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SU}_IARY

A fluid mechanics review of modern ejectors has identified the following

parameters that must be considered when designing ejectors for a chemical laser

pressure recovery system. The first parameter is called the secondary flow

admittance, or inversely the flow impedance, defined as the ratio of secondary

mass flow and secondary total pressure. The laser diffuser critical pressure

recovery defines the ejector input impedance. Internally the ejector suction

characteristics define an ejector impedance. The first design condition to be

met is the secondary flow impedance matching condition. The second important

characteristic is the secondary flow Mach number. The secondary flow Mach

number Ks found to have an important influence on ejector performance for low

_ss ratio and should be optimized for the design operating point. The last

critical parameter is the ejector throat area. The ejector area insures that

i_edance is matched correctly and the desired performance obtained. The

throat area depends very strongly on the distortion produced by the dynamics

of the mixing layer of primary and secondary flow. If the application permits,

multiple driver nozzles can be used to minimize distortion which results in

the maximum performance of the pressure recovery system.

i. INTRODUCTION

In the application of CW chemical lasers to military systems the ejector

plays a critical role. The optimization of the ejector is important in

reducing the weight and volume of the system. The ejector is normally the

largest component of the laser device and consumes several times as mucb pro-

pellant as the laser cavity. An integrated laser diffuser ejector schematic

is shown in figure 1 for comparing size and defining components. Research in

ejector fluid mechanics has been largely experimental and a large body of

relevant data is now available (refs. I.-4), These data must be exploited

fully in order to reduce the time and expense of building future large systems.

[t is the purpose of this paper to explaln the characteristics of the ejector

from an elementary fluid mechanics approach. A modern ejector is defined as

one in which the secondary Mach number is chosen to optimize performance, as

opposed to previous designs where it is assumed that M s = 0.2. It is desir-

able to avoid relying on purely empirical correlation of the data since such

attempts have been known to fail in the past when scales and the primary and

secondary flow properties have varied significantly.
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II. REVIEW OF SELECTED EJECTOR PROPERTrES

As a prelude to developing the method and theory of ejector design we

sha]l review selected ejector experimental data which are important for under-

standing the fluid mechanics of good ejectors.

Existence of a Critical Point

The data in figure 2 shows how the inlet pressure in the ejector varies

with the back pressure. Two regions exist: the supercritical region at low

back pressure in which the inlet pressure is constant independent of back

pressure, and the subcritical region in which back pressure determines inlet

pressure. The point separating these two regions is called the critical

point. While chemical laser diffuser ejectors systems have operated in the

subcritical ejector range, it is undesirable for the impedance to depend on

back pressure. Highest efficiency of the diffuser ejector system is obtained

when the diffuser and ejector operate at their respective critical points.

For assured safe operation it is desirable to design both tile diffuser and

ejector at slightly supercritical conditions. A good design methodology must

be able to predict the critical point for all operating conditions of the

laser.

SupercrJtical Pressure Distribution

Let us examine the effect of back pressure on the axial pressure distri-

but lon in the ejector. The data in figure 3 shows a constant pressure distri-

bution independent of back pressure in the mixing section. Downstream after

the tl_roat station, the pressure distribution is determined by back pressure

in exactly the same way as back pressure affects supersonic diffusers. The

critical point is reached when the shock structure has moved to the throat of

the ejector. It is exactly these features which make the determination of tht,

critical point a priori possible by applying standard flow conservat:ion

analysis.

Throat Flow Distortion and Mixing

The one-dimensional analysis of ejectors requires the flow b_ completely

mixed at the throat. However, pitot-pressure profiles in the throat of an

ejector are very distorted as shown in figure 4. Clearly, a longer mixing

section would be required to completely mix the flow. A longer mixing section

is definitely not desired, however, since that would only add to the w_,ight

and volume of the ejector. In fact the profiles in figure 4 correspond to the

operating conditions of figure 3 in which critical operation was achieved at

satisfactory performance level for many applications. A very important fea-

ture, of these profiles is that the mixing zone has reached the wall as evi-

denced by the positive slope of the pitot profiles from the wall. This fea-

ture is important to achieve critical operation since the low momentum second-

ary flow cannot undergo compression unless shear forces are present to balance
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the pressure gradient. Ideal calculations discussed later show the completely

mixed flow would occupy an area 73% as large as the real area and performance

would be 30% higher. We conclude that distortion is responsible for a signif-

icant correction to real ejector throat area requirements and, therefore,

performance.

Existence of Ejector Flow Impedance and Impedance

Matching with Diffusers

While most ejector characteristics are best presented in nondimensional

coordinates the existence of flow impedance is readily recognized in dimen-

sional coordinates. The data (ref. 2) for secondary flow rate versus second-

ary pressure commonly called the suction characteristics clearly show that for

a wide range of conditions the secondary mass flow is dependent on secondary

total pressure only (fig. 5). In fig. 5, the significant primary mass flow

and nozzle diameter variations shown in the legend do not affect the linear

relationship of secondary mass flow with secondary total pressure. The common

practice of normalizing this curve by primary mass flow and pressure is fic-

titious and misleading. We can then define an ejector admittance.

S

A-
Pos

(1)

]'his relation states that the secondary volume flow rate is constant over

all conditions tested. This amazing fact correlates with the only other fixed

parameter in the tests which Is the mixing length. The absolute entrainment

rate is also only pressure dependent when the other shear layer conditions are

fixed. Thus, based on the properties of entrainment, constant volume flow rate

is Lc_ be expected and is observed. This feature is one of the chief virtues

of an ejector that make it a true pumping system. For completeness, figure 6

is included for the accepted critical diffuser impedance characteristics as

d_,termined from experimental data.

Impedance Dependence on Mixing Length 1

(Minimum impedance and critical mixing length)

A very important phenomena is observed when the position of the primary

driver nozzle is moved relative to the ejector throat inlet. As shownl in

figure 7 the secondary total pressure depends on the nozzle location under

condition of fixed secondary flow rate. This means flow impedance will also

depend on mixer geometry. There is a critical zone, between seven and eight

nozzle diameters upstream of the throat, where impedance is a minimum. An

explanzmtion of this phenomena can be constructed based on the mixing dynamics

c_f tht, primary and secondary flows. The reasoning is based on the observed

pitot-pressure profile of figure 4 which was obtained when the nozzle was

lc_cated in the critical mixing zone. As stated above, we identify the

lThe i.mpedanc{ _ depends on mixer contraction cone angle (refs. 1, 3,

and 4) but will not be discussed here.
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critical zone with the condition that the shear layer has just entrained the

last secondary flow streamline.

For shorter distances unmixed secondary flow must pass through the

restrictive throat area requiring an increased secondary total pressure.

While the longer mixing lengths, the potential core is mixed out and the shear

layer greatly expands. The expanded mixing zone also has to be compressed to

fit through the throat area.

The exit pressure maximizes at the same mixing length. One reason for

this is that the drag of the mixing section is a minimum at this condition.

Critical Point Performance Dependent on Secondary Flow

The last feature we wish to review is the dependence of the ejector

critical point performance secondary flow rate in figure 8. The data illus-

trates tile fact that lowest exit pressure is achieved when the secondary flow

is zero. Pressure increases monotonically with increasing secondary flow and

is entirely consistent with a conservation analysis of the ejector performance.

This curve reveals design point operation requires less primary mass f]ow

than start conditions. Recalling that secondary flow entrainment does not

depend on primary pressure means that the ejector can be turned down as the

laser starts without fear of unstarting the laser.

III. DESIGN METHOD

Several theoretical tools are necessary to cope with the variety of

issues just discussed. Every design will start with a requirement to pump a

secondary mass flow and total pressure delivered by the laser to the Final

exhaust pressure level. A wide variety of laser gas and primary gas proper-

ties are encountered.

The selection of a primary nozzle propellant will not be considered in

this paper but clearly is important in a real application. Laser gas proper-

ties can also vary and, importantly, the gases may be cooled. The overal]

length may be a constraint and multiple ejectors side by side might be in

order. All these issues and more do not directly relate to the fluid mechan-

ics methodology. In the next section we will develop the tools for the

following method:

i. A method to compute an optimized performance map in which secondary

Mach number and performance are computed versus mass ratio.

2. A method to compute the flow distortion at each optimized condition.

Performance is adjusted for the distortion losses and the design point is

selected.
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3. 'l_e throat area is determined for the design point to match diffuser

impedance. Off design performance is then computed to match other facility or

system requirements using a fixed geometry performance calculation.

Optimization of the Ideal Ejector Design

The question usually asked by the system designer is, "What is the lowest

mass ratio needed to pump from diffuser exit pressure to ambient?" Theoreti-

cally it is simpler to ask the question, "what's the highest pressure ratio

available for a given mass ratio?" We consider secondary flow rate, total

pressure, and total temperature to be fixed initial conditions. We consider

the primary flow rate, Mach number, total temperature to be fixed. The ques-

tlon is, "what control is available to optimize performance?" Before we

answer this question we should review the factors affecting performance.

The ejector is a pump with two important processes, both of which are

inherently lossy. The first is an entrainment by tangential shear stress at

constant pressure and the second is a compression of the mixed gases. The

compressor is a normal shock followed with subsonic diffuser.

What we seek is to minimize the total pressure losses in the mixing and

compression processes. At high mass ratio mixing losses will be inherently

small and the dominant losses will be normal shock losses, and the reverse is

true at low mass ratios. We shall not consider subsonic diffuser losses in

this optimization process for the following reasons.

First, the normal shock compression losses are dominant. Second, in

practice, the subsonic diffuser is usually conical in shape and designed for

the optimum angle of subsonic diffusers. The performance of the subsonic

diffuser then depends on the inlet flow blockage only, according to Sovran

and Klomp (ref. 5). For flow after a normal shock, we would expect blockage

to be constant, independent of upstream conditions and thus the Cp of the
diffuser will also be considered constant.

For simplicity then we shall optimize the ejector for maximum pressure

after the normal shock. From this brief inspection of the problem it is clear

only one input parameter left unspecified can affect the losses in any meaning-

ful way and this is the secondary velocity or Mach number. First, the second-

ary flow velocity directly determines the mixing losses and the mixed gas Mach

number and, thus, the normal shock losses. Secondly, the secondary static

pressure is dependent on secondary Mach number which has a strong effect on

throat area. We proceed as follows:

I,et the normalized optimization parameter be

Us
e = -- (2)

Up
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Then the mixed gas velocitywill be

where

o

_=_
Ws

is the ejector mass ratio. The mixed gas Mach number becomes

2 2 1
z

The normal shock pressure ratio is thus dependent on the secondary static

pressure and we write the function to be maximized in two parts:

P3 = Pli_ P2

Pos kP2/N.S. Pos

where the normal shock pressure ratio

y+l _+i
.S.

and the secondary static pressure are dependent on 8.

P2 (l Us2) Ys/Ts-1Pos 2Hs

Defining the following functions:

e
01-1+--

82 £ el2

and the following constants:

_2
B-_ Up2

2H 2

A = ky---_ j B

e2 = 2Hs

m Up2
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we obtain

/ (14)

To obtain the condition for the maximum performance we differentiate with

respect to _ and set tile derivative equal to zero.

2A
= F(0) - -_ ol

dO A0 2 - 1

2B
--- 0

i Ys - 1 2

-
B_ 2 1 Ys

(15)

This equation is solved numerically using a Newton-Raphson technique.

The variation of optimum secondary Mach number with mass ratio is shown

in figure 9, from reference 6. At low mass ratio the secondary mass ratio

increases to Mach] while at high mass ratio the resu]ts tend toward the

class/ca] rule of thumb secondary Mach number of 0.2. The importance of this

parameter is shown in figure I0 also from reference 7, where a 50% increase in

performance, is obtained by doubling the secondary flow Mach number from the

classical Ms = 0.2.

Calculation of the Admittance of the Ejector

(Single Primary Nozzle)

in the previous discussion we found the best condi¢ions for minim/zing

tile ideal ejector losses. The ejector design will work only if the internal

,qdmittan,'e of the ejector is matched to the requirements of the diffuser. The

admittance is controlled by two factors the second throat area and the mixing

section contraction and length. It is most important to be able to calculate

the second throat area and we will proceed to formulate the solution to that

problem. The mixer design requires the calculation of the absolute entrain-

ment rate and is beyond the scope of the present paper.

"I'h_ ] calculation of the area of the second throat for a single primary

nozz1{. ,Iriver is based on the identification in the review section that

admittance [s optimized when the mixing zone just reaches the wall. In this

case the flow consists of two regions: first, the potential core and, second,

tlte shear layer. This condition is shown in figure 11. To calculate the area

of t l,e n],ear layer for the condition that all the secondary flow is entrained,

we make the following simplifying assumptions for the profile, first that the

turb,ilent Pr;_rMtl and Schmidt numbers are unity and second that the velocity

pr{}l if{. can be approximated by a cosine law. We then proceed as follows:

Shear layer profiles are:

Velocity U - Us

Up - Us
(16)
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wh e re

and

Total enthalpy

Primary fluid mass fraction

Secondary mass fraction

Y = (r - ri) (17)

h = (r o - ri) (18)

H - Hs = U - Us (19)

Hp - Hs Up - Us

U - Us

YP - Up - Us (20)

Ys = 1 - Yp

The conservation equations for the flows through the mixer are:

Cont[nuit X

Thrust balance

and

Tile static pressure Ps

(21)

ro o oW2 = 2_ purdr - Wp + Ws (22)

fo r°
F 2 = Ps_r_ + 271 ou2rdr (2 3)

F 2 = Fp + F s - Ps(,Trs - Pro) (24)

is computed from the admittance and optimum secondary
Mac[_ number.

puted fr.m tile one dimensional formula

_l':nj,y_3_y - ba Lance

The stream thrust of the primary and secondary flows are com-

F = PA(I + yM2nF)

° for°W2H 2 = 2_ ouHrdr

(25)

(2_)
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and

0 0 0

W2H ? = WpHp + WsHs (27)

The energy equation is not needed for the solution since only two unknowns

exist r i and ro. ]'he energy equation is a useful check sum of the

calculation.

Normalizing the equations facilitate solution letting

r= r O_E_ U-- , 0 = , 0 = -- and

rp pp Up '
n = _- (28)

h

We obtain a transformed continuity equation

2f._

r.i2 + ---k-_ I 2h2 ! (29)
+ -_y- 12 = i + _i

and tran,_4formed momentum equation

2rih

ri + ...._ [ 3

2h 2 0

+_ k = 1 + _7 (30)

where

(31)

(32)

(33)

(34)

The normalized continuity and thrust balance equation can be solved numerically

by the Newton-Raphson method.

Fixed-Geometry Performance

We ('an ('alcu[ate the ejector performance for any Ws by using the con-

servat ion equations since we know the ejector throat area and admittance,
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Pressure after the shock is computed as follows. Through the shock duct the

qu;mtity

o 'RT \ (i Y-I ) I/2W 2 |...tl I/2 M + _ M 2

N = "2-_- t--_-- / = l+yM 2 (35)

is conserved.

shock

where

We can solve this equation explicitly for Mach number after

K-M3 = l -- _-I<- / (36)

K = 1 - 2yN 2 (37)

we find pressure after shock from the formula

F2/A2

n3 - (38)
1 + 7Ms 2

This somewhat tedious method of computation does not require matched primary

nozz]e exit pressure and secondary static pressure. It also correctly accot,nts

for the larger area due to distortion. Thus, this analysis is aptly suited for

fixed geometry off design calculatlonq.

We can compute ejector-off design performance since the admittance allows

us t() calculate Pos for any Ws and all other parameters are known inc]ud-

ing 0 which is also constant.

The Critical Mass Ratio

The condition r i = 0 represents the last condition for which the ejector

falls in the high performance classification. Throat distortion rapidly

increases at lower mass ratios and the required throat area also increases

rapidly. The condition is

(39)

Comparison of Theoretica] and Experimental Elector Results

Design point characteristics of the s_ngle-drlven nozzle tested at UTRC

by Zump,_mo (re[. 1) are shown in table I.
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Overall agreement between the theoretical and experimental ejector

designs is very good. Particularly important is the power of using the dis-

torted profile for determining the actual ejector throat area. ]'his throat

area is critical to insuring the admittance is determined correctly and we can

compute the off-design performance. The entire operating range of the ejector

is shown in figure 12 and compared with the fixed-geometry calculation using

constant admittance. Also shown is the ideal performance computed for the one-

dimensional throat area. This performance deficit between the ideal perfor-

mance and the real performance dramatically illustrates the improvement avail-

able by eliminating the flow distortion.

While it is probably obvious that these results are not universal, note

that for every different choice of initial conditions the ejector design and

performance will be different.

Summary of Slngle-Nozzle Designs

Before considering ejectors with multiple-drive nozzles let us summarize

what we can do up to this point.

I. Calculate the second throat area for any design point that matches

the secondary flow admittance with ejector admittance.

2. Find the ejector with the minimum mass ratio for the design pressure

ratio.

3. Since area and admittance are known we can compute off-design perfor-

mance down to the critical mass ratio.

Multiple-lnjector Nozzles

We sha]I now discuss a heuristic method for determining the number oF

primary nozzles necessary to reduce the distortion of the flow. Reducing the

distortion means we can invoke the condition,

A t = Aidea I (at the design point)
(40)

First let us reexamine the two profiles with minimum distortion. In the

ideal case of uniform profiles no distortion exists. In the second case,

d_stortion is minimized when the mixing zone just reaches the wall, as in

figur_' ]3(a).

A fvature of note is the existence core with very high mass flux. This

feature is crucial in minimizing the overal] distortion.

Now let us consider the following series of overlapping mixin% zones ?

obtained by using multiple nozzles. As the geometry of the mix[n_ zones sbow,

?This pnrticular example is for Air-Air mixing at a mass ratio of 3.6.
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the first case tested in which the mixing zones do not destroy the core flow

is the case for five nozzles (fig. 13(e)). Based on the geometry of mixing

zone overlap in figure 13 we have a criteria:

"The minimum number of primary nozzles required to achieve ideal

area ratio is that number for which the mixing zones of adjacent

nozzles just osculate the potential core."

That this criteria is borne out in practice is demonstrated by the data of

figure 14 in which ejector performance is compared for i, 4, and 7 nozzles.

The performance of the single nozzle and the four nozzle drivers is practically

the same while a significant increase in performance is observed for the

7-nozzle driver. A similar improvement was noted for the 5-nozzle driver over

the single-nozzle driver of reference i.

Nonconstant Admittance of Multiple-Driver Nozzles

Multiple-driver nozzles now enjoy the condition

Areal = Aidea I (design point) (41)

whereas single-driver nozzles are required to operate with

Areal > Aidea I (42)

Unfortunately the condition of constant admittance cannot be fulfilled at all

off-design conditions since the condition

Areal < Aidea I (off design) (43)

occurs _in theory but in practice area is fixed in steel. Because of this,

another adjustment in operation is observed. This effect is shown in Fig-

ures ]5 and 16 for the five nozz]e primary driver steam ejector system of

reference 4.

In figures 15 and 16 the curves labeled 1 show the behavior of the mass

flow and area for the constant admittance condition. We can see the ideal

ar_,a required increases as the ejector operates off the design secondary mas,_

flow point. By applying the condition that

(P°S)rAreal

(P°s)iAidea I
= 1 (44)

the _ urves labeled 2 can be constructed giving a variable admittance which

do¢,s in fact reproduce the data point at Ws = 0.i ibm. The way in which this

[)ehavior influences the performance data is shown in figure 17.
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CONCLUSIONS

An elementary fluid mechanics analysis of chemical laser ejectors has

been accomplished. This analysis has been successful _n explaining the char-

acteristics of ejectors with single- and multiple-driver nozzles. As a result

a rational methodology has been developed which can be applied to design the

optimum ejector for specific application requirements without recourse to

unreliable empirical formulas.
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TABLE i.- COMPARISON OF DESIGN POINTS FOR SINGLE-DRIVER NOZZLE (AIR/AIR)

Mp al/2 _ e Ms At/An Aa

I
Experiment 4.46 15° i 3.6 --- 4.59 66.7

Theory 4.3 c 0 I 3.6 0.21 0.42 4.60 67.7
Theory 4.46 0 • 3.6 .21 .42 4.78 67.7

I

aNormalized admittance (see fig. 8).

(Pe/Pos)
crit

5-2 d
5.2
5.3 d

b

1_crit

i. 5b

1.4

1.4

bLast experimental data point given and presumed to be near breakdown.

_Nozzle Mach number with same thrust as M = 4.6 nozzle with 15 ° divergence
losses.

dperformance computed assumes subsonic diffuser Cp = 0.7.
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123



i

oO
(:1_

u.I

¢J)

w

Z

0
_J

rt_

Q
Z

0
LIJ

6

i

2 -

0 '

2

AI R-AIR EJECTOR

/,/.,=3.28

Pop=400 PSIA

Xn
- -8.75

DT

En = 16

Q)O0

0

__l

o
_- 0

5
oo

OO(3O0

SUPER CRITICAL SUBCRI TICAL
I I I I

4 6 8 10

0

12

Pe (PSlA)

Figure 2.- Ejector operating conditions.

124



D

Lu 4 -
I:z:::
:::)
o'3
(./3
LIJ

rt

2 -

MIXER ,j... SHOCK ._,_IFFUSER..)--p DUCT

AIR-AIR EJECTOR

F = 3.28 _'

P0p =400 PSi A _._"" _7_ _

En =16 .'_-" ? _::::)_:7_:7
,: 0

Xn
--= 7.42
OT

D_

o°

:7 B

O0 []
0

oo

[]

0

= I ! I I

8 -4 0 4 8

X
m

DT

Figure 3.- Ejector axial pressure distributions.

125



_.d

L,U

W

I--

l--"
m

a_

I--

c)

-1-
i--

4O

3O

20 -

10 -

AIR-AIR EJECTOR

En= 18

! I I I I

1.0 0.5 0 0.5 1.0

RADIAL POSITION r

r T

Figure 4.- Ejector throat pitot profile.

1 2 _)



0
I---

LU

LU

0
p---

r_

r_

Z
0
C_
LU

175

150

125

I00

75

LASER GAS-MONOPROPE LLANT

®

120 160

A

--21 ,A=5.11 'Pop :590

©A

A* =15,A=8.05,Pop=380

© A_ =15 A=8 05 Pop=590
A _ , . ,

I

200 240 280

SECONDARY FLOW (GMS/SEC)

Figure 5.- Ejector suc'tion characteristics.

127



400

r_
r_
CD
I--

300

L_J
r_

O0

ILl
n-"
Q-

200
_J

b--
o
l--

r_

o I00Z
c_

LAJ
O0

EXPERIMENTS

OCL II
OCL II
VCLV
O CLVl
A CL VIII
O CLXl
'_CL Xl

I I I

0 20 40 60 8O

"_D"V MS cm2 sec L

Figure 6.- Diffuser critical pressure recovery.

128



.012

_1 _°_ .008

.004

AIR-AIR EJECTOR

,LL -- 3.28

En----16

O Pop =300 PSIA

m Pop-600 PSiA

A _ _--,-I

_Z_l ^--x z ^,,A®
",_,__ t_ov

-16 -12 -8 -4 0

X

DT

Figure 7.- Effect of mixing length on ejector suction characteristics.

129



O- GL.

.016

.012

.0O8

.004

0

-0

AIR-AIR EJECTOR

XB
-8.75

DT
0

En=16 OZ_

SECONDARY

PRESSURE (3 A

OA
/X EXIT

_PRESSURE-

0

0
A

0 300 PSIA

A 600 PSIA

I 1 I

.2 .4 .6 .8

.020

.018

.016

.012

.008

0

Ws
m

Wp

Figure 8.- Effect on secondary flow on ejector performance.

L3()



1.0

oc:

oo
.8

Z

mm

n_ .6

:_ 4:2_ •

.2

I I I

LASER GAS EJECTORS

CURVE

1. Tos Ms
--= 1 --= 0.5
Top Mp

2. Tos Ms
- 4 - .31

Top Mp

3. Tos Ms
-.5 - .5

Top Mp
1

0 2 4 6 8

MASS RATIO

F_ure 9.- l_ffect of mass ratio on optimum secondary Mach number.

131



0

I.--

E]¢:

I.t.I

(,/3

a_

0
I--.
E_3
LI.J

I.l.I

B

3 -

2 -

0

LASER GAS-MONOPROPELLANT

Tos
_ .

Top

Ms = .5
Mp

I I I

.2 .4 .B .8

SECONDARY MACH NO. Ms

Figure lO.- Effect of optimization on ejector performance.

]32



r s

r o

P - - - - - SHEAR--- _i
_' _ _ _"_...= LAYER

I,'[gure 11.- Flow condition for computing throat area.

133



oq
0

CL

a-

LIJ

Z

r_"

C)
LL.

OC:

LO

a.

I---

C-)

UJ

=_

UJ

6

D

2 -

0

0

I

AIR-AIR EJECTOR

_CRIT

I

DESIGN POINT

0 DATA I E n = 16

I ° NO THROAT

DISTORTION
THEORY

SINGLE-DRIVER

NOZZLE THEORY

I I

2 4 6 8

MASS RATIO LL

Figure 12.- Off-design ejector performance.

] 34



(a) (b)

TESTED
TE

Cd)

(c) _TESTED

NOT TESTED

TESTED TESTED

(f)

Figure 13.- Multiple-nozzle- mixing zone Lnterfercnce.

[35



0

@)

ct

i---

ILl
I3C

0')
f./)

t:l-

0
I---

C_)
LLJ

LU

8
LASER GAS EJECTOR

En=13

0
0 _7

C,

0

4
8

MASS RATI 0 /u,

Figure [4.- Effect of number of driver nozzles on ejector performance.

136



LIJ
r_

C/)
¢,0

EL

...J

0
t"-

r_

C2_
Z
0

I.IJ

4

3

2

I

I

LASER GAS -

0 Pop = 685

P = 750
0p

En = 22.5

STEAM

CONSTANT

ADMI TTANCE

VARIABLE

ADMITTANCE-

EQN 44

.1 .2 .3 .4

SECONDARY MASS RATIO

Figure 15.- Suction characteristics of multiple-driver nozzles.

]37



Z
uJ

IJ.I

c]r
L,IJ
OC:

Z

__ W

(1) OC
W _
C::I

La_ CO

_C

0

AID
N

A REAL

! 8

1 6

! 5

! 4

1 3

1 2

! !

I 0

0.9

I I I

• CONSTANT
ADMITTANCE

VARIABLE

ADMITTANCE
EQUATION 44

2 ,.,^
v v v

! I I

.l .2 .3 .4

SECONDARY FLOW _/s \S-'_(Lbm)

Figure 16.- Ejector area requirements.

138



0

0-

6
0-

0

.oK

O0

O0

ILl

0-

O_

0

C_O

LU

W

12

I0

8

6

4

I I I

LASER

'F OPop = 7(O;uPERCRi T i CAL)

I I I I

2 4 6 8 lO

F i gure t7,-- Performance

MASS RAT II3 /J.

of multiple-driver nozzle ejector.

1 3 9


