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ABSTRACT

The first results from the ISEE-3 radiat vely cooled Germanium Gamma-

Ray Burst Spectrometer are presented. Spectra and time histories from

two events on 1978 November 4 and '1978 November 19 are given. A significant

difference in the continuum spectra for the two events was observed. Evi-

dence is presented for two spectral features in the November 19 event, a

broad one at , 420 keV and a narrower one at , 740 keV with a suggestion of

an accompanying high energy tail.

I. INTRODUCTION

Since the initial discovery of gamma-ray bursts (Klebesadel et al. 1973)

there has been a growing body of evidence on the spectral behavior of these

events (Cline and Desai 1973, 1975; Wheaton et al. 1973; Imhof et al. 1974;

Palumbo et al. 1974; Metzger et al. 1974; Kane and Share 1977; Sommer and

Muller 1978; Mazets et al. 1979 a,b). As has been typical of early gamma-ray

burst measurements most of these results came from instruments that were designed

for other purposes. We report here the first results from the ISEE-3 Gamma-Ray

Burst spectrometer, an instrument designeCl specifically to perform high resolu-

tion measurements of the energy spectra of gamma-ray bursts. Bursts were

observed on 1978 November 4 and 1978 November 19. Both time histories

and spectra for these events are given. Evidence is presented for the possible

existence of structure in the November 19 spectrum and comparisons are made with

other results that support this conclusion.
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II. INSTRUMENTATION

The ISEE-3 Gamma-Ray Burst Spectrometer is a coaxial high purity

Germanium crystal (35cm 3 vol.) cooled by radiation to a temperature of

1300K. It is a Nara of the Max Planck Institute-University of Maryland Charge 	 y

Distribution Experiment system on the ISEE-1 and -3 spacecraft. The instrumental

response is nearly isotropic over the southern ecliptic hemisphere. The northern

ecliptic hemisphere is obscured by the spacecraft. The spacecraft orbits about

the gravitational null or Lagrangian point some 200 earth radii sunward from the

earth, an ideal location both for thermal performance of the cooler and low

detector background. A two-stage radiative cooler developed by the Arthur

D. Little Corp. for cooling infra-red sensors was modified to accommodate

a germanium crystal. The electronics contains a 4096 channel pulse height analyzer

as well as a 105 bit memory capable of storing both temporal and spectral histories

of the burst. Time histories are stored with an accuracy of better than 1 msec.

Each detector photon pulse height is also stored and individually time tagged

to an accuracy of 8 msec. A total resolution of .. 10 keV at 570 keV photon energy

was achieved which is ... 5 times better than -the best previous instrument. (Imhof

et al. 1974). In addition the system is capable of monitoring the outputs of

two other CsI detectors on the spacecraft and storing time histories from them.

A more detailed description of the instrumentation is given in Hove,1^6adt et al.

(1978).

III. OBSERVATIONS

a. Temporal Structure

Plots of the ISEE-3 Germanium detector count rate as a function of time

for the November 4 and November 19 events are shown in Figure 1. Both events
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last 10-20 seconds and display the complex temporal structure that is typical

of most gamma-ray bursts. The November 4 event was independently detected by

8 other spacecraft: Pioneer Venus, Venera 11 and 12, Prognoz 7, and the four

Velas. A preliminary (ti +5 0 ) direction of a = 301 0 , 6 = -230 , III = 190,

bII = -26 0 for November 4 has been determined (La gos, private communication).

The November 19 event was seen by all the above spacecraft as well as Helios-2

(for both events see Chambon et al. 1979; Evans et al. 1979; Mazets et al.

1979). Its direction, also preliminary (, 1 0 ), is a = 190 , 6 = 290 , xII = 22909

bII = -840.

b. Spectral Continuum

The raw detector count spectra for the two events are presented in

Figure 2. Data from 200 keV to 3 MeV are plotted; below 200 keV interpreta-

tion of the spectral shape is complicated by uncertainties in the amount of

dead material in the path of the photon beam. Power law functions were fit

to each of these data sets (dN/dE = KE -a) using the x 2-minimization technique.

For the November 19 event the candidate line features in the intervals 360-498 keV

and 720. 886 keV were removed from the data in order to permit a best estimate

of the continuum to be obtained. The results of this fitting procedure are

summarized in Table 1. It is evident that simple power laws adequately describe

the detector continuum spectra for both events. It is also evident that there is

a statistically significant difference in the slopes of the spectra for the two

events. Monte Carlo simulations of the detector of the detector response have

shown that, for the ^^resent statistical precision, over the 0.2-3 MeV range

power-law detector spectra transform into incident photon spectra that are also

power laws. Using the results of this simulation, the incident spectral indices

can be inferred. These are also given in Table 1. Note that the indices of the

two events differ significantly (Aa = 0.51).
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Metzger et al. (1974), using Apollo 16 data, have published a spectrum for the

gamma-ray burst of 1972 April 27 covering the energy range 2.0 keV to 5.1 MeV.

Two different power law functions are required to fit their data. Below

N 200 keV the slope is -1.38. Above 200 keV the spectrum softens to an index 	
i

of 4.63. Cline and Desai (1975) have presented evidence for a single spectral

shape for bursts which can be represented by an exponential (Eo = 150 keV) at

low energies and a power law (cx = -2.5) at higher energies. Our data (see Table

	

	
a
d

1) are generally consistent with the power law behavior above — 200 keV but

strongly indicate that the slope varies from one event to the next. In addition

the photon spectra for these events are significantly harder than those reported

by Cline and Desai (1975) and Metzger et al. (1974).

c. Evidence for Structure

Features in the November 19 spectrum are present in the 360-500 keV

and 720-900 keV intervals, although the evidence for the former is statistically

marginal. To test for the existence of strLi,'^ure we have performed a X2

minimization using all of the November 19 data. We obtain X2min = 38.8 with 27 degrees

of freedom. The probability P(X 2 > X2min) i•s 6.6% that in succeeding experiments a

larger value of x 2 would occur. We regard this, by itself, as highl y suggestive

but not conclusive evidence for the existence of structure. It should be pointed

out, however, that this test is blind to the fact that deviant data points may

be associated in adjacent groups or features.

A commonly used alternative procedure is to find the number of standard

deviations by which the feature in question exceeds the continuum. In our case,

because of poor statistics, the continuum determination has a significant error

which must be taken into account. Following the procedure outlined in Lampton

et al. (1976), we have constructed a 68% confidence contour in parameter (K,a)

space. This corresponds to that region over which ox 2 = X2-X2min is allowed

to vary up to a value of 2.3 (see Lampton et al. 1976), which is appropriate
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for two parameters. The upper and lower extreme values of the background flux

under each candidate spectral feature over the 68Z confidence region were then

determined. These were taken as the +1Q error limits on the continuum. If the

total number of counts in the feature is S and the background B,then the statistical

significance of the feature is giver. by S-B	 Using the value for B derived
a

from the best fit to the continuum descri sbed earlier we obtain 3.45v for the

statistical significance of the feature in the 720-900 keV region. Multiplying

the probability of a 3,45a event by the total number of trials, gives a

probability of 0.7% that this could be a statistical fluctuation. This snould

be treated as a lower limit- on the probability, since we cannot be certain

that local deviations from the best fit to the continuum do not exist. We therefore

regard the foregoing statistical analysis as limiting the probability that the

700-900 keV feature is a statistical fluctuation to the 0.7%-6.6% range. A similar

analysis yields only a 1.4cs significance for the 360-500 keV feature, clearly

not enough by itself to establish its validity. Additional corroborating evidence,

however, will be presented in the following discussion.

The total energy in the 420 keV feature is 4x10 -6 erg/cm2 which is 1.5%

of the total energy in the burst. For the 740 keV feature the total energy is

2.4x10-5 erg/cm2 which is 9.2% of the total burst energy. It therefore appears

that for the November 19 event line emission may be a significant contributor

to the total burst energy. No significant evidence for line emission was seen

during the November 4 event, however, it is curious that the data point at 420 keV

lies 1.46 above the continuum. The 2Q upper limits are: 4.6x10 -6 erg/cm2

(360-500 keV) and 8.0x10-6 erg/cm2 (700-900 keV),

IV. DISCUSSION

Maze •ts et al. (1979a) have published a catalog of gamma-ray bursts observed

on the Venera 11 and 12 spacecraft. Using a large area scintillator, they have

measured the spectra of w 30 different bursts, including both the 1978 November

1

eg	 .r..-...w•:^w^
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4 and 1978 November 19 events discussed in this paper. Althouah the authors

do not explicitly mention it in the taxt, there is strong evidence for the

existence of a broad feature in the 400-500 keV interval in their 1978 November

19 data (see Figure 67 of Mazets et al. 1979a). Furt+lermore, the feature is

not present in the later stages of the event, a behavior that we see also in

our data. To the extent that it can be inferred from the data of Mazets et al.

(1979a) the flux of their 420 keV feature is consistent with the ISEE-3 measured

flux. Mazets et al. (1979a) however, do not show any evidence for the existence

of the 700-900 keV feature that is prominent in the ISEE-3 data. It is possible,

however, that because of the poorer inherent resolution of the Venera 11 and

12 scintillator system, it would not be possible for them to resolve this feature.

Mazets et al. (1979a) also present data for the 1978 November 4 event. Their

data do not show any evidence for the 420 keV feature during this event.

On 1979 March 5 an extremely intense burst of gamma rays was observed t1 th an

interplanetary network consisting of 9 different spacecraft (Cline et al. 1979, Evans

et al. 1979)	 and with an independent directional experiment (Mazets et a1.1979b). It has

been identified with a supernova remnant N49 in the Large Magellanic Cloud (Evans

et ab, 1979). Mazets et al. (1979b) have detected a broad 400 keV feature

during this event that is qualitatively quite similar to the November 19 feature.

It should be pointed out, however, that the 1979 March 5 event is very unusual

in its temporal structure and intensity and is quite unlike a typical gamma

ray burst (see Cline et al. 1979).

There are two other known examples of a gamma-ray line or feature in the

vicinity of 400 keV. First, Leventhal et al. (1977) have reported a narrow line

at 400 keV from the Crab nebula. Second, Jacobson et al. (1978) have given

evidence for a complex 20-minute gamma-ray transient in which a family of lines

was observed. Among these was a narrow line at 413.2 +1.8 keV., Lingenfelter et a1.

419
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(1978) have interpreted this family of lines as being from positron annihilation

and neutron capture on Hydrogen and iron. It is required that a subset of these

lines are all redshifted by approximately the same value (Z = 0.25) which is

consistent with surface production by a 1 MO neutron star. If we assume that

the broad 400 keV feature in our data is, in fact, the redshifted 511 keV line,

then wo obtain redshifts anywhere in the 0-0.42 range. Similarly, if we assume

that the 740 keV peak is the redshifted first excited state of iron (E = 847 keV)

then we obtain Z = 0.10-0.18. The data, however, suggest that there is a high

energy tail on the 740 keV peak which could allow redshifts all the way

down to zero. It appears then, if this interpretation is valid, that

rather large redshi fts are required (up to Z = 0.42) to reproduce the broad

400 keV feature, or, alternatively, the temperature of the emission region

must be very high (T ~ 10 8o K). A further implication of this interpretation

is the presence of additional lines from higher excited levels of iron (Ramaty

et al. 1979). It is possible that the hard spectrum (« = 1.3) of the November

19 event could be a result of composite line emission at higher energies.
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FIGURE CAPTIONS

Figure 1. Time histories of 1978 November 4 and 1978 November 19

gamma-ray bursts. Both plots are from the radiatively

cooled Germanium detector. Each point contains a fixed

number of cts (32) with a variable ii ►rp interval. Missing

points are due to gaps in the spacecraft telemetry stream.

Figure 2.	 Raw spectra of the 1978 November 4 and 1978 November 19 gamma-

ray bursts. Inset in 2(b) shows fine structure on a Linear

scale.
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