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SUMMARY

The working fluid in a turbomachine stage can excite vibration of the

rotor and must be included as an energy source for the system. The system

then comprises both fluid and rotor structure, and in stating a stability

criterion the damping of both must be considered: _total = 6fluid + 6mech
> 0.

Mechanical vibration perturbs the passage flow conditions which then

excites or dampens the inducing vibration. Positive excitation (negative

damping) results from the positive cross-coupled components of an unbalance

force induced by the vibratory displacement as well as the orbital velocity
of the rotor.

The equation of motion of flow in a turbomachine shows that unsteady

flow is necessary for work transformation. The amplitude, frequency and

phase angle of the unsteady flow phenomena must then be found to compare

with the structural dynamics of the turbomachine.

Unsteady flow is identified by frequency and size of participating

fluid ensemble. There occurs at blade passing frequency axial compressor

and turbine blade flutter, and response to blade wakes and condensation

shock wave oscillations. Near shaft rotational speed inlet distortion,

gusts, rotating stall as well as self-excited shaft displacement and orbital

velocity dependent forces are imposed upon the rotor. Surge occurs at

system resonance frequency.

The quasi-steady computer analysis of the perturbed centrifugal im-

peller passage flow is reviewed. The fluid damping coefficient _fl_id'
linear in the orbital velocity, is defined and based on 115 stage

calculations, the average total damping coefficient per stage needed for

stability is _total > 1.85.

* Currently with Borg-Warner Research Center, Des Plaines, Illi_is.
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THESYSTEMSTABILITYCRITERION

There is a growing awareness of the fact that the flow of the working
fluid in a turbcmachine stage can interact with the structure of the turbo-
machine rotor in such a way that the distribution of the working fluid

pressure over the passage surfaces is perturbed by the lateral vibration of

the rotor due, for exani01e, to residual mass unbalance. As a function of

both flow conditions and passage geometry, the pressure perturbations, when

sunm_d over the surfaces, may result in unbalanced forces which introduce

energy into the rotor and enhance the vibration. Such a vibration is

deemed self-excited. On the other hand, the flow and geometry conditions

may result in a net reduction of energy in the rotor and thus exert a vibra-

tion damping influence on the rotor.

Self-excited vibration phenomena are characterized by an available

supply of energy and by a zero or negatively damped system. Here

System - Mechanical structure plus Working fluid

Energy source - Mechanical sources pZus Working fluid

The rotor/bearing/pedestal subsystem, including the hydrodynamic bearing

film, is generally positively damped. But the ability of bearings to dissi-

pate energy is a function both of their design (style, d_sions, operat-

ing conditions, etc.) and their location along the rotor axis. Thus, posi-

tive damping of the subsystem cannot be assured a priori. Including the

working fluid will either further increase or decrease the system damping.

If overall damping capacity exceeds excitation, energy will flow out of the

system and stability of the rotor will follow or be assured. But if exci-

tation exeeeds the capacity of the system to dissipate the energy, the net

influx or accumulation of energy will rapidly produce rotor instability.

It is probably desirable to reduce the concept of energy flux with

respect to each ccm_ponent of the system to a damping coefficient _ appro-

priate to each cc_ponent. The system stability criterion may then be

expressed as

6total = _fluid + _mech > 0 (i)

Use of an energy criterion for evaluating t_chinery system stability

was suggested by Carta (1967, ref. i) and further explained by him (ref. 2).

A description of its application in a design procedure for axial flow

pressor blading was given by Mikolajczak (1975, ref. 3) and a similar ap-

plication in England was outlined by Halliwell (1977, ref. 4). In 1978,

Thompson (ref. 5) introduced the stability increment for multistage centrif-

ugal compressors which, upon comparison, proves to be identical to the cri-

terion of eq. (i).

NATURE OF EXCITATION

The unbalanced force which arises fromtheperturbed pressure and

which is applied to the rotor and leads either to excitation or damping of
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its vibration, can be resolved into direct and cross-coupled components.
For rotor shaft displacement dependent forces, such as developed in shaft

end or blade shroud labyrinth seals, the resolution is conveniently taken

along and perpendicular, respectively, to the line between the bearing and

journal centers. For rotor shaft orbital velocity dependent forces, such

as developed by the working fluid in a turb(xnachine stage, the resolution

is taken along and perpendicular, respectively, to a virtual radius to

which the orbital velocity is perpendicular. The vector diagram of these

forces is shown in fig. i.

In each case, the component of the unbalanced force acting along the

line of oenters or along the virtual radius is denoted the direct oc_pon-

ent. If it is in the direction of n2 or n2', it has small stiffening

effect on the system, somewhat raising the critical speeds and improving

the stability. If the direct cc_oonent acts in a negative n2 or n2'

direction, it has a slight softening effect, reducing critical speeds and
stability margin.

In comparison, the ec_ponents of the unbalanced force acting perpen-
dicular to the line of centers or to the virtual radius are the cross-

coupled ccrnponents and directly affect the flux of energy to or from the

rotor. If the cross-coupled component is in the nl or hi' direction, it

adds energy, excites the rotor, and is a destabilizing influence. If it

acts in a negative nl or n1' direction, is removes energy from the rotor

and is a stabilizing influence. The conception of the effect on rotor

system stability of the cross-coupled force ccmloonents was first intro-

duced by Kapitza (1939, ref. 6).

The unbalanced force, which affects both rotor vibration amplitude

and system stability, has been attributed to perturbations of the pressure

on the turbomachine stage passage surfaces. In particular in a reaction

turbine stage, the effect in the rotor blade passage is con_prised of the

effect of the rotor orbital velocity and the influence of the seal leak-

age flow in modifying the throughflow velocity conditions. In addition

there is the effect of the nonuniform circumferential static pressure due

to nonuniform seal leakage around the periphery of the rotor blade shroud.

Both passage and seal leakage effects are induced by rotor vibratory motion.

The conception of the effect on rotordynamic stability of the seal leakage

as it affects both blade performance and generates an unbalanced force was

first introduced by Thomas (1958, ref. 7)

In more recent times, some valuable expositions have been made of the

concepts given above. Ehrich (1972, ref. 8; 1973, ref. 9) identified an

aeroelastic tip-clearance effect and presented the associated destabilizing

force vector diagram. Alford (1965, ref. 10) in an oft-cited paper, iden-

tified two aerodynamic disturbing forces, the circtmlferential pressure

variation in the seals and the variation of local efficiency in the rotor

blade flow processes, where both were attributed to blade tip clearance.

Based on very astute interpretation of the experimental test results of

four gas turbine engines, Alford also concluded that rotor whirl resulting

from fluid dynamic excitation was in the direction of rotor rotation, that

whirl amplitude increased both with increased power output (i.e., in large
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part with an increase in mass flow rate) and with decreased inlet temper-

ature (i.e., with increased inlet density). These observations seem to be

confirmed by experience acc_nulated up to the present time.

Pollman, Schwerdtfeger, and Termuehlen (1978, ref. ii) provided an

extensive account of excitation mechanisms investigated by a European steam

turbine manufacturer. Excitation of a fluid dynamic nature was cc_lorised

of the effects of seal leakage flaw and load dependent influences, so-called

"steam whirl." The latter were clearly defined as modification of local

rotor blade passage efficiency caused by steam leakage flow and resulting

in a local variation in torque developed in the blading. An unbalanced

force in the direction of rotor rotation follows from the torque variation.

In Russia, work in this area is carried out at two research institutes,

the Moscow Energetics Institute (MEI) and the Central Boiler-Turbine Insti-

tute (TsKTI) in support of steam turbine manufacturing. Kostyuk, et al.

(1974, ref. 12) identified three nonconservative forces leading to self-

excited vibrations. These were oil film bearing forces, seal leakage

forces, and circumferentially varying blade forces due to seal leakage.

Further Kostyuk, et al. (1975, ref. 13) reported work on two additional and

important effects, that of the influence on the blading of passing through

the wakes of upstream blades and that of unsteady separation on the blade

surfaces due to condensation shock wave/boundary layer interaction which

occurs at transonic and mildly supersonic velocities when the steam condi-

tion is supersaturated. These latter two effects clearly excite blade vi-

bration, while the former induce rotor vibration. In a later report Kostyu ,

et al. (1978, ref. 14) presented experimental results of labyrinth seal force

measur_ts. Olin_piev (1978, ref. 15) presented alternative work on vary-

ing blade forces, on shroud band seal leakage forces, and on labyrinth seal

forces. He also mentioned that seal configurations could be devised to

convert the influence from excitation to damping and that the circumfer-

entially varying blade forces taken proportional to the rotor displac_nent

producing them lead to an effective rotor stiffness coefficient.

NECESSITY OF UNSTEADY FLOW

Dean (1959, ref. 16) has explained the paradox encountered in applying

Euler's equation (the equation of motion) to the problem of describing the

change of state of the working fluid as work is transferred in a turbo-
machine. Consider a frictionless, reversible, adiabatic process in an ideal-

ized machine. This is simply an inviscid fluid subject to an isentropic

process, which asstmptions do not, in the present a_nt, invalidate the

conclusions. The energy equation is simply and correctly given as

-w = h02 - h01 (2)
s

For a eonioressor, h02 > h01 but for a turbine h02 < h01 and the sign of the

result is entirely consistent with the conventions of thermodynamics.

However, Euler's equation (the differential form of the equations of

motion) and Bernoulli's equation (integral form of the equations of motion)
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are not applicable in describing the process in detail whereby the shaft
work changes the state of the working fluid as it passes through blading of
turbc_achines. Instead, as Deanshowsin detail for ccmpressible flow, the
equations of motion become

Dh0/Dt = (l/p) _p/_t (3)

and for incompressible flow

Dp0/Dt = _p/_t (4)

where the material derivative is the operator having unsteady and convective

parts:

O/Ot = _/_t + (c.?)

Thus, while the energy equation (2) demonstrates that stagnation enthalpy

(or stagnation pressure) is changed as a consequence of shaft work, eq. (3)

or eq. (4) shows, first, that the changes are with respect both to time and

to changing location in the fluid field and, second, that both are a func-

tion of the time-varying or unsteady pressure fluctuations. Therefore,

work transfer in a turbomachine requires an unsteady flow process.

Spannhake (1930, ref. 17) perhaps was the first to point this out to turbo-

machine designers and analysts.

Three excellent reviews of unsteady flow phenc_ena can be identified,

where in turn a large body of literature is cited. Mikolajczak (1976, ref.

18) pointed out that unsteady effects affect aerodynamic performance,

aeroelastic and rotordynamic performance, and the generation of noise.

Platzer (1978, ref. 19) provided an exhaustive account of unsteady phenom-

ena in turbcmachinery including the unsteady effects in machines exposed to

uniform flow, the response to distorted inlet flow, surge and rotating stall

conditions, as well as blade flutter. He categorized various prediction

methods for these phenomena and described experimental studies. McCroskey

(1977, ref. 20) included unsteady turbomachinery flow effects in a general

review of unsteady fluid dynamics. Even so, he was able to make critical

comments about flutter, inlet distortion, unsteady transonic flow, rotating

stall, transitory diffusor stall, surge, vortex shedding from bluff bodies,

and the definition of an unsteady Kutta-Joukowski condition. Finally, he

included a projection of research needs and future developments.

Two time scales occur in the description of unsteady flow phenomena,

the particle transport time:

Characteristic length/Fluid velocity = L/w [time]

and the period of the pressure fluctuation:

1/Fluctuation frequency = i/_ [time]

Their ratio becomes

(L_)/w --k, the reduced frequency

When the particle transport time is short with respect to the fluctuation

period, k + 0 and the flow is said to be quasi-steady. Practically, for

k _ 0.i, the approximation of steady-flow analysis is often acceptable.

(5)
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Lastly, unsteady phenomenamaybe transient or periodic. _hile a
single transient event mayhave catastrophic consequencesfor a turbo-
machine, such events occur over a relatively long period of t_ and are
usually under the control of the process control system. On the other
hand, periodic events characterize self-excited vibrations and are of
concern here. Such periodic events fall into three categories as a function
of both their frequency and a characteristic length of the participating
fluid ensemble. For a characteristic length of the order of the blade
thickness, the blade passing frequency is appropriate. Frequencies of the
order of the shaft rotational speed are associated with phenomenaof the
size of the stage passages, while phenomenaof the size of the bearing span
occur at frequencies of the order of the overall duct system resonance.
Vibration exciting mechanismsin each of the categories will be described
in the next section.

SIZE/FREQUENCYCLASSIFICATIONOFPHENOMENA

Three classifications according to size and frequency of the unsteady
flow phenomenahave been noted above. In each classification one finds a
numberof phenomenaeach one of which inherently possesses a mechanismfor
exciting vibration of the associated structural element. At the order of
the blade passing frequency there occur axial compressor and axial turbine
blade flutter together with blade vibration due to cutting upstream blade
wakes as well as condensation shock wave oscillations. The last condition
occurs in steam turbines where the expansion crosses the saturation line
and the flow is at transonic speed in order to acccxmxxgatethe large steam
volume within a reasonable passage size. The frequency of the shock wave
oscillations is below the blade passing frequency but muchabove the shaft
rotational speed so it is included in this category.

At the order of the shaft rotational speed, inlet flow distortion,
gusts in the flow and rotating stall in the rotor blading or the stationary
interstage passages are external influences imposed on the rotor. In
addition rotor vibration due to, say, residual mass unbalance is capable
of inducing both displacement dependent and orbital velocity dependent ex-
citation of the rotor. Finally at the order of the system resonance fre-
quency, surge can occur.

All of these topics are listed in table 1 together with a group of
references for each phenomena. The references have been chosen from amang
a very large numberbecause each in turn identifies and to a great extent
evaluates the contributions of a subsequent set of references. In connec-
tion with table i, the writer is indebted to William G. Steltz, Power
Generation Divisions, Westinghouse Electric Corp. for the references on
condensation shock wave phenomena.

Consistent with the present workshop on rotordynamic instability,
phenomenaat the order of the shaft synchronous frequency will be emphasized
and blade vibration and system surge will not be considered further. Fur-
ther we understand that from the unsteady flow phenomenathere needs to be
derived the amplitude, frequency and phase angle of a forcing function

which, for analytical purposes, can then be imposed on the rotor system.
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But it cannot be expected that all topics in table 1 are so well developed

fluid dynamically that clear, realistic and practical forcing functions
will be available for our use.

ORBITAL VE[f_ITY-DEPENDENT EXCITATION

The orbital velocity induces the unbalanced fluid dynamic force which

is imposed on the rotor of a turbomachine. In both figures 2 and 3, the

rotor centerline describes a trajectory or orbit during lateral vibratory

motion. The instantaneous tangential velocity of the shaft center along

the trajectory is the rotor orbital velocity.

The angular velocity of the rotor results in a tangential velocity at

each location on the rotor proportional to its radius from the shaft center.

Then for the leading edges of the blades as shown in figures 2 and 3, when

the velocity due to rotation and the orbital velocity are in the same sense,

they add and when in opposite sense, they subtract. The effect is as if

the rotor rotation took place instantaneously about a virtual center dis-

placed from the geometric shaft center as shown in the figures. Those flow

passages at the greater radii from the virtual center handle a somewhat

greater mass flow and exchange a somewhat greater angular momentt_n with the

fluid than do those at the smaller radii. Blade surface pressure dis-

tributions in the flow passages will now vary with the virtual radii, not

the geometric radii, and will be nonuniform from passage to passage. Sum-

mation of the pressure distributions in all passages at an axial location
on the rotor will thus result in an unbalanced force on the rotor.

In the case of the radial compressor in fig. 2, the rotor orbital

motion causes the blade leading edges to move in and out radially and, as

the orbital velocity first adds then subtracts from the rotational velocity,

to accelerate then decelerate tangentially with respect to a steady fluid

flow into the passages. Thus, relative to the rotor, the blade appears to

be moving through a gust having both lateral and longitudinal ccmloonents of

perturbed velocity and pressure. Such perturbations move in a series of

waves over the length of the blade with a frequency equal to the rotor

lateral vibratory frequency. In practice this frequency is the sub-

synchronous frequency of the rotor/bearing/pedestal system. Isay (1958,

ref. 69) appears to offer the only known analysis of such unsteady flow.

In much the same way, orbital motion induces velocity perturbations,

modified incidence angles, etc. in an axial compressor rotor as shown in

fig. 3. In addition the same orbital motion produces varying blade tip

clearance or blade shroud band clearance about the periphery at a given

rotor axial location yielding varying leakage. The local variation of the

leakage modifies the local pressure rise in an axial ccmloressor stage and

modifies the local pressure drop in a turbine stage. Thus the velocity

perturbation from the orbital motion and the pressure perturbation from

the rotor orbital displacement combine to perturb the passage flow non-

uniformly from passage to passage resulting in an unbalanced force on the

rotor. In the case of the axial flow steam turbine, the combined influence

of leakage and orbital motion is called steam whirl.
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EXAMPLE:THECENTRIFUGALCOMPRESSORSTAGE

At the outset of this work, ref. 69 was unknownto the writer and
circt_nstances did not permit developing the unsteady flow analysis. In-
voking quasi-steady oonditions, a "snap shot" was madeencompassingthe
flow in every impeller channel where each is perturbed differently by the
shaft orbit velocity. Whenthe blade or channel length is a sufficiently
small portion of the disturbance wave length, the flow conditions imposed
for an instant on the blade can be considered approximately steady. Ex-
pressed in terms of the reduced frequency introduced above, k < 0.2 will
usually be adequate for the approximation to hold. The fluctuation fre-
quency is given by the shaft subsynchronous frequency.

A conlouter program was organized to analyze each and every i_peller
passage under perturbed, quasi-steady conditions; to resolve the surmmtion
of the pressure distribution into componentsof F1 and F2 contributed by
each passage; and finally to sum the contributions to F1 and F2. Practical
considerations showedthat typical orbital velocities are 0.05 to 0.20 m/s
(2 to 8 in./s) in comparison to the passage relative fluid velocity of 46
to 185 m/s (150 to 600 ft/sec). The unbalanced force resulting from such
a small perturbation of the velocity proved, upon calculation, to be linear

in the orbital velocity. Thus F 1 = b I ut, F 2 : b2 u t, and the contribution

of the working fluid to the system stability criterion becomes

6fluid : _bl = -Fl/U t (6)

The negative sign is needed because a positive excitation corresponds to a

negative damping. For an extended explanation of these ideas as well as

numerical results for a conloressor comprising fourteen stages in two casings,

the reader is referred to ref. 5.

CONCLUDING

The system stability criterion given in ref. 3 is shown in eq. i. For

the relatively simple blade structural system considered in ref. 3, use of

the ideal, zero boundary between stability and instability is evidently

justified. Such is not the case in the much more complex rotor/bearing/

pedestal/working fluid system. As a result of analyzing 115 individual

centrifugal compressor stages which were contained in 20 multistage bodies,

the average coefficient per stage needed to assure stability may be suggest-

ed as _total = 1.85. Referring again to eq. i, only 6flui d is the subject

of this paper while 6mech must be determined by other rotodynamic analysis.

Each length/frequency classification of excitation phenomena, once

analyzed, will admit suggestions for designing in additional damping of

a fluid dynamic nature. Regarding blade flutter, ref. 3 suggests that an

entire blade fluid and structural design system has been organized and can

yield optimized results. Regarding distorted inlet flow to axial compress-

ors, criteria are emerging (refs. 70, 71) which will lead to configurations
which are insensitive to such external influences. Work in this direction

for radial turbomachines lags that of axial machines. Finally overall

system design ignores completely the opportunity to add damping to minimize
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the effects of surge.

Regrettably the limitation on scope of this paper due to both prepar-
ation time and space has precluded including exanloles of other phenc_rena
in table i, an evaluation of the numerical fluid mechanical methodswhich
are used to obtain quantitative predictions of the danloing coefficients
and evaluation of various experimental techniques for observing unsteady
flow and deriving the force and damping coefficients from such observations.

SYMBOLS

al, a2

al, a2

bl, b2

c

F = Fbl1

F2 = Fb2

h

ho

k

l,

P

Po

r

u

_t

w

displacement dependent fluid force coefficient, N/m

(ibf/in.)

stator-fixed coordinates system, m (ft)

orbital velocity dependent fluid force coefficient,

_s/m (Ibf-s/in.)

fluid absolute velocity, m/s (ft/s)

cross-coupled force conloonent due to fluid dynamic

excitation, N (ibf)

direct force component due to fluid dynamic excitation,

N (ibf)

static enthalpy, m-N/kg (ft-lbf/slug)

stagnation enthalpy, m-N/kg (ft-lbf/slug)

reduced frequency

characteristic length, m(ft)

rotor-fixed coordinate system, m(ft)

static pressure, kPa (psia)

stagnation pressure, kPa (psia)

radial coordinate, m(ft)

blade peripheral velocity, m/s (ft/s)

rotor orbital velocity, m/s (in./s)

fluid relative velocity, m/s (ft/s)
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w shaft work, m-N/kg(ft-lbf/slug)s

i

p

.

.

.

.

.

.

.

.

.

damping coefficient, N-s/m (ibf-s/in.)

rotor displacement, m(in. )

fluctuation frequency (rotor subsynchronous frequency),

I/s

density, kg/m 3 (slugs/ft)

angular velocity, rad/s
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Table 1 Size-frequency Classification of Vibration Excitation Mechanisms

Topics

Blade thickness/blade passing phenomena

Axial compressor blade flutter
Axial turbine blade flutter

Wakeflow excitation

Condensation shock wave excitation

! References

19, 3, 2, 21
22

23, 24, 25, 26, 27

28, 29, 30, 31, 32

Passagedimension/shaft synchronous phenon_ma

Axial configuration:
Rotor displacement dependent

Orbital velocity dependent
Inlet distortion

Gusts

Rotating stall

Radial configuration:
Rotor displacement dependent

*Orbital velocity dependent

Rotating stall

Bearing span/systems resonance

Surge: General
Pump

Compressor

7, 10, 33, 34

35, 36, 37, 38, 39,

40

41, 42, 43, 44, 45

46, 47, 48

49, 50, 51, 52

5

53, 54, 55, 56

57, 58

59, 60, 61

62, 63, 64, 65, 66,

67, 68

* An example will be presented in the text.
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I - _7"@_'_

--/

nl, nl cross-coupl_ component unit vectors

n2, n 2 direct ccrnponent unit vectors

= + Fb

_here Fa is the displacement dependent force,

=F n -F n
a al 1 a2 2

and Fb is the velocity dependent force,

--/ --/

Fb = Fbln I - Fb2n 2

Further the rotor displacement vector

_" = (_(-n 2 )

and the orbital velocity vector ut is

/

ut = utnl

Since Fa and Fb are linear in [ and ut respectively

Fal = a16, Fa2 = a26

Fbl = blut, Fb2 = b2u t

(Note: FI= Fbl, F 2 = Fb2in text)

Figure 1 Description of Fluid Dynamic Forces
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Figure 2 - Fluid Dynamic Excitation Force of a Radial Compressor Lmpeller

_al 6." \

I

Figure 3 Fluid Dynamic Excitation Force of an Axial Compressor Rotor
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