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SUMMARY 

The role of fluid-forces acting on the blades of an axial turbo-rotor with 
regards to whirling is analyzed. The dynamic equations are formulated for the 
coning mode of an overhung rotor. The exciting forces due to the motion are 
defined through a set of "rotor stability derivatives" (R.S.D.'s), and analyti
cal expressions of the aerodynamic contributions are found for the case of 
small mean stream deflection, high-solidity and equivalent flat plate cascade. 
(Torque-whirl and tip-clearance effects can also be included in the R.S.D.s). 
For a typical case, only backward whirl is indicated if the phase-shifting of 
the rotor wake effect is ignored. A parametric study of the dynamic stability 
boundary reveals that a reduction in blade stagger angle, mass-flow rate, fluid 
density and an increase in stiffness and external damping are all inducive for 
improved stability. An optimum overhang distance of the rotor from the bearing
support can also be found. Finally, when two or more opposing whirling mecha
nisms are present, mutual annihilation is possible by making a certain whirling 
group "bo" very small. This concept can be useful in the preliminary design 
stage or for later improvements. 

INTRODUCTION 

An increasing number of severe failures in high speed compressors and 
turbines in recent years are attributable to whirling instability. Ehrich 
(ref. 1), Shapiro and Colsher (ref. 2) and many others have reviewed the de
stabilizing mechanisms. To our knowledge, only a few studies have been con
ducted regarding the fluid-dynamic forces acting on the blades themselves. 
Alford (ref. 3) dealt only with the periphery of the rotor, namely, the tip
clearance and labyrinth seal forces. Reference 4 includes various other mecha
nisms acting between the rotor-circumference and its casing. Bousso (ref. 5) 
and later Vance (ref. 6) analyzed the consequences of the tilting of load
torque, but did not account for other effects produced by the same fluid 
forces. Trent and Lull (ref. 7) noted the important analogy between turbo
rotor whirl and propeller whirl. Ehrich (ref. 8) considered the fluid react
ions based on Euler's turbine equations but his dynamic equation was later 
found to be in error. 

In this paper, we adopt the usual modelling of an overhung rotor in its 
'coning mode' to set up the dynamic equations of motion. The forcing terms are 
from the self-induced aerodynamic forces due to the motion, and the whirling is 
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thus reduced to an eigenvalue problem much like flutter. The analysis follows 
the basic idea of propeller whirl but the details are carefully reworked for 
the cascade configuration in turbo-rotor systems. Our emphasis is to lay down 
a proper framework and outline the methodology, so that only systematic 
refinements and extensions are needed to yield results of practical 
significance. 
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diagonal dam~ing matrix with 
elements cde 

complex wake function 

coefficient of lift 

Rotor Stability Derivative 
(R. S.D.) 

chord length 
2 

27;Ke(e/r2 ') 

equivalent overhang shaft length 

real part of wake function C 

imaginary part of wake function 
C 

J/1, ratio of inertias 

diagonal inertia matrix with 
elements 1 

Mr22, moment of inertia of rotor 
about pivotal axis 

unit vectors in axial flow 
direction and opposite to 
rotational speed, respectively 

polar moment of inertia of rotor 

diagonal stiffness matrix with 
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equivalent torsional spring 

cascade interference factor 

w R/V , reduced structural e a frequency 

reduced aerodynamic frequency 
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nR pV(l n), annular mass flow 
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elemental moment 
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(r
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+ e) , radlus of gyratlon 
of rotor about pivotal axis 

rotor tip radius 

gap between adjacent chords 

kinetic energy 

time 

potential energy 

absolute velocity 

relative velocity 

angle of velocity component with 
respect to axial direction 

blade stagger angle 

change 

angle of attack 

r/R 

hub-to-tip radius ratio 

amplitude of pitch angle 

coning angle 

azimuthal location of i th blade 
from horizontal axis 

nRSp(l - n
2
)/1, ratio of moment 

of inertiaOof annular cylinder of 
air to that of rotor 

fluid dens ity 

cis, solidity ratio 



<t> = 

1jJo 

w 

V/~R, tip mass-flow coefficient 

amplitude of yaw angle 

angular velocity vector 

IK/I 

Subscripts, prefixes, etc.: 
o steady value 

comp compressible 

eff effective 

inc incompressible 

1m imaginary part 

Re real part 

s inertial reference frame 
1,2 inlet and exit stations 

x,y,z in the direction of x,y,z axes 
1,2 forward and backward whirl 

1,2 refers to (~ + w) in context 
with reduced frequencies for 
whirl reference value 

a axial direction 

()a aerodynamic contribution 

w 

8 

C) 
(' ) 

C) 

wake contribution 

tangential direction 

average value 

perturbed value 

matrix notation 

THE ROTOR MODEL 

A rotor on a flexible shaft is equivalent to a gyroscope tied to a rotat
ing spring. Figure 1 shows the real rotor shaft system and the idealized model 
considered in this paper. This simplest model focuses on the 'coning mode' and 
has all the characteristics necessary to produce the phenomenon under study. 
Some of the implications and further assumptions are: 

1. The shaft elastica remains in one plane due to infinite stiffness in 
torsion. 

2. The angular tilt of the rotor axis essential for the coning mode is 
coupled tc the radial deflection of the center of the rotor. 

3. The cantilevered shaft is approximated by an equivalent, torsional spring, 
kl and an equivalent, rigid, massless shaft of length, 11' The notation 
K = kl and e = 11 is used in the main text. (See reference 9 for 
inadequacies in this model.) 

4. The bearings are rigid and frictionless. 
5. The center of mass of the rigid rotor is at its geometric center, i.e. 

there is no imbalance or eccentricity. 

LAGRANGE'S EQUATIONS OF MOTION 

The motion and instantaneous position of the rotor can be completely 
specified by the Euler angles 1jJ, 8 and ~t which are, respectively, the yaw, 
pitch and azimuth angle as shown in figure 2. For small angular deflections 
1jJ, 8 and constant rotational speed n, we have 

. 
w == n + \jJ8 , 

x 

. 
w - - 8 

Y 

. 
and w - \jJ 

z 

The dynamic equations are derived by using Lagrange's equations: 

(1) 
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where, 

L = 

D 

Qi 
6W = 

and qi 

d 
dt (~~i) - ~L + ~~ = Q. 

oq. 0'i. 1 
1 1 

Lagrange function = T - V = t ~T • I 

D· . . f . 1.T C • lsslpatlon unctlon = 2 q. • q 

Generalized force = 6W/6q. 
1 

Virtual work 

• w -

Generalized degree of freedom (d.o.f.); (q1 

After simplifications, the results may be written as: 

1 T -q 2 _ • K 

(2) 

• q 

e) 

(3) 

In particular, note that I is the moment of inertia of the rotor about the 
"pivotal axis" and cd is the "equivalent viscous damping coefficient" to ac
count for the damping effects assumed to be representable by an effective force 
applied at the tip of the shaft. 

According to the principle of virtual work, 6W = Mz 6~ + ~ 6e. It fol
lows that Q1 = Mz and Q2 = ~, i.e. the generalized forces are the pivotal 
moments Mz and My produced due to the fluid-dynamic forces acting on the rotor. 
These moments are found in the next section to be functions of both the gener
alized d.o.f., qi' and their derivatives. Thus, besides the anti-symmetric 
gyroscopic coupling due to ± J~ there also exists coupling due to the f1uid
dynamic forces. Such external couplings, if anti-symmetric in nature, as is 
well known, can produce unstable response. 

THE ROTOR STABILITY DERIVATIVES (R.S.D.'s) 

The generalized forces caused by small perturbations of the d.o.f. will 
be expressed as a set of 'rotor stability derivatives', abbreviated as R. S. D.'s, 
in this paper. For a systematic treatment of the aerodynamic terms, the anal
ogy of the present problem to propeller whirl treated in References 10 and 11 
is obvious. However, we have to make judicial adjustments for the cascade 
configurations. As a first approximation, we consider here only the quasi
steady effect of inviscid, potential fluid flow on an axial turbo-compressor. 

The quasi-steady lift for an airfoil in cascade depends on the instantan
eous angle of attack and is given by 

(4) 
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In order to find the effective reference velocity, Weff' and the coefficient 
of lift C~eff' consider the displaced rotor as shown in figure 3a. A circum
ferential cut AA at any radial location unfolds a cascade of airfoils which 
can be represented simply by equivalent flat plates as shown in figure 3b (see 
ref. 12). It is well known that, for a cascade of high solidity, i.e. small 
gap-to-chord ratio (sic f 0.7), the angle of the relative outlet velocity with 
respect to the blade is independent of the relative inlet flow angle and is 
equal to the equivalent flat plate stagger angle. Hence, assuming that the 
rotation of the blade due to yaw and pitch is very small as compared to ...... its 
stagger angle, y, the perturbed and steady relative outlet velocities, W2' and 
W2' are approximately parallel to each other. Next, assuming constant radius 
cylindrical stream surfaces, the equation of continuity gives the equivalence 
of the axial components of the absolute outlet velocity in the steady and per
turbed states, i.e. V~2 = Va2 = Va' The velocity triangles in figure 3c are 
shown using these assumptions. The velocity triangles are crucial to the 
development of the R.S.D.'s. (See ref. 9 for further discussions.) 

Defining the reference velocity in cascades by 

...... 1 -+ -+ 
W -

2 (WI + W
2

) 
00 

(5) 

we get 
A 1 -+ -+ -+ 

l1W - W' W = vi +- (u + vtan 8
2
)j 

00 00 00 2 
(6) 

where, u and v are the perturbation velocities of the blade in the plane of 
the rotor disc and normal to it. From kinematical relationships, we can easily 
write 

. 
u = - eW sin ~t + e e cos ~t 

v (w~ - 8) r sin ~t - (e~ + ~) r cos ~t 
...... -+ 

The angular tilt of the rotor axis and the component of l1Woo normal to Woo 
combine to give an effective change in the angle of attack, 

M 01 + 82 

where, °1 W sin ~t - e cos ~t 

82 
v (~r + V tan 82 - V 1)/2W

2 
a e 00 

Using the coefficient of lift for a flat-plate cascade (ref. 11) 

with 

and putting 

where l1W 

8 + M 
o 

W + l1W 
00 

-+ -+ 
component of l1Woo parallel to Woo 

(7) 

(8) 

(9) 
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we get the perturbed component of lift from equation (4) as follows: 

Q,' = W2 
0 M + 2 W sin 0 f..W rrpk c f..r cos 

co 0 00 0 
0 

+ 2W cos 8 f..W M + sin 0 f..W2 + f..W2 M. 
00 0 0 

(10) 

The first term provides the leading contribution and for lifting cascades (i.e. 
00 ~ 0) the second term gives an additional small effect. Equation (10) is a 
general expression for the perturbed lift component; it can be written for the 
i th blade by replacing Qt by Qt + Si' then summed over all the blades and 
finally integrated from the hub to the tip radius giving the total perturbed 
lift. 

We now specialize equation (10) for a non-lifting cascade, i.e. 00 = 0 and 
uniform axial inlet field with no swirl, i.e. VSl = O. It turns out that even 
in such a simple case significant forces may be produced. 

Using the simple relation for the cascade interference factor, ko 

k 
o 

2 s 1 
rr c cos y 

for a high solidity cascade with (s/c).~ 0.7, (see ref. 12), the following 
result for the non-dimensional force components can be obtained: 

p 

(taR) (~) z _ 
C S + c + c M'V - Zs z Z 

a r q 

where C C 1 + (1 + n2)/(4~2) 
Yl/l z8 0 

c = c = e/2R 
yq Z r 

C = -c (1 + n2)/(4¢2) 
Yr z 0 

q 

Similarly, integrating the elementary moment components 

m = - r Q, tan 6 y y co 

and 
m = r Q, tan 6 z z 00 

we get the non-dimensional moment components as 
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(12) 

(13) 
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where 

Ma 
z 

M'V R 
a 

C 

m 
q 

-C 

C 

n 
r 

n 
q 

[ (1 + n!)/2¢ + (1 + n + n )/6¢ 2 4 3J 
o 0 

1. ~ (1 + n2
)/¢ 

4 R 0 

- (1 + n2 + n4)/6¢2 
o 0 

(15) 

(16) 

Analogous to the propeller-in-yaw studies, for example, by Ribner (ref. 13) the 
perturbed axial force and torque about the rotor axis are zero. 

The coefficients Cy*, Cy , CYr ' Cm ' Cm ' Cmr ' etc. as defined by equa
tions (12-16) and which denote ~ncreases tn fo~ces/moments due to unit increases 
in the d.o.f. or their derivatives are termed as the 'Rotor Stability Deriva
tives' in this paper. Note that in this formulation the R.S.D.'s are independ
ent of the number of blades and solidity ratio and remind one of actuator disc 
type results. In practical applications reliable determination of the R.S.D.'s 
is, of course, imperative. 

APPROXIMATE CORRECTIONS FOR COMPRESSIBILITY AND WAKE EFFECTS 

For compressible flows, a first-order correction on the pressure distribu
tion can be obtained by using the expression given in reference 12, page 61. 
For the case of small lift and low subsonic Mach numbers it reduces to the well
known Prandtl-Glauert Rule: 

(C n ) = (C n ), / /1 - M2 
N comp N 1nc n 

where M is the local Mach number at any radial location n. The concept of an 
n effective Mach number, Meff was used by Ribner (ref. 13) as an overall correct-

ion to the R.S.D. So long as Meff is small, we find only small changes in the 
R.S.D. 's and the stability boundaries are not significantly affected. 

The unsteady rotor wake can be taken into account by the use of complex 
rotor wake functions; see Houbolt and Reed (ref. 10) in the propeller whirl 
problem. Instead of the well known Theodorsen function for an isolated airfoil, 
one needs the oscillating cascade wake functions, C, for example, by Whitehead 
(ref. 14). In cascades the wake function is a parameter of not only the 
reduced frequency, k, but also of solidity, blade stagger angle and the phase 
of vibration between adjacent blades, ~. Hence, 
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F - Re { C} fn (k,s/c, y, <I» 

and 
G - 1m { C} fn (k,s/c, y, <I» (17) 

Analysis done parallel to reference 10 leads to the following important 
ref. 9): conclusions for multi-bladed cascaded rotors (see 

1. Two reduced frequencies are involved in whirling: 

k = (n + 00) c/2W 1,2 - 00 

2. If the whirling frequency 00 is much smaller than the rotor 
frequency n, then the effect of wake is to turn the resultant 
force and moment clockwise by approximately: 

-1 
8* = tan (G/F) 

where 

G 
1 
2 

without much change in the magnitude of the vectors. 

3. Two new R.S.D. 's solely attributable to this effect are added, 
namely, 

C
w _Cw - C tan 8* 
Ye zifJ YI/J 
w 

C
w 

C 8* C - tan . 
me nl/J ml/J 

(18) 

(19) 

(20) 

(21) 

Hence, the contribution to the effective tangential force due to the angu
lar tilt of the rotor, which is important for whirl, appears from two sources: 

i) C the quasi-steady moment R.S.D. 
ml/J 

it) Cw the unsteady rotor wake force R.S.D. 
Zl~ 

Ehrich's analysis (ref. 8) did not include either of the above two mechanisms. 

The above analysis which was for a compressor or a negative work turbo
machine can be repeated for a turbine or a positive work turbo-machine. Though 
the previously derived R.S.D.'s are not applicable for thick, curved turbine 
blades with high flow deflection, it can be shown that the direction of the 
net force and moment does not change. 

For lifting rotors, two other important mechanisms discussed in the liter
ature are Alford's tip-clearance effect (ref. 3) and Bousso's torque whirl 
effect (ref. 5). Both can be represented by an equivalent tangential force due 
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to a radial displacement and contribute thus only to C (= -C ). In ref. 9 
the conversion to R.S.D. is explicitly given. Zw Ye 

DYNAMIC STABILITY ANALYSIS 

The generalized forces are related to the fluid-dynamic forces and moments 
by 

+ M
a 

Q
I 

= M = eP 
z y z 

Q
2 = M eP + M

a 
y z y 

It is advantageous to write the equation of motion (eqn. (3) in non
dimensional form. Defining a new independent variable 

T = V t/R 
a 

and denoting derivatives with respect to T as superscripted primes, 

O} jw" l + {' D H/4>}{WI ( 

I le",\ -H/4> D elf 

where the non-dimensional forces are given by 

fW a W + a
l 

W' + b e + b
l 

e' 
0 0 

fe = a e + a
l 

e I - b W - b W' 
0 0 I 

with 
a = ~ C + C 

0 R YljJ me 

a
l 

= ~ C + C 
R Yq mr 

b = ~ C - C 
0 R Ye mw 

b
l 

= ~ C - C 
R Yr m 

q 

Hence, the homogeneous equation is 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

The anti-symmetric off-diagonal terms (H/4> - Kb l ) and (-Kbo ) are important 
to the self-excited whirl phenomenon as noted earlier. 
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In order to find the conditions for which the system becomes neutrally 
stable, sinusoidal motion for ~ and e is specified: 

iwt 
~ = ~ e o 

e = e 
o 

iwt 
e 

where w, the whirling frequency is assumed positive. 

(28) 

To avoid a frontal attack of the eigenvalue problem with a large number of 
parameters, the following approach has proved to be more fruitful. Let D in 
equation (27) be replaced by IT which denotes the damping required for neutral 
stability. Then the substitution of equation (28) in equation (27) gives rise 
to two algebraic equations in terms of the two unknowns wand D. Equating the 
real and imaginary parts to zero gives 

1..
2 = 1 

(b ± Jb2 - 4d) 
2K~ 

(29) 

and 
D 1 { (H/.-Kb1)Kb o l 1:; 

2Ke(e/r;)2 2K
e

(e/rz)2 
Kal + 2 2 

. Ke(l-A )-Kao 

(30) 

where A w/we' non-dimensional whirling frequency 

1:; cd/2Mwe, fraction of critical damping required for 
neutral stability 

(H/~)2 + 2K~ - 2K (a Hbl/~) + 
2 2 

b
2

) + 02 
b + K (a

l + - 2DKa
l 0 1 

222 
(31) d (Ke - Ka) + (Kb) . o 0 

It is necessary for neutral stability that 1..
2 

> O. Further, only the positive 
root for A is taken and (b 2 - 4d) ~ 0 should be satisfied. 

The equations (29) and (30) are non-linear in A and 1:;; but for the K- and 
1:;-values of interest, the second order appearance of ~ or IT in 1.. 2 can be usual
ly neglected. Letting b* denote the value of b with D = 0, a very good esti
mate of A can be obtained, namely, 

(32) 

Substitution of these AI' 1..2 into equation (30) gives the corresponding 1:;1 or 
1:;2' If the_actual damping 1:; is larger than the damping required for neutral 
stability, 1:;, we conclude the system must be stable. Otherwise, the system 
is unstable and the amplitude increases unless limited by non-linearities. 
Examination of ~ (eqn. (30» reveals that since Kal , occurring due_to aero
dynamic damping, is always negative, a 'conservative estimate' of 1:; can be 
obtained by dropping Kal term. Further analysis shows that generally the term 
(1 - 1.. 2 ) changes sign for the two roots of equation (32). A conservative esti
mate of the needed ~ is thus proportional to bo ' the whirling group. Hence, 
the larger the magnitude of bo the larger is the value of damping required to 
prevent whirling. 
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NUMERICAL RESULTS FOR AN EXAMPLE AND DISCUSSION 

Table I gives typical values of design parameters used for numerical anal
ysis. They are believed to be representative of small, high-speed turbo-rotors. 
The high value of the hub-to-tip radius ratio is tailored to approximate our 
assumption of constant radius cylindrical stream-surfaces. 

The R.S.D. 's are shown in figure 4 as functions of the tip-mass flow coef
ficient,~. Since ¢ = cos Y , we notice that R.S.D. 's increase with the blade 
stagger angle. The whirling R.S.D. 's Cm and C;e (which is proportional to 
Cy~) are relatively larger as compared tt the remaining R.S.D. IS. Note that 
~ also depends on tan 8*, where 8* is the wake angle given by equation (19). 
Th~ numerous simplified assumptions under which these R.S.D.'s were formulated 
constrain them to only a small range of blade stagger angles. 

It is instructive to examine the effect of only the gyroscopic coupling 
+ JQ. Thus, neglecting all the external aerodynamic forces and the viscous 
damping, a plot of A versus the non-dimensionless rotating speed, Q IWe' as giv
en by equation (29) is shown in figure 5. At any given rotor speed, the two 
whirling frequencies Al and A2' corresponding to forward and backward whirl, 
respectively, drift further apart from each other as the parameter H, the ratio 
of moments of inertias of the rotor is increased. Also, at higher rotor
speeds the backward whirling frequency is very small as compared to the forward 
one or the rotor speed itself. When a slight damping is present both these 
modes die out. However, without the fluid-dynamic forces, the gyroscopic 
action cannot in itself lead to a divergent type whirl instability because the 
net energy input to the system is zero. 

The inclusion of the R.S.D. 's through K in the whirling frequency expres
sion has an imperceptible effect on A itself. Hence, the forced whirling fre
quencies are approximately the same as the natural whirling frequencies. Figure 
6 shows A vs. liKe with ¢ as parameter. Ke is the reduced structural frequency 
and is a convenient independent variable. A tendency to converge to the 
natural frequency we is observed as the mass-flow coefficient is increased. 

The stability boundary plots ~ vs. liKe are shown in figure 7 for various 
parameters. In figure 7a where ¢ is a parameter and wake effects are not in
cluded the damping required for forward whirl is negative, i.e. ~l < O. Hence, 
the quasi-steady analysis predicts no forward whirl. On the other hand, back
ward whirl can occur and rotors with small ¢ and large liKe values are more 
susceptible to whirl. Other studies in ref. 9 indicate that increasing the 
fluid density or Mach number should decrease stability in general; whereas in
creasing the rotor-to-bearing distance has a stabilizing effect as in figure 
7e. This is attributable to the increase in aerodynamic damping term, Kal' and 
also due to the form of the fractional damping s assumed. The effect of un
steady rotor wake in terms of the wake angle 8* is shown in figure 7b. In iso
lated airfoils the calculation of c*, say, from Theodorsen's function always 
gives negative 8* for all values of the reduced frequency 0 ~ k < 00, and, hence, 
has a stabilizing effect (ref. 10). In cascades, the cascade Theodorsen func
tion C may give positive values of 8*; moreover, since C is itself a function 
of the whirling frequency a more involved iterative procedure is needed to 
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solve for A and s. In figure 7b only arbitrary values of 8* are used to bring 
out the effect of the sign of 8*. In the actual calculation of 8* if w

2 
« ~ 

is indicated, then k ~ ~c/2Woo can be used for F and C. 

Finally, the importance of other competing mechanisms can be assessed. 
For example, the equivalent tangential force contributions to represent the 
effects of tip-clearance and load-input torque misalignment were added to Cye . 
Both these mechanisms being absent for a non-lifting cascade, in reference 9 
we have recalculated the R.S.D. 's and the torque coefficient for an assumed 
case of 80 = 5°. The resultant stability plot is shown in figure 7d with e/R 
as parameter. This plot demonstrates the possibility of forward whirl for 
certain values of e/R and also shows that backward whirl can be suppressed. 
According to refs. (3) and (5) both these load-dependent mechanisms give rise 
to forward whirl for aft-pivoted compressors. In our example, unless modified 
by the wake effect, only backward whirl is possible. The unsteady rotor wake 
effect depends on the sign of 8* and no conclusion is possible pending addi
tional investigation. The direction of whirling which is observ~d in a ~racti
cal turbo-rotor is the resultant of all the mechanisms. Since s ~ Ibol, it 
seems evident that an astute aerodynamic design should aim at making bo small, 
thus leading to the total elimination of any undesirable whirl. 

CONCLUSIONS 

1. The propeller-whirl analogy can be directly applied to the whirl of axial 
turbo-machinery rotors with modifications for the cascade configuration. The 
basic driving mechanism of orthogonal moments is seen to remain the same. 

2. A set of rotor stability derivatives (R.S.D.'s) for turbo-machinery rotors 
has been suggested. They are fundamental to the dynamic behavior. Express
ions specifically derived for the coning mode of an aft-pivoted compressor 
with equivalent flat-plate, high solidity cascade are given. For practical 
applications, experimental verification of the expressions would be 
invaluable. 

3. Quick survey of the dynamic stability as affected by various parameters is 
made possible by introducing artificial damping for neutral stability. 

4. Considerations based on the R.S.D. 's suggest only backward whirl of compres
sors and turbines. The role of unsteady rotor wake is outlined but the net 
effect awaits more analysis. 

5. The dynamic stability boundary plots reveal that stability can be increased 
by reducing the blade stagger, mass flow rate, density and increasing the 
stiffness of the shaft and external damping. Though an increase in over
hang-to-tip radius ratio increases stability, the effective stiffness is 
decreased. Hence, an optimum e/R can be found. 

6. Various mechanisms can be mutually annihilated by making the whirling group 
bo as small as possible. This goal may be achievable at the preliminary 
design stage or later by modification of the rotor geometry, flow 
distribution or the structural properties. 
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TABLE I.- TYPICAL VALUES USED FOR NUMERICAL ANALYSIS

Mass of the rotor . . . . . . . . . . . . . . . . . . M = 21.89 kg (1.5 slugs)

Radius of tip of the rotor . . . . . . . . . . . . . . . R = 0.305 m (1 foot)

Hub-to-tip radius ratio . . . . . . . . . . . . . . . . . . . . . . nt0 
= 0.75

Polar radius of gyration-to-tip radius ratio of the rotor . . . . . r 1/R = 0.6

Radius of gyration of the diametrical moment of inertia-
to-tip radius ratio . . . . . . . . . . . . . . . . . . . . . . . r2 /R = 0.55

Standard density of air . . . . . . . . . P o = 1.225 kg/m3 (0.002378 slugs/ft 3)

Shaft overhang-to-tip radius ratio . . . . . . . . . . . . . . . . . e/R = 0.3

In figures 7c and 7d, e/R is a parameter.

Rotor	 Z

Figure 1. The rotor model.
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Figure 3b. The cascade nomenclature.
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