
 

 

 

 

N O T I C E 

 

THIS DOCUMENT HAS BEEN REPRODUCED FROM 
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT 

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED 
IN THE INTEREST OF MAKING AVAILABLE AS MUCH 

INFORMATION AS POSSIBLE 





RPI TECHNICAL REPORT MP-65

REAL-TIME OPERATING SYSTEM FOR A

MULTI-LASER/MULTI-DETECTOR SYSTEM

by

Gary Coles

A Study Supported by the

National Aeronautics and Space Administration

Grant NSG-7369

School of Engineering
Rensselaer Polytechnic Institute

Troy, New York

July 1980

If



d

CONTENTS

page

	

LISTOF TABLES ......................................... 	 v

LISTOF FIGURES ........................................ vi

ABSTRACT .. . .. . .... 0 .. 6 0 0 0 6.0 . . 0 0 6 6	 0000. . 0000. 0000.. 	 vii

	

1.	 INTP.ODUCTION ........................................... 	 1

	

2. THE RPI MARS ROVER...... 6 ....................6.........	 3

A. Rover Description ................................ 	 3
B. The One Laser-One Detector System ................ 	 5
C. The Varian-Idiiom System ......................... 10
D. Realtime Software ................................	 11
E. Results .......................................... 	 13	 a

3. THE ELEVATION SCANNING SYSTEM .......................... 15

°	 A.	 General Description ..............................
	

15
B. The Prime Computer System ........................ 19
C. The New Rover Interface .......................... 21
D. The Dynamic Test Platform ........................ 26

4. REALTIME SUPPORT SOFTWARE .........:.................... 28

A. Software Overview ................................ 	 28
B. Lower Level Routines .........0000 ................	 33

1. DEVEIO ....................................... 	 33
2. MRVDIM ....................................... 	 34
3. T$ROVR ....................................... 	 36

'	 C.	 System Routines................ 0000 ... ............... 	38

1. EXEC ......................................... 	 38
2. NAVIG ........................................ 	 51
3. BUMS ....................................... 	 55
4. GETTOK ....................................... 	 55
5. GET00 .......................................	 58
6. CNVPAR ....................................... 	 59
7. KEYBIN ....................................... 	 59
8. SCREEN ............6	 ...................	 60
9. MAP.	 0000... 0000....... ... 0000..	 ... ...	 61
10. CURSOR ....................................... 	 61

..	 '

	

5.	 CONCLUSION...	 .... ................................... 	 63	 ?

A. Summary ..	 ...................................... 	 63	 i
B. Fature Work............

	

	 64.........................

PRECEDING PAGE BLANK N	
iii

OT FILMED



page
6.	 LITERATURE CITED ...................... ................. 	 65

APPENDIX A: Azimuth Data Word Formats ................. 66

APPENDIX B: Support Software Flowcharts ............... 71

ii

iv



l
FIST OF TABLES

page

Table la,b RVRCOM ......................................... 	 41,42

Table 2Mars. Default .................................. 	 43

Table 3	 Interaction Processor Commands .................	 45

Table 4	 Post-Processor Information Record .............. 	 47

l
Table 5	 Keyboard Processor Commands .................... 	 50

Table 6	 Azimuth Buffer Format .................... 0.. 4.. 	 52

Table 7	 Navigation Formulas ......... ,......... 0.......... 	 54

Table 8a,b Post-Processor General Record.... .......... 	 56,57

V



LIST OF FIGURES

Page

Figure 1. Rensselaer Mars Rover .................................. 	 4

Figure 2. One Laser-One Detector System ..........................	 6

Figure 3. Laser Triangulation Concept ............................ 	 7

Figure 4.	 Laser Azimuths .........................................	 8

Figure 5. Laser Data ............................................. 9

Figure 6. Elevation Scanning Concept.......... 40 ................. 16

Figure 7. ML-MD Triangulation Concept............ 6 ............... 18

Figure 8.	 Multidetector Data ..................................... 2U

Figure 9. Realtime Interface ..... . .........00............60...... 24

Figure 10. Temporary Interface .................... 0............... 25

Figure 11. Dynamic Test Platform .................................. 27

Figure 12. Realtime Hardware-Software Interface ................... 29

Figure 13.	 SCA,v Timing ............................................ 30

Figure 14. Realtime System Flow ... . .............................4. 32

Figure 15. Flow Diagram of LXLEC ... . ...........$0.................. 40

Figure 16.	 Runtime Display ........................................ 48

3

vi



7

ABSTRACT

The first hazard detection system used on the Rensselaer Mars

rover was the one laser-one detector system. This system is reviewed

briefly with respect to the hardware and software subsystems, the opera-

tion, and the results obtained.

Recently, a multidetector scanning system ias been designed

to improve on the original system. Interactive support software has

been designed and programmed to implement real time control of the

rover or platform with the new elevation scanning mast. The formats of

both the raw data and the post-run data files have been selected. In

addition, the interface requirements have been selected, and some

initial hardware-software testing has been completed.

r
y
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PART 1

INTRODUCTION

Our knowledge of the solar system has increased dramatically

over the past decade as our mode of planetary exploration has ap-

proached the planet surface. The rate of new discoveries has acceler-

ated in the progression from Earth-based observation to orbital or fly-

by missions, to landers, and finally to the ultimate manned missions.

As these missions extend farther from Earth, it becomes prohibitively

expensive to send up a manned mission. One possible alternative is

some type of unmanned autonomous rover which has the capability to

cover a great distance over the planet's surface. In this way it could
H

^.	 visit a number of interesting scientific sites over an extended period

of time.

An important part of such a rover is its path selection and

hazard avoidance control system. Due to a large communication delay

time between Earth and any other planet (except possibly the Moon),

Earth-based control other than on the macro level would be out of the

question. Therefore the vehicl:: control system would have to be self-

contained and highly reliable.

The Mars rover group at Rensselaer has been trying to develop

such a vehicular control system. These studies include simulation and

^-	 more recently, real time control on a prototpye rover.

Results indicate that such a path selection eystem should be

broken down into two to four distinct levels. Long-range goals could

be planned to about the kilometer range using photographs from either

1
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Earth or satellite observation. Medium range paths in the tens of

meters could be selected onboard the rover using some kind of range-

finder or television interpretation technique. Finally some kind of

short-range technique must be used within about three meters of the

vehicle to detect all hazards too small to be resolved in the longer

range planning.

This report will discuss the organization and design of the

real time support software used to implement the snort-range path

selection system on the Rensselaer ,tars rover. Besides implementing

real time control, this software provides for easy program development.

Programs developed on the simulator can be run under real time control

with only minor modifications. Also, all the raw data provided by

the rover is saved for post-run analysis.

r



?ART 2

THE RPI MARS ROVER

A. Rover Description

A 0.5 scale prototype Mars rover was constructed at Rensse-

laer to test hardware features and realtime control software (see

Figure 1). A short range hazard detection system has been implemented

to enable closed loop realtime path selection testing. Note that

another group at RPI is working on medium range path selection techni-

ques using simulation.

The payload of the rover consists of a heading gyro, a pitch-

roll gyro, an electronics section, and three automobile batteries used

~ to power the motors and electronics. The electronics section includes

the telemetry transmitter, the speed _d turning controller, the scan-

ning mast controller, and the data acquisition and telemetry con-

'	 troller. On this system, the pitch-roll gyro was not used.

The front axle of the rover is rigid and pivots directly

♦ 	 under the mast. There are currently 15 steering positions from -90° to

+90° in 12.86° increments. The immediate steering angle is read from a

linear potentiometer connected between the frame and axle. Besides

pivoting about a vertical axis, the front axle can also pivot about a

i	 heading or roll axis. This front axle roll angle is also read from a
,a

linear potentiometer, but it is not used in this system.

The drive system of the rover consists of four motors, one

on each wheel. Each motor has a tachometer connected to it to obtain

wheel speed data. Steering the rover is accomplished by changing the

Ispeed of the four wheels such that a smooth turn is achieved while
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maintaining approximately constant velocity. There are also two motors

which allow the front and rear wheel struts to be raised or lowered.

This gives the ability to raise or lower the payload, but it is not

used during realtime control.

B. T o One Laser-One Detector System

The Rensselaer Kars rover uses a laser triangulation scheme

for its short range hazard detection system (see Figure 2). The laser

is a solid state GaAs laser diode which has ten watts peak power out-

put at 904 nan meters. The beam is collimated and directed straight up

1	 the mast. A mirror is mounted on top of the mast and directs the beam

at an adjustable angle toward the ground. A silicon PIN diode is used

as a receiver. It is mounted part way up the mast and focused in a

known cone of view toward the ground. The beam and detector cone are

adjusted to intersect at ground level such that the beam will be de-

tected when falling on terrain between about +30 cm from level (see

•	 Figure 3). This intersection is adjustable and is typically set at

1.5 meters from the mast axis.

The entire mast then oscillates back and forth scanning a

140' field of view. During each sweep the laser fires at 15 azimuth

angles, one per 10° increment, and cantered on the steering heading

(see Figure 4).

Y

The laser data is composed of one 15 bit word per scan, one

bit per azimuth angle (see Figure 5). The information provided by each

T	 bit is of a go - no go nature where a one or "good" return specifies a
i
'	 safe azimuth, while a 0 or "bad" return specifies a possible hazardous

1	 azimuth.

I
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C. The Varian-Idiiom System

A Varian 6201 minicomputer is used to control the rover. It

is a 16 bit computer with 32K words of core memory. Included in this

system is a Tektronix terminal, a 10 megabyte cartridge disk drive,

two 800 bpi tape drives and an Idiiom graphics display. The Varian is

• of the 1960's era and therefore does not have virtual mapping or hard-

ware floating point. There are three main registers: the A register,

used as a general accumulater, the B register, used for indexing and

r as an extension of the A register for certain operations, and the Y

register, used for indexing. As an example of performance, a 16 bit

by 16 bit multiply with one operand in register takes between 18 and

20 usec.

The disk memory unit is used to store off-line programs; no

runt:Pne overlays are used. Raw data is saved on one of the magnetic

tape units for post run analysis and the Idiiom terminal is used to

display important runtime parameters as well as a map of the current

rover position. The Idiiom also provides a 60 Hz realtime clock in-

terrupt which is used for timing.

The rover is linked to the Varian by a two-way telemetry

transmitter. A receiver at the Varian side performs error correction

and then inserts the data int.,-r_emory using DMA (Direct Memory Addres-

sing). The data is always put in the same table and each new value

always overwrites the last respective value. In this way, the most re-

cent value of any desired data word is always found in the same re-

spective location. The maximum rate for DMA is 1-02,000 words per

second.
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A command to be sent to the rover from the computer is one

word long. An OTA (output from A register) instruction is used to g:

this data to the Varian interface which then sends the command.

Another communications link to the rover is the remote con-

trol box. This box disables and overrides the computer control, and

used to provide manual control of the vehicle. It is useful in post

tioairg the rover and for gaining emergency control.

D. Realtime Software

The only language currently available on the Varian computer

is assembler and therefore all of the realtime programs are written in

assembly language. also, although previous descriptions of this soft-

ware mention the use of external interrupts, they were not used due to

hardware problems.

I	 ^

The main object of the realtime software is path selection.

Hazards must be identified and avoided, and the entire system state

must be saved for later analysis. Most of the programs developed

earlier for this system (see Reference 1) were left intact except for a

few modifications. The major changes were in the path selection rou-

tine as expected.

The first workable idea to be implemented for realtime test-

ing was termed "path-blocking," conceived earlier by M. Krajewski (see

Reference 2). Path-blocking involved the buffering of bad bits (hazards)

in the laser data word. Specifically, four bits on both sides of any

bad bit in the laser data word were set bad to buffer any obstacles. A

clear path consisted of any four contiguous good bits. The clear path

closest to the desired heading became the steering angle. If a clear
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path could not be found then the rover would scan all possible steer-

ing angles by turning its front axle, and thus its center of scan, to

-70° and back to +70° looking for a clear path. 	 If one could not be

found then the rover would halt because back-up capability, although

1
J

used in simulation, was not implemented.

To remember obstacles behind the line of sight, a laser data

memory queue was used.	 This first-in first-out queue was of variable

w length, and new entries were shifted left or right according to the

steering angle.	 All of the elements were logically "anded" together

with the newest scan before looking for a clear path.

This early technique worked but it proved to have some flaws.

Although it was able to keep the front wheels clear, the back wheels

' frequently clipped the obstacles on passing. 	 This could be improved

y by increasing the length of the laser memory or increasing the width

of the path-blocking buffer to five bits. 	 Unfortunately, both of these

solutions tended to make the overall system very conservative.	 It was

determined that path-blocking, although effective for the front wheels,

was ineffective for the back wheels.

. The solution to this problem was a two part path selection

system, one dealing with the front wheels, and another for the back

.. wheels.	 This algorithm called track-and-turn (TRKTRN) was pioneered

` by T. Sadeghi and continued by P. Dunn (see Reference 3).

Since path-blocking seemed to work, it was kept for the front
V

wheels.	 The back wheels used a new technique based on the position of

the obstacle and the geometry of the rover.	 Given the geometry of the

rover, the possible rear wheel trajectories could be calculated for
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any steering angle. Therefore, a formula was developed which used the

position of the obstacle to yield the necessary steering angle. Fin-

ally this steering angle would have to be truncated to one of the pos-

sible steering angles. The last step was to combine the front and

rear wheel constraints and choose the desired steering angle.

The obstacle memory for the TRKTRN system was more compli-

cated than the previous memory. The path-blocking laser memory was re-

tained for the front wheels. However, the back wheels formula re-

quired the locations of the obstacles in the planet frame to be saved.

Other realtime software included routines to decode vehicle

state data, to send commands to the rover, to keep track of the vehicle

position, to update the Idiiom display, and to save the system state

`	 for later analysis (see Reference 4). Another program was written to

run off-line on the IBM 360 computer to analyze this saved runtime

;data.

E. Results

The results of the lab tests were very encouraging. The ro-

ver was able to successfully maneuver through almost every ob-

.stacle pattern that was given to it. The few times it failed can be

attributed to the inability of this simple path selection system to re-

solve a tight situation as being passable.
x

In the field tests, the real problems showed up as expected.

r-
f	 A little bit of pitch and roll made the system even more conservative.

A larger but still passable pitch or roll was interpreted as being

hazardous. All in all, the system performed quite well. The

rover almost always found its target although not always by the most
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direct route.

Most of the inadequacies of the one laser-one detector sys-

tem can be traced to its inability to interpret and adapt to terrain

containing slopes. However, this system still has some usefulness.

Not all ideas have been tried to reduce its conservatism in the lab

tests.

Overall, the rover was plagued by many problems. Most of the

mechanical problems were due to the fact that the rover was not de-

signed for the weight load which it acquired over the past few years.

This caused some gears, shafts and other structural members to fail

without warning. The electrical system was plagued by a chronically

bad wheel speed controller which caused the wheels to move at slightly

different speeds and the front axle to oscillate. This put more stress

on the rover's structure. Finally, the software always seemed to con-

tain some hidden bugs characteristic of large programs written in

assembly language.

i



PART 3

THE ELEVATION SCANNING SYSTEM

A.	 General Description

The necessary solution to the pitch and roll problem of the

d•
one laser-one detector system is to come up with some system which not

only provides range data but also height data.	 This would provide the

information necessary to interpret slopes.

Since the triangulation concept worked it was decided to go

with a modification of the one laser-one detector system.	 This new

system is known as the multi-laser multi-detector scanning mast (see

Figure 6 and Reference 5).	 The major components of the ;II.-MD system

are the spinning mirror scanner, the detector array, and the controller

electronics.

It was necessary to build a new mast which could support-the

heavier weight of the new system components. 	 This mast rotates counter-

clockwise at a preselected rate, normally about 0.5 revolutions per

second, and is electrically connected to the chassis by slip rings.

With two seconds between every scan, it is not possible to ignore any

scans, thus limiting the realtime processing to under two seconds.

A new laser diode was chosen which could meet the new speed

s. and power requirements (see Reference 6). 	 It has a 10 KHz maximum

pulse rate and an output of 100 watts. 	 New collimator optics were de-

signed to take full advantage of the diode's output power. 	 An eight-

sided mirror with a motor and positional encoder is mounted on top of

the mast.	 With this arrangement the laser beam can be deflected to the

15
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ground at an elevation angle selected by the rotational angle of the

mirror. This is used to simulate multiple lasers firing at a number

of preselected angles (see Figure 7).

The multi-detector receiver is composed of a linear array of

photodiode elements. Currently two such devices are being examined

for this use. One is a 20 element photodiode chip and the other is a

1024 element charge-coupled photodiode shift register chip. The 20

element chip receiver is known to work, but has the disadvantage of a

limited number of receiver cones with non-alterable cone angles. On

the other hand, the 1024 element chip has a greater resolution, and

cone angles can be altered by assigning a different number of elements

per receiver. Unfortunately the 1024 element chip has some noise and

sensitivity problems which require more investigation. One possible
i

method to increase the resolution of the 20 element chip receiver is

to use two of them; however this creates problems in the design of

the receiver optics.

Since the 20 element detector will probably be the first one

used, it can be seen that the cone angles and sizes will be fixed by

.	 the optics selected. The laser elevation firing angles, however, are

alterable and will be selected by a PROM (Programmable Read Only

Memory) in the controller. In addition, the number of shots fired per

azimuth, the number of azimuths, and the azimuth angles are also PROM

.I	 selectable. At this time, the number of azimuths and the number of

laser shots per azimuth must have a product less t,ian or equal to 1024

(e.g., 16x64, 32x32 and 13x20). Ihta controller must also insert the

I

proper flags (e.g., end of azimuth) into the data stream to synchronize
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the data with the scan.

I It is obvious that the elevation scanning system carries a

l

great deal more information than the one laser-one detector system.

Each laser data return is not a go - no go flag any more, it is a

word specifying which receiver cone, if any, soused the laser shot.

Also, since the optics makes it possible for more than one receiver

•	 element to see the shot, each laser data return word contains the up-

permost and lowermost ^ones to sense each shot (see Figure 8).

Besides the scanning system, other rover systems were up-

graded. A new wheel-speed controller was designad which uses a Ko-

torola M 6800 microprocessor to provide the reliability of digital

control. A new telemetry system was necessary because of the greater

data rate required by the new scanning system. And finally there were

many modifications made to the electrical and mechanical subsystems

such as rewiring and wheel strengthening.

B. The Prime Computer System

With the new scanning system, it was obvious that the Varian

computer would not be able to perform realtime control very easily.

'he amount of raw data alone is about 1000 times more than before.

Since the Varian would limit the complexity and precision of any new

; algorithms, it was 6 ,jcided to look for an alternative. The Image Pro-

cessing Lab's Prime 500 computer was chosen as the best alternative.

The Prime 500 is a new machine delivered in January 1979. It is a

minicomputer with 32 bit internal architecture, hardware floating point

and a very powerful instruction set implemented in microcode. As an

"	 e.Yample of performance, a single precision floating point multiply
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takes about 4.0 usec.

Besides having 512K bytes of main memory, virtual mapping is

used to provide each user with up to 32 K bytes. The system includes

i
two 80 megabyte disk drives, a mag-tape drive, a Versatec printer-

plotter, and a number of terminals of which one is a dedicated opera-

tor t s console. The Prime operating-system is written for a timeshar-

ing environment servicing up to 63 terminals. Software includes FOR-

TRAN IV, BASIC, Prime assembler, and a very powerful filing system

(see Reference 7).

The ability to use higher level languages provides the bene-

fit of easy program development and debugging. An added benefit is the

direct compatability between programs developed for the simulator and

for realtime.

The Prime 500 will shortly be replaced by a Prime 750 which

is much faster. No instruction execution times are available as yet,

but the Prime 750 includes a high-capacity cache memory, an instruc-

tion pref etch unit and a high speed floating point unit.

C. The New Rover Interface

To communicate with the rover it became necessary to build a

new computer interface. Unfortunately, this was one of the things

about the Prime that was most troublesome. What was to be a

reasonably simple design task turned up some problems which are still

as vet unsolved.

For the hardware part of the interface, a general purpose

interface board (GPIB) was purchased from Prime. The GPIB enables the

use of programmed input-output (PIU), standard and vectored interrupts,
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and a set of direct memory functions (DMX or DMA, DMC, DMT). DMA is

direct memory access where the starting address and word count are kept

in the register set. Up to eight DMA channels (total) are supported by

the computer. DMC is very similar to DMA, and stands for direct memory

channel. In this case the starting and ending addresses are stored in

high speed memory, providing up to 2000 DMC channels. DMT is direct

memory transfer, where the data address and word count are maintained

external to the computer. The address must be applied to the bus with

the data when requesting a DMT. This allows a random accessing of

'	 memory. In our case, D;PT is preferred because the laser data returns
3

will not be in any particular order. This is because the mast con-

troller fires the laser as soon as the angular position of the mirror

corresponds to one of the desired elevation angles.
s

Initially, rather than wasting the time building and de-

bugging the full-blown interface, it was decided to build a simple test

s
	 interface. This would allow testing of both hardware and software con-

cepts. The interface would test PIO, a hardwired vectored interrupt,

and a hardwired DMT. Initially, nothing worked. After talking with

Prime for a while, it was found that our GPIB documentation was incom-

plete, and in a few minor locations, incorrect. Eventually, after more

testing, the board started to show signs of life. The PIO, interrupt

and DMT all worked fine separately, but when a vectored interrupt was

6 alternated with a DMT, strange results occurred. The system would run

•	 fcr about 20 seconds and then crash. Using a program to display the

data as it came in, bad data words could be seen every once in a while.

As another symptom, whenever the disk was active (reading or writing),

i
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the system would crash even faster. This disk-GPIB interaction seemed

to imply some kind of priority problem, but little difference was ob-

served as the GPIB priority was changed through every level. The same

result occurred when our GPIB was tested on a different Prime 500,

thus eliminating a hardware problem on our particular computer. It

is still not known whether the problem is in hardware or software and

even Prime is unable to supply an explanation.

It was decided to put our upper level realtime interface

aside and work on a degraded interface which would allow the input and

storage of data for off-line processing. Once data is available for

software testing, the realtime interface testing can resume.

For a description of the upper level interface see Figure 9.

f	 Each telemetry data word received by the interface is composed of 16

i	 bits of information and 16 bits of address or identifier. The address
r

also contains any mast interrupts such as end of scan or and of azi-

muth. This 32 bit word is received in serial and converted to parallel.
i

In the upper level interface, a portion of the address will be con-

catenated with a register containing an offset address into real memory.

DMT will be used to put the data into memory. Finally there will be

3	 one vectored interrupt which uses a status register to identify various

conditions such as mast interrupts, data overruns, or timeouts.

The temporary degraded interface can be seen in Figure 10.

DMC will be used to insert all 32 bits of the telemetry data word, and

...
DMC will be followed by an interrupt. It will then be up to the inter-

rupt service routine to decide where to put the data from the address

fi	 and to strip the scan status from the address part of the data. Thej

1
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degraded interface will not allow the realtims processing of data, but

should enable the accumulation of up to about 20 scans of data for

off-line post processing.

D. The RIE mic Test Platform

A dynamic test platform on which the elevation scanning mast
4

can be mounted is currently under construction (see Figure 11). The

idea is to enable accurate in-house testing of the hardware and soft-

ware responsible for hazard detection.

The platform is motor driven such that the pitch and roll of

the mast is dynamically variable. Both pitch and roll are separately

controlled and each has variable amplitude and rate. An attitude gyro

is mounted on the platform to provide pitch and roll data to the com-

puter.

This platform is expected to aid a great deal in soi::ware

testing since the actual laboratory scene can be accurately compared

^.	 to the computer results. It should also help in the difficult job of

calibrating the optics.

i -
1
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REALMM SUPPORT SOFTWARE

A. Software Overview

The new realtime software has been written on the Prime 500

minicomputer and is intended for the higher level interface. Because

of unsolved problems with the interface it may become necessary to

modify the software; however, the basic flow can be left intact.

The objective of the realtime software is still to implement

control of the new Mars rover and to record the raw data from either

the rover or the platform (see Figure 12). Most of the software is

written in FORTRAN; though, some assembler was used.

The basic data consists of an interrupt status flag, laser

data, and vehicle state data (see Figure 13). The possible interrupt

status flags include:

EOA: End of azimuth; the data consists of laser
returns and vehicle state information.

EOS: End of scan; same data as EOA, but also
signals that a full scan has been taken.

VI: Vehicle interrupt; the data consists of
vehicle state information only.

Timeout: No interrupts have been received for
at least one second; it signals a possible
hardware problem.

Overrun: New data has written over old data be-
fore old data was read; stop vehicle and
wait for next EOS before accepting new data.

Telemetry data will enter the Prime via DMT into an azimuth

{V	 buffer, one azimuth at a time, followed by the appropriate interrupt.

Azimuths can be broken into two types: a laser azimuth and a vehicle

28
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azimuth. A laser azimuth would occur on the frontside of a scan and

would be followed by an EOA or EOS. A vehicle azimuth would occur on

the backside of a scan and would be followed by a VI. Because the

'	 vehicle data is not needed as often on the backside of a scan (for

navigation), the vehicle azimuths can occur less frequently.

From the azimuth buffer, the data s	 e	 s,	 i moved to one of two can

buffers. Each scan buffer is large enough to hold an entire :scan with

the azimuths stored sequentially. There are two of them to provide a

^•	 double buffering scheme such that the software can be processing one

scan while another is arriving.
3.

A macro description of the overall realtime system will now

be given (see Figure 14). The main routine, called EXEC, is in charge

of the entire system flow. After the user gives the RUN command, the

system is initialized. The system then waits for an Interrupt to sig-

nal that some data is available. After an interrupt, NAVIG is called

to convert the data to a usable format and to perform navigation. If

1	 an EOA interrupt occurred, then the data includes laser returns, and

the MODEL routine is called to analyze these returns.

The terrain modeller analysis can be further broken down in-

to inpath and crossparh. Inpath is along an azimuth and can be done

for each azimuth as it arrives. Crosspath is along the scan and can

only be done after the EOS interrupt occurs. If an EOS did occur, then

after performing a crosspath analysis, the modeller would pass its re-

sults to the path selection routine (PSA). Using both current and past

information, the PSA would select an optimal path and send the appro-

priate turn command to the rover. Finally the data would be saved for
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the post-run analysis and the process would be repeated.

B. Lower Level Routines

Many modifications had to be made to the Prime operating sys-

tem to implement realtims control of the rover. This was further con-

plicated by the fact that the operating system was more suited to

timesharing rather than to realtime control. The Prime operating sys-

tem (PRIMS) is very complet and therefore will not be described here.

More information can be found in the Prime manuals and listing (see

Reference 7).

PRIMOS is a multilevel operating system existing in levels

tf

	

	 II, III, IV, and V. Our operating system is a modified version of

PRL%10S V Rev 15.0.* ;cote that moving to a new revision may require

r	 significant changes. Space was left in the operating system for the

addition of new system processes by the addition of two spare templates:

SP1 and SP2. We took over the SP2 template throughout. Besides those

changes, three routines encompass the major additions to the operating
l

system. These are DEVEIO, MRVDIM and T$ROVR. Also a new common block,

t	 MRVCOM, was added. Flowcharts for all of the realtime support routines

1	 can be found in Appendix.B.

B.1. DEVEIO

DEVEIO is a two argument system subroutine, written in as-
r	 ^•

sembler language, which allows FORTRAN programs to execute I/O instruc-

tions. The first argument is the instruction, function, and device

code while the sacond argument is an input or output if required. It

Vis called as a FORTRAN function subroutine and returns true if success-

*Note that at the time of this writing, our version of the operating
system is being updated to Rev. 16.0.

As
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ful and false if unsuccessful.

B.2. )MVVDIM

Vectored interrupts from the GPIB interface go through lo-

cation 1618. The interrupt service routine will automatically disable

any further interface interrupts. It will then NOTIFY the interrupt

process MRVDL4 by the use of the &'KVSFM semaphore and roturn.

A semaphore is a two word software devica used to asynchro-

nously start-up or schedule other processes. The first word is the

semaphore count, and the second *.rl is a pokiter to the wait list.

There are two operations that can be performed on a semaphore by a

user. A user can NOTIFY a particular semaphore, which dust decrements

that semaphore count. When the computer gets around to examining the

semaphores, if it finds any that are less than or equal to zero, it

takes the highest priority process from that wait list and puts it on

the ready list. The highest priority process on the ready list runs.

A user can also WAIT on a semaphore, which increments the count, and

puts that process on the wait list. Nate that if a process does a

WAIT, and the count remains less than or equal to zero, that process

-stays on the ready list.

Initially the *MVSEM semaphore starts out with a count of or.e,

and MRVDIM on the wait list. When the MRVDLK process is started, it

disables any further DISC and inputs the interrupt status register. It

than checks the status for a hardware overrun condition. This could

occur if the :DIVDLM process took coo long with the last set of azimuth

data. therefore losing some of the next azimuth data. On an OVERRLM ,

the stopped flag (RVSTOP) is checked. RVSTOP declares whether the

L077	 _
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r.

l

rover is currently halted by the MRVDIX process for either a hardware

or software overrun. A software overrun occurs when the user process

is not done with either scan buffer before MRVDIM receives more data.

if RVSTOP is set then ignore the OVERRUN since the vehicle

is already stopped. If RVSTOP is not set, then put a -2 in the current

buffer status word to signal an OVERRUN and NOTIFY the MRVFUL sema-

phore to sz,,.•.t up the user process. Also set RVSTOP and send a HALT

command to the vehicle. MRVDIM will now wait until the next EOS so it

can re-synchronize the scan. Finally, whether RVSTOP was set or not,

re-enable DMX and interrupts and WAIT on MRVSEM.

If there was no OVERRUN then cheek the status for a TIMEOUT

condition. This interface generated interrupt signals a lack of ex-

ternal interrupts for at least one second. On a TIMEOUT, put a -3 into

the current buffer status word to signal TIHEOUT and again NOTIFY the

MRVFUL semaphore. Then send a HALT command to the rover and WAIT on

MRVSEM. Note that by not re-enabling interrupts the MRVDIX process

cannot be restarted.

When there is no OVERRUN or TIMEOUT, examine RVSTOP. If

RVSTOP is set,then check the status for an EOS. If no EOS then igur-re

the interrupt, re-enable DMX and interrupts and WAIT ou MRVSEM. But if

an EOS was received then try to re-synch the scan. Check to see if one

of the scan buffers has been declared empty by the user process. If

there is no empty buffer,then do nothing except re-enable DMX and in-

terrupts, and WAIT on MRVSEM for another EOS. If there is a free

buffer, then restart the rover. Then set up the new buffer poiuters

and clear RVSTOP. Finally, re-enable DMX and interrupts, and WAIT on

I
t
r

I
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MRVSEM.

If there was no OVERRUN or TMEOUT, and RVSTOP was not set,

than there is some azimuth data to move. First get the current time

(TIMNOW and VCLOR), accurate to 1/330 second, and store it in the

last two words of the azimuth buffer. Then move the azimuth buffer

to the current scan buffer. Since both buffers should be locked in

a-
memory (from being paged out), if a fault occurs on the data move in-

struction (7:,4VD), the user process must have abnormally terminated

execution. In this case send a HALT command to the rover and again

WAIT on MRVSEM without re-enabling interrupts. This is the system

failsafe; if the user process terminates, the rover is automatically

t
1	 halted.

If there was no fault, then the move was successful. In that

case NOTIFY MRVFUL, update the pointer to the scan buffer and then

check for an EOS. If no EOS then again re-enable DMX and interrupts

and WAIT on MRVSEM. But if an EOS was received, then put the positive

r azimuth count in the buffer status word to signal an EOS to the user.

If the other scan buffer is empty then set up the pointers to load into

it next. If it is not empty, then set RVSTOP and halt the rover.

Finally, empty or not, re-enable DMX and interrupts and WAIT on

MRVSEM.

B.3. T$ROVR

T$ROVR is a system routine written to simplify and protect

the user-system software interface. It is a five argument FORTRAN sub-

..
routine, and has five basic functions. It allows the user to initial-

ize the interface, to stop the interface, to send rover commands, to

a

G
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empty a scan I+uffer, and to WAIT on MRVFUL. The first argument selects 	 I
i

the function. Error-checking with appropriate messages safeguards 	 1

against incorrect usage.

T$ROVR first checks to see if the rover is assigned to•the

user. The rover has been made an assignable device, and as such must

be assigned and unassigned using:

ASSIGN ROVER
UNASSIGN ROVER

Next it makes sure that the first call to T$ROVR is an initialization in-

struction. Then it jumps to the function selected by the first argument.

Initialization is the most complicated function. First, the

scan buffer addresses, arguments 4 and 5 are checked for valid ad-

dresses. Then the azimuth buffer size and number, arguments 2 and 3,

are checked for validity. The azimuth buffer size is restricted to be

between 1 and 1022, while the azimuth number =at be between 1 and 256.

Now T$ROVR checks to see if this is the first initialization call. If

so then the device status is checked using DEVEIO to see if the GPIB re-

plies. If everything is satisfactory then MAPIO is called to map the

1024 word DMX buffer into the MRVDIM azimuth buffer. Then LOCKPG is

called to lock MRVDIM, the azimuth buffer and the two scan buffers into

memor7. Finally, using DEVEIO, DMX and interrupts are enabled and an

INIT command is sent to the rover. The MRVFUL semaphore count is

zeroed and T$ROVR returns.

The stop function starts by looping until the RVSTOP flag is

set signalling that the rover has been stopped. It then calls UMAPIO

to unlock or free the two scan buffers. Using DEVEIO, it again sends
r.

the HALT command to the rover, disables DMK and interrupts and then

t

r
c
c
i

f

A
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T$ROVR returns.

The command function calls DEVEIO to send a command to the

rover. It also loops until it is successful and then returns.

The empty function is used to declare a scan buffer empty

and to switch to the other buffer. The second argument selects the

buffer being emptied. Note that successive calls must alternate buf-

fers. Since an OVERRUN may have stopped the rover, the third argument

may be used to specify what restart command, if any, should be given.

RVFILL is a variable used to keep track of which buffer is currently

being filled, and RVNEXT, the buffer to fill next. The MRVDIM. process

will fill the buffer selected by RVFILL, move RVNEXT into RVFILL, and

clear RVNEXT. If MRVDLX finds RVFILL equal to zero, then no buffers

are empty and a software OVERRUN occurs. The empty function sets up

RVFILL and RVNEXT.

Last is the WAIT function. It checks RVFILL to make sure at

least one scan buffer is empty. It then does a WAIT on the MRVFUL

semaphore.

C. System Routines

The system routines make up the user process and include the

realtime system executive and its subroutines. Two of these subrou-

tines: the terrain modeller (MODEL) and the path selection routine

(PSA) will not be discussed here.

C.1. LUC

The main upper level routine is the :oars system executive.

This is the user process which performs the realtime analysis and con-

trol. F.UC basically controls the flow of the system, with the real
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work done by subroutines (see Figure 15). All of the routines are

linked together by the main common block RVRCOM (see Table 1). Once

EXEC is started, the user has the ability to run as many realtime ex-

periments as desired without restarting the system. The user can

change parameters, select different PSA and MODEL routines, :md even

run the rover manually from the keyboard.

i

	

	
On starting the system, EXEC first tries to initialize the

important runtime parameters with default values. To do this it

ATTACHes to the MARS.DATA sut.UFD (sub-User. File Directory) and makes

that its home UFD. Thin is done to keep all the runtime data files

separate from any programs being developed, and to try to keep them all

together. EXEC then cpens the MARS.DEFAULT file and reads the default

values. Keeping default values in a separate file rather than in the

EXEC  progra= itself makes them easier to change and does not require a

recompilation of EXEC. The parameters initialized and the file format

is shown in an e.Yample copy of the MARS.DEFAULT rile (see Table 2).

Note also that new parameters can be added easily.

EXEC displays the )arameter values and then enters the inter-

action processor. The interaction processor is just a segment of code

which allows _he user to enter commands. The prompt for the interac-

tion processor is "CO:", and the command line syntax is:

<COMMAND><- or , or (blank)><VALUE>

Note that for some commands, the delimiter and value may not be re-
K

quired. The value may be ei_her real or integer, and will be converted

automatically if necessary. Also, if a required value is omitted, the

process w:11 ask for it. The possible commands are kept in the array
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COMMON /RVRCOM/ /* Realtime System Common

BUFA(2048) /* Buffer for Raw Data

BUFB(2048) /* Buffer for Raw Data

LBUFF(1024) /* Buffer of Lower Laser Data

UBUFF(1024) /* Buffer of Upper Laser Data

PITCH(64) /* Vehicle Pitch per Azimuth 	 (Rads)

ROLL(64) /* Vehicle Roll per Azimuth 	 (Rads)

HEADNG(64) /* Vehicle Heading per Azimuth (Rads)

AYROLL(64) /* Front Axle Roll per Azimuth (Rads)

STEER(64) /* Steering Angle per Azimuth 	 (Rads)

SPEED(64) /* Vehicle Speed per Azimuth 	 (M/Sec)

DTIME(64) /* Delta Time between Azimuths 	 (Sec)

YLOC(64) '/* X Location of Vehicle	 01)

YLOC(64) /* Y Location of Vehicle	 (M)

ZLOC(64) /* Z Location of Vehicle	 (M)

TIME /* Total Time Since Beginning of Run	 (Sec)

DHEAD /* Desired Heading	 (Rad)

NUMAZL /* Number of Laser Azimuths per Scan

NUMAZV /* Number of Vehicle Azimuths per Scan

NUMLAZ /* Number of Laser Shots per Azimuth

NUMSEN /* Number of Sensors per Azimuth

TABLE 1a. RVRCOM

4

r

r

a
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XFINAL /* X Location of Target (M)

YFINAL /* Y Location of Target (M)

DELTXY /* Desired "Closeness" to Target	 (M)

IMOD /* Version of MODELLER to Use

IPSA /* Version of PSA to Use

DSPTIM /* Time between Display Updates 	 (Sec)

NUMAZT /* Total Number of Azimuths per Scan

SCAN /* Current Scan ,lumber

AZMUTH /* Current Azimuth Number

MAPX /* Map X Axis Range (M)

MAPY /* Map Y Axis Range (M)

ORIGX /* ;lap X Origin

ORIGY /* Map Y Origin

MRVCMD /* Command Sent to Rover

OVRRUN /* Buffer Overrun Flag

TIMOUT /* Timeout Flag

BOA /* End of Azimuth.Flag

VI /* Vehicle Interrupt Flag

EOS /* End of Scan Flag

INIT /* Initialization Flag

RUN /* Run Flag

TABLE lb. RVRCOM
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i
t

1

lk
lk

i
1

* MARS.DEFAULT File: A Sample

16 NUMAZL: Number of Laser Azimuths per Scan

4 NUMAZV: Number of Vehicle Azimuths per Scan

20 NUMLAZ: Number of Laser Shots per Azimuth

20 NUMSEN: Number of Sensors per Azimuth

10.0 XFINAL: Target X Coordinate

10.0 YFINAL: Target Y Coordinate

0.5 DELTXY: Desired "Closeness" to Target

1 IMOD: MODELLER Version

1 IPSA:	 PSA Version

20.0 MAPX: Map X Axis Range

20.0 MAPY : :Sap Y Axis Range

0 ORIGX: Map X Origin

0 ORIGY: Map Y Origin

0.25 DSPTIM: Time between Display Updates

TABLE 2. MARS.DEFAULT File

r
1
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TBU, anti provide for easy expansion (sec Table 3).
E

The interaction processor starts by inputting up to 40

characters from the keyboar,i into the array XBUF. A subroutine, called

GETTOR, strips the first token from the command line, which should be

	

t	 the a mmand, an-i returns ir in the array IBUF. Another subroutine,

GETOM, then searches the TBU array for a match to IBUF. If there is

no mat:r then the message

ILLEGAL. CMDW" D

is output and the prores a.3r goes back for another command. If a match

is found then the command number is returned in the variable CMD. Each
t

command in TBLI is followed by a key which tells what kind of value, if

any, should follow the command. CM is used to index into TBU to get

this key, which is assigned to the variable KEY. If KEY equals zero

then there are no parameters and so EXEC jumps to execute that command

through a computed GOTO, indexed by CID. Otherwise GETTOR is called

again to get the parameter. If the parameter is missing, it is re-

quested only once using the prompt: "PAR-". And if the user enters

	

j	 nothing, then the command is ignored. If there is a parameter then the

subroutine CNVPAR is called to convert the parameter from ASCII to

either integer or real as determined by KEY. If there is an error on

the parameter conversion then the message

ILLEGAL PARAMETER

PAR=

is issued and the user can try again. Finally, EXEC jumps through a

	

i ,	computed GOTO, indexed on QM, to execute the command. Note that when

executing a command with a parameter, the parameter is always checked
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Oalue)
(Value)

CValue

(Value)

CValue,

CValue

CValue

CValue)

CValue

CV slue)
CValue)

CValue

CV a 1 u a)

CV 
alue)

Y

•
DISPLY

z•

PRIME

NUMAZL

NUMAZV

NUMLAZ

NUMSEN

XFINAL

YFINAL

DELTXY

IMOD

IPSA

1	 MAP X

MAPY

ORIGX
ORIGY
DSPTIM

GO

Display default parameter values.

Return to PRIMOS.

Change NUMAZL to CValua)-

Change NUMAZV to CV alue).
Change NUMLAZ to CV alue) .
Change NUMSEN to CV alu4k>.
Change XFINAL to CV alue) .
Change YFINAL to (Value) .

Change DELTXY to (Value) .

Change IMOD to CV alue) .
Change IPSA to {Value, .

Change MAPX to 
Cy 

slue,-

Change MAPY to CV alu e) .
Change ORIGX to CV alue).
Change ORIGY to CValue)-
Change DSPTIX to CV alue).
Begin accepting realtime data.

TABLE 3. Interaction Processor Commands

t"
Y

t
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for validity first.

On a GO command, all necessary flags and counters are

Initialized first. To enable the PSA and MODEL routines to initialize

themselves (since different versions may exist), they are called with

the variable INIT set true. Next, T$ROVR is called to initialize the

interface. A post-processor file is then opened to hold the runtime

i	
data for this particular run. Each realtime experiment gets a new

(	 post-processor file with a unique name of the form

M. MH / DD / YY J NN

where :Qi, DD, and YY are the two digit representations of the current

month, day, and year respectively. NN is a two digit number between 00

and 99, starting at 00 and incrementing for each new run of that par-

(	 ticular day. After opening this file, E I.MC writes an information

!	 record with the format shown in Table 4.

Next, the CRT screen is set up for the runtime display (see

Figure 16). During the run, these parameters will be updated periodi-

cally. The STATUS variable will show the current interrupt type: EOA,

EOS, VI, TLXEOUT, or OVERRUN. The COK AND label will show the last

command sent to the rover, and the TTY CO label will show the operator

command input during runtime.

The pre-run initialization concludes by calls to T$R9VR to

empty both scan buffers and a call to NAVIG to allow it to initialize

itself. Finally, EXEC does a WAIT call using T$ROVR which begins the

realtime execution phase of EXEC.

On an interrupt, the 1;uffer result subroutine, BUMS, is

T	 called. BUFRES checks the reason for the interrupt, stores the raw

i
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WORD CON_ TENTS

1 Record Length ( • 20 words).

2 Record Identifier (-1 • Information Record).

3 Current Month (01 -	 12).

4 Current Day (01 - 31).

S Current Year (00 -	 99).

6 Current Time	 (24:00).

7 NUMAZL: number of laser azimuths.

8 NUMAZV: number of vehicle azimuths.

9 NUMLAZ: number of lasers per azimuth.

10 NUMSEN: number of sensors per azimuth.

11-12 %FINAL: target X coordinate.

13-14 YFINAL: target Y coordinate.

15-16 DELTXY: desired "closeness" to target.

11 IMOD: version of MODELLER used.

18 IPSA: version of PSA used.

19-20 DSPTIM: time between display updates.

TABLE 4. Post- Processor Information Record

V

T

i

I
I:

l

i

i

C
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M1/Nt**fM1M**1M*sltt^t^ttt !!**f! !M**ttttlM **t4R*tt^M*tMtM *AtM
a

TL	 S
^, *	 * HEADING s

*	 * PITCH:
*	 * BOLL:
*	 * X LOC:
*	 * Y LOC :
*	 * AX ROLL:
*	 * SPEED:

► *	 * STEER:
*	 R	 * LASER:
*	 * STATUS:
*	 * CMOIAND :
*	 *
*	 * TTY CO:
*	 *
*	 *
*	 *
4t

X RANGE:	 Y RANGE:

r
R ORIG:	 Y ORIG:

t

FICM 16. Runtime Display
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i

data, calls NAVIG, and updates the display by calling the subroutine

SCREEN. If a TIlMEOUT interrupt was received then the run is halted

and control returns Qo the interaction processor. Otherwise a segment

of code called the keyboard processor is entered.

The keyboard processor allows the operator to enter commands

during runtime. At runtime, the terminal is automatically placed into

half-duplex mode, so that nothing the operator types will show up on

the screen. This is necessary since the cursor is flying all over the

screen updating the map and the display parameters. The keyboard pro-

cessor reads what is typed on.the keyboard from an internal buffer,

and displays it following the TTY CO label.

A subroutine called KEYBIN reads and displays the keyboard

input. When it comes across a line-feed character, it sets the flag

ENTER true, and returns the text in the array BUF. The ;feyboard pro-

cessor then uses the subroutines GETTOK, GETMM and CNVPAR just as in

the interaction processor. k different command table, CMDTBL, is used

to contain the possible runtime commands (see Table 5). Also because

of limited space, an error is signalled by an asterisk as

* TTY CO:

An At character "@" has the effect of erasing the current command.

Note that after a GO command in the interaction processor,

data will be accepted, stored, and decoded, but the rover will be in

the manual mode. Therefore, the PSA and MODEL routines will be skipped

until the RUN command is giver_.

Finally, if EKEC is in the autonomous control mode, the

selected MODEL routine will be called. Then, if an EOS interrupt was re-
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RUN Begin autonomous control.

STOP Stop rover.

F ^Value> Forward command where:

F 1	 Slow

F 2	 Medium

F 3	 Fast

R CValue) Reverse command where:

R 1	 Slow

R 2	 Medium

R 3	 Fast

T CValue) Turn command where:

CValue>	 can take on the values 	 (-7 to +7)

and refers to 1 of 15 absolute steering

angles.

T -7	 90° Left turn

T	 0	 0° Turn

T	 7	 90°	 Right turn

TABLE 5. Keyboard Processor Commands

t

r-

7"
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ceived, the selected PSA routine will be called. 	 The PSA will send

commands to the rover through a T$ROVR call and then the used scan

buffer All be emptied by another T$ROVR call.	 Whether an EOS was re-

ceived or not, the azimuth and scan counts (AZMUTE, SCAN) Ore updated

and EXEC jump& back to do a T$ROVR WAIT call on MRVFUL again.

' C.2.	 NAVIG

The NAVIG subroutine has the job of converting the raw data

to a form which can be used by the other programs, as well as keeping

track of navigation.	 The raw azimuth data format is shown in Table 6.

The individual word formats can be found in Appendix A.

NAVIG is a four argument subroutine called from the BUFRES

subroutine.

NAVIG (VBUF, LAZBUF, UBBFF, LOBFF)

The argumeut VBUF is the address of the start of the current vehicle

data buffer located within the scan buffer. 	 LAZBUF is the address of

the start of the current laser data buffer, also located within the

current starting addresses in the UBUFF and LBUFF arrays respectively.

Those arrays hold the upper and lower receiver cone numbers for each

laser shot.

In the beginning of NAVIG, the routine checks the variable
Y

INIT, located in RVRCOM, to see if it should initialize itself. 	 There

r - are many variables to zero out since NAVIG uses a cumulative technique

Y to perform navigation.	 If INIT is false, then NAVIG begins to decode
e

the data.

The time, in seconds, since the beginning of the run is com-

puted and kept in the variable TIME. 	 Note that the MODEL routine uses

I
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i

1

l

i

WORD CONTENTS

1 Not used.

2 Raw Steering Angle.

3 Raw Left-Rear Tachometer Reading.

4 Raw Right-Rear Tachometer Reading.

5 Not used.

6 Not used.

7 Not used.

8 Not used.

9 Raw Front Axle Roll Angle.

10 Raw Roll Angle.

11 Raw Pitch Angle.

12 Not used.

13 Raw Right-Front Tachometer Reading.

14 Not used.

15 Raw Left-Front Tachometer Reading.

16 Raw Heading angle.

17 Raw Time	 (minutes).

18 Raw Time	 (330's of second).

52

TABLE 6. Azimuth Buffer Format
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a lot of information on a per azimuth basis when it does a crosspath

analysis. Therefore, an array, DTIME, is formed to contain the time

between azimuths for each azimuth.

Neat the heading angle, in radians, is computed and stored

in the array HUDNG, one entry per azimuth. It is necessary to touch

on the matter of bad data. Since data transmitted from the vehicle

might be lost because of interference, it is important to detect this

error and to minimize its damage. The solution is to make the in-

terrupt process, MRVDIM, pack the empty azimuth buffer with impossible

data. Luckily, an all ones pattern cannot appear in the current data

1	 chosen. To minimize the damage, NAVIG will substitute the last valid

E	 value of that particular variable. It will also put an asterisk next

to that label on the display screen. If the operator sees that a data

word is consistantly wrong, then he could stop the rover, since there

might be a hardware problem. In the laser data, a missing return will

be substituted for a bad data word and the number of bad laser data

words will be displayed next to the LASER label on the screen.

After the decoded heading angle has been saved, the pitch,

roll and front-axle roll are decoded and stored in the arrays PITCH,

ROLL, and AXROLL respectively. The speed is calculated from the average

of the two front wheel tachometer readings, and stored in the array

SPEED. Next, the R, Y, and Z locations of the rover are calculated

using the formulas given in Table 7. They are stored in the arrays

XLOC, YLOC, and ZLOC respectively.

Now NAVIG checks to see if it is processing a VI interrupt.

If so, then it returns because there is no laser data. If it is pro-

I

a.
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x-

i

AVG(SPEED) = SPEED(K) + SPEED(K-1)
2.0

BETA(K) - HEADNG(K) + STEER M

AVG(BETA) - BETA(K) + BETA(K-1)
2.0

AVG(PITCH) - PITCH(K) + PITCH(K-1)
2.0

XLOC(K) - XLOC(K-1) + AVG(SPEED)COS(AVG(BETA))

YLOC(K) - YLOC(K-1) + AVG(SPEED)SIN(AVG(BETA))

ZLOC(K) - ZLOC(K-1) + AVG(SPEED)SIN(AVG(PITCH))

where VARIABLE(K) s Current value

VARIABLE(K-1) - Last value

TABLE 7. Navigation Formulas

1
x-

7
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irceasing an EOA or EOS, then there is laser data. The upper and lower

r

receiver cone numbers must be separated from each laser data word and

ik	 stored in the arrays UPBUF and LOBUF respectively. Data errors are

made into missing returns, and a count is kept in the variable LDERR.

Finally NAVIG returns.

C.3. BUMS

BUFRES is a subroutine which determines the interrupt status,

saves the raw data, calls NAVIG to perform conversions and navigation,

f	 and calls SCREEN to update the display. It has one argument, BUF,
i

r	 BUFRES (BUF)
2

which is the current scan buffer address.

BUMS first decodes the interrupt status from the first word

of the current scan buffer and outputs it to the display next to the

STATUS label. If a TIMEOUT or OVERRUN occurred, then that information
r

is written to the post-processor file and BUFRES returns. On an EOA,

EOS, or VI interrupt, a similar post-processor record is written with
i

the format given in Table 8. Next, the starting addresses for the ve-

hicle data and laser data within BUF, and the laser data destination

I

.	 within UBUFF and LBUFF are calculated, and used in the call to NAVIG.

i	 Finally the subroutine SCREEN is called to update the CRT display.

C.4. GETTOK

a .

GETTOK is a general purpose subroutine which will parse a

command line, returning tokens on consecutive calls. The delimiters

recognized include a blank, a comma, and an equals sign. The Prime

subroutine RDTK$$ also returns tokens but it uses a different set of
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z

4

I

4.

WORD CONTENTS

1 Record Length.

2 Record Identifier where:

-1 - Information Record

1 - EOA Record

2 - VI Record

3 - EOS Record

4 - OVERRUN Record

5 - TIMEOUT Record

6 - MODELLER Record

7 - PSA Record

3 Last command sent to rover.

4 Current Scan Number.

5 Current Azimuth Number.

6 Not used.

7 Raw Steering Angle.

8 Raw Left-Rear Tachometer Reading.

9 Raw Right-Rear Tachometer Reading.

10 Not used.

11 Not used.

TABLE Sa. Post-Processor General Record

A
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r

1

WORD CON_ TENTS

12 Not used.

13 Not used.

14 Raw Front Axle Roll Angle.

15 Raw Roll Angle.

16 Raw Pitch Angle.

17 Not used.

18 Raw Right-Front Tachometer Reading.

19 Not used.

20 Raw Left-Front Tachometer Reading.

21 Raw Heading Angle.

22 Raw Time	 (minutes).

23 Raw Time	 (330's of	 second).

24-up Raw Laser Data	 (if EOA or EOS).

TABLE 8b. Post-Processor General Record

57
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delimiters.

There are six arguments to this subroutine.

	

'	 GETTOK (IPTR, BUF, LEN, IBUF, ILEN, NCHAR)

IPTR is the current position within the command line. BUF is the com-

mand line array, packed two characters per word, of length LEN

characters. IBUF is the returned token array, also packed two charac-

ters per word, with a maximum length of ILEN words. NCHAR is the num-

ber of characters in the returned token. Any unused characters are

packed with blanks.

GETTOK starts by packing IBUF with blanks. It then searches

f
BUF from the current position, IPTR, until the beginning of a token is

found (the first non-delimiter). Finally, it searches BUF for the next

delimiter while updating IPTR and NCHAR, and moving each character into

IBUF.

C.5. GETOM

GETOM is a simple subroutine which searches a given command

table for a match to an input token. There are six arguments.

GETOM (TBL, LEN, WID, OM, BUF, NCHAR)

TBL is the input command table of dimensions LEN and WID. am returns

the index into TBL of the command which matches the token in the array

BUF. If no match is found then CMD is set to zero. NCHAR is the num-
b	

r
1

ber of non-blank characters in the array BUF. Note that WID is one

greater than the number of words in each command of TBL. This is be-

cause every command has a key which declares the type of parameters,

if any, to expect.

The subroutine compares a command in TBL with the token in

r
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BUF on a word by word basis. If it fails then it tries the next com-

mand, until finally either finding a match or exhausting the table.

C.6. CNVPAR

CNVPAR is a simple subroutine which converts numerical tokens

•	 from ASCII to numerical values. There are six arguments.

CNVPAR (BUF, NCBAR, REY, IVAL, RVAL, IER)

R	 BUF is the numerical token in ASCII format of length NCBAR characters.

The variable REY which is obtained from the command table, declares

the type of numerical value expected where:

KEY - 0 No parameter

KEY - 1 Integer

KEY - 2 Real

VAL and RVAL are the variables which return the integer or real value

respectively. IER is the return code where:

4	 IER - 0 Normal return

IER - 1 Invalid key
}
`	 IER - 2 Invalid token

The subroutine uses FORTRAN DECODE statements to convert

directly from ASCII to numerical form as required.

C.1. KEYBIN

i	 K IN is a subroutine which allows keyboard input during
1

runtime. There are three arguments.

KEYBIN (MM, ENTER, IBUF)

0. M is the current number of characters input from the keyboard. Run-
,.

time commands are kept short to save precious time and therefore K 

T

i
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is limited to a maximum of S. 	 ENTER is a logical variable which is

set true when the command has been entered. 	 This is determined by

finding a line-feed character in the keyboard buffer. 	 The command

is returned in the array IBUF.

The subroutine starts by setting ENTER false and calling

ACM$$	 if	 is inrI. the Prime subroutine KM$$.	 returns a one	 anything

the keyboard buffer, and a zero otherwise. 	 If KEYS$$ returns a zero

then KEYBIN returns.	 But,if it returns a one, the Prime subroutine

T1IN is called which gets a character from the keyboard buffer.	 If

KEYBIN finds the character "@," then it will erase the array IBUF

and the text after the TTY CO label on the screen. 	 A line-feed

causes ENTER to be set true.	 If the character is not an At or line-

..
feed,then it is stored in IBUF, and it is output next to the TTY CO

label.	 The routine then loops back to the KEYS$$ call to check for

any remaining characters in the buffer.

• C.S.	 SCREEN

SCREEN is a subroutine which updates the values on the dis-

play screen.	 It also calls the subroutine MAP which updates the dis-

play map.	 There are no subroutine arguments.

i

The time between display updates, DSPTM, is variable and

u ' can be set by the operator. 	 This is provided because display updating

takes a fair amount of time. 	 SCREEN starts by determining whether it

is time to update the display or not.	 If it is, then SCREEN updates

the time, heading, pitch, roll, front-axle roll, X and Y locations,

speed, steering, laser status, and last rover command. 	 The laser

status is the number of bad laser data words, if any, and the last

I

'S
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rover command is the last command sent to the rover, usually by the

PSA routine. SCREEN also flags any bad value obtained from the rover

by putting an asterisk before the respective label. SCREEN finally

calls the MAP subroutine and then returns.

C.9. MAP

MAP is a subroutine which updates the display map on the CRT

t	
screen. The map displayed is a top view of the rover, or the X-Y

plane. The X and Y ranges and origins are variables, and can be set

by the operator. These variables are displayed beneath the map for

reference during runtime. The screen size of the map is 50 characters

in width by 20 characters in height. Because of the p:-)or resolution,

the rover is represented by a one digit number which increments

modulo-9 every update. If the rover stops or doubles back, the

operator will still see the position by the changing number. Note

that this map might be too crude to be of any use, but only experience

will tall.

MAP starts by quantizing the rover X and Y locations on !.ts

limited grid. If the location falls outside the map range,then it is

not plotted. The CURSOR subroutine is used to position the cursor,

and the digit markaz is output. Finally the digit market is updated

and MAP returns.

C.10. CURSOR

The CURSOR subroutine is used to position the cursor on the

CRT screen. Vote that this routine w4-ll only work when using an ADM-3

terminal. CURSOR is written in assembler because it is used often in

the runtime display updating. There are three argumentev
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I.	
CURSOR (ROW, COLUMN, IER)

ROW and COLUMN are the desired cursor locations, where the upper left

corner is (1,1). IER is a logical return code which is true on an

error.

CURSOR first checks the ROW and COLUMN variables for

validity, and then adds an offset of 237 8 to each variable. The

variables are then packed into a single word with the row in the first

byte and the column in the second byte. To position the cursor re-

quires two words. The first is a special code, 11567589 or an escape

followed by an equals. The second is the packed row and column data

word. The Prime subroutine TNOUA is called to send this data to the

i
terminal. Finally CURSOR sets IER false and returns.

Ti.

{



PART 5

CONCLUSION

A. Summary

The laser triangulation method of hazard detection has been

proven feasible by the results obtained during the one laser-one de-

tector system testing. Complete obstacle avoidance was possible with

this system at the cost of a slightly conservative path selection

ability. This conservatism was very much apparent in a field environ-

ment which included slopes. It was because of this inability of the

one laser-one detector system to interpret slopes that the elevation

scanning system evolved.

Simulation studies indicate that the elevation scanning sys-

tem does provide enough data for an accurate slope appraisal. Cur-

rently, all rover systems are being modified to implement this new

hazard detection system.

New realtime software has been wi,itten on a Prime minicom-

puter. The hazard detection and obstacle avoidance software develop-

ment work has been done using the simulator. However, the realtime

support software has only had some limited testing since none of the

required hardware is working yet.

This support software has been designed to provide the user

5	 with a simple interactive environment. The user can change and dis-

play parameters, control the rover either manually or autonomously,
t

and even run as many tests as desired without ever halting the pro-

gram. Important runtime values are displayed and all ra data is

saved for post-run analysis.

63
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B. Future Work

Once the problems with the Prime test interface are solved,

it isortant that the lower level realtime software be completely^P	 P	 y

tested. After the test interface is understood, the realtime inter-

(	
face can be designed and constructed.

t	 The first realtime laser data will come from the dynamic

i	 test platform. Initial testing should be done with a static platform.

(	 Only when it appears that the hazard detection software can accurately

interpret any scene can the rover be tested under realtime control.

Programs to analyze the post-run data should be developed

i immediately since they will be necessary when testing the hazard de-

}	 tection software. Running off-line, the post-processor routines can

use computer graphics to help display data.

Although first testing should use a dedicated processor, it

may be possible to allow other users on the system during realtime

testing. This would require that our operating system be kept up to

date with the normal operating system and that it have a low probability

of crashing the system. also, although unlikely because of time con-

,	 straints, the possibility of realtime graphics should be investigated.

^	 d

t.
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APPENDIX A

r.
	 Azimuth Data Word Formats

i
	

1. Steering Angle:

i

	
Range: -90° to +90° 15
	 12 11	 0

Data Format:	 10 0 0 01_ 	 Data

A/D Data	 Steerina Angle

	

-2047	 -90°

	0 	 0°

	

+2047	 +90°

no

2. Tachometers:
15	 12 11	 0

	Data Format:	 10 0 0 01	 A/D Data

	

A/D Data	 Wheel Speed

	

-2047	 Full Reverse

	

0	 Stopped

	

+2047	 Full Forward

66



s

t.
r

i

i

67

3. Front Axle Roll Angle:

Range: - 30 0 to +300
15	 12 11	 0

	Data Format:	 10 0 0 01	 A D Data

	

A D Data	 Front Axle Roll Angle

	

-2047	 -30°

	

0	 0°

	

+2047	 +30°

-- A60

60

av

Front View

l	 tf^'-	 8

Front Axle Roll
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4. Roll Angla:

Range: -30 0 to +300
15	 12 11	 0

	

Data Format:	 10 0 0 01	 A	 ata

	

A/D Data	 Roll Angle

	

-2047	 -30°

	

0	 0°

	

+2047	 +30°

.i. -:te°

—2u

Front View

Ro 11



+30°

d

^ AA*
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I	 5. Pitch Angle:

	

Range: -30°	 to +30° 15
	 12 11	 0

	

Data Format:	 0 0 0 01	 A D Data

	

A D Data	 Pitch Angle

	

-2047	 -30°

	

0	 0°

	

+2047	 +30°

Pitch

f '

1.

Y^

Y^

ri
I
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lav

SEG Number

Y

A/D Data per Segment

x
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6. Heading Angle:

Range: 0° to 360°

Data Format:
J

15	 12 11	 0
G	 A D Data::]

0
—2011	 4	 f 104

Head{-ng



71

s

t

I:

r

APPENDIX B

Devaio

"r 210 zovs ucriaiv Apo
orrosov*L med- mepwr,
Extcuyw s/o lwsrRucrloJv.
SAva opn orga 44OU019wr,

^o / s/o
'^ succrssFVc

JQETNRN

,I4I^SE.
.71COC.



NAT ROVER.
CLffAR Al.L
Po I m7ims .

8

YSS	 FAuLr otii
OgTA MOVE?

No

P,

O
0 ,

r

s

1-

i

72

MRVDIM

C

STOP DMT,
INPUT 3rATus,

CM FWN 
Yes E

SST susfaR
srAry s To TII
AND twrlay

YES TIMEO,JT

ho

RovER
STOlp"a 9 V

MIWDIM !'

No

SToRIL TIM9 ANo
DATA IN AVFILL

SCAN SUFFER.

L4 D



1 Sar up poommir^
ro LOgD fivi
New AWPPJ

73

A

NO	 DONE
wir% AslMvr"

T
• Yes

noTl^ usaa.
SET RvPILL=

RVNEXr.

PIVfILL	 NO

=O?

VtS

SNT RoYEa
SrOPPRO VLAf.
HAA.r Rovak.

onq ALC DMr
AND olmr!lRRNIfs.

'wA1T \
FOA

IftraftoofT

C

F

B



74

KSCAM?

itvplLL
=o?

RESTART Ttta
ROV lR.

Sar NP rsiomrs
To LOAD tmro
maw suet.

F

E

ROVER
sro^eo sY

mRvDim r

NO

Sn" BUWSA
arAruS M
OVSA M.

SET RovBR	 I
sro'rso ru+o-.

MALT RovaR.

t	 F

t
t

I

I

1

r^

MRS

YEs



I
I

f.

I:

I:

f

f

75

T$ROVR

Is
"VfR NO

a^ui °
r
VMS

wt Pow \ NO
Smocriow

its

z#vSr

Y

A HD HE)(F)(G

O tpvsrt Ater
hamoQD "'

A^

CA" ONARM

WON/R plan o

A6oRT

C-l" altaxr*v

AseRr



76

a

iA sN	 NO
A^
MINrT

%A IN \ Np
s.AWA. r

CA" ERRRrn
Nalo &Opp&*

AD0R1s sM

Asoitr

/ Is
IA ARIMWTH	 NO
Dvraex sl;R

1 Ott

YES

Is
1 t Wiw 0^	 NO
a##%vflV
^ 2E6

I

CA! L ArRRRTN
M "D Rovam

Rvmexr a p

Asoitr

ROVQIt 	 rES	 e
^ Slvi/t0 T

WAir fmsec.

ILII'1 
y,



Is
NO	 1S THE

FlRSr TS"VR
c4LL

YRS

IS
TMB GPIs	 No

vas

MAP THE T/p
To $tyr arRO AND
LO UC /►lR"$Al
IN 01EMo/tY.

N O NE .tDVE\
H1► SN^rIAtJi!ED

8EFORE ?

YES
i

CgtGU^gTL TMt
Sles of 7we OLD
Sc**v BLIFALKS
Aivo uNtota Tb6+o
FROM MEMORY.

4

Cg4CVL09rE TWE
S^ szE OF 7NE NE N
SGHN BNFFgeZS
Novo "CJc r*em
oov 01ErNolty.

RV FI" = O
RvwEx T= 0

C

CALL ERRRTN
"RovER c.,AXL1C
tS Nor woRx$N F

ASoitT



78

C

COPY THE useRS
0 TARS (2k3) TO
THE ROVER
ARDCBSS OTARS.

OvTPv r TAI E
vEC raitso AmMa1r
*va4eeSS Tn 77fE
Gpl a CoNrOOLLF+Q

O OJTPut 7*a
Dt"T BUFFER
400"SS 7b 7WC

4	
aLple CONMOL4.ek

FN geLp- d•«r
ANO wragRypri

SON& A/V IN / r
cos"mANp TD Tva
RovER.

FMPTY TN9

RO UC14 Sem-O

RCNRN

^ Jl x`11 ^'



Yl

1

i

D

^s
TN - Rovsa	 Y6S

S^+oPP6b ?

NO

wAiT S i sec

SI p-Q of rNG

*v* v/VLOCk 77i&V
Foeep" 6N"oeY.

SEivo A hW4 r
coh&"a*vD ro
THFs RO3̂ A,

Disma4L os"r
'"D lnrr4nuars.

P-E,eo our TtFE
QoveQ PROCESS
DTARS (443).

RVALL =o
RvNtxr= o

Rouen

79



1y

}

x

i

t

x

t	 80

t
t
t

E

CA" Devezo

V execVm
T?tF SPEC1Fla p
I/O COMAVOOVO.

Ho	 WAS
=/o tor"Y"A"

Execalso ?

Y ES

RM&N

v



81

F

i^ic i^ NO
B^

	 lip 1

Olt=
CALL amm7w

Yes M ^^ ^^^
/11UrNs^j r

(4soar)

mExr= o?
No

CM.L AM FN-
yes q	 ~#W v

E.NOr/ES a

rVor op"OoYlft
kssrmer

ASo2T

yesjZVFi Li -O

no

RvniExT. OMP
NvM 8494

Y65	 ^
RVFiI^=o ?

^vv

RPM"

QVNEXrw o
RVF1lL = BtI^F^R



82

G

No 
RVF+iL= o?

S`

ves

Wo!
llll-^eo

CA" w*# r
To W.+or oh
w "Af&.
3 'AM API"ac.

",voro,wrr To
W,*ir oov a

45ok7-

RzW otN



83

0.

w

i
1

f
1

i

.m

EXEC

OPRn THE IRILE
MRRS. DlFAULT

An D Rego rNs
D@ARUI.r Ogams.

ovTPvT PRompr
Ano itRAO T%e
COMMAND LUM.

GALL 0&7roA:
rO RSrURjV 7WE

YET	 &AN Ic
uA>e ?

NO

CALL "rcma
To loaftTIFy
T1% COMMANo.

LEGAL	 Y8S
COMMAND?

No

ovrPv r
n ILLCGrAL
calm"MAP10"

8



84

I

A 4

E

f

SMouLb No
TNaits ea R C

PARRMaTt
7
vas

CALL fermNc
To RaruQly THE
PRRgIhlTSR.

PARAMETER NO'
MIbSINor

yes

1
s.

OVTPuT PROMPT
AND INPUT THP2

Y

PNRRME'r'ER.

^ CALL GET'TO tc
To RETURN THE
~AMCTER

PA"mZTv YES
8MIbSING 7

`• NO

CALL Cr4VP7*fs
• Te ConvERT PORMI.

To RUMB RIC.

ERROR on No

CCoNveltslon ?

Yes

ouTPuT
M ILt.e6^A L

Pg RAMeTl^R ^^

-



e_

85	
I'
i



86

D3

YAS Ot=VAL*(.4 NO

nUMR&L==VAL I	 -	 I •ouroP PANGA
M'A nuMA16"

6

04

v^ivAl.^6+F no

\^ OUTPUT
NVMAIV s ZVAL	 "ovT Of RANG•

FOR NuMRILVII

B

DS

yes O&IYAL*6l# 
No

Olilr

PWM1.AEU IVAL	 "ovr oR RANGE
FOR nuML.At a

8



87

Db

^e

11BS OlirSVALib4 NO
	

^

OuT►VT
NUMSEN• IVEtL	 "our of& ltotNae

Felt mum""

t	 'g

D}

X fiNALaRVAL

e

s



88

D9

Yea RVRL2O.0 ~°

ourPVT
OtLTXY=RVAL	 ^^lLTxY MYiT

8t .ad. 0.0"

8

D1O

YES	 042VAL	 140
'6140.  of

M00EI.E
OUTPUT

MMOO IVAL	 "vall slam boas
MOT P-XIST'I

^!j
Dil

YES	 O<SVAL
no. rite
PSA Is

IPSA =IVAL

L

B

NO

ourvur
'i veAS/oN ooeS

Nor NXIST N



8

1Yes

I

i

f

t.

NO

OUTPUT

I ' our OR RANI!
ftA X aftl"P1 w

ORIGX = SVAL

t	 89

Dt2

i	 Yes RVAL. > O.0 
nro

ONTPVT

i	 MAPX s RYgL	 "WMA Musr

i	
B

D13

l
	 Yes	

RVAI >o.o 
No

OUTPUT

MRPY m RVAI	 "3C. LA /Wsr
de .4r, 0,0 N

8



90

DIS

YES I - IVALA20 No

ourpur
OR MY= ZYAL
	

"OUT 049 AM"

foA Y ORWn'

e

DIb

sar rims
herwttn O-PsAi.1Y
UPO4rf :
osprip+ • Avgt

e

D IT

i
	

INfr ROA mgmvgL
RNN : AN#Vro it AKAC

IN / r Ar Aas
1/MOm r • .Pmt so.
ovAit iom i dr tso.
VI •.MtSt.
ieq:. /Kale.
Eos :. IWLsE.

SCAN s
,91 0"vrN NO

E

ti
i

•



91

c -



92

F

TIM80VT ? YES 13

OveRRUN ?	
YES	

P

NO

FT:L.L Ice
YBIN

!'CK OM
SY9oNR0 ^nPUT,

WAS
ANYTH 1 N&

ENTeRED ?

If

CALL GETTO/c
TO REruRIV THE
P7ujv -TI MC
COMMA N o.

S' 8C RN K
GoMMp,yq ^

NO

Cl9C L GCTt'3r1 p
To ION/V Tjw y
TAe W MOM11O.

No

Yes }	
( 
L

G

L. - '. _



93



94

K

OUTPUT UROit	 l
MARKER FO R
COMMAND LINE

L

SI

SrARr Rummmus
Rum:

RNAUrO -.TRUE.

l«



95

TZ

CAL4 TsROVR TO
OUTPUT STOP
C.GMMANDTO ROVER.
sa.r RuN MOOS
TO MANUAL.

N

T3

CALL 'r$kOVR TO
N, fir THE Rural,
GLCSC T/VE POST-
PROcESSOIt FitE,

g

T4

SET PUN M006
TO MRNUg1-,

`VRL! p
PARAM

7
YES

FORM FOWWRAO
COMMAND qNp
cflcc 7,se0v*t rn
ourau r i r r0 ROVea

K

N



s-
4

u.

i^

T

96

n '

V
Y•

R^

TS

SLLr Rum MOOS
TO MANUAL.

VALID
PARAMETER

7
YES

FORM REVCRSE
COM/`?aND ANO
CALL nRoVR To
ourPu r + r ro ROVBR

N

T6

SET RoN Mooe
TO MANUAL.

VH/.1 p
PRRHM ETER

T
. YES

FORM TARN
CoMMANO ANO
CALL 'rSXCVR TO
ourour orro moveA.

N

NO	
K

NO
	

K



f
97

t ;^

AUramamou	 No Nnoon?

^,
M	

ves

CND OF	 NO
A-11MUT'H ?

(E0A

YES

CALL T*E
SEtecreo
r^oce^cER.

NO

*.S

CALL rite
SPLECTEo
PSH,

N

( 5/V,0 OF	 no
1 Sc 41V ?

(EOS )

YES

' CALL 7"SROVAI TO
EM Pry Ti1fE
SCAN BU*FErz,
°CAN ^ S^^N + t

Â
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