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SUMMARY

Lateral and torsional vibration data were obtained on a centrifugal com-

pressor train which had shaft instabilities and gear failures. The field data

verifies that the stability of centrifugal compressors can be adversely

affected by coincidence of torsional natural frequencies with lateral insta-

bility frequencies. The data also indicates that excitation energy from gear-

boxes can reduce stability margins if energy is transmitted either laterally

or torsionally to the compressors. The lateral and torsional coupling mecha-

nisms of shaft systems have been investigated both in theory and in laboratory

models by other investigators. This paper documents these coupling mechanisms

in a large industrial compressor train and demonstrates the potential effect

on rotor stability. Guidelines are set forth to eliminate these potential

problems by minimizing the interaction of torsional and lateral responses and
their effect on rotor stability.

INTRODUCTION

Rotor instability vibrations in compressors and turbines have occurred

more frequently in recent years and have caused severe failures and costly
downtime for several large projects. Rotor instabilities can occur in flex-

ible shaft units which operate above their first critical speed. The whirling

instability frequency is usually near one of the shaft critical speeds and can

be caused by many factors, including hydrodynamic bearings, seals, internal

friction, aerodynamic cross coupling, and torsional coupling. The whirling

motion can be subsynchronous or supersynchronous, and may be forward or back-

ward precession; however, most serious problems are subsynchronous and have

forward whirl (refs. i, 2, 3, 4).

In the past few years, vibration data has been collected on several

compressors that have experienced severe instabilities. These compressors

differed in manufacture, shaft diameter, weight, bearing span, critical speeds,

and running speed. Using modern instrumentation, the instantaneous spectral

characteristics of shaft vibrations were observed in real time as the compres-

sors approached the onset of instability, i.e., before the machine experienced

the high level vibrations normally associated with full scale instability.

Real time analysis of the vibration data has shown that on most units that

have instability problems, a trace of vibration at some instability frequency
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normally exists at all times; however, it is not possible to verify the

severity of the instability from vibration measurements at one operating con-

dition. The threshold of instability can be fully defined only from testing

over the full performance range of the machine, and even this approach is not

always completely adequate. Units have run satisfactorily for several years

before serious instability trip-outs occurred. After one year of satisfactory

operation, one compressor failed eight times in the next three years from

instabilities caused by unexpected transients. Because the stability margin

on some units is so delicately balanced, its characteristics can be drasti-

cally changed whenever small changes are made in factors such as pressure

ratio, flow, bearing clearance, oil temperature, unbalance, alignment, etc.,

or upsets in the process such as liquid slugs, surge transients, or electrical

trip-outs.

It follows, therefore, that the threshold of stability can likewise be

improved by small changes in these same parameters, but the exact improvement

required to make an unstable system stable is sometimes difficult to predict.

There are several mechanisms which have been observed to contribute to

rotor instabilities. The most sensitive elements which influence rotor sta-

bility include the following:

(i)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(i0)

hydrodynamic cross coupling in fluid film bearings

seals and labyrinths

aerodynamic cross coupling forces

hysteretic or internal friction damping

pulsations

pulsating torque and axial loads

asymmetric shafting

fluid trapped in rotor

stick-slip rubs and chatter

dry friction whip.

To properly calculate the stability margin of a rotor, the mathematical

model must be able to simulate all possible destabilizing components. The

logarithmic decrement evaluation of rotor system damping as presented by Lund

(ref. 4) is useful for predicting rotor stability. Field experience shows

that while this technique provides proper direction in designing for sta-

bility, uncertainty still exists in quantitatively predicting the onset of

instability and defining the contribution of individual influencing parameters.

When instability vibrations occur in installed machinery, better esti-

mates of the possible effects of system changes can be made if measured field

data is available for normalization of the mathematical model. The normaliza-

tion procedures compensate for unknown dimensional variations which affect

bearing and seal properties and adjust for actual aerodynamic loading. This

paper will present measured field data on several compressors which exhibited

instabilities. Data analysis techniques presented can define rotor stability

thresholds and the effects of modifications to seals, bearings, shafts, and

process variations.
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Comprehensive experimental data can be invaluable in defining critical

elements in the computer simulation of rotor instability, and can aid in

improving their modeling.

ANALYSIS OF ROTOR INSTABILITY VIBRATION DATA

Capturing rapid instability transients and presenting a maximum of

readily understandable information requires specialized instrumentation to

develop Campbell diagrams, spectral time histories, and order tracking plots.

Field instrumentation used to document compressor instabilities, including a

real time analyzer, oscilloscope, X-Y recorder, FM tape recorders, proximity

probe instrumentation, transducer amplifiers for pulsation and accelerometer

measurements, trim balance analyzer, spectral time history generator, order

tracking instrumentation, tachometers, switch boxes, and signal cables, are

shown in figure I.

A clearer understanding of the sequence of events during instabilities

can be obtained by the development of spectral time histories than by viewing

events on a strip chart recorder or oscilloscope. The complex waves (ampli-

tude versus time) of two shaft vibration probes during a compressor insta-

bility trip-out are given in figure 2. Although this method of presentation

is important in obtaining the total peak-to-peak vibration amplitude as a

basis for identifying damage to bearings, seals, and labyrinths, etc., due to

touch-off or high vibration, it is difficult to define the system running

speed from strip chart records, since the initiation of instability will com-

pletely mask other vibration components.

The spectral time histories, or rasters, of vibration data are generated

using a real time analyzer, and can be taken either off the machine directly

or from FM tape or using digital FFT computer techniques (waterfall diagrams).

By making sequential frequency analyses and incrementing the analysis verti-

cally on a storage oscilloscope, a frequency analysis versus time record can

be conveniently generated and effectively displayed and photographed. Compare

the spectral time history (figure 3) of the same compressor rotor instability

shown in figure 2. The time intervals marked on the strip chart correspond to

the numbers on the analysis.

By using a fiber optics strip chart recorder, the complex wave can be

displayed alongside the frequency analyses, allowing a direct comparison of

overall peak-to-peak amplitudes with amplitudes of each spectral component

(figure 4).

The authors have found these data acquisition techniques to be particu-

larly useful in the solution of instability problems in large industrial

compressor units.
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INSTABILITYOFSYNGASCOMPRESSOR

The spectral time history of the compressor instability presented in
figure 3 was for a 13000horsepower, 10600 rpm, 8 stage compressorwith back-
to-back impellers. The compressorhad a 163 cm (64 inch) bearing span with a
critical speed of 3800 cpmand a rigid bearing critical of 4300 cpm. The suc-
tion pressure was 10.3 bars (150 psi) and the discharge pressure 34.5 bars
(500 psi). The complex wave (figure 2) shows that the instability component
at 4300 cpmincreased from 25.4 _mto i01 _m (i mil to 4 mils) over about a 1
second interval, and then sharply increased to 406 Dm(16 mils) in approxi-
mately 0.2 seconds. The vibrations then shifted to 6000 cpmand then locked
in on 4300 cpm (406 Dm, or 16 mils) until the compressor speed was below 4000
rpm. The inboard vertical probe had slightly different characteristics,
emphasizing the need for full instrumentation. This compressor failed eight
times due to these nonsynchronousvibrations. The seals and labyrinths were
wiped in an increasing bow pattern such that the inner labyrinths had approxi-
mately 2.5 mm(0. i0 inches) of material removed. The vibration orbit was so
circular that the pieces appeared to have been turned in a lathe.

Several modifications were required to improve the machine's stability
characteristics. The impeller hubs were undercut to reduce the hysteresis
effects at the mating surfaces. The clearances in the seals and labyrinths
were increased. The five-shoe tilted pad bearings were modified by reducing
the pad areas on the side and by increasing the radial clearance to force the
rotor to vibrate in a horizontal elliptical orbit. In this compressor the
installed recommendedchangeswere sufficient; and the machine has run for
several years without further nonsynchronous vibrations.

TORSIONAL-LATERALCOUPLINGEFFECTSONSTABILITY

A recent study involving a complex centrifugal compressor train reveals
considerable evidence that the torsional natural frequency of the system coin-
cided with an unstable vibration modeof the fourth stage compressor and con-
tributed to the failures encountered. Others have discussed this problem, but
little experimental data is available on large industrial units (refs. 5, 6,
and 7).

The high speed compressor (17000 rpm) could not be operated above 70 per-
cent load because the lateral vibrations would suddenly increase to destruc-
tive levels whenever the load increased. Vibrations as high as 101-127 _m
(4-5 mils) occurred when the instability was excited, resulting in seal wipes,
bearing failures, and shaft scoring.

In addition to the high lateral shaft vibrations on the fourth stage com-
pressor, several gear failures were experienced in the intermediate and pinion
gears. A complete investigation of the system, requiring extensive testing,
was madeto determine the cause of the problem and to evaluate the modifica-
tions. The data obtained illustrates the influence of the torsional natural
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frequency upon compressor instabilities and lateral vibrations in the gearbox.
In addition, the influence of the lateral vibrations of the shafts in the
gearbox upon compressor vibrations will be documented.

The system consists of a gas turbine, steam turbine, two gearboxes, and
five centrifugal compressors (figure 5). The gas turbine gearbox has a bull
gear, two intermediate (idler) gears, and two pinions. Onepinion drives the
first and second stage compressors in a back-to-back arrangement on opposite
sides of the pinion. The other pinion drives the third, fourth, and fifth
stage compressors; the third stage compressor is on one side and the fourth
and fifth stage on the other side. Directly in line with the bull gear is
another gearbox with an auxiliary steam turbine. This system is rigidly
coupled between the pinions and compressors as opposed to having gear coup-
lings, which caused lateral vibrations to be transmitted throughout the entire
system.

The compressorswere instrumented with proximity probes; however, to com-
pletely evaluate the instabilities in the fourth stage compressor and gear
tooth failures, additional proximity probes were installed in the gearbox to
measure lateral vibrations. In addition, three FM torsiographs were installed
in the gearbox (figure 6), one monitoring the bull gear and one on each of the
pinions. The FMtorsiograph measures torsional vibrations by monitoring the
gear tooth passing frequency signal from a magnetic pickup or proximity probe
and demodulates this signal using a frequency-to-voltage converter. The
resulting demodulated signal can be frequency analyzed to obtain the torsional
velocity vibrations in the system.

The unstable lateral vibration characteristics of the compressor can be
seen in figure 7 which gives the outboard horizontal vibrations in a raster
plot or Campbell diagram presentation. This Campbell diagram was made
directly in the field with a real time analyzer and appropriate electronic
instrumentation. The instability vibrations at 4800 cpmare only about 13 _m
(0.5 mil); however, the gas turbine speed had been lowered to 3460 rpm (com-
pressor speed of 16400 rpm) to keep the instability amplitude from tripping
the unit. It can be seen that the amplitude of the instability near 4800 cpm
reduces as the speed is lowered. Both reduction in speed and reduction in
load caused the instability amplitude to decrease. Vibrations at the same
frequency (4800 cpm) as measured in the fourth stage compressor also occurred
in other compressors in the train even though no apparent excitation source
exists in the train at that frequency. The horizontal vibration of the third
stage compressor (figure 8) shows vibrations at 4800 rpm which was the insta-
bility frequency that was tripping out the fourth stage compressor.

The torsional natural frequencies of the train can be seen from the
Campbell diagram generated from the bull gear torsiograph signal (figure 9).
The first three torsional critical speeds occurred at 1155 cpm, 1590 cpm, and
4760 cpm. One interesting phenomenonto note is that the first and second
torsional critical speeds are always present, and modulate with fairly high
amplitudes. Note that the third torsional natural frequency at 4800 cpmcor-
responds with the lateral instability frequency of the fourth stage compressor.
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The maximumamplitude measuredover the entire running speed range is
recorded by the peak store envelope (figure i0). Figure ii illustrates the
correlation of the natural frequencies measured from the pinion gear torsio-
graph. The torsiograph on the pinion gives the samefrequency information and
also showsmodulation of the first and second torsional critical speeds.

The fourth stage compressor originally had pressure pad bearings. At
this high speed of 17000 rpm, it was suspected that a change to tilted pad
bearings would be sufficient to solve the instability problem; however, to
ensure that the system would still operate satisfactorily under design loading
conditions, stability calculations were madefor the original system and the
system with tilted pad bearings. Also the effect of the change to tilted pad
bearings upon the lateral critical speed response was investigated. The crit-
ical speed mapwas generated and forced vibration analyses were performed to
verify that the location of the new critical speeds would be acceptable. The
critical speed mapin figure 12 has the presure pad and tilted pad bearing
curves superimposed. The new bearings were four-shoe, load-between-pad
bearings. The new system critical speeds are near the horizontal critical
speeds for the original system. The compressor running speed is above the
fourth critical speed; therefore, the change to tilted pad bearings would not
definitely solve the problem since there are manysystems which have tilted
pad bearings and still have instabilities.

It has been found that to determine if proposed bearing modifications
will be satisfactory from a stability standpoint, it is necessary to analyze
the system for the fluid or aerodynamic loading that the compressor will be
experiencing. To ensure that an adequate range of loading is covered, nor-
mally the log decrement versus effective aerodynamic loading is evaluated as
plotted in figure 13. The lowest calculated instability forward modenear
4600 cpmagreed with the 4800 cpmwhich was actually measured(figure 7). The
compressor stability is lowered as the effective aerodynamic cross coupling
loading increases. With the new bearings, significant improvement in the log
decrement is apparent and the tendency toward instability as a function of
load is not evident. This calculated stability data indicates that the unit
should be stable. The field data supports this analytical prediction, as can
be seen from figure 14 which showsthat as the gas turbine speed increases
above 3000 rpm, no instabilities were found. Under maximumoperating condi-
tions, maximumpressure, and rated flow, vibrations in the low frequency range
were carefully examined for all types of incipient instabilities and none was
found. Therefore, from a stability standpoint, the changesmadein the unit
were satisfactory.

Oneinteresting phenomenonthat occurred on startup was the excitation of
lateral vibrations in the fourth stage compressor due to the idler gear fre-
quency excitation as it passed through the compressor shaft critical speeds.
In figure 15 (the peak-store plot of the compressor shaft vibrations, as com-
pressor speed went from 5700 rpm to 13300 rpm), the excitation of the shaft
criticals at 3000-4450cpmcan be seen. These measuredcritical speeds match
those determined from the critical speed map. On this initial startup, the
high amplitude, low frequency vibrations measuredon the fourth stage com-
pressor were unexpected due to the predicted improvement in the stability
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characteristics for the rotor with the tilted pad bearings. Whenthe experi-
mental Campbell diagram of the vibrations was displayed, it was found that the
instability was not the classical type of instability. The low frequency
vibrations were a result of the idler gear frequency exciting the lateral
critical speeds of the fourth stage compressor. The cause of the excitation
was the lack of steady-state loading on the gears in the gearbox. Subsequent
runs were madewith higher suction pressures which significantly reduced the
idler gear excitation. These characteristics were shownin figure 14 for
increased suction pressure. These data show that in closely coupled systems
the lateral energy can be transmitted throughout the train.

COUPLINGOFTORSIONALVIBRATIONSINTOLATERALVIBRATIONS

The following data illustrates the coupling of torsional vibrations into
lateral vibrations throughout the compressor train. While it is felt that the
rigid couplings greatly influence the magnitude of the coupled torsional to
lateral amplitudes, the mechanismwhich causes the increased lateral vibration
at torsional natural frequencies is the samefor all rotating equipment. The
important factor to be stressed is that the coupling of the torsional vibra-
tions into the entire system can also serve as an instigator of instability.
Therefore, it is vitally important to design systems which are free from gear
excitation which might coincide with the torsional natural frequency of the
system or the instability frequencies of individual shafts in the system. The
interaction that occurred between the torsional and lateral vibrations for
this system is discussed below.

For the pinion driving the fourth stage compressor, the Campbell diagram
in figure 16 shows that whenever one of the excitation sources matches a tor-
sional natural frequency, the lateral vibrations drastically increase. The
energy from the idlers can couple directly into compressor shaft lateral
vibrations; therefore, it can be surmised that any time the idler gear, bull
gear, or one of the excitation sources is coincident with the torsional nat-
ural frequency, increased lateral vibration would occur and this could be
transmitted to the compressors.

In addition to presenting the data in the form of the Campbell diagram,
order tracking was performed to separate the vibration componentsin the
pinion vibration. Figure 17 gives the lateral vibrations at the bull gear,
the pinion, and the idler gear frequencies present on the pinion over the
speed range. Notice that whenever the idler gear frequency matches the tor-
sional natural frequency at 4800 cpm, there is a sharp increase in the ampli-
tude. The two idler gears had slightly different frequencies; therefore,
there was a modulation of the amplitude of the lateral vibrations on the high
speed pinion when tracking this frequency. This amplitude increase can be
directly transmitted to the fourth stage compressor and serve as an instigator
for the instability frequency.
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The Campbell diagram for the other pinion lateral vibrations (figure 18)
shows that the torsional energy is transferred laterally throughout the train.
Again there are similar characteristics on the pinion with large responses at
the first and the third torsional critical speeds, indicating that this exci-
tation can cause large lateral vibrations.

The effect on the idler gear horizontal vibration is shownin figure 19.
This is a time raster rather than a Campbell diagram. The increase in lateral
vibration can be seen when the idler gear frequency approaches 4800 cpm. This
data is pertinent relative to the two problems experienced: the instability
and the gear tooth failures. Notice that every time one of the excitation
frequencies is coincident with the torsional natural frequency, the torsional
vibrations and the lateral vibrations increase. This energy is transmitted
through the shafts to the first and second stage compressors, as can be seen
in figure 20 which gives the second stage compressor inboard vibrations.
There were large vibrations excited even on the second stage compressor; how-
ever, this compressor also had a lateral critical speed near 4800 rpm which
mayhave caused someamplification. This data shows that if a compressor had
a potential instability, it would be easy for the torsional resonances to act
as perpetrators for instabilities.

For this system with the new tilted pad bearings, the stability was
significantly improved. The new instability modefrequency was out of the
range of the idler gear and bull gear excitations; therefore, this system was
completely stable over the range of operations.

CONCLUSIONS

These field investigations have served to provide insight into potential
destabilizing instigators and sensitive operating conditions for high speed
rotor systems. Several useful guidelines have been set forth for evaluating
new designs of high speed rotor systems as well as existing systems with
chronic stability problems.

(i) Torsional vibrations in a system can serve as an instigator for an
instability; therefore, it would be important in designing systems not to have
the torsional natural frequency of the system coincide with potential unstable
vibrating modesof a centrifugal compressor.

(2) In rigidly coupled systems, excitation sources in the gearbox should
not match potential instability natural frequencies since this could serve as
an exciting mechanismfor the instability.

(3) In systems where an instability modecould occur near a torsional
natural frequency of the system, a potential exists for coupling of the vibra-
tions into the gearbox to increase the dynamic loads on the gears and in some
cases can cause gear tooth failures.
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(4) If gear failures are experienced in a gearbox, it is standard pro-
cedure to check for torsional natural frequencies in the system which can
amplify the dynamic loads. The system should also be checked for unstable
vibrations on one or more of the compressors which maybe causing increased
dynamic loads through the torsional-lateral coupling mechanismsas demon-
strated in this example.
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FIELD INSTRUMENTATION

Figure 1

COMPLEX WAVE PRESENTATION OF COMPRESSOR INSTABILITY

Figure 2
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SPECTRAL TIME HISTORY OF COMPRESSOR

TRIPOUT SHOWING INSTABILITIES
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Figure 3
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Figure 4
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CAMPBELL DIAGRAM

OF FOURTH STAGE COMPRESSOR VIBRATIONS SHOWING INSTABILITIES
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Figure 9

PEAK-STORE BULL GEAR TORSIONAL VIBRATIONS

OUTIIWEST RESEARCH INSTITU rE- APPLIED PHYSICS DIVI._ION

CPH

Figure i0

29



TORSIONAL VIBRATIONS MEASURED ON _INION
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COMPRESSOR SUBSYNCHRONOUS VIBRATIONS

EXCITED BY IDLER GEARS
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ORDER TRACKING OF PINION VIBRATIONS

2.5

2,0
N

H

B

o 1.0

0.5

Lateral vibrations increase when

idler speed matches third tor-

elonal natural frequency at 4800

cpm.

1.61 x (Idler Speed)_

Modulation of _plltude occurs

due to beating effect of two

idler gesrs.

0600 1200 1800 2400 3 O0 3600

Gas Turbine Speed, rpm

CPM IN THOUSANDS

Figure 18

33



IDLER GEAR LATERAL VIBRATIONS
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