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SUMMARY

The Quiet, Clean, General Aviation Turbofan (QCGAT) engine and

nacelle system was designed and tested by the AiResearch Manu-

facturing Company of Arizona under Contract to NASA Lewis Research

Center. The engine utilized the core of the AiResearch

Model TFE731-3 engine and incorporated several unique noise- and

emissions-reduction features. Major performance, emissions, and

noise goals were demonstrated, and the engine and nacelle were

delivered to NASA Lewis Research Center for additional testing.

INTRODUCTION

The design features of the QCGAT engine, airplane and nacelle

are described in this paper. Test programs and results of the

engine performance, emissions, and noise tests are discussed in

subsequent papers.

An isometric cutaway of the QCGAT engine in a flight-type

nacelle is shown in figure i. The engine was designed around the

core of the AiResearch Model TFE731-3 turbofan engine. This engine

is a production unit used in several domestic and foreign business

jets. The engine consists of the TFE731-3 high-pressure (HP) spool

and low-pressure (LP) compressor, plus several unique and new com-

ponents including a low-speed fan, a fan gearbox, associated ducts

and structure, a reduced-emissions combustion system, and an LP tur-

bine.
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An airplane design, synthesized by Garrett in order to evaluate

the QCGAT Engine, was selected to be similar to business jets using

Model TFE731 Engines, but somewhat larger, thus taking advantage of

the higher thrust level.

Two nacelles were designed for the program:

o A production flight-weight nacelle featuring integral

acoustic treatment

o A 'workhorse' nacelle, fabricated especially for this

test program and featuring replaceable inlets, acoustic

panels, and a special mixer compound nozzle.

An overall task schedule is shown in figure 2. The QCGAT

Phase II experimental program was divided into ten major tasks.

These culminated with delivery of an engine, associated test sup-

port equipment, and spares at the end of 25 months. As experienced

with most hardware-oriented programs, difficulties and delays were

experienced with design iterations and fabrication schedules. How-

ever, the test program was accelerated, and the engine was shipped

on schedule.

The technical goals for the program are listed in table I.

Performance goals represented a TSFC improvement of approximately

9 percent over other turbofan engines. The noise goals were 10- to

15-EPNdB below the Federal Aviation Administration's FAR Part 36

requirements. The emissions goals were identical to the EPA 1979

standards for T-I class engines. (The EPA subsequently determined

that general aviation was not a significant source of air polution

and therefore did not impose these standards).
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ENGINE DESIGN

The principal program objective was to demonstrate the appli-

cation of large turbofan noise- and emissions-reduction technology

to small general aviation turbofans. To do this, a number of

unique features were incorporated in the basic design of the QCGAT

engine in order to reduce the emissions and noise levels below

those of the already quiet TFE731 engine. This work was initiated

in 1975 during the QCGAT Phase I study. Twelve candidate engine

configurations were screened. Many parameters were considered,

including:

o

o

o

o

o

o

o

o

o

o

Fan pressure ratios at takeoff and cruise

Thrust

TSFC

Lapse rate

Fan diameter

Installed weight

Noise

Nacelle drag

Acoustic shielding

Cost.

The engine cycle selected for the program represented a practical

engine from the standpoints of cost, weight, airplane/nacelle

interference drag, and cruise propulsion efficiency. The engine

also exhibited high potential for reduction of turbomachinery and

jet noise, and reduction of chemical and visible exhaust emissions.

The design point for the engine (typical for most modern business

jets) and principal engine cycle parameters are listed in table 2.

Figure 3 is a cross-section of the overall QCGAT engine

design. The QCGAT engine is based on the core of TFE731-3, but
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incorporates a fan used in the AiResearch Model ATF3 engine. The

fan is driven by a new low-pressure turbine via a newly designed

five star-gear gearbox. The low-pressure compressor is driven

directly by the low-pressure turbine. The HP spool consists of a

centrifugal compressor driven by a cooled axial turbine. The com-

bustor is an adaptation of a production TFE731 combustor that was

designed for low smoke. Accessories and the fuel control are

driven by the HP spool through a tower shaft. A finned heat

exchanger in the fan bypass duct cools the oil for the fan gearbox

and engine lubrication system. The flange-to-flange length of the

engine is 143.15 cm (56.36 in.) and the fan diameter is 77.47 cm

(30.5 in.). When fully instrumented and wet, the test engine

weighs approximately 426.38 kg, (940 ib). Figure 4 shows the

engine in the test cell prior to initial calibration.

The major acoustic design features of the QCGAT engine and

nacelle system are shown in figure 5 and outlined below:

o No inlet guide vanes

o High inlet throat Mach number

o Low tip speed, single-stage fan (36 blades)

o Phased inlet acoustic treatment

o Optimized fan blade-to-stator vane count

o 2.12 rotor-chord, fan-to-stator spacing

o Phased fan bypass duct acoustic treatment

o Low fan jet velocity
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o Reverse-flow annular combustor

o High-work,

velocity

low-pressure turbine with low core-exhaust

o 12-1obe mixer compound nozzle.

With the possible exception of the reverse-flow combustor and

the mixer compound nozzle, each of these features above is based

on work done with large engines and is a direct application of that

technology.

COMPONENT DESIGNS

The QCGAT fan (fig. 6) is a 36-blade design derived from the

fan used on the AiResearch Model ATF3 Turbofan engine. The princi-

pal design features are given on table 3 with the design point at

12,192 m (40,000 ft), standard day at a flight Mach number of 0.8.

This fan is approximately 10-percent larger in diameter than the

TFE731 fan, and rotates at 17-percent slower speed. Thus, fan tur-

bomachinery component noise levels are lower. The fan-stage

flow path (fig. 7) was designed to minimize the core-flow Mach num-

ber and to prevent large accelerations in the strut regions. Abso-

lute local Mach numbers, and blade and vane counts are also shown.

The bypass stator location is slightly more than two rotor-chord

lengths downstream. The vane counts of both stators were selected

to minimize rotor and stator noise interaction. The bypass perfor-

mance map (fig. 8) shows the engine operating lines for co-

annular nozzle and mixer compound exhaust nozzle from idle through

takeoff. Slightly greater surge margin was achieved with the mixer

compound nozzle. A fan component rig test was not conducted. How-

ever, adequate data was available from the Model ATF3 fan rig tests,
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and actual QCGAT engine operation to define the QCGAT fan for the

engine performance model.

The fan gearbox (fig. 9) is similar to that of the TFE731.

However, the overall gear ratio was changed from 0.5559 to 0.4634

to match lower fan speed. Resilient mounts were incorporated on

the star gears to maintain gear alignment during high-torque loads.

The star-gear shafts were precision ground to form the bearing

inner race, and the star gears were counterphased and nonfactored.

The gear reduction system transmits in excess of the 2.74 MW

(3675 hp) required for the QCGAT engine, and has been designed for

life greater than 5000 hours at higher power.

The fan support structure (fig. i0) includes the fan support

housing, intermediate case, and the engine support housing (main

engine mount), as well as the fan gearbox and fan itself. These

components were designed to survive a 1.8-kg (4-1b) bird strike at

a velocity of 250 knots and the loss of two adjacent fan blades

(but not simultaneously). Finite-element stress analyses were per-

formed on the major structural pieces for the loads listed in

table 4. Stress isopleths and displacements are shown in fig-

ure ii.

The low-pressure compressor, high-pressure compressor, and

high-pressure turbine are standard components of the TFE731-3

engine and were used without design changes. The design-point

characteristics of these components are listed given on table 5.

The LP turbine, which drives the fan, and the low-pressure

compressor, is a 3-stage shrouded axial design. The QCGAT engine

design-point operating conditions are given in table 6. Several

critical constraints were imposed on the design of the turbine.

Since the QCGAT engine was based on the TFE731 core, the overriding

ground rule was to minimize changes to existing TFE731 hardware.
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Because the QCGAT low-pressure turbine is larger in diameter and

axially longer than that of the TFE731, it was necessary to design

a gas flow path that would not cause disruption of airflow distri-
bution in the combustor plenum. Location of the TFE731 aft turbine

bearing was retained. The unusual shape of the third-stage disk

(fig. 12) was the result of this latter constraint. Since LP spool

speed is fixed by the TFE731 LP compressor, the larger turbine

represented a major design challenge from the standpoints of
stress, vibration, blade flutter, life, and materials. In addi-

tion, use of the 12-1obe compound mixer nozzle required low exit

swirl angles. Total-to-total efficiency goal was set at 90 per-
cent. As a result of these constraints, numerous compromises were

necessary during design. Although it is not feasible to include the
detailed results of all aerodynamic, thermodynamic, and mechanical

design analyses in this report, all constraints were satisfied,

including that of efficiency.

It was originally intended to use only a hydromechanical con-

trol system for the QCGAT engine. However, because the hydro-
mechanical unit is considered a backup system on the TFE731, it was

decided to use a production TFE731 electronic control system as

the primary control. The control (fig. 13) is a full-authority

system providing speed control, overtemperature, and overspeed

protection under all operating conditions. These include start,

transient, and steady state. A comparison of QCGAT engine char-
acteristics and the TFE731-3 was made to determine if modifications

were necessary to the existing computer. This comparison showed

that the basic logic was satisfactory, and the adjustment ranges

were adequate.

The QCGAT combustor (fig. 14) is a version of the TFE731

burner in production at the initiation of the program. In-house

modifications for the TFE731 engine, which consisted of hole-

pattern variations for smoke reduction, were incorporated in the
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QCGATengine. During engine testing, emissions were controlled with

a system adapted from the NASA/AiResearch T1 Pollution Reduction

Technology Program. Air was supplied to the secondary fuel nozzles

at the taxi-idle power setting only. This aided the fuel atomiza-

tion process (see fig. 15). At all power settings except taxi-idle

condition, the fuel was reconnected to the secondary fuel circuit.

An air-assist system was not used. (This system is discussed in a
subsequent paper.)

Accessories for engines like QCGAT and the TFE731 normally
consist of customer-furnished equipment. The accessory drive gear-

box, shown at the bottom of the engine in figure 16, provides mounting
pads and drives on the forward side of the gearbox for a hydraulic

pump or similar equipment. These items not normally required for
airplane service were not supplied with the QCGATengine. A starter-

generator was furnished, and although not shown in figure 16, mounts
on the pad occupied by the laboratory air-turbine starter.

QCGATAIRPLANE DESIGN

The airplane synthesized for the engine was based primarily on
the Learjet 35/36, although it also had minor features found on other

b?siness airplane using TFE731 engines. The major differences

between the AiResearch QCGATairplane (fig. 17) and the Learjet 35/36

are the elongated fuselage to increase payload (passenger)
capacity, a slightly higher wing loading, and the relocation of the

horizontal tail. The increased payload was possible because of the

higher-thrust engines. The increased wing loading was the conse-

quence of the combined wing and flap configuration. The horizontal

tail was moved to avoid engine exhaust. The airplane definition

had two principal objectives: First, to provide an airplane that
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utilized the installed thrust of the QCGATengine to produce take-

off and approach flight profiles for which noise estimates could be

computed for sideline, takeoff, and approach FAR Part 36 measure-
ment locations shown in figure 18. Without a well-defined airplane

configuration, it would not have been possible to make realistic

and consistent comparisons of in-flight noise levels. The second

objective was to represent a viable airplane with respect to its

ability to transport passengers and cargo with a fuel efficiency

comparable to current business-jet airplane. At maximum takeoff

gross weight of 8,674 kg (19,122 ib), the 12-passenger AiResearch

QCGAT airplane takes full advantage of the higher thrust of the

QCGAT engine, yet meets the noise goals at all three FAR Part 36
measurement locations.

Table 7 gives the principal airplane design parameters. As
listed in this table, the wing incorporates double-slotted flaps

for good low-speed performance. The relatively high wing loading
of 354.5 kg/m 2 (72.6 ib/ft 2) assures a smooth ride comparable to

commercial jets.

The takeoff profile presented in figure 19 shows lift-off after
a takeoff roll of 914 m (3000 ft) and, at 6.48 km (3.5 nmi) from

brake release, an altitude of more than 1,067 m (3500 ft) with

thrust cutback and approximately 1158 m (3800 ft) with full

thrust. As indicated on the payload-range chart, (fig. 20), the

QCGAT airplane with a maximum payload of 1231 kg (2714 Ib) has a

maximum range of 3445 km (1860 nmi). This would allow the air-

plane to fly non-stop from Phoenix to New York City at an altitude
of 1524 m (5000 ft) with more than 30 minutes reserve fuel.
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NACELLES

During preliminary design tasks, two nacelle designs were

selected; a flight nacelle and a workhorse nacelle. Only the work-
horse nacelle was carried through to detail design and fabrication.

The flight nacelle was used primarily to look at airplane installa-
tion characteristics and weight estimates.

The flight nacelle (fig. 21) incorporated integrally phased

acoustic treatment in the inlet barrel, the inner and outer bypass
duct, and the aft fan duct. It also incorporated the extra nozzle
mixing length for the core exhaust mixer. The workhorse nacelle

essentially duplicated the internal aerodynamic design and acou-

stical treatment of the flight nacelle except for a section in the
area immediately aft of the fan that had no acoustic treatment in

the flight nacelle. The weight of the flight nacelle was estimated

at 134 kg (295 ib). The total installed propulsion system weight
was estimated at 513 kg (1130 ib).

A cross section of the workhorse nacelle is shown with the

engine in figure 22. This nacelle was designed to provide maximum

test configuration versatility for the QCGAT engine. Figure 22

also shows the basic component arrangements. The principal compo-

nents include the inlet barrel, that accommodates a flight-

simulator lip, a conventionally shaped nacelle lip, the inner and

outer bypass ducts located opposite the engine hot section, the aft
barrel, the core mixer, and the nozzle.

The inlet barrel (fig. 23) incorporates two sets of inter-

changeable duct liners--one set of acoustic-treatment panels and
one set of hardwall panels, as well as the two different inlet

lips. The flight-simulator lip (fig. 23) is designed to control

and direct the inlet airflow, thus simulating actual flight condi-
tions. The conventional nacelle lip is installed on the engine as
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shown in figure 24. The inlet barrel was designed for high-inlet
recovery at a relatively high-throat Mach number of 0.79 at cruise

(fig. 25). When the inlet barrel is removed, a reference bellmouth

assembly can be installed directly on the engine inlet flange.
Detailed performance tests were conducted with the bellmouth and

will be discussed later.

The inner and outer bypass duct section (fig. 26) also incor-

porated two sets of duct liners--acoustical-treatment and hardwall

panels. As in the inlet barrel, these replaceable panels were in

180-degree sections and were radially adjustable so that the flow-

path continuity could be controlled. The outer bypass duct con-
tained a faired service strut that provided for extensive pressure

and temperature instrumentation, as well as support of the aft sec-

tion of the engine. The aft flange of the outer bypass duct was
common to two nozzle schemes--the mixer compound nozzle and the

coannular nozzle. Figure 27 shows half the outer bypass duct sec-
tion removed. The service strut is visible, and the core section

of the coannular nozzle is installed.

A 12-1obe core mixer (fig. 28) was designed for the AiResearch

QCGATengine to improve both performance and takeoff noise. With

the mixer compound nozzle, a 1-percent TSFC improvement in sea-

level performance was demonstrated. A 3.2-percent TSFC improvement
at cruise was estimated based on mixer model and engine tests. A 3-

to 5-EPNdB reduction in takeoff noise from the coannular configura-

tion was achieved with the mixer compound nozzle. As shown in

figure 29, smoke traces on the mixer centerbody indicated that the

mixer compound nozzle was performing as predicted. Similar smoke
traces were observed in the nozzle section downstream of the mixer.

The final sections of the workhorse nacelle assembly (fig. 30)

are the aft barrel, which has hardwall and acoustic panels, and the
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nozzle. These sections are used only when the mixer is installed.

They are removed when the coannular nozzle system is used.

The complete workhorse nacelle assembly is shown in figures 31

and 32. These figures show the engine mounted on the test stand at

AiResearch's remote desert test facility in the San Tan mountains,

southeast of Phoenix.

CONC LU S ION

The following points summarize the design of the AiResearch

QCGAT engine and nacelle system:

o An existing turbofan engine core was utilized for an

experimental demonstrator engine. This was a requirement

of the original problem statement and was particularly

important with respect to minimizing costs and maximizing

reliability.

o Several unique components were successfully adapted to

this core: fan, gearbox, combustor, low-pressure tur-

bine, and associated structure. These components formed

the basis for meeting the main program objective demon-

strating the application of large turbofan engine design,

emissions, and noise technology in small general aviation

turbofans.

o A highly versatile workhorse nacelle incorporating

interchangeable acoustic and hardwall duct liners,

showed that large-engine attenuation technology could be

applied to small propulsion engines. The application of

the mixer compound nozzle demonstrated both performance

and noise advantages on the engine.
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The QCGAT program made several significant contributions to

general aviation propulsion:

o Application of exhaust-emissions reduction techniques.

i. Hydrocarbon and carbon monoxide goals were met.

2. Nitrogen oxides were greatly reduced.

o With the aid of NASA, improved small engine noise-

analysis techniques, including core noise and static-to-

flight correlations, were developed.

o Major noise reduction, beyond that of an already quiet

engine, was obtained. The AiResearch QCGAT engine is

significantly quieter than any other business jet engine.
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TABLE i. AIRESEARCH QCGATENGINE, TECHNICAL GOALS.

A. Performance

Takeoff (SLS,ISA)

o Uninstalled

o Installed

Cruise

[12,192 m (40,000 ft), M = 0.8]

o Uninstalled

o Installed (with mixer nozzle)

Thrust TSFC

N kg/N.h

(ibf) (ibm/hr/Ibf)

17,512 0.0426

(3,937) (0.418)

17,312 0.0431

(3,892) (0.423)

3,954 0.0775

(889) (0.760)

4,017 0.0759

(903) (0.744)

Bo Noise (FAR Part 36)

Takeoff

Sideline

Approach

EPNdB

73.3

82.3

87.3

Co Emissions (EPA 1979 Standards T-I)

Hydrocarbon (HC)

Carbon Monoxide (CO)

Oxides of Nitrogen (NOx)

Smoke Number

EPAP

1.6

9.4

3.7

38.0

D. Weight

kg

(ibm)

377

(832)

E. Life

hr

i0,000
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TABLE 2. QCGAT CYCLE PARAMETERS.

Design point .............. 12,192 m (40,000 ft),
M = 0.8, ISA

Thrust ................. 4,017 N (903 ibf)-

installed

TSFC .................. 0.0759 kg/N.h

(0.744 ibm/hr/ibf)

Bypass ratio .............. 3.71

Fan pressure ratio ........... 1.62

Cycle pressure ratio .......... 17.7

Turbine inlet temperature ....... 1,266K
(i,820°F)

Corrected fan airflow ......... 77.8 kg/s

(171.6 ib/sec)

Corrected core airflow ......... 11.5 kg/s

(25.4 ib/sec)

TABLE 3. QCGAT FAN DESIGN FEATURES.

At Design Point--12,192 m (40,000 ft, 0.8M, ISA).

Diameter ............ 77.5 cm (30.5 in.)

Radius ratio .......... 0.46

Inlet corrected airflow .... 77.8 kg/s (171.6 ibm/sec)

Bypass ratio .......... 3.7

Bypass pressure ratio ..... 1.62

Core pressure ratio ...... 1.55

Inlet tip relative Mach No. . 1.39

Inlet corrected tip speed 6.985 m/s (1375 ft/sec)
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TABLE 4. QCGAT DESIGN LOADS.

Item Description

Fan support

Intermediate case

Engine support

housing (main engine

mount)

Radial Load

N

(ibf)

289,134

(65,000)

289,134

(65,000)

289,134

(65,000)

Moment Load

J

(ibf-in.)

832,473

(614,000)

1,128,041

(832,000)

Fan Thrust

N

(ibf)

14,679

(3,300)

14,679

(3,300)

14 ,679

(3,300)

Bird

Strike

Torque

J

(ibf-in.)

454,199

(335,000)

454,199

(335,000)

TABLE 5. MODEL TFE731-3 ENGINE COMPONENTS,

DESIGN POINT CHARACTERISTICS.

Design Point

Parameters

Type

N/

P/P

W /

Tinlet

Low-Pressure

Compressor

Four-stage

axial

2,094 rad/s

(20,000 rpm)

4.27

ii.ii kg/s

(24.5 ib/sec)

High-Pressure

Compressor

Single-stage

centrifugal

2,295 rad/s

(21,917 rpm)

2.57

2.99 kg/s

(6.60 ib/sec)

High-Pressure

Turbine

Single-stage

cooled axial

1,406 rad/s

(13,431 rpm)

1.832

2.129 kg/s

(4.693 Ib/sec)

1,329K

(I,933°F)
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TABLE 6. QCGAT LOW-PRESSURE TURBINE.

Engine Operating Conditions at Design Point:

Cruise Mach No. 0.8 at 12,192 m (40,000 ft), ISA

Max flow rate

Speed

Specific work

Pressure ratio

(total-to-total rating) - 5.707

Efficiency
(total-to-total rating) - 90.2%

5.055 Kg/s
(11.145 ibm/sec)

2,118.0 rad/s
(20,229 rpm)

406.515 kJ/kg
(174.77 Btu/ibm)

TABLE 7. AIRESEARCH QCGAT AIRPLANE PARAMETERS.

Wing area .................... 24.49 m 2 (263.6 ft 2)

Sea level static thrust

(Installed-ISA + 283.15K (273.15°C) ....... 16,845 N (3,787 ibf)

Flaps ...................... Double-slotted

Flap span/wing span ............... 0.700

Sea level static thrust/takeoff gross weight
lISA + 283.15K (273.15°C)] ............ 0.396

Takeoff gross weight with respect to wing area . . 107.97 Kg/m 2 (72.55 ibm/ft 2)

Capacity (crew + passengers) ........... 2 + 12

Operating weight empty .............. 4,808 Kg (10,599 ibm)

Takeoff gross weight ............... 8,674 Kg (19,122 ibm)

Maximum ramp weight ................ 8,787 Kg (19, 372 ibm)

Maximum fuel weight ................ 3,152 Kg (6,948 ibm)

Maximum useable fuel ............... 3,140 Kg (6,922 ibm)

Maximum payload .................. 1,231 Kg (2,714 ibm)

Maximum landing wiehgt .............. 6,775 Kg (14,936 ibm)

Zero fuel weight with maximum payload ...... 6,021 Kg (13,273 Ibm)

Fuel weight with maximum payload ......... 2,766 Kg (6,099 ibm)

Payload with maximum fuel ............ 846 Kg (1,865 ibm)
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Figure i. AiResearch QCGATEngine.

SYSTEM DEFINITION

ENGINE SYSTEM DESIGN

COMPONENT ANALYSIS, DESIGN, AND TEST

ENGINE SUBSYSTEMTESTS

ENGINE SYSTEM AND TSE ASSEMBLY

NACELLE DESIGN AND FABRICATION

ENGINE-NACELLE SYSTEM TESTS

ENGINE-NACELLE DELIVERY TO NASA

PROGRAMMANAGEMENT

AIRESEARCH PARTICIPATION

1977

r-
E

r--

1978

]

)

1979

r--'l

i

Figure 2. AiResearch QCGAT Schedule.
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Figure 3. Cross Section of AiResearch QCGAT Engine.

Figure 4. AiResearch QCGAT Engine.
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Figure 5. Major Acoustic Design Features
of the QCGAT Engine Nacelle.
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Figure 6. QCGAT Fan Rotor.
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Figure 8. Estimated Performance of AiResearch
QCGAT Engine.
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Figure 9. QCGATFan

_.7i:i_-- _

i

Gearbox.
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Figure i0. QCGAT Fan Support Structure.
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Figure Ii. Fan Support Structure Stress and Loads.
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Figure 12. QCGAT Low-Pressure Turbine.
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Figure 13. Electronic Fuel Control Computer.

Figure 14. QCGATCombustor.
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PRIMARY
FUEL FLOW |

QCGAT LOW-SMOKE
COMBUSTION LINER
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Figure 15. QCGAT Combustor Air Assist System.

Figure 16. Front View of QCGAT Engine.
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LENGTH
WING SPAN
HEIGHT
WING AREA
MAX T.O.G.W.
MAX PAYLOAD

17.60 m (57.75 FT)
12.95 m (42.5 FT)
4.12 m (13.5 FT)
24.49 m2 (263.6 FT 2
8,673.6 kg (19,122 LB)
1,231.0 kg (2,714 LB)

0000_

Figure 17. AiResearch QCGAT Airplane.
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Figure 18. QCGAT Airplane Noise Goals.
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Figure 19. AiResearch QCGAT Airplane Takeoff Profile.
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Figure 21. QCGATFlight Nacelle.

i

f

Figure 22. QCGAT Workhorse Nacelle.
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Figure 23. Inlet Barrel.

Figure 24. QCGAT Engine with Nacelle Inlet Lip.
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Figure 25. QCGAT Inlet Recovery Characteristics.
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Figure 26. Workhorse Nacelle Inner

and Outer Bypass Duct.
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Figure 27. Workhorse Nacelle--Service Strut.

Figure 28. QCGATMixer Nozzle.
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_ii!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii_!_

Figure 29. QCGAT Mixer Nozzle.

Figure 30. QCGAT Nacelle Aft Barrel and Nozzle.
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Figure 31. QCGATNacelle Assembly Fully
Installed in Test Stand
(Side View Looking Forward).

Figure 32. QCGATNacelle Assembly Fully
Installed in Test Stand
(Side View Looking Aft).
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