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INTRODUCTION

The rollers in a roller bearing tend to skew as they roll around the

inner race of the bearing. Roller bearings have shoulders on either inner

or outer races to guide the rollers. Needle bearings have a significantly

higher tendency to skew, limiting their use to low speed and low shaft

misalignment situations [1,2] * . High-speed turbine bearings have a length to

diameter ratio of close to one. With this ratio and small clearances between

race shoulders and the rollers, a restoring moment is provided at the edges

of the roller ends which restrains the roller from skewing. The cage also

provides some resistance to the roller skewing through its contact with the

roller.

This roller skewing is primarily caused by a dynamic roller imbalance

which can be appreciable at the high roller speeds inherent in operation at

2,000,000 DN or higher. (The unit DN, used to identify roller speed, is the

bearing bore in millimeters multiplied by its speed in RPM.) Roller skewing

induces considerable heat generation and loss of clearance and can lead to

bearing seizure at high speeds.

A recent advance in the design of spherical roller bearings [ 3]uses the

friction moments generated in the spherical contacts of the roller with the

inner and outer races to resist skewing. Since a condition of pure rolling

does not exist i'n these contacts, the speed of this type of bearing is limited

by temperature considerations.

The skewing of rolling elements is a problem which is not restricted to

roller bearings. The skewing of flat belts on their pulleys was a problem

encountered a century ago which was solved by crowing the pulleys to make

the belts crawl up to the center of the pulleys [4]. 	 The solution was based

on the elastic nature of the belts in that the restoring moment was due to a

gradient in the belt tension across its width. In the centerless grinding

* Numbers in brackets denote references in the bibliography.
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process the rolling axis of the workpiece and the grinding wheel are delibe-

rately skewed to each other to cause the workpiece to feed through the grinder

[5]. Indeed this is a major problem in needle bearings in that a shaft slope

at the bearing tends to walk the needles out of the bearing. This is also a

problem in traction drives [6] where large thrust forces developed by flanges

are required to hold the rolling cylinders in place. The magnitudes of these

forces have been studied in the case of a high speed, lightly-loaded cylindrical

roller bearing [7]. The effects of shaft misalignment on the roller load dis-

tribution has also been studied [8]. Finally, the wheel-rail interaction of rail-

road car wheel-sets with the rails has plagued designers for a long time [9,10,11].

Flanges are needed on the wheels to provide the significant side forces required

to accelerate the cars through the various turns in the road. However, it has

been tound that the slope of the flanges significantly affects the rolling of the,.

wheels on the rails [11]. Wheels which have a cone apex outside the body of the

train are used in order to prevent the wheels from skewing as the train travels

along the track. These cones produce a kinematic resistance to skewing which the

internal apex cones with flanges outboard of the rail would not.

In this paper, a kinematic stability criterion is investigated and defined.

This analysis extends the stability model developed in [12,13]. It is applied to

determine the basic roller bearing geometries which provide kinematic stabiliza-

tion through one race while allowing free axial motion at the other. These bear-

ings all have one straight race and one contoured race for stability. Two levels

of roller complexity are considered. The first is a simple roller with a single

transverse convex curvature. There are four bearing geometries which use this

roller. The second is a compound roller with a central band of constant radius.

This radius is the largest radius of the roller. This central band is flanked

by two symmetric bands with transverse curvature. The roller transverse curva-
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ture may be convex, straight or concave. Eight additional bearing geometries
	 a

employ these compound rollers.
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STABILITY THEORY

The basic model for rolling contact in a cylindrical roller bearing

assumes that no skewing can take place since the axes of the rollers and

races remain parallel. It further assumes that the races and the roller are

perfect cylinders with constant radii along the length of their axes. Thus,

a single plane rolling model is used. This model is valid as long as the

axes remain parallel.

In reality, the rolling surfaces are not uniform. The axes are not per-

fectly parallel. And roller contact occurs in more than one plane. The

actual contact is not pure rolling but a complex combination of rolling and,

sliding across the face of the roller.

To establish the primary cause of skewing, this contact is modeled in

two planes instead of the single plane of the basic roller model. This two

plane model allows for rolling and sliding at the individual planes and a

resultant generation of a skewing torque due to variations in rolling geometry

from one plane to the other.

In this model consider roller "a" to represent the rolling element, roller

"b" to represent the inner race and roller "c" to represent the outer race of

the bearing. The races rotate about fixed axes with no axial motion. Plane 1

is at the small end of the rolling element roller a. For equal and opposite

slip in the two planes, the radius at which true rolling would occur is the

average of the two rolling radii of roller a.

Figure 1 illustrates the rolling contact of the rolling element with the

inner race. As shown in the velocity drawing, roller b slips ahead of roller

a at the contact point in plane 1 while the relative velocity is reversed in

plane 2 and roller a slips ahead of roller b. These two skidding velocities
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produce a counterclockwise tractive couple on roller a which tends to push

its plane 1 into the paper and pull its plane 2 out of the paper. This

skewing turns the relative velocity of the center of roller a with respect to

roller b slightly towards plane 1. The axial component of this velocity is

thus an axial motion of roller a on roller b. If this motion decreases the

ratio 
rlb/rla 

and increases the ratio 
r2b/r2a' 

the skidding velocities will

be reduced and even reversed when rla and rlb pass the mean value. Assuming

this antisymmetric behavior, the total stability or tendency to self correct

without external forces can be measured by the inequality

r

2z^lb0F
la

where z measures the axial motion of roller a and is positive for motion

toward plane 1. [12]•

In a similar fashion, figure 2 illustrates the rolling contact of the

rolling element with the outer race. As shown in the velocity drawing, roller

c slips ahead of roller a in plane 1 and slips behind roller a in plane 2.

The sliding tendency is not as great in this case since both centers of rota-

tion are on the same side of the pitch point. However, it is still there

and in the same direction as in the previous case. For the same direction of

rotation of the race c in this case as that of the race b in the previous case,

the angular velocity of the roller a reverses but the relative velocity of its

center with respect to the race is also out of the paper. Thus,a similar

counterclockwise tractive torque produces the same skewing and axial motion

toward plane 1 - the small end of the roller. If this motion decreases the

ratio 
rlc/rla 

and increases the ratio 
r2c/r2a 

the skidding velocities will be

reduced as before. An equivalent stability criterion can thus be stated as
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INNER RACE STABILITY

The stability or self correcting action of the roller with the inner

race is determined by applying the criterion of equation 1 to the possible

transverse profiles for the roller and inner race. These profiles must be

axially symmetric about the center plane of the roller and inner race. They

must also afford only one contact point between the roller and race on each

side of this center plane. The geometric combinations that satisfy this are:

1) convex - convex

2) convex - straight, and

3) convex - concave.

In these three cases, the rolling element may be either the first or

second item. A fourth combination must be included which does not possess

two definite contact points in order to include present bearings. That is:

4) straight - straight.

Initially, the contact geometry will be looked at irrespective of which

roller is the inner race and which is the rolling element.

In the case of two convex surfaces, the axial motion will be such as to

maintain the distance between the centers of transverse curvature, consider-

ing the geometric effect of skewing to be negligible. In the analysis to

follow, p is the transverse radius of curvature, r is the rolling radius and R

is the radial distance from the roller ' s spin axis to the center of trans-

verse curvature. If p cos a is less than r, R is positive. The angle a is the

inclination of the contact normal from the radial direction. It is also the

angle that describes the contact slope relative to the axial direction. In

w

(2)
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each of the cases examined, roller a will be the roller that has the apex of

its conical surfaces outboard of its main body for positive a in plane 1.

Figure 3 shows two cylinders in contact, both of which have transverse

convex surfaces. The a cylinder is shown in two adjacent positions to clarify

the effect of the axial motion dz on the contact geometry. In this case the

effect is to increase a by the angle do. If C is defined as the center dis-

tance of transverse curvature, then

C a Od + Pe	
(3)

and the slope angle a is related to z by

sin a : Z	 (4)
C

and

cos a - 
C 2 _- Z 2

C

The contact radii are given by

rl d = Rd + P d cos a

and

r1e=Re+PeCOS a

Thus

rle Re + Pe cos a

rld Rd + Pd cos a

For stability

a2(rle0	
(g)

ld

After some differentiation and the appropriate algebra,

r

8i ( rld )	 (rleP d	 r1dPe) Cr2 
a

I 

(5)

(6)

(1)

(8)

(i0)

A010
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The sign of this expression is controlled by (rlep d - rldpe) tan 
a,

which indicates kinematic stability according to equation (1) when it is

negative. For a positive a (as drawn in fig. 3) stability occurs when

rlep d ` rldpe
	

(11)

or

rle < le	
(12)

rld	 pd

For positive a the a roller has the apex of its conical contact

surface outboard of the roller ends as shown in figure 3. Since the trans-

verse curvature of roller d is shown to be significantly smaller than that

of roller e, kinematic stability can be expected even though the rolling

radii of both bodies are nearly the same. However, if the radii of trans-

verse curvature happen to be nearly equal, the rolling radius of the a roller

must be smaller than that of the mating roller d for definite kinematic

stability. For the double convex contact, it can be stated that the kine-

matic stability is defined by the sign of equation (10).

Figure 4 shows two rollers in contact: one has convex transverse curva-

ture, and the other has a straight transverse profile. In this case C is

infinite, so a slight modification is required in the previous analysis.

Equation (7) still holds but the rolling radius of the straight coned roller

becomes

rle = r
oe - z tan a	 (13)

where 0e is the nominal rolling radius of that roller at the plane in which

z has a zero value. The ratio of rolling radii in plane 1 becomes

rle = r
oe - z tan a

rld Rd + p d cos a	 (14)
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Note that in this case, the angle a, the inclination of the contact,

is constant with changes in z since the shape of the straight cone

does not change along its surface. For stability in accordance with

equation (1 ), differentiation of equation (13) yields

a rle	 tan a
2z r

ld	 rld	 (15)

where stability is insured for this set of contacts as long as the

angle a is positive as drawn. Thus, the cone shaped roller must be

the one with the apex outboard of its main body. In this case the

radii of transverse curvature dictate stability, since one is in-

finite and the other is finite. This can be appreciated by setting

Pe equal to infinity in equation (12),

The third case of roller combinations is shown in figure 5.

Here roller d has convex transverse curvature along its contact

surfaces, and roller a has concave transverse curvature. This

condition makes Pe negative and greater than P d in absolute value,

so C from equation (3) is also negative, This also makes z neg-

ative for the geometry as shown but equation (10) is still applicable

with the use of a negative radius of transverse curvature Pe

for the concave surface. The sign is again determined by

(rlepd - rldpe ) (
tan a) /Crud wh ere C is no longer positive definite.

Since C is negative and a is positive for the geometry as

drawn, stability is defined by

rlePd - rldPe >0

or

rle >Pe
r
id	 Pd

(16)

(17)

a



Since 
Od 

is positive and ae is negative by definition of the trans-

verse curvature, the drawn geometry is stable for positive a. A

reversed cone slope, that is, negative a, would make this contact

unstable. The railroad wheel-rail contact is in agreement with this

criterion.

The last contact pair to be considered is that of two straight

sided cylinders. Figure 6 illustrates this condition. As in the

second case, assign the nominal rolling radii the symbols rc,d and

r0e . The angle a is the cone half angle or the inclination of the

cone surface to the axes and z denotes the axial travel of cylinder

d relative to a to the right. Unlike the previous case4,no

kinematically defined point of rolling contact exists to identify

plane 1. Assume that this plane is located at the midpoint of the

contact of the spool model. Thus rod and r0e become the radii at

the contact center and

rld=roa r tan e
	

(18)

rle-roe'y tan 
a	 (19)

Note that both rolling radii decrease with relative axial travel z.

Thus, the radius ratio becomes

rle roe - y
t an a

s
rld rod - z tan a

and

a rlat an a
az (rld) 

(rle - rld) 2r2
ld

(20)

(21)

,,,.
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which is quite similar to equation (10). As before, the sign is

controlled by (rle-rld) tan a since rid is always positive.

As drawn, the angle a is positive and stability is defined by

	

rld'rle	 (22)

Thus, a stable contact of straight sided cylinders would have the

larger radius cylinder taper inward. Equal radii cylinders would be

neutrally stable and thus, have no restoring properties. Neutral

stability exists for straight cylinders with no taper regardless of

the value of the rolling radii. This is a direct consequence of

tan a	 0, so that

( rle ) = a (r2e) = 0

az rld	 az r 2
	

(23)

for the taperless cylinders.

Table 1 summarizes the stability conditions for rollers in

free rolling contact where both rolling surfaces are on the out-

side of their respective cylinders. This contact is of external -

external rollers.

Table 2 shows these results in a form more easily applied to

the bearing design problem at hand. In this expanded table, roller

a is the rolling element and roller b is the inner race of the

bearing. The cone angle of transverse curvature, a, is con-

sidered positive if the cone apex of roller a 4 s outside of the

roller as is the case for roller e.

OUTER RACE STABILITY

In a similar fashion, the stability of the roller with the

outer race is determined by applying the criteria of equation 2 to

the transverse profiles.
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These profiles must be axially symmetric about the center plane of

the roller and outer race. They must also afford only one contact

point between the roller and race on each side of this center plane.

Each combination must be considered separately. Listing the roller

transverse curvature first and the outer race transverse curvature

second, these contact combinations are:

1) convex - convex

2) convex - straight

3) convex - concave

4) straight - convex

S) straight - straight, and

6) concave - convex.

These cases are treated with the following nomenclature. The
{

slope of the transverse curvature is identified by the angle a

which is positive for external cone apexes on roller a. The radius

of transverse curvature, p, is positive for convex and negative

for concave surfaces. The rolling radius, r, and radius to the

center of transverse curvature, R, are both positive when directed

from the center of roller rotation toward the contact point and negative

when opposite. A positive dz identifies motion of roller a towards

plane 1 as before. The center distance of transverse curvature is

C = p a + p c	(24)

Figure 7 shows the geometry of the first case, convex - convex.

The slope angle, a, is related to the axial position of roller a by

sin a = -Z	
(25)

In plane 1 the two rolling radii are given by

rla = R  + pa cos a	 (26)

and

rlc = R  - 
?c cos a	 (27)
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r,

Thus

r1c = Rc - pc cos a

rla R
a + p a cos a	 (28)

and assuming that the radial shift of the roller axis is negligible

compared to the axial roller shift ..

r
a(rlc) 	 (rlapc + r

lcpa ) tan a

z	 la	 C r 2	 (29)
la

Since every length in this geometry is positive, this case is

determined solely by the sign of the slope angle,

- ^ r lap c + rlcpa) tan a
rla2

<0

for positive a values or slopes as drawn in Figure 7.

Figure 8 shows the geometry for the second case, convex -

straight. In this case the slope angle is constant and the rolling

radii are given by

rla = Ra + pa cos a	 (31)

rlc = roc - z tan a.	 (32)

where z has a value: of zero in the initial position. A second

difference of the straight cone cases from the others is that z is

referenced at the contact point directly and not at a center of

transverse curvature of the surface. The quantity roc is the

rolling radius of the outer race in plane 1 in the initial position.

Thus

r1croc-ztan_	 a

rla Ra + P  cos a	 (33)

and

a ( rlc)=- tan a
az r la	 rla	 (34)

Once again this is controlled by the sign of the angle a, so

(30)



13

stability is obtained with a positive angle a as shown in Figure 8

tan a < 0
	 (35)

5a
Figure 9 shows the geometry for the third case, convex - concave.

The slope angle, a, is defined by equation 25 and the two rolling radii

are given by equations 26 and 27. Thus,,the analysis of this case is

the same as that for the convex - convex case. However, since 
Pc

is negative, the stability conclusions to be drawn from equation 9

change slightly. Since J Pc j must be greater than P a , C is negative

and

(rlaPc + rlcPa) tan a < 0	
(36)

Thus two possible stable conditions result.

rlc < oc j and a > 0	 (37)
is	 a

or

P

	

lc > ( ^, and a < 0	 (38)

	

rla	 Pa

In either case the two factors offset each other so the stability

is not as great as that of the first two cases.

Figure 10 shows the geometry for the fourth case, straight -

convex. As in the second case, the slope angle a is a constant. The

rolling radii are given by:

	

rla 
s roa + z tan a	 (39)

and

ric = R 	
Pc cos a	 (40)

Thus

	

ric	 R  - P c cos a
(41)

	

rla	 r
oa + z tan a



t^r

C

and

arl c	 _	 is tan a

azz ( r l a )	 2
rta

Since 
lc 

is always positive then stability is once again determined primarily

by the sign of the slope angle a.

rc tan a

rta

2	 <0
	

(43)

for positive values of a and is not true for negative values.

Figure 11 shows the geometry for the fifth case, straight - straight.

This case differs from the other five in that kinematically defined contact

points do not exist. If it is assumed that the contact point remains in the

center of the contact region and that the contact pressure remains nearly

uniform then the rolling radii can be expressed as

rla	 roa + 2 tan a(44)

and

rlc ` roc - 2 tan a	 (45)

Where the slope angle a is a constant and the two radii roa and roc

are the initial rolling radii in plane 1.

The ratio is thus

r 1 _ roc - 7 tan a

rla	 r
oa + z tan a

and its derivative with respect to z is

a	 rlc	 _ -(rlc + 
r la ) tan a

az ( rla )	 2(rla)2

Stability is thus defined by

-(rlc + rla ) tan a

2	 ^ ^

2rla

14

(42)

(46)

(47)

(4g)
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which is satisfied for positive 0i and not satisfied for negative a values.

If it is assumed that the contact points shift to the right hand edge

of roller c's surfaces then roller a will continue to roll to the right without

correction since a fixed imbalance will exist between the rolling radii r 1c and

r2c of the outer ring.

If it is assumed that the contact points shift to the left hand edges of

roller a, then the imbalance will be between the rolling radii r1a and 
r 2 

of

the roller. This imbalance will shift the roller to the left until contact

on these edges is no longer possible at which time the roller might be shifted

back to the right by the aforementioned outer ring edge rolling contact.

In any case, if edge rolling contact occurs on the straight cases, in-

stabilities at least to the point of limit cycle oscillations will occur.

Figure 12 shows the geometry for the sixth and final case, concave-convex.

As in the third case, the first analysis applies with the awareness of a sign

change. The radius of transverse curvature of the roller,P a , is negative and

greeter in magnitude than the radius of transverse curvature of the outer race,

pc. This makes C negative and results in the condition of equation 36 for

stability. Since rlc is greater than r
la , the second term is much larger than

the first. Since this term is negative, stability is determined by the sign of

the slope angle a. A positive value indicates stability while a negative value

indicates instability.

Table 3 is a summary of the stability conditions for the six cases of

roller-outer race contact, assuming mid-point contact for the straight sided

rollers. It is interesting to note that the stability criterion for all ten

cases of inner- and outer- race contact listed in tables 3 and 4 can be expressed

in a simple inequality if the radius of the outer race if considered to be

negative. Considering rlx equal to rlb and px equal to Pb for inner-

race contact and r lx equal to -rlc and p x equal to p c for outer race con-

tact, this expression becomes:

-(rIap x- rlxpa) 
tan a < 0
	

(49)

(px + pa)rla

The relative stability of the different contacts can be compared directly using

this relation.
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STABLE ROLLER BEARING GEOMETRIES

A roller bearing must allow free axial motion of the supported shaft

with respect to the housing. To do this, one race rolling surface must be

straight or parallel to the shaft centerline. The roller must have a single

rolling band as its largest radius to contact that race rolling surface. To

minimize the restriction to shaft slope or misalignment, this rolling band

should be located in the center of the roller. Two levels of roller complexity

are considered in this work: (1) a single convex transverse curvature with

zero slope at the center as shown in Figure 13, and (2) a compound transverse

slope composed of a central cylinder with the largest rolling radius flanked

by two symmetric transverse curvatures which have tangent cones with apexes

outside the roller center as shown in Figure 14. In both roller configura-

tions, the roller cone angle, a, must be positive.

Table 4 lists the twelve possible stable bearing configurations which

these restrictions allow. The type of transverse curvature on the coned sur-

faces is listed in the table. The straight cylindrical race of constant

radius is noted by the word neutral under inner or outer race curvature for

each bearing in the table. For the four bearings for which the stability is

listed as conditional, the radii of transverse curvatures must satisfy an

inequality for the geometry to be stable. Geometries which require straight

cones to contact straight cones are considered unstable due to the cornering

effects of their contact.

These twelve bearings with simple and compound rollers which provide

kinematic stabilization are illustrated in Figures 13 and 14. Figure 13

shows the basic restoring geometry of the four simple roller bearings. Each

figure represents the geometry of a simple roller bearing. A corresponding com-
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pound roller bearing with similar convex curvature on its two outer bands and a

straight central band exists for each simple roller bearing shown in figure 13.

Figure 14 shows the basic restoring geometry of the last four compound roller

bearings which have no simple roller counterpart.

The first four bearings in Table 4 represent the only possible stable

combination of a convex roller with either an inner or an outer contoured

race surface. The final eight bearings extend this class of stable bearings

by introducing the first level of compound roller curvature. They represent

the only stable bearings with symmetric single curvature restoring surfaces.

It is important to note that for each of these geometries the roller is

contained by both the inner and outer races with three contact points in the

transverse plane. Thus, its position will be well defined and solid contact

at each point is assured. The next level of roller complexity is variable

radii of transverse curvature. This geometry is considered beyond the scope

of the present work and will not be considered here. However, it should be

investigated as the bearing designs are refined.

VERIFICATION

To verify this kinematic theory of roller skewing and skew correction low

speed tests were conducted with high--cone angle rollers. Six rollers were

made with symmetry about their central planes. These rollers were made in

three sets of two each - one with a positive cone angle and one with a nega-

tive cone angle. The first set had straight sided cones, the second had

cones with convex transverse curvature while the third had cones with concave

transverse curvature. Two straight dowels of small transverse curvature

were then placed side by side as a downward ramp of infinite radius. In
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tables 2 and 3 it can be seen that the three rollers with positive cone

angles should be stable while those with negative cone angles should be

unstable. This was the behavior noted. The rollers with the positive taper

rolled down to the bottom of the ramp with a decreasing sideways oscilla-

tion. The rollers with the negative taper rolled sideways off the ramp

before they could reach the bottom.

Two major differences exist between this situation and that of a roller

in a bearing. First, the roller contacts both the Inner and outer races,

so the potential exists for kinematic skewing or skew correction in two

contacts. In the spherical roller bearing this occurs with the spin in

one race fighting that of the other. One property of the cylindrical roller

bearing which must be maintained is that of free axial motion of the inner

race with respect to the outer race. This can be maintained by leaving a

neutral contact with a straight, constant radius cylindrical race at either

the inside race or the outside race. Thus,the proposed bearing designs

offer kinematic skew correction at the contact with one race and neutral

contact with the other.

Secondly, the roller is trapped in a fixed clearance. When the roller

moves axially, the radial stiffness of the bearing produces high-contact pres-

sures due to wedging. These pressures tend to restrain further motion. As

noted in the stability theory development, the skewing of the roller is pro-

duced by a spin torque due to the relative differential slip within the

contacts. This torque, resulting from tractive forces generated in the

contact, has been modeled in [13). A similar relationship between spin tor-

que and skew has also been developed in [3] for spherical roller bearings.

In this reference, bearing power loss and roller skew measurements for
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spherical roller bearings with anti -skew, corrective geometry have, confirmed

the beneficial effects of controlling roller skewing. These analyses and

measurements confirm that bearings with proper kinematic design will have

reduced wedging of their rollers due to=skewing. This reduced. wedging will

cause longer bearing life, lower power loss and reduced heat generation

especially in high-speed applications.

BEARING DESIGN

In applying these criteria to the design of a roller bearing, one must

consider the design compromise between radial capacity and skew correcting

torque. The radial capacity can be estimated from Hert_ian contact stress

calculations. The restoring torque can be estimated from the slip velocities

at the contact points and the traction coefficients which relate shear force

to slip velocity.

For a single curvature roller, the cone angle at the contact point and

the radius of curvature of the roller are directly tied to the roller's

width. The need for reasonably large radii of transverse curvature to pro-

vide the required radial capacity of the bearing causes the cone angle to be

very small. This limits the magnitude of the restoring torque and allowable

roller imbalance.

This leads one to consider the second level of complexity in the rollers,

That is a central band of uniform radius for radial capacity flanked by two

symmetric bands of transverse curvature to provide the kinematic skew cor-

rection. This enables both the radius of transverse curvature and the cone

angle to be larger. Thus,high radial capacity can be maintained while a high

degree of kinematic skew correction is obtained. The magnitude of the cone

angle should still be kept relatively small, however, to maintain low bearing

power loss and heat generation due to spin in the contact region. This spin

i
i

1

i

_.	 .-.	 ye x	 r	 Y	 .-.eke T--^..«.w.	 -	 rrr
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is a system of differential slip velocities which exist circumferentially in

the contact zone between the tapered rollers. The analysis of [14] indicates

that a small amount of spin, hence roller taper, can be tolerated without an

appreciable effect on power loss. The cone angle should be selected to pro-

duce an optimal combination of maximum bearing life and stability with

minimum power loss. Figure 15 illustrates one design for an experimental

high speed roller bearing which maintains the low speed radial capacity

while providing significant skew stability.

SUMMARY OF RESULTS

A theory of kinematic stabilization of rolling cylinders was developed

and applied to the design of cylindrical roller bearings. This theory pre-

dicts and helps prevent axial motion of free rolling cylinders.

The theory includes external-external roller contact and internal-

external roller contact. It incorporates three basic parameters which

affect the kinematic stability of free rolling roller pairs. These three

parameters are:

1) The half cone slope angle a.

2) The rolling radius ratio r b/ra or rc/ra and

3) The transverse curvature ratio P b/P a or P c /P a-

Low speed, free rolling tests were performed to verify this analysis. The

analysis was used to develop a complete table of restoring geometries for

roller contact with either inner or outer bearing races. The following

results were obtained:

1. The inter-relationship of the above three parameters in producing

axial stability or instability can be represented by a single relation as

follows:
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_ (rlap x"rlxpa)
tan a<0

(ax + p a )r l
22 
a

2. A set of four s"ible bearing geometries with single transverse roller

curvature can be designed. In addition, a set of eight stable bearing

geometries can be designed which utilize three bands of curvature that are

symmetric about the roller center plane.

3. Low speed tests of these geometries have verified that the simplified

two plane rolling model is adequate to predict the presence of axial stability

or instability in cylindrical rolling.
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NOMENCLATURE	 (Savage and Loewenthal)

Variables

C	 transverse curvature center distance in milimeters

0	 center of transverse rotation

R	 radius to center of transverse curvature in milimeters

r	 rolling radius in milimeters

U	 slip velocity in milimeters per second

V	 total velocity in milimeters per second

z	 axial roller direction

CL	 half cone angle in degrees

P	 radius of transverse curvature in milimeters

w	 angular velocity in radians per second

Subscripts

a	 roller

b	 inner race

c	 outer race

d	 external rolling cylinder

e	 ;external rolling cylinder

o	 nominal rolling value

1,2 right and left sides of roller
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TABLE 1. - AXIAL STABILITY CRITERIA OF EXTERNAL-EXTERNAL CONTACT ROLLERS

Roller Curvature Roller a Roller d

Geometry Outboard	 Apex Outboard	 Apex

R	 Roller d - Roller a (+ a) (- a)

rle
peconvex - convex rle ` peld	 d

,

ld	 d

convex - straight yes no

convex - concave yes no

straight - straight rle r1e >	 l

rld ld



TABLE 2. - STABILITY CRITERIA APPLIED TO INNER RACE CONTACT

Roller Curvature

(Roller a)

Inner Race

Curvature

(Inner Race - b)

Roller a With

Outboard Apex

(* +a )

Roller a With

Inboard	 Apex

(	 -a	 )

convex convex rIa	 °a

rlb	 Pb

rIa , °a

rlb	 Pb

convex straight no yes

convex concave no yes

straight convex yes no

straight straight rIa	 1

rlb

rIa , 1

rlb

concave convex yes no

'1
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TABLE 3. - STABILITY CRITERIA APPLIED TO OUTER RACE CONTACT

Roller
Curvature
(Roller a)

Outer Race
Curvature
(Outer Race - c)

Roller a With
Outboard Apex

( +a )

Roller a
Inboard

( -a

With
Apex
)

convex convex yes no

convex straight yes no

convex concave rlc

Fla

jPcj

°a

rlc I.

rla

10cl
Pa

strai ght convex yes no

straight straight yes no

concave convex yeas no



TABLE 4. - STABLE BEARINGS

Roller
Type

Roller
Curvature

Inner Race
Curvature

Outer Race
Curvature

Stability Figure
No.

simple

'

convex convex neutral conditional 13a

neutral convex stable 13b
Ny}

neutral straight stable 13c

neutral concave conditional 13d

compound convex convex neutral conditional 13a*

neutral convex stable 13b*

neutral straight stable 13c*

neutral concave conditional 13d*

straight convex neutral stable 14a

neutral convex stable 14b

concave convex neutral stable 14c

neutral convex stable 14d

*As shown except with a straight central band added to the Moller.
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Figure 1	 Roller-Inner Race Skewing Model
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Figure 2	 Roller-Outer Race Skewing Model
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Figure 3	 Convex-Convex External Contact Geometry
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Figure 4	 Convex-Straight External Contact Geometry
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Figure 5
	

Convex-Concave External Contact Geometry
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Figure 6 Straight-Straight External Contact Geometry
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Figure 7	 Convex-Convex Outer Race Contact Geometry
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Figure 8 Convex-Straight Outer Race Contact Geometry
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Figure 9 Convex-Concave Outer Race Contact Geometry
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Figure 10 Straight-Convex Outer Race Contact Geometry
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Figure 11	 Straight-Straight Outer Race Contact Geometry
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NEUTRAL
	

CONVEX

STRAIGHT	 CONCAVE

(C)	 (d)

Figure 13 Stable Convex Roller Hearings with Roller,
Inner Race and Outer Race Curvatures Noted
Respectively



(o)

CONCAVE- CONVEX-

(b)

CONCAVE— NEUTRAL-
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STRAIGHT- CONVEX- 	 STRAIGHT- NEUTRAL-

	

NEUTRAL	 CONVEX

NEUTRAL	 CONVEX
(C)	 (d)

Figure 14 Stable Bearings with Compound Rollers Which are
Not Convex With Roller, Inner Race and Outer Race
Curvatures Noted Respectively
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STANDARD BEARING	 CONCAVE -CONVEX -  NEUTRAL

(o)	 (b)

Figure 15 Design Alternative for Roller Bearing
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