1 (5.226)

Thus if



Vn	 y M yn + yn X yn + 2-u(yn)] > 0

(5.227)

AV--1 = Vn+I r Vn 0

Hence the discrete equations (5.225) conserve energy in exactly the same

Way as the continuous time equations (5.223).

Accuracy.
Since energy is conserved, yn yn, are boundedfor all n, provided

xo , y oare bounded. Thus as

At-* 0 , yn+1 4n ~ O(At)

(u(Zn
+l)-

u(yn)) Ivu(_Yn+l)+vu(yn)1

(Yn+I -fin)vu(+^)+vu(yn)	 (5.228)

= 7 Cvu(Zn+l) -r Vu(yn] + O(At2}

Hence, as At --+ 0, the discrete equation of algorithm A became of

trapezoidal form, and hence this algorithm is second order accurate as

At - 0. While this algorithm conserves energy, it has two defects.

a) It is difficult to use, that is, it is not readily computable.

b) If At is not small, we have not been able to prove that:

(fin+l - n
)T[vu(yn+1 )4'Va(yn	 0 implies than

u(vn+l) = u(yn)

Thus we are unable to prove that the last Germ in (5.225) is bounded when

yn' yn+l are bounded.

Algorithm B

An alternative to the discrete gradient operator in (5.225) is the

S	
E

i



operator

N

N } AiUlc

Lu =	 k= 1

Yn+l -Yn

d^

(5.229)

where

1	 2	 k	 k+l	 i-1 i	 i+l	 n
L,iuk = 

u(yn+I' Yn+l . . . Yn+l' Yn	 . Yn Yn+1' Yn . . . yn)

1	 2	 k	 k+l k+2n

	

-U(Yn+l' Yn+l ' ' " Yn+l' Yn ' Yn	 . . . Yn)	 (5.230)

Thus

Ln+l —Yn = Z_ Cyn+l +Yn^

M[yn+l Yn] = -
At Z K r-yn+l+Yn]

1	 1

1 ^'k/ (Yn+l -y n}

-!fit	 ZAluk^(Yn'+l -Yn)
N

ZA u. I (vn -vn

(5.231)



-	 N

Aiuk - u(yn+l) - u(yn)	 (5.233)

k	 i

To see this, consider N = 2

2	 ,

Ai - 7 [u(Yn-i V Yn) " u(Yn' yam) + u(yn+l' yn+l } " u(Yn' Yn+l )
i k

U(Yl, Y	 ) - u(Yl,^) "(Y l , Y 2 ) - u(y	 , yz)
n n+l	 n n	 n+I n+I	 n+l n

l [2u(y	 Y,,+,)z - zu(Y Y Y2)]2	 n+1' 	 n n

u(yn+l ) - u(yn}	 (5.234)
t.

1	 Thus, using (5. Z34) in (5.232) we have;

7 [yn lM yn.+l + yn+l. K yn+l + 2u(yn+l )l = constant	 (5. z35)

Thus algorithm B also conserves energy. If the potential u(y) can be

expressed in the form u
4

N2
u{y) = u	 a

i
 (yz )	 (5.236) j

b• 

'	 where u^(r) is a positive monotone increasing function of r, then it 	 t{
may be shown that '	 5

3

^v Z °iuk
k`I	 2 z 0 di	 (5.237)

wv

Application of Algorithxn B to System (5. Zz3) with Viscous Damping and

Additive Forces

If to equation (5, 223), viscous damping and external forces are



added, we have

M^i + Cx + Kx +` Vu(x) = p(t)	 (5.238)

Then. if C is symmetric and positive definite and 1^(t)lj is bounded, all

solutions of (5.238) are ultimately bounded providers x Tpxu(x) z 0.

t
	 Let

t	 V = I [z(xT(C -zM)x) + (x +zx) TM(x+zx)+2u(x)] > 0

+ xTKx	 (5.239)

where 2z = smallest eigenvalue of jW-C f = 0

V = z xT(C -zM)x + (x +zx) TM(X ' +zx) + x
Tvxu(x} + xTK x	 (5.240)

Using (5. 238), we have

V = zxT(C-zM )x - (x+2x) T[(C-zM)x + Kx +V 
X 

UN  - p(t)]

+ xTK x + xTdxu(x)

-- -x {C:-zM}x - z{xTKx +xToxu(x)) - (x+ zx) Tp(t)	 {5.241)

Since

xTOxu(x) ^t 0

V s - X (C-zM)x - z(x TKx) + 1(^+zx)TP(t)	 (5.242)

Since 2z is equal, to `he smallest eigen value of M-1 C, C-zM is sym-

metric and positive definite, hence the first two terms in (5.242) are

negative definite. Since p(t) is bounded, and the third term contains

x and x linearly, there exists a set S: x TMx + xTKx s K such that

outside of 9, V <0.  Let 11 be the set V s C, where C is such that
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S is a Proper subset of 0. Then outside of Q V < 0, and applying the

arguments used previously, we see that all solutions of (5.238) are
ultimately bounded in 0 .

Now consider the discrete form of equation (5.238)

At
-TZn + I n	 +1 tY-n1

Mry	At
--In+l -XnJ	 L.L]a+l +Zynl	 C ly -flnl

N

l uk/(Yn+l -yn
k=l

At
N

N
ANuk/ N N

Yn+1 -yn
k=l

At
+ —
2 - + I + P-n)

Let

(5.243)

V = .1 [.."	 ib	
TM(Xn+

a	 Tn 2	
T 

( C -ZM)Zn) + (yn+ZZn)	 2,yn) + Yn K zn + Zu(x

(5.244)

Then

AV n = V n+I -V n

= I
HZ"3(Xn+l-Zn)T (C-ZM)(Xn+l+Y-n)

+ 
(in+l 

-
Yn +^ (Xn + I -[Y) TM (i

n 
+ I 'in + z (Xn + I ty-n))

+ (Yn+l -yn) T I"(Zn+l -'Xn) + ?-(U(-Yn+l) -u(-Yn))] 	 (5.245)

Using equations (5.243) and (5.237)

it	 77 ,^.. A



AvT s -- ot[(in>T(C-zM)(yn) + z(Yn)TK(yn)

+ ©t (yn+zyn? T(Rd
	

(5.246)

where

E	 s	 (xn) 2 [xn+l+xn]	 (5.247)

L	
Since w	 -w — O(At) as At "'* 0, it is clear that the right hand side ofn+l n
(5.246) tends to

-At [yn (C-zM)yn + z ynK ,-n + ^t l {yn+z yn) Tpn i as At ^^ 0

(5.248)

¢~ Thus, for small At, the continuous time system (5.23$) and the discrete

time system ( 5.243) behave in essentially the same way and the solutions

of equations (5.243) are ultimately bounded.

Accuracy

Using the fact that the solutions of (5.244) are ultimately bounded,

it is easily shown that the discrete gradient operator used in ( 5.244) has

the following form as At . -► 0
N_

L A 1 uk/(yn+I yn)
k=l

1V	 - [9u(yn+l)+vu(yn)]

•	 N
N _ N	 + O(At2 )	 (5.249)

} ANY (yn+i yn )
k=l

Thus, as At -► 0, equations (5. 244)' axe of trapezrjidal form, there-

fore algorithm. B is second order accurate as At tends to zero.

Algorithm. B conserves energy and has some nice stability

r



-Z Yn+l 
M 

n+1 2 n+1 K n+l un+I = const (5.253)

t
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properties; it unfortunately has two major defects

a) It is difficult to use, that is, it is not readily computable.

b) The property (5.237), which is necessary in order to prove

the ultimate boundedness properties of equations (5.243), is valid only

for a restricted class of potential functions u(y).

For this reason, we now turn to an alternate formulation using

Lagrange multipliers. This formulation was suggested by my colleague

Dr. T. J. R. Hughes and was developed jointly with him and his student

Mr. W. K. Liu. (3)

Algorithm C

Consider the system of conservative nonlinear differential.

equations

Mme. + Kx + V 
x 

U(X)  = 0	 (5.250)

where M, K are N X N symmetric positive definite matrices and u(x)

is a positive definite potential function. We know that (5.250) has the

Liapunov function

^(x, x) = [x M x + xTK x + 2u(x)] = constant

If we write (5. 250) in trapezoidal discrete form

At .
Zn+1 -Yn = 2 'Yn+l +pn]

M(in+l --n) = - -A - IK ()Ln+l +yn) + Vun+1 +Vu11]

We now wish to constrain (5.252) such that

(5.251)

4

(5.252)



Using the first of equations (5.252)
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yn+I W Y [yn+l -yn] in

Substituting into the second of equations (5.252)

( Ot } 2
1	 M[yn+l yn -"tin

] - \mil [K(yn.+l.+yn) + a(un+l+un)]

t	 which may be written

(5.254)

(5.255)

2 -M 
yn+l + \ 

At 

^K yn+I +vun+11 = Myn a L1t y
nl (A' 

2

^K yn +vu
n

(5.256}

Using (5. 254), equation (5, 253) may be written

G(yn+l) 
I	 _	 •

•	
_ At 

lyn+l yn - 2 yn- TM Lyn+I -Zn 	 in)

r	
2

+ \ 7 [-ZZn+l"Zn+l+un+ll

.l •T	 2	 _
` T Yn M Yn - Z }	 yn I^ yn +uj -- 0 (5.257)

Let us now construct the functional

3

I T	 2r	 `
T	 F(yn+l) -E yn+l M yn+l + ( -T	 yn+I £{ yn+I +if+l )

y 
T 

.ML +fit •	 y	 Ot 2—n+I -n Yn^ +_11+	 :-n+vun] \ 2	 (5.25$)

Then

T OF	 T_ &
&yn+I a Y

yn+I	 —n+lM 
yn+1 + 

^t2
-2-' (K yn+I +vun 1

+l

- M[yn +tit ynl + 12 }2[x yn +vun)]	 5.259

f	 r:.

7

_	 T
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'E

Thus necessary and sufficient conditions that equation (5.255) hold, are

that (5.259) vanish for arbitrary "variations" byn +l .
In order to force equations (5, 252) to conserve energy we coin

bine (5.250) and (5.257) through the use of a Lagrange multiplier X; our

1	 new functional is

F(y +1,+%G(yn+1}	 (5.260)

Thus

&Xn+l L a
 F' 

+ ?l Sy 
G + U G(yn+l) 0	 (5.261)

11+l	 n+1

If (5.261) is to vanish for arbitrary $.yn+l' S% then equation (5.257) is

l^
satisfied and in addition:

(	
2	 ,2

M 
yn+l + \ 2 [K -- n+l 

+o .+I1 .. M[yn+^tyn] + \ 2t [K yn+1 +dungy

2
+ rM(yn+l yn" ^ Vin) + 2 , [Kyn+^ +dun+l' ^ 0 (5.262)

Thus
.2

(IA) FMyn+1 + 'y / [Xyn+l+Dun+1).1

(l+X)[Myn] + At (I + 2^ Min ---z-At )'(KX.+Vun}	 (5.263)

The new algorithm thus consists of the two systems of equations, (5. 261)

and (5, 2613).

When 
yn+l 

has been determined, yn+1 can be calculated from

equation (5. 254) .

The new algorithm. is solved using a variant of the Newton--

Raphson method.

If i denotes the iteration number then if we define

A

9

J
a!
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	 f:i

-	 C

77t '	
i+l _	 1

yn+l yn+1 	 5.264

we have
1

(71^+1}
IM6Z-ni+l + ^^^ B(Y +J )^Yin+I

	

Tmy_ +
	 • 2

+l n+i 2 --n

+ (^^+1} M(
yn+l yn) + \ (KY + V  zn+l	 n+1 }j

(At
2	 ^

	

VT EKZn+Vunl	 )i,,At	 (5.265)

i T Cyn+
 i_ At 

J ^^t l2 i T^ n+l M 1 Zn^ z in + ! ^Y ^K Y + Vu

	

n+l --n+l	 n+l

. ,	 +G 0.	 (Y^+l) -	 (5.266)
i	 where
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(5.270)
l = (l +A')1MW+1- Y-n ) + 427t) 2 (KYn+ 1 + vun+1)a

+ ( At)2 (Ky + pu) - (1 + )y At	 i2	 --n	 n	 2 }-n

G(4+1)

Rewriting equation (5.268),

A21 A4+I b2
(5.271)

Aul Aye+l + A7 2 A^^ W b1

From the second equation in (5.271),

1

A4+1 = (A1I ) (^l - Al2

Eking the first equation in (5

A21 AY-n+l r-^Ili' I^^ 1

AAA	
E(Al2 )T(A ll

)-I 
l

AA i )	 (5.272)

.271),

A21 (A11
)-7 

Al2 AX' = b2

- b,i(Ai T(A71I A^,	 (5.273)
2V

I

Ayn+1 = (All)~I[bl - AX Al l ]	 (5.274)

It should be observed that yn+1 and AA' can be obtained with only one fac-

torization of A1 l and two forward reductions/back substitutioi s. Thus one

additional forward reduction/back substitution is required when compared
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with the Newton-Raphson implementation of the trapezoidal algorithm. Thus,

unlike algorithms A and B, algorithm G is readily computable.

Accuracy

Using equations (5.252) and (5.263), the new algorithm may be rewrit-

ten as:

t	 yn+l .. In = 2 Cyn+l 
+ y1^

+1 - 21 = -
	 yn+l + In) + vun+l +vun

F	 + 1}^ C -l(KY + vun) 2 - Yn ]	 (5.275)

"i	
2 4+1 f ly_n+l 

+ 2 C^ ;+l Kx-n+l } 2 un+l

2 yn MYn + 2 Cy Kyn + 2 un ]

From the first two equations

2 Cyn+l Y-n+l - Y; '12n] + 2 Cy ;+l K^^. 1 - Yi KY -n

+ 2 ( Yn+l - y_n ) T (vun+l +vun)	
1+A(n +1 - Yn ) T CKYn +Pun - 

of ,

(5.276)

Using the third equation of (5.275)

CKyn +vun -	
Min

2 (Y,+]	 yn )T (vun^1 + vun ) + un - un+l	 (5.277)

i

Th us

1
f

yu
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1+, ((K y + qun) 2 - Myn)

C(Yn+1 - y,)
	

(5.278)

where

C = 2 J( 1 ) W J(2)]

J= y ^u

	

	
(5.279)

i = y_n e i + 
yn+l ( 1 - e i } 

0 < 6 i s ", i - 1,2

Hence, equations (5.275) may be rewritten

.. ^t
4+1 - yn =2 	 1. n+i + yna

J!n+l - Yn - .. ^2 M- 7 [ K (yn+l + yn ) + vun+l + 4un ]
	

(5.280)

+ 2 P 1 C(y_n+l - yn )

If u has continuous first and second partial derivatives, then 11C11 	Ca

is bounded and we may apply standard techniques to {5.280} and show that:

11 2_r l l = Ili„ - ^ I l + ll y, 	 xn 11 < o ot2 ,	 as At -)- 0	 (5.281)

Thus algorithm C is also second order accurate as At -^ 0.

The Lagrange multiplier technique is clearly superior to the other 	 a

techniques, and while in the present analysis the constraint was that of

conservation of energy, the technique can be used with any appropriate

constraint. For example, if the technique is applied to equation (5.238)

and we wish to ensure that the solutions of the discrete equations will

be ultimately bounded, given that the solutions of (5.238) are ultimately

At



,

s
^^ a

.tl
.

,

,
t
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bounded, the appropriate constraint would be the discrete form of (5.241)

obtained by integrating from to to to + At, i.e.,

vn+l vn	 ^2 Cyr+l (C - Z M )y ^^ 1 + Y,^ (C - zM )kn

T	 T
+ z (y +l K_yn+l yh Ky^

+ 4+1 Vu n+1 + yn dun)

+ On+1 + zY-n+1.)T P-n+1 + (Y_n + z_" ) T pn]	 (5.282)

Replacing yn+1 by Qt (y-n+l - yn ) - yn	 the constraint equation becomes-1

 
Czy_ +1 (C - zM)y ^^ 1 + (at(-Y,,+1 - ,Y' ) - J'n) T M ( -, (4+1 ^- Yn)

T
+ yn+1 Kyn+1 + 2u(y,,+ I ) 7

- z z^(C - M}yn + (yn + zy n ) T M(y a + z_-Yn)

+ y Ky^ + 2u(y_n)7

+ 2^ E(At (^+ 1 - n ) - Yn ) T (C - 2P9}( t (yo+1 -Yn ) - yn)

+ 4 (C - zM)y ^ + z (Yr +1 Ky_n+1 + 4 Kyn }

T	 T-
z(yn+l vun+1 + Y4 vun}

l
7	 T	 -T	 _	 I

c:^



r
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4

The functional F( n+,) of equation (5.258) is replaced by:

F(y,^+l ) = 2 YT +l My-n+l + (^) Yn l C—Yn+]

at 2 1 T
+ (2)	 z 4+1 K_vn+l + un+l

—4T+ CM(4 +^^ Yn ) + At 
C r► l

 2 T
(Lt-)  4+1 E% + Oun+l pn+l - pn

N

h^

The variati on of the functional (F'(yn+l ) + XG 
(yn

+l)) yields the new algo-

rithm:

(5.285)

^n+l - Af (4+ 1 In ) - yn

It may easily be shown that (5.285) is second order accurate as 'At -} G.

aF + a aG = 0a^+l	 '4+1

G(y_n+l ) = 0

n

A
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6. Application to the Dynamical Analysis of Large Space Vehicles
-	 4

Consider the system of differential   a uati equations obtained b apply i ngY q 	Y

finite element techniques (or other techniques) to some complex space'''

vehicle. The equations are likely to be of the form:

MX + Cx + Kx + vxu = p(t)	 (6.1)

M is an N x N symmetric positive definite matrix, C and K are N x N sym-

metric positive semi-definite matrices, and a (x) is a posi ti ve semi-definite

potential function. (In the present analysis we shall neglect terms in

(6.1) which arise due to steady rotation of the vehicle.)

Since one of the primary objectives of any structural analysis is to

determine the stresses in the vehicle, it is desirable to make N, the number

of coordinates, as large as possible so that stresses may be determined

accurately. The number, R, of modes of the structure exhibitin g signifi-

cant response is usually much smaller than N. This poses a serious diffi-

culty for the direct numerical integration of (6.1), since, as we know,

the accuracy of any numerical scheme is determined not by the time step

At, but by (waft) where w  is the highest "frequency" which can be excited.

In order that the higher modes be integrated accurately, At may have to be
	 1

very smal i , much smal I er than is ei ther practi cal or economi cal ly feasi bl e.

In the case of linear  systems, the use of algorithmic 'damping or post-

filtering successfully overcomes this difficulty by suppressing the higher

modes, which are inaccurately integrated when a moderately small value of

At is used, thus resulting in reasonably accurate representation of the

lower modes.

I

-	 ..— w,J...r .	 ..,_.	 ..	 -	 ^	 _. ^ .... ^ ._	 ' x_ -..	 Y:	 ..t	 ?b1:si+;,Frt3^"^^^.+^"	 "^^"'°4•Si^oi`
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to achieve

J when doing

a phenomenon

can be excited

phenomenon,

Many analysts use algorithmic damping or post-filtering

the same result for nonlinear systems. Care must be exercise

this, since nonlinear systems can exhibit internal resonance,

in which higher modes, though not excited by external forces,

by nonlinear coupling to the lower modes. To illustrate this

consider the following problem:

X + 2z 1 x 1 + x  + u(xl -x2 ) 3 P I cos cat + p2sin wt + P3cos3wt

(6.2)

x2 + 2z2x2 + 9x 2 + 
p(x

2-xl)3 = 0

where

P l = 0 - w2 )A + 4 uA3

P2 = -2z1 wA	 (6.3)

P 3 
= 9^ uA3

Since the second equation is not excited externally, it may seem reasonable

to set x2 = 0; the first equation then has the solution

x  = A cos Cat	 (6.4)

If we now turn to the second equation, regarding x 2 as small,

R
2 
+ 2z-x2 + 9 x2 - -Px3 = 4 A3cos Cat + J-'

 
A 3cos 3wt	 (6.5)

0

If w ,, 0(1), the first term on the PHS of (6.5) causes no trouble,

-	 however, the second term will cause resonance, a-d if z2 is small, will cause

significant response in x2 . We therefore see that even though the second

equation in (6.2) is not externally excited, it cap, still be driven by the

^i
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first coordinate x,, This is a simple example of internal resonance.

Quite frequently as a preliminary to performing a nonlinear dynamic

analysis, a modal analysis of the linearized system will be carried out.

The modal analysis can be a very useful tool in structuring the nonlinear

problem for dynamical analysis.

As a preliminary, let us first put equations (6.1) into canonical form-

1/2
Let	 Y M	 X	 (6.6)

-1/2 -1/2
Let	 M	 CM

-1/2	 1/2

	

'K M	 KM-	 (6.7)

U (20 VW

M-1/2 PYO R(t)

Using (6. ,6) and (6.7) in (6.1)

ly + Ci +,Ky- + VY V W R(t)
(6-8)

j(0)	 b

Let T be the orthogonal matrix which diagonal i zes JC.

Let	 T z

TT-KT A

V (Y)	 W(z)	 (6.9)

TTCT

TT	 f(t)	 ffi(t)l



r	 c

Y

4

I

t.

a
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Unless (6.1) has classical normal modes, -@ -is not diagonal. Using

(6.9) in (6.8),

I i+ 0 z +Az +Vz W(z) =f(t)
(6.70)

z( 0) =a	 z=b

Suppose that Ifj (t)f < E for j > P	 c << I.

Let	 z
1

z g =	 z2 	 (6.71}

z 

If we suppose that the j th modes, j > P are at most weakly excited, let

us set z j = 0,	 (P+1,N) . Then,

i	
W(z) = W(z p )	 (6.12)

equation (6.10) becomes

r

I zI	 fI(t)r
(6.13)

I i2 -0222 
+ .11222 + vz W(2 ^) = ^(t)

where

z1
z

z I =	
.2	

represents the rigid body modes

j	
z6

Z7
Z8

Z =
	 represents the first (P-6) flexible modes,

zP

0
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'
22 _
	

22 is 
the (P-6) x (P-6) damping metric associated with the

modes.

r A! 7 w

^+ w2
. _. 4 (6 1^)

A	 •^

^p	 wp

ti If P is not too large, we can select a At such that (w pat) ti 0. 1,
I

then using any of the "energy conserving" altarithins of Section 5, equations
, x	 w

( 6 .13) can be integrated with good accuracy. 	 Having determinedz^, one can

i.
,

easily compute the physical coordinates,

.Y

_	
t

lip- M~1 `2 Tp

where T	 is the N x P matrix having as its columns the first P ei genvectors
p

of the linearized problem. 	 To check if there is any significant response
i

in the neglected modes, due perhaps to internal resonance, we approximate

the remaining modes by the system of uncoupled equations

z^ ^.	
Jza + a
	 ^ _	

aaz
(6.15)

;.
e(P+IIN)

4 We note in passing that equations (6.15) will be exact if the linearized

part of (6.1) has classical 	 normal modes.	 Not all	 the modes in (6.15) need_

be examined; only those for which

. p1^
A	 - « i	 (5.16)q

where p and q are integers and^k is an element of A 2.	 If no mode of (6.15)

shows significant behavior, we can be reasonably sure that the solution of...

-	 ..	 •41BS Jda?c+ti.-	 .
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equations (6.13) will give a reasonably accurate representation of the

solution to equations (6.1).

If any mode of (6.15) shows significant behavior, we can be reason-

ably sure that the solution of equations (6.13) will not give an accurate

representation of the solution to (6.1). In this case, the modes of

(6.15) which show significant behavior^ must be included in the solution	
P

of the problem. This presents a serious problem in the general case,	
r

"	 since we require that(WkAt) ti 0.1 for accurate integration of the system.

If only a few modes of (6.15) show significant behavior, it may be pos-

sible to treat the problem in an efficient manner.

z 
zk

Let	 z3 =	 (6.17)

z
m

where k, R, m are the modes of (6.15) showing significant behavior.

Let	 =	
z	

(6.18}

3

Equation (6.10) may, in this case, be written

h

f I Z2 + -02222 + -023z3 
V 
1%) + A2^12 ' 12 (t)

^' 	 (6.19}	 ,

I z3 + "2322 + -033z3 + a
z 14(z } + A

3 
z3 = 0

'	 3

This first set of equations is integrated using a At appropriate to the

highest eigenvalue in A2 . The second set of equations is integrated using

a At2 appropriate to the highest eigenvaiue in A 	 say At2 = K At l , K an

,:.  	 _	 ..	 .E 	 F'. 	 .a'..0. ,w wl<
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integer. The values of 1, appearing in the second set of equations can

be obtained by interpolation from the solutions of the first set of equa-

tions.

Internal resonance occurs most often in systems where the eigenvalues

of the linearized system are integrally related, and where the nonlinear

system is subjected to a steady state single frequency excitation; for-

tunately these two situations do not appear to arise too frequently in

the space vehicle problem. nevertheless, such situations can arise, and

the analyst should be aware of them.

N

I

i

r,

y

:i
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Appendix 1 - Generalization of Theorem 8_

Theorem. Given the linear difference equation

xn+l = A(n)xn	IA( n )l ^ 0, IIA(n)II < -	 n > no	(Al)

then Al is uniformly Liapunov asymptotically stable at x = 0 iff there

exists a bounded, symmetric, positive definite matrix P ( n) such that,

i) P(n) = PT (n) positive definite and bounded above & below

ii) AT (,I)
 P(n+l) A(n) - NO = - ON

iii) 6(n) = 0T (n) positive definite	
(A2)

iv) Il0(n) ^^ _< M2 ( no )	 n > no and	 V no

Proof	 Sufficiency

Suppose that there exists such a matrix P(n) satisfying A2

Let	 Vn =	
P(n}xn	

(A3)

Since P (n) is positive definite and bounded,

i) V n > 0

	

i i ) Vn < X13 xn Xn	 M3 <

Un+l	 xn+l P(nal) +1 	(A4)	 4

Using (Al),

Vn+l = K AT 	 P(n+l) A(n)xn	(A5)

:.	 AVn = (Vn+l - Vn ) = x	 T

	

(A (n) P(n+l AN - P(n) ) x^	 (M)



l	 -7:

y

	

E	 Using (A2)
i

i
AV  - - x^ e(n X < 0	 (R7)

..	 vn+I <v n
	 n-I	 0
<v	 < ••• <V <v	 (AS)

1 

Since P ( n) is bounded Vn , Vn is finite if j)xn j1 is, and since Vn is

	

` I	 t	 zero only if 	 0, hence Vn and therefore jjxn jj tends to zero as n

tends to infinity. Since the result Is independent of n o , the trivial solu-

tion x = 0 is therefore uniformly l.iapunov asymptotically stable.

Necessity As in the proof of necessity for Theorem 8, it is easily shown

that P(n) satisfies equation  4.53 , thus:

P(n) = .Y	 ^( j ,n) T $(,7) ^(j,n)	 (A9)
J=n

Thus if (Al) is uniformly asymptotically stable at the origin

11 O (j,n)11_< M 1 6U-n)
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