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INTRODUCTION

The intent of this paper is to review recent Rotary Engine Developments

relevant to a Stratified Charge Rotary Aircraft Engine. In addition, present

status of the NASA-funded Advanced Aircraft Engine Study, which is currently

underway, will be briefly described.

Background Work

Although Curtiss-Wright designed their first Wankel-type Rotary Engine in

1958 and ran this engine in early 1959, developments continued into 1962 before

a reliable, durable and efficient baseline engine was demonstrated.

The first Stratified Charge trials were made that same year, directed

towards a multi-fuel military engine. During the mid-60's period, two proto-

type Stratified Charge Rotar_ Engines were designed, built and developed

through the early operational test stand stage (ref. i). The RC2-60UI0 (figure

i) was a liquid-cooled two rotor vehicular engine in the 160 , 200 HP class

and the RC2-90 (figure 2) an air cooled 300 HP helicopter drone engine. The

trochoid dimensions of these engines was the same as the 1958-designed 60 cubic

inch single rotor engine (the RCI-60), but the rotor width was increased 50%

for the RC2-90. Both engines proved their multi-fuel capabilities, but neither

could match the fuel economy of our carbureted RC2-60U5 automotive prototype

engine of the same era, which was comparable to existing automotive engines

(ref. 2). Furthermore, the RC2-60UI0 performed well at the lower powers and

speeds, with shortcomings apparent at the other end of the operating regime,
whereas the 90 cubic inch combustion configuration was subsequently developed

to meet high power goals, only to show low end deficiencies. In both cases,

however, the engines showed sufficient technical promise for their specific

designed applications, but as a result of changes in military planning, the

intended uses did not materialize and development was shelved.

Although thermal efficiency equal to our homogeneous charge Rotaries was

never demonstrated with these engines, the inherent compatibility of the Rotary

geometry with unthrottled and direct chamber injected Stratified Charge combus-
tion led some to believe that the potential for superior performance had to be

there. Figure 3 illustrates how the Rotary provides the required repetitive

scheduled turbulence, without losses, while direct chamber injected recipro-

cating engines have to generate the required velocity gradients at a cost of
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both volumetric and mechanical efficiency, further widening the specific power
advantage of the Rotary.

Following the fuel crises of 1973, R&Defforts were reinitiated in an
attempt to resolve whether or not this higher efficiency potential really ex-
isted. This time, our feasibility trials were directed towards automotive appli-
cations which meant not only wide power and speed range flexibility with fuel
economy,but low or controllable emissions as well. Since hydrocarbon emissions
at the very low speeds and powers typical of an automotive operating regime had
proved the most difficult area for the homogeneouscharge Rotary, new configura-
tions were screened on the basis of road-load brake specific fuel consumption
(BSFC)and brake specific hydrocarbons (BSHC). The 1973 attempt to combine the
best features of RC2-60UIOand final RC2-90injection/ignition designs into a
single configuration which could run full range was successful and, for the
first time, achieved better fuel consumption, on a variety of fuels, than the
gasoline carbureted engine. This design improvement led to, in 1974, a more
flexible arrangement whereby a separate pilot nozzle, with relatively small fuel
flow, is used to trigger combustion. This design, shownin figure 4, uses a
multi-hole main nozzle, located close to the trochoid surface to modulate fuel
flow in response to power demand.

A numberof variations of this basic approach were tested during the 1975
and 1976 periods of increased R&Dactivity and the results showedthat the
localized and controlled combustion could produce low "raw" hydrocarbons. The
test findings did indicate, however, that increased rotor combustion pocket
temperatures were required. In this case, these temperatures were achieved by
use of an air-gap insulated surface plate attached to the rotor combustion face.
The results, for two successive 8.5:1 compression ratio hot rotor designs
(figure 5) show that the best of these was able to match the shadedarea which
represents modern automotive engine untreated HClevels. Thesedata also illus-
trate that the results were similar for the different fuels tested. Although
BSFCvs. BMEPalso showedrelatively small differences with these fuels there
was no significant reduction of BSFCwith the increased rotor temperatures used
to reduce BSHC.

This early test work indicated that further HCreductions are possible with
moderate intake throttling at the very low power/speed end of the regime and by
an increase of compression ratio. Accordingly, the first test on the RCI-60
since interruption of the automotive-directed activity between early 1977 and
the present, is now being run with a i0:i compression ratio rotor. Since this
compression ratio increase will also improve SFC, it is germaneto look at the
comparative trends. The test evaluation, which started in October, has not yet
completely covered the nozzle-matching and injection dynamics sorting out pro-
cess. Preliminary data, presented on an Indicated basis in figure 6, shows some
promise; however, gain on a brake basis will be slightly less as a result of
somefriction increase.

The 1976 specific fuel consumption baseline curves (8.5:1 compression ratio)
are shownin figures 7 and 8. Figure 7 comparesresults, for the samedesigns
that demonstrated low hydrocarbons, to data which are representative for full-
sized European automobiles poweredby Diesel engines. Figure 8 adds other
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speeds and comparesVWsub-compact "Rabbit" Diesel 4 cylinder engine data de-
veloped for DOT(refs. 3-5). The relative sizes and weights of the comparable
output VolkswagenDiesel 6 cylinder engine and a Stratified ChargeRotary engine
are shownin figure 9.

The "cast iron rotor housing" curve illustrates the type of SFCimprove-
ment that was attained with a moderate increase of trochoid surface temperature.
While a cast iron rotor housing was used for this test exploration, the tem-
peratures tested do not preclude use of aluminum. Further work is required to
define gain at higher levels.

It follows that if one can match the swirl or pre-chamber diesel on an en-
gine-for-engine fuel consumption basis, then the smaller dimensions and reduced
bulk has to meanbetter total vehicle system fuel efficiency. Furthermore, it
is significant to note that Texaco has developed data (refs. 6, 7) to show that
the United States would be able to obtain more usable Btu's per barrel of crude
oil if the refineries were optimized to produce a broad base middle distillate
fuel.

Testing of Other Sizes

The combustion efficiency shownfor the automotive sized module is of
interest for other applications only to the extent that the sametechnology can
be scaled to the sizes required for the particular application. The scaling
flexibility of the homogeneouscharge engine has been demonstrated adequately
over a per rotor displacement range of about 500:1 and 1 to 4 rotors but until
1978, Stratified ChargeRotaries with the current full-range design features
had not been run in any other size. The earlier configurations (figure 2) had
been run in the wider rotor 90''3 chamberand shownthe samethermal efficiency
(ISFC) as the RCI-60 (ref. 8).

In early 1977 the RCI-60 testing program was deferred for Engineering ac-
tivity on a larger 350 cubic inch module. The 350 cubic inches per rotor was
achieved by enlarging the trochoid by approximately two-thirds and widening
rotor proportions by 25 percent.

The sametechnology and basic configurations developed in the RCI-60 were
used for the 350 cubic inch engine, including a "reversed" configuration (ATC
pilot) where the pilot and main nozzle relative position (BTCpilot) shownin
figure 4 are interchanged. As of the end of 1976, this reversed design had
showedpromise but had not been evaluated to the point where it had surpassed
the BTCpilot. The output targets for the larger engine were all established
from the RCI-60 test results.

Although emissions will be measuredsubsequently in the program, none have
been evaluated up to this point which has thus far concentrated on basic con-
figuration and systems evaluations. The fuel economyand power milestones for
this program to develop a military engine which, similar to an aircraft engine,
emphasizes the higher output spectrum have all been met to date. Nonetheless,
a comparison of excerpted basic performance results is of interest for those
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phases of technology which are directly applicable and because of the illustra-
tion of scaling effects that it affords. Although the result comparisons will
be from RCI-350 test results, the complete 4 rotor engine, the RC4-350, is shown
in figure i0 for related interest in a multi-rotor engine.

The baseline performance work on the 1-350 engine has also been conducted
with the sameinserted rotor design and an 8.5:1 compression ratio, although
higher compression ratio rotors will be evaluated in the near future.

The larger module size has the general advantage of more available space to
accommodatenozzle variations within a given rotor housing and, operationally,
is less constrained by spray impingementon the rotor and housing surfaces.
There are other advantages to the larger combustion chambersize, which include
reduced sealing line and leakage area ratio to charge volume, a similar favor-
able ratio for heat losses, and the sametype of reduction in FMEPwith scale
that is generally observed with reciprocating engines.

To facilitate a direct comparison, the current available data for the two
engine sizes, both having the design configuration shownin figure 4 (BTCpilot)
are comparedon an Indicated basis and equivalent (sameapex seal velocity) RPM
in figure Ii. From figure Ii it can be seen that the RCI-350 and RCI-60 are
very close at the lower IMEP's, whereas the 1-60 data shows lower ISFC (or
better thermal efficiency) at the higher loads, indicating further probable im-
pr0vements for the larger engine. The difference is believed to reflect the
concentration of effort at this speed for the smaller engine, in view of its
automotive significance, whereas the low speed range of the larger engine is of
less interest for current applications. For the reasons just stated there is
less available RCI-60 data at the higher speeds, but what is available suggests
that the thermal efficiencies are reasonably close for both engines.

Figure 12 comparesthe RCI-350 data of figure !i plus available RCI-350
data for the "reversed" configuration (ATCpilot) mentioned earlier, versus F/A
ratio. The observed data shows that for a given mixture strength the RCI-60
develops higher IMEP's at equivalent speed, which would imply more effective air
utilization. This IMEPtrend maybe misleading because the engines were not run
with similar induction systems. If the IMEPdata is "normalized" by correction
to an equal volumetric efficiency basis (which has little effect on other plot-
ted variables), the RCI-60 and RCI-350 with BTCpilot are very close and the
RCI-350 with ATCpilot is slightly higher at the increased power end. The
higher thermal efficiency of the RCI-350 ATCpilot does not say that the differ-
ences noted will necessarily hold for the RCI-60 size but it does imply that
there is additional potential to be realized.

Figure 13 showsboth curves on a BSFCbasis, reflecting the differences in
friction. Figure 13 shows that, despite the lower thermal efficiency at higher
power with the BTCpilot design, the RCI-350 shows a brake basis advantage over
the RCI-60 because of the lower specific friction. The ATCpilot configuration
curve reflects both friction and combustion advantages. In addition to lower
friction, the 350 cubic inch engine enjoys the advantage of better injection
and ignition equipment. The influence of this last point will be clearer when
the current RCI-60 testing, which also enjoys a similar equipment advantage
over the earlier work, has progressed further.
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The conclusion of this comparison is that the engine scales well, although
demonstrated only in the larger sized direction. The baseline data of the RCI-
350 at higher powers and speeds, with the scaling trends noted, will be used to
estimate performance for the aircraft engine regime. This input will be impor-
tant whenweighing the system advantages of a lighter, smaller multi-rotor air-

craft engine versus a somewhat heavier, but less expensive and slightly more

efficient, larger module single rotor engine. The factors influencing this

balance process for the current NASA contract are thus in clear focus and Cessna

Aircraft Co., under sub-contract to Curtiss-Wright, will study the aircraft

system trade-off sensitivity of various engine size choices.

Current NASA Advanced Engine Study

Approach and Status

The objectives of the current NASA Advanced Rotary Combustion Aircraft

Engine Design Study contract are to define advanced and highly advanced engines

which will satisfy the following goals and criteria:

i. Engine performance and efficiency improved as compared to current en-

gines: BSFC _ 0.38 ib/hp-hr @ 75% power cruise; specific weight _ 1.0 ib/hp

@ takeoff power; cooling airflow x pressure drop product decreased by a factor

of 2.

2. Efficient operation on 100/130 octane aviation fuel and one or more

alternative fuels such as jet or diesel fuel, or low octane unleaded automotive

fuel.

3. Emissions that meet the EPA 1979 piston aircraft standards. (If and

when the revocation of these standards occurs, this goal will be reevaluated).

4. Engine direct manufacturing costs comparable to or less than present

day spark-ignition piston aircraft engines.

5. Overall life cycle costs and maintenance lower than for current air-

craft engines.

6. Altitude capability equal to present day spark ignition aircraft en-

gines.

The approach that has been taken was to first survey all parallel and re-

lated technologies for application to an extension of the Stratified Charge

developments summarized earlier. A total of 35 significant sources were iden-

tified and solicited for information. In addition many hundreds of abstracts

located by source search were read and 220 papers obtained.

From a review of data from the above contacts, papers, and previous tech-

nology information developed by Curtiss-Wright, the candidate technologies
shown in Table I were selected for more detailed evaluation. The evaluation

form (figure 14) was developed as a means of carrying out the procedure for

291



ranking of the candidate technologies. The technology evaluation criteria were
utilized in a system patterned after the one described in ref. 9.

A technology base was defined from which new approach selections were made
for an "advanced" engine. They were the approaches estimated to be the most
advanced technologies sufficiently proven and highly ranked to be available to
an engine design initiated in 1985 or 1986. It is estimated commercial intro-
duction would take place in the early 1990's.

In addition a selection of design approaches for a "highly advanced" en-
gine were made. Thesewere higher risk approaches likely to require a more
extensive development program and/or a later introduction to the commercial
market.

As a result of this ranking process, with the additional balancing over-
view reflecting concentrated rotary engine experience of those who did not
participate in ranking, specific candidate technologies were selected (Table II).
These inputs will be used to define a conceptual design for the advanceden-
gine. The "highly advanced" engine will be described but not defined with in-
stallation, cross-sectional drawings, performance data, etc. which will be de-
veloped for the advanced engine. Comparative system analysis will be performed,
however, by Cessna for both engine concepts in compatible general aviation
aircraft.

Until the design study has been completed and we can assess the relative
trade-offs of these candidate technologies against the contract objectives and
goals, we cannot specifically weigh contribution significance. However, the
promising choices have been sufficiently defined in the aforementioned screening
process to single out selected items which can illustrate, in the following
paragraphs, the nature of our choices.

i. Turbocharging

The requirement of a near-future aircraft engine (250 HP cruise class) for
increased altitude (25,000 feet plus) capability has focused more attention on
the effects of turbocharging. Here, the Rotary Stratified Engine more closely
resembles a Diesel than a conventional gasoline fueled engine, because of its
ability to run well on extremely lean mixture ratios. Increasing the air
charge rate to the engine not only improves the fuel economyby raising the
mechanical efficiency (i.e., getting more output for essentially the samefric-
tion losses), but it permits operation at A/F ratios which give the best combus-
tion and thermal efficiency. The characteristic curve shape for ISFCvs. mix-
ture strength, shownin figure 12 for low speed, holds for cruise speeds as
well although the absolute values changewith speed. In essence, the BSFCcurve
can effectively be driven down to lower levels as shownqualitatively in figure
15 (ref. i0).

The quantitative degree that can be practically realized remains an unknown
at this point, but from trends observed on the current naturally aspirated
stratified engines, an SFCreduction of 17 percent can be predicted by high
power cruise turbocharging to increase the airflow from an approximately 18 to
28 air-fuel ratio. The baseline absolute value of BSFCfor the stratified
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charge naturally aspirated engine is probably not the same as it would be for

the corresponding cruise point of a gasoline engine at its approximately 15:1

air-fuel ratio, but the turbocharged stratified charge cruise BSFC would be

lower than either type (stratified or homogeneous) naturally aspirated engine.

2. Increased LMEP and Speed/Improved Apex Seal Wear Materials/Retracting

Apex Seals

The increase of mean effective pressure is accomplished by the turbo-

charging described above, trading-off the complexities of boost ratios higher

than can be attained from commercial low-cost turbocharger units against en-

gine size. However, wherever this best point resolution obtains as a result

of our current analyses, the fact remains that higher effective pressures will

be required. These higher operating levels of temperature and pressure have

both stress and durability implications, which in turn will be reflected in the

selection of specific operating limits and design configurations, some of which

will be briefly reviewed in succeeding paragraphs.

The same type of trade-off has to be made with respect to maximum operating

speed. Higher speeds obviously increase the engine output and thus improve

specific power density. The Rotary engine has significant growth potential in

the higher speed direction because it is not limited by valve dynamics and valve

breathing restrictions, has complete dynamic balance, does not reverse direction

of its sealing elements at top center, and has a relatively modest increase of

friction with speed. Nonetheless, friction increases exponentially with speed

and unless this high speed capability is reserved only for take-off power, the

best specific fuel consumption will dictate rating at the lowest possible speed

consistent with acceptable specific weight. Again, the Cessna sensitivity study

will provide some insights into how this higher speed capability can be best

utilized.

a. Improved Apex Seal/Trochoid Material Combinations

The increase in engine output may require further development of

superior apex seal and trochoid wear surfacing materials which have either been

identified by our prior research efforts or have emerged as new technologies.

The current tungsten carbide trochoid wear surfacing material has thus far

shown relatively low apex seal velocity sensitivity and is adequate, with

acceptable TBO and reliability standards, for any operating speed under consi-

deration (ref. ii). It will probably also prove acceptable, possibly with

lower wear apex seals, for any of the I}_P levels which can be obtained with

single stage turbocharging. However, to illustrate potential, figure 16 shows

that use of a Titanium carbide trochoid coating, in this case in a steel matrix,

and with apex seals of the same material, shows substantially less wear than

current materials. The particular material shown in this figure was plasma

sprayed, which is a less expensive application technique than the current deto-

nation gun process. At this stage of development, plasma-spraying cannot

attain the same bond strengths, but plasma-spray technology is moving very fast

and is expected to be a serious contender within a short time.
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b. Retracting Apex Seals

For a more ambitious technology step, which we reserve for the "Highly
AdvancedDesign", it is possible to have the high specific output of high speed
without facing the more severe apex seal wear environment of higher seal pres-
sures plus higher speed. Since apex seal leakage is a time-weighted factor,
at high engine speeds a small leakage area can be tolerated without serious
consequence. Seal designs which retract from trochoid contact at high rota-
tional speeds are available, but not tested. Oneof several alternate ap-
proaches, in this case taking advantage of the centrifugal forces to pull the
seal back at high speeds, is shownin figure 17.

3. High Strength High TemperatureAluminumCasting Alloy

The increases in IMEPand speed, as stated earlier, will introduce higher
operating temperatures. The anticipated degree of temperature increase, to
be confirmed as the current study progresses, can be paced by the degree of
strength improvement that newmaterials have introduced. The choice of liquid
cooling for general aviation engines (ref. i0) on the basis of improved system
efficiency and better metal temperature control is particularly significant at
the higher outputs of the advanced engines.

Essentially all of our Rotary engine cast aluminumrotor housings have
been A}IS4220, based on our reciprocating aircraft engine experience. It has
proven to be a durable high temperature material with good fatigue life under
cyclic loading. A new aluminum high temperature casting alloy, AMS4229, has
been on the scene for several years. It has not been tried here becauseour
applications have not required the additional strength and, until recently,
very few foundries were willing to cast the new alloy. Today, however, 15
foundries in the U.S. use this alloy, which has markedly higher strength and
ductility than AMS4220.

Figure 18 shows calculated predictions, based on ultimate tensile strength,
ductility, and modulus of elasticity, of low cycle thermal fatigue life at 400°F,
representative of high power cruise peak temperatures, for AMS4220 and 4229.
The same type of improvementscan be demonstrated at higher temperature levels,
should they prove desirable as the study progresses.

4. Rotor CombustionFlank Insulation/Adiabatic Engine

The background discussion of Stratified Charge hydrocarbon testing made
reference to rotor combustion surfaces which were raised in temperature, by use
of insulated plates, to reduce HCformation. HCformation is not expected to be
a consideration for an aircraft engine operating regime (ref. i0), but the insu-
lated rotor surface will reduce oil heat rejection and thus reduce system weight
and bulk.

Early testing with the RC engine had shownthat Zirconium oxide, plasma
sprayed on the rotor combustion face, was effective with gasoline homogeneous
charge engines, but did not have adequate thermal shock strength in a strati-
fied charge application where direct fuel impingementwas possible. However,
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considerable development of thermal barrier coatings of this type has taken
place, largely at NASA-Lewis, since that time, particularly for gas turbine
components.

The "Highly AdvancedEngine" (Table II) reflects inclusion of a zirconium
oxide rotor hot surface coating of .060" thickness. Figure 19 showsthat, for
an assumed90''3 rotor this coating thickness is calculated to reduce the rotor
heat rejection to the engine oil by approximately one third.

The sametype of coating would also be applicable for an "Adiabatic"
Rotary engine. However, despite the fact that we consider Rotary engines in-
trinsically more adaptable to the completely unlubricated "Adiabatic" engine
approach than a reciprocating engine (largely because either retracting or the
uni-directional ceramic apex seals with their advantage of gas hydrodynamic
film lubrication, against a ceramic trochoid surface appear closer to realiza-
tion than their reciprocating counterparts) we did not consider an engine of
this type to be within contract objective guidelines of even the "highly ad-
vanced design technology" and did not consider it further.

Directions

Our present carbureted prototype aircraft engine, the liquid-cooled
RC2-75 (ref. i0) shownin figures 20 and 21 was the obvious starting point.
To illustrate what the presently planned trends of higher IMEPand RPMwould
meanin terms of this engine, mock-ups of both single and twin rotor 75 cubic
inch Stratified Charge and turbocharged aircraft engines have been prepared to
supplement this presentation. The RCI-75, which measures 34 1/2" x 21 1/2" x
20", without coolers, is predicted to develop 235 HP @take-off under currently
envisioned limits for IMEPand speed for the advanced engine and 300 HP for
the "Highly Advanced" technology. The samenumbersfor the RC2-75are 40 1/4"
x 21 1/2" x 20" and 470 HPand 600 HP for respective technology levels. Taking
the samevalues of IMEPand speed used to make the advanced engine estimates,
and applying it to the contract goal engine of 250 HPcruise to 25,000 feet,
results in a two rotor engine outline as shownin figure 22. The coolant and
oil coolers, which presumably would be remotely located for system optimization,
are not included.

This particular arrangement, with accessories held to a minimumoverall
diameter, would be biased towards a twin engine installation. However, it
should be understood that this is a preliminary look since, as stated earlier,
the economicadvantages, as well as fuel injection technology limits, favor a
larger single rotor engine and, secondarily, more precise definition of IMEP
and speed, upon which these projections were based, is still being determined.

While the specifics mayvary from those defined at the point when all work
on this contract has been completed, the effort to date has clarified what we
see as the advantages of this type of Rotary Stratified Charge engine. These
are listed in Table III.
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Closure

The Rotary Engine, in its carbureted form, is uniquely suited to aircraft
engine propulsion because of its advantages of size, weight, simplicity, smooth-
ness, scaling flexibility and growth potential. Recent parallel hardware and
test developments have shownthat this engine type is particularly adaptable to
unthrottled direct injected stratified charge, resulting in additional features
of wide range fuel capability and superior fuel economy. As a result of the
Stratified Charge Rotary Engine's ability to perform efficiently over a broader
range of mixture strengths, without regard for fuel octane or cetane rating,
turbocharging can extend the demonstrated potential to the complete aircraft
engine operating regime. This combination of system efficiency plus fuel choice
optimization possibilities is being carefully examined as we continue into an
era of critical energy resource allocations.
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TABLE I

CANDIDATE TECHNOLOGIES CONSIDERED

SOLID-STATE IGNITION TRIGGER VS

MECHANICAL TRIGGER

PLASMA JET IGNITION SYSTEM

ELIMINATING PILOT INJECTOR

HIGH TEMPERATURE ALUMINUM

CASTINGS

TURBOCHARGER

THIN WALL (IRON) ROTOR

EXHAUST PORT THERMAL LINER

(METALLIC)

IMPROVED LUBRICANTS

MULTIPLE POWER SOURCE FOR

IGNITION

INDUCTION AIR INTERCOOLER

VARIABLE DISPLACEMENT PRESSURE

OIL PUMP

PROVISION FOR COUNTER-ROTATING

PROPELLERS

TOTAL DIAGNOSTICS

ELECTRONIC IGNITION SCHEDULE

COMPUTER VS MECHANICAL TIMING

FIBER OPTICS DATA BUS

LOW PRESSURE DROP HEAT EXCHANGERS

NASVYTIS TRACTION SPEED REDUCER

(PROP)

ALTERNATE COOLING FLUID

COMPOSITE ROTOR HOUSING (WEAR

RESISTANT LINER)

WING LEADING EDGE WITH INTEGRAL

COOLANT COOLER

ALTERNATE MATERIALS SEALS

RETRACTING APEX SEALS

THERMOSTATICALLY CONTROLLED ROTOR

OIL COOLING

TURBOCHARGER WITH VARIABLE AREA

TURBINE

SPARK IGNITION START/AUTO-

IGNITION RUN

ALUMINUM ROTOR (REINFORCED LANDS)

INSULATED ROTOR - THERMAL BARRIER

COATING

INDEPENDENT DUAL IGNITION

VARIABLE COMPRESSION RATIO

INSULATED ROTOR - INSERTS ON

METALLIC PAD INSULATOR

ADIABATIC ENGINE CERAMIC END WALLS

COMPOSITE ROTOR (REINFORCED APEX

SEAL LAND)

ELECTRONIC INJECTION (FUEL)

ADIABATIC ENGINE CERAMIC ROTOR

INSERTS

TURBOCOMPOUND

ADIABATIC ENGINE - CERAMIC ROTOR

HOUSING LINER

PILOT NOZZLE TRIGGER FOR IGNITION

SYSTEM

HIGH SPEED PROPELLER (NO REDUCTION

GEAR)

NASVYTIS TRACTION SPEED REDUCER

(TURBOCOMPOUND DRIVE - IF USED)

ADIABATIC ENGINE - CERAMIC ROLLING

ELEMENT BEARINGS

NEW TECHNOLOGY

TABLE II

SURVEY: CANDIDATE TECHNOLOGIES SELECTED FOR DESIGN

ADVANCED DESIGN

TURBOCHARGING

HIGH STRENGTH HIGH TEMPERATUREALUMINUM CASTINGALLOY

LIGHI'WEIGHTROTOR

EXHAUST PORT THERMAL LINER

INDUCTIONAIR INTERCOOLER

COUNTER-ROTATINGPROPELLERS

ON-BOARD DIAGNOSTICS

IMPROVEDAPEX SEAL/TROCHOIDMATERIALCOMBINATIONS

INCREASEDIMEP AND SPEED

STUDY

HIGHLY ADVANCED DESIGN

VARIABLEAREA TURBINE TURBOCHARGER

RETRACTINGAPEX SEALS

ROTOR COMBUSTIONFLANK INSULATION

ADDITIONALINCREASEDIMEPAND RPM
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ADVANTAGES

TABLE III

OF THE ROTARY STRATIFIED CHARGE AIRCRAFT ENGINE

MULTI-FUEL CAPABILITY

SMALL FRONTAL AREA

LOW ENGINE WEIGHT

REDUCED ENGINE COOLING AIR DRAG

IMPROVED RELIABILITY DUE TO FEWER PARTS

LOWER EXHAUST GAS TEMPERATURES

NO VALVES OR CAMS

SAFER CABIN HEAT

COOLANT COOLERS CAN BE WING DE-ICING

MORE RAPID FLIGHT DESCENTS PERMISSIBLE

LOW COST TURBOCHARGER FROM OTHER PRODUCTION RETAINED

SMALL EXHAUST AND INTAKE MANIFOLD VOLUMES BENEFIT TURBOCHARGING

LOW EXHAUST EMISSIONS

LOW FUEL CONSUMPTION

SMOOTH - BALANCED OPERATION

GOOD LOW TEMPERATURE STARTING CAPABILITY

LOW NOISE LEVEL

PROVEN PRODUCIBILITY OF ROTARY ENGINE
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RC2-6OUIO LIQUID-COOLED STRATIFIED ENGINE(1965)

WEIGHT ........ 294 LB

WIDTH ......... 24 IN.

LENGTH ........ 24 IN.

HEIGHT ........ 24 IN.
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Figure i
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RC2-90 AIR-COOLED STRATIFIED CHARGE RC ENGINE (1966)

Figure 2
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STRATIFIED CHARGE PROCESSES

TEXACOTCCS

FORD PROCO

INJECTOR NOZZLE _ SPARK PLUG

_ ,J"l _3"J. RICH

I _ _ CARBURETOR

_,...,:__.,

ROTARY HONDA

Figure 3

BTC PILOT TANDEM DUAL

?

7
J

PILOT INJECTOR _ / /

ROTATION

Figure 4
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SPECIFIC HYDROCARBON EMISSIONS
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ISFC v= MEP, RCl-60 BTC PILOT
Preliminory Dato' for I0".1 Compression Rotio vs 8.5:1
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PART LOAD FUEL CONSUMPTION COMPARISON

SCRE VS AUTOMOTIVE PRE-CHAMBER DIESEL
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Figure 8
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COMPARISONOF SCRCI-6O WITH VOLKSWAGON6 CYLINDERDIESEL

SCITCI-60 VW6CYLDIESEL

kW(NHP)/RPiH 60 (80)/5000 56 (75)/4500

kg(LB) ]09(240) TIM(405)

am 368x559x635 780x49Ox780
LxWxH

INCHES 14,Sx22x25 30.7xl9.3x30.7

Figure 9

Figure i0
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INDICATED SPECIFIC FUEL CONSUMPTION (ISFC)
vs

INDICATED MEAN EFFECTIVE PRESSURE (IMEP)

Comparison of RCI-60 and RCI-350 Dote, BTC Pilot
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BSFC v$ BMEP, RCI-60 AND RCI-550
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ADVANCE ROTARY COMBUSTION AIRCRAFT ENGINE

TECHNOLOGY/APPROACH EVALUATION

DESCRIPTION ;

_RITERION

_afety

_eliab£1ity

_uel Consumption

_eight

:ooling

Initial Cost

_ulti-Fuel Capability

_erformance

_echnological Uncertainty

_ife Cycle Cost

;ize & Shape

)perational Characteristics

3urability

_ainta£nability

_aterials
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IWEIGHTING

8
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7

7

7
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2

NOTES:
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B - HIGHLY ADVANCED

A

TOTAL FIGURE OF MERIT

ITEM NO.

RATING

(+3 t, -3)

PRODUCT

(WxR)

A B

Figure 14
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EFFECT OF DECREASING STRATIFIED CHARGE
ROTARY ENGINE DISPLACEMENT

WITH CORRESPONDING INCREASE IN
DEGREE OF TURBO-CHARGING

[ CONSTANTEFFECTIVE COMPRESSIONRATIO

I / / /
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INCREASED TURBO- CHARGING
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Figure 15
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Figure 16
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COUNTERWEIGHT RETRACTED SEAL

SEAL

[[--

P_N SLOT

IN SEAL

COUNTE_EI CHT

Figure 17

LOW CYCLE THERMAL FATIGUE COMPARISON
STRESS LEVEL VS LIFE CYCLES

AMS 4229 AND AMS4220

I00000
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I00000

Figure 18
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RCI-90 ROTOR INSULATED WITH ZIRCONIUM OXIDE
(ROKIDE Z)
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Figure 19

RC2-75 AIRCRAFT ENGINE PROTOTYPE

iii .............

Figure 20
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RC2-75 ON PROPELLER TEST STAND

Figure 21

ADVANCED ROTARY COMBUSTION AIRCRAFT ENGINE
PRELIMINARY INSTALLATION STUDY

(250 BHP MAXIMUM CRUISE TO 25000 FEET)

Figure 22
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