NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

(NASA-CK-10348 0) REAL-TIWE UPELRALTLNG S5YST 4l N8U-30720

FOR A MULTI-LASER/MULTI-DLTECIOX 5YSTLA

(nensselaer Polytechuic Liust., Troy, be. Ya)

120 p HC AUob/MF AO1 Cs5CL 20E Unclas
G3/30 28477

' (¥ e - = -

Rensselaer Polytechnic Institute
. % " Troy, New York '12181') -

\ -

L] 7 4
A

RPI TECHNICAL REPORT MP-65

REAL-TIME OPERATING SYSTEM FOR A
MULTI-LASER/MULTI-DETECTOR SYSTEM

by

Gary Coles

A Study Supported by the

National Aeronautics and Space Administration

Grant NSG-7369

School of Engineering
Rensselaer Polytechnic Institute
Troy, New York

July 1980

Poasd fad Beaed B Seesed Bewed

ey

8 ey

¥ e
1]

B e
- 1

1.

3.

5.

PRECEDING PAGE BLANK NOT FiLmep

CONTENTS

LIST OF TABLES..uo.n‘t.lnt.-atooccoa.o.to'u:o;ln.lllooo

LIST OF FIGmsooooao.otoo.aa-oaooucoaooo.acocooooooono

ABSTRACT“'l.l....’ll......‘l.....l‘.......l.“....O...

moDUCTION‘.C..;.0...0.0...!..0‘..‘.Qll.....'.l...l.‘

THE RPI ms Rom.....‘..l‘..‘.l‘l.......‘Qlll..‘...‘.

A,
B.
C.
D.
E.

Rover Description....civeveeescensoscessssscnnsans
The One Laser-One Detector SysteM....ccceeceveacs
The Varian-Idiiom System....ceoceecescsvaccsannasns
Realtime SOftwWaAre....oceeseceencoscnsccacnssssans
RESULES. ciceenotsnctscssessnssossasassasscsssanancs

m ELEVATION SCANNING SYSTmQInulcolooootoooo‘ooototo'

A.
B.
c.
D.

General Description..iiiereieceesceconssoassancnas
The Prime Computer SySteM..eeeeesevcsosvecncssssssa
The New Rover Interface...cecececcecescccvocacsos
The Dynamic Test PlatformMecccesciecescecsssncsane

REALIDE SUPPORT SOFTWAREQ..lllQCO.DQOIOOOll....o.tc...l

A.
B.

C.

Software Overview...ceoceeeesescvcacconcsosnsssncs
Lower Level Routines‘..‘l....‘....l..0.....0.0..0

l‘ DEVEIOCl..ll.;ll...l‘.ll.....‘l..‘..o..c.ll!..
2' mvpm.0.....'l'..l..ll‘.l'..ll..l.c.lI
3' TsRoVR.l...II0.00.OIOQCDOAOD.‘.COOOQQOCO0..‘.

¢eo e 0

SYStem Routineso..cooo.oo-n‘o‘bulctonotooatootooo

1. mc-oolo-:'alcoocu'luooouo.olooclcconooa-o.l

2. NAVIG,

WooNNownm W

00 900 060 064 ve0es 000N LGLNNENICSRNRIPIOLIOEQGTOELER0

. BUFRES......i.i0000000n
M GETTOK.--oo-oo-o.oc-cqo-cocccoooo-oo.oo-c'.o-
. Gmm.a.o.n.oo.ooo.ococcoaooooncaoo..ooooooo
o CNVPAR, ... ceivevncnnsvocscsosvssscsossoances
KEYBIN, ., uveveeoneovoseosaocossesocosnnans
¢ SCREEN....:eeseeesceveantescrcccoosoosasannas

. MAP.'ll.‘.l'.b..‘.llcla'l!'..‘...l..c.l‘llt..

© 00608060600 0000000000000

lo' CURSOR....ocono.o“cocunoooc00..0-..0.00.0..0

CONCLUSIONauoooloocataoaooononl-000000‘0&0.0.‘..0.0.0-0

A,
BO

Summary, ...
Tature Work

iii

5 6 608 60 6660600600080 8800806080600000 0

2 8 60 0000880000008 080600080000 s0s0800s000000

e e s 0

page
v

vi

vii

10
11
13

15

15
19
21
26

28

28
33

33
34
36

38

38
51
55
55
58
59
59
60
61
61

63

63
64

A bt e e

D D

o Gkl Gtid Buted el el Seeed Gaeel Sy Seeny

X eang

4 :..‘..1

6.

LITERATURE CITm.“...........I..‘......‘...".‘.......
APPENDIX A: Azimuth Data Word FormatS.ececceccccsccscce

APPENDIX B: Support Software FlowchartS.cecocescececas

iv

page
65

66
71

Table

6 AZimuth Buffer Fomato--..o....oo...o....‘o.o.-

r et v -
l I.IST OF TABLES

Table la’b RVRCOMQOI4..!......‘.......‘0600...'.l.ll..l...

l Tablez krs. DefaulCO‘Q.l.l..‘..l..0..0‘&!.0..‘.00'!0!

l Table 3 Interaction Processor Commandscoeoceccscons

Table 4 Post-Processor Information Record......coceeeee

] Table 5 Keyboard Processor CommandS .cccceevcesccnassces

[s. Jnd

Table

Table

7 Navigation Formulasceveeevveneesccsanennnans

8a,b Post~Processor General Record..ivecececesnasses

page
41,42

43
45
47
50
52
54

56,57

Cd Raind Boeend femesd fewed Mot G Bee

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

igure 9.
Figure 10.
Figure 1l.
Figure 12.
Figure 13.
Figure l4.
Figure 15.

Figure 16.

LIST OF FIGURES

Rensselaer mrs Rover.'....C..llll...0‘.‘........00.0.'

One Laser-One Detector SySteMeccscsesscesssssvecscacses

Laser Triangulation Concepteccescecsccersscccaccnssccnsns

Laser Azimuthsno0‘00.0'...0000000000000000000000000000.

Laser Data-o000‘0000‘0‘.‘000‘0....-looolaoooaoloo.loloc

Elevation Scanning Concepl...ccieecasssseacecssanccncasns

ML-MD Triangulation Comcepticeecscecscscsssssscnssccsnss

Multidetector Data.ccao...t...t..t..ll.o".uo..‘ll...‘l

Realtime InterfaCEO00.uoooo.o'.oc‘t.ltco.ooono000000.00

Temporary IntErfaceolootoooooo‘ooal.o.oooctco.oo-‘tcocc

Dynamic Test Platform....-.--..-...............o.-.-oo-

Realtime Hardware-Software Interface....ceseeescesscasne

SCAN Timing¢n.......-..'.-.-o...........'.-.-.......-o-

RealCime System Flow.oloo.oQoooooocc.oa.oouo.co.ou--o‘o

FlOW Diagram Of ExEc..l..i'.‘l.l.O.‘0..'.0.......0.00‘.

RunCime Display........oo..o¢.-..-.......-..¢.....

vi

s e e 4

Page
4

6
7

16
18
20

24

40

48

a0 P T

fod S et Gt e M BN O GER By

-

| IR W)
* v

(O]

L S PSS S |

[R SRS —
R W AR ot ot ko et < i 1.

ABSTRACT

The first hazard detection system used on the Rensselaer Mars
rover was the one laser-one detector system. This system is reviewed
briefly with respect to the hardware and software subsystems, the opera-
tion, and the results obtained.

Recently, a multidetector scanning system 1as been designed
to improve on the original system. Interactive support software has
been designed and programmed to implement real time control of the
rover or platform with the new elevation scanning mast. The formats of
both the raw data and the post-run data files have been selected. 1In
addition, the interface requirements have been selected, and some

initial hardware-software testing has beenu completed.

vii

R e
o ’ TR T TR T BTG

EE i

Ty

Sl S

PART 1
INTRODUCTION

Our knowledge of the solar system has increased dramatically

over the past decade as our mode of planetary exploration has ap-

proached the planet surface. The rate of new discoveries has acceler-

ated in the progression from Earth-based observation to orbital or fly-
by missions, to landers, and finally to the ultimate manned missiomns.

As these missions extend farther from Earth, it becomes prohibitively

expensive to send up a manned mission. One possible alternative is

some type of unmanned autonomous rover which has the capability to

cover a great distance over the planet's surface. In this way it could

visit a number of interesting scientific sites over an extended period

of time.
An important part of such a rover is its path selection and

hazard avoidance control system. Due to a large communication delay

time between Earth and any other planet (except possibly the Moon),
Earth-based control other than on the macro level would be out of the

question. Therefore the vehicl: control systzm would have to be self-

contained and highly reliable,
The Mars rover group at Rensselaer has been trying to develop

such a vehicular control system. These studies include simulation and

more recently, ceal time control on a prototpye rover.
Results indicate that such a path selection system should be

broken down into two to four distinct levels. Long-range goals could

be planned to about the kilometer range using photographs from either

€ ey Conmned Satand [S5O Sunne ey [

8~y

I-uuq’

-
¥
-

I e Bt L e e e et A . 2 St

Earth or satellite observation. Medium range paths in the tens of
meters could be selected onboard the rover using some kind of range-
finder or television interpretation technique. Finally some kind of
short-range technique must be used within about three meters of the
vehicle to detect all hazards too small to be resolved in the loager
range planning.

This report will discuss the organization and design of the
real time support software used to implement the short-range path
selection system on the Rensselaer Mars rover. Besides implementing
real time control, this software provides for easy program development.
Programs developed on the simulator can be run under real time control
with only minor modifications. Also, all the raw data provided by

the rover is saved for post-run analysis.

“"'—“——lhd--

sy

PART 2

THE RPI MARS ROVER

A. Rover Description

A 0.5 scale prototype Mars rover was constructed at Rensse-
laer to test hardware features and realtime control software (see
Figure 1). A short range hazard detection system has been implemented
to enable closed loop realtime path selection testing. Note that
another group at RPI is working on medium range path selection techni-
ques using simulation.

The payload of the rover consists of a heading gyro, a pitch-
roll gyro, an electronics section, and three automobile batteries used
to power the motors and electronics. The electronics section includes
the telemetry transmitter, the speed and turning controller, the scan-
ning mast controller, and the data acquisition and telemetry con-
troller. On this system, the pitch-roll gyro was not used.

The front axle of the rover is rigid and pivots directly
under the mast. There are currently l5 steering positions from -90° to
+90° in 12.86° increments. The immediate steering angle is read f{rom a
linear potentiometer connected between the frame and axle. Besides
pivoting about a vertical axis, the front axle can also pivot about a
heading or roll axis. This front axle roll angle is also read from a
linear potentiometer, but it is not used in this system.

The drive system of the rover consists of four motors, one
on each wheel. Each motor has a tachometer connected to it to obtain

wheel speed data. Steering the rover is accomplished by changing the

speed of the four wheels such that a smooth turn is achieved while

RENSSELAER AUTONOMO'IS ROVING VEHICLE

Figure 1

[TV

s et emm amm RN SN @RS

| |

PR |

f Se———1 vmmmandl

maintaining approximataly constant valocity. There are also two metors
which allow the front and rear wheel struts to be raised or lowered.
This gives the ability to raise or lower the payload, dbut it is not
used during realtime control.

B. The One Laser-One Detector System

The Rensselaer Mars rover uses a laser triangulation scheune
for its short range hazard detsstion system (see Figure 2). The lager
is a2 solid state GaAs laser diode which has ten watts peak power out-
put at 904 nanometers. The beam is collimated and directed straight up
the mast. A mirror is mounted on top of the mast and directs the beam
at an adjustable angle toward the ground. A silicon PIN diode is used
as a receiver. It is mounted part way up the mast and focused in a
known cone of view toward the ground. The beam and detector cone are
adjusted to intersect at ground level such that the beam will be de=-
tected when falling on terrain between about #30 ca from level (see
Figure 3). This intersection is adjustable and is typically set at
1.5 meters from the mast axis.

The entire mast then oscillates back and forth scanning a
140° field of view. During each sweep the laser fires at 15 azimuth
angles, one per 10° increment, and contered on the steering heading
(see Figure 4).

The laser data is composed of one 15 bit word per scan, one
bit per azimuth angle (see Figure 5). The information provided by each
it is of a go - no go nature where a one or ''gocd' return specifies a
safe azimuth, while a O or "bad" return specifies 3 possible hazardous

azimuth.

vy fomd Sind Geni G S Gaay

et ey

. /.u’

a———
.

[g | L]]
. ' M v

L] .‘-4’

ty

L = [[9 T

MIRROR

LASER

DETECTOR

R DETECTOR
} conNg

VEHICLE

(=<

ZONE OF

- DETECTOR VIEW

FTIGURE 2. One lLaser - One Detector System

Bvatwdd @ Bwased Nenesy $ Meessd Beeed

Roand

L]

| T |

Nl aEk e fesd Al

No Obstacle

Positive Obstacle

O

Negative Obstacle

FIGURE 3.

Laser Triangulation Concept

HEADING

Prin] Bl Gesal Bt Gwed Sy

-t

& mnsariy
" '

8 ey
.

STEERING ANGLE
(CENTER OF SCAN)

~——g

[—
‘

[R

[Y)
&

Laser Azimuths

FIGURE 4.

T R, TR T

atmartss

B g N S

§ e L L i [

““""" ® racm.q [2]
* x ' K]

L S |

e Ay emd o]

CENTER OF SCAN

)

OBSTACLE

15 0 ;
[X100011111111111] |
|
1

P R B P

e

FIGURE 5. Laser Data Word

L ey}

[]
H

10

C. The Varian-Idiiom System

A Varian 6201 minicomputer is used to control the rover. It
is a 16 bit computer with 32K words of core memory. Included in this
system is a Tektronix terminal, a 10 megabyte cartridge disk drive,
two 800 bpi tape drives and an Idiiom graphics display. The Varian is
of the 1960's era and therefore does not have virtual mapping or hard-
ware floating point. There are three main registers: the A register,
used as a general accumulater, the B register, used for indexing and
as an extension of the A register for certain operations, and the X
register, used for indexing. As an example of performance, a 16 bit
by 16 bit multiply with one operand in register takes between 18 and
20 usec.

The disk memory unit is used to store off-line programs; no
runti~e overlays are used. Raw data is saved on one of the magnetic
tape units for post run analysis and the Idiiom terminal is used to
display important runtime parameters as well as a map of the current
rover position. The Idiiom also provides a 60 Hz realtime clock in-
terrupt which is used for timing.

The rover is linked to the Varian by a two-way telemetry

transmitter. A receiver at the Varian side performs error correction

and then inserts the data int. memory using DMA (Direct Memory Addres-

sing). The data is always put in the same table and each new value

always overwrites the last respective value. 1In this way, the most re-

cent value of any desired data word is always found in the same re-
spective location. The maximum rate for DMA is 202,000 words per

second.

e e) e ki furk

st L

Cacig Rasw Komy

- smmng
da— e Sy

€ e oy [LS
- . '

[RSy

§ ey

,
1
l
l

s EE R e e S AT TR

A command to be sent to the rover from the computer is one
word long. An OTA (output from A register) instruction is used to give
this data to the Varian interface which then sends the command.

Another communications link to the rover is the remote con-
trol box. This box disables and overrides the computer control, and is
used to provide manual control of the vehicle. It is useful in posi-
tionir 3 the rover and for gaining emergency control.

D. Realtime Software

The only language currently available on the Varian computer
is assembler and therefore all of the realtime programs are written in
assembly language. dAlso, although previous descriptions of this soft-
ware mention the use of external interrupts, they were not used due to
hardware problems.

The main object of the realtime software is path selectiom.
Hazards must be identified and avoided, and the entire system state
must be saved for later analysis. Most of the programs developed
earlier for this system (see Reference 1) were left intact except for a
few modifications. The major changes were in the path selectiom rou-
tine as expected.

The first workable idea to be implemented for realtime test-
ing was termed "path-blocking," conceived earlier by M. Krajewski (see
Reference 2). Path-blocking involved the buffering of bad bits (hazards)
in the laser data word. Specifically, four bits on both sides of any
bad bit in the laser data word were set bad to buffer any obstacles. A
clear path consisted of any four contiguous good bits. The clear path

closest to the desired heading became the steering angle. If a clear

PPy

12

path could not be found then the rover would scan all possible steer-
ing angles by turning its front axle, and thus its center of scan, to
-70° and back to +70° looking for a clear path. If one could not be
found then the rover would halt because back-up capability, although
used in simulation, was not implemented.

To remember obstacles behind the line of sight, a laser data
memory queue was used. This first-in first-out queue was of variable
length, and new entries were shifted left or right according to the
steering angle. All of the elements were logically "anded" together
with the newest scan before looking for a clear path.

This early technique worked but it proved td have some flaws.
Although it was able to keep the fromt wheels clear, the back wheels
frequently clipped the obstacles on passing. This could be improved
by increasing the length of the laser memory or increasing the width
of the path-blocking buffer to five bits. Unfortunately, both of these
solutions tended to make the overall system very conservative. It was
determined that path-blocking, although effective for the front wheels,
was ineffective for the back wheels.

The solution to this problem was a two part path selection
system, one dealing with the front wheels, and another for the back
wheels. This algorithm called track-and-turn (TRKIRN) was pioneered

by T. Sadeghi and continued by P. Dunn (see Reference 3).

Since path-blocking seemed to work, it was kept for the froat
wheels. The back wheels used a new technique based on the position of
the obstacle and the geometry of the rover. Given the geometry of the

rover, the possible rear wneel trajectories could be calculated for

¢ and Guemd Rt Sy

* vetnnry #waivansy (ST oo § e A man
. 3 . 2 v

€ Beameiing

£ e oty
1

€1
. .

[T)
.

| SR VRPN

R S A kA i st i i &
AR e

13

any steering angle. Therefore, a formula was developed which used the

position of the obstacle to yield the necessary steering angle. Fin-

ally this steering angle would have to be truncated to one of the pos-
sible steering angles. The last step was to combine the front and

rear wheel constraints and choose the desired steering angle.

The obstacle memory for the TRKTRN system was more compli-
cated than the pravious memory. The path-blocking laser memory was re-
tained for the front wheels. However, the back wheels formula re-
quired the locations of the obstacles in the planet frame to be saved.

Other realtime software included routines to decode vehicle
state data, to send commands ﬁo the rover, to keep track of the vehicle
position, to update the Idiiom display, and to save the system state
for later analysis (see Reference 4). Another program was written to
run off-line on the IBM 360 computer to analyzZe this saved runtime
data.

E. Results

The results of the lab tests were very encouraging. The ro-
ver was able to successfully maneuver through almost every ob-

.stacle pattern that was given to it. The few times it failed can be
attributed to the inability of this simple path selection system to re-
solve a tight situation as beiny passable.

In the field tests, the real problems showed up as expected.
A little bit of pitch and roll made the system even more conservative.
A larger but still passable pitch or roll was interpreted as being
hazardous. All in all, the system performed quite well. The

rover almost always found its target although not always by the most

| NV}

s -

[S—

14

direct route.

Most of the inadequacies of the one laser-one detector sys-
tem can be traced to its inability to interpret and adapt to terrain
containing slopes. However, this system still has some usefulness.
Not all ideas have been tried to reduce its comnservatism in the lab
tests.

Overall, the rover was plagued by many problems. Most of the
mechanical problems were due to the fact that the rover was not de-
signed for the weight load which it acquired over the past few years.
This caused some gears, shafts and other structural members to fail
witﬁout warning. The electrical system was plagued by a chronically
bad wheel speed controller which caused the wheels to move at slightly
different speeds and the front axle to oscillate. This put more stress
on the rover's structure. Finally, the software always seemed to con-
tain some hidden bugs characteristic of large programs written in

assembly language.

Gany Semi G Qe

B-weoug
0)

|] []
® ' . .

5 e——
- f

i mm———

€ sy & g € n— . ot
' . . .

PART 3

THE ELEVATION SCANNING SYSTEM

A. General Description
The necessary solution to the pitch and roll problem of the

one laser-one detector system is to come up with some system which not
only provides range data but also height data. This would provide the
information necessary to interpret slopes.

Since the triangulation concept worked it was decided to go
with a modification of the one laser-one detector system. This new
system is known as the multi-laser multi-detector scanning mast (see
Figure 6 and Reference 5). The major components of the ML-MD system
are the spinning mirror scanner, the detector array, and the controller
electronics.

It was necessary to build a new mast which could support the
heavier weight of the new system components. This mast rotates counter-
clockwise at a preselected rate, normally about 0.5 revolutions per
second, and is electrically connected to the chassis by slip rings.
With two seconds between every scan, it is not possible to ignore any
scans, thus limiting the realtime processing to under two seconds.

A new laser diode was chosen which could meet the new speed
and power requiremencs {(see Reference 6). It has a 10 KHz maximum
pulse rate and an output of 100 watts. New collimator optics were de-
signed to take full advantage of the diode's output power. An eight-~
sided mirror with a motor and positional encoder is mounted on top of

the mast. With this arrangement the laser beam can be deflected to the

-

Ml—-—lu“_

[]
- .

16
MIRROR ENCODER
MOTOR
LASER [’
CONTROLLER
g
l DETECTOR
DATA)
HANDLER [€
;——@ ENCODER
Y
TELEMETRY TELEMETRY
TRANSMITTER [~ 7 °] RECEIVER INTERFACE
TELEMETRY TELEMETRY
COMPUTE
Recever [~ transmiTrer [© R

FIGURE 6. Elevation Scanning Concept

& -y

£ | § reatnd

€ g

[IR N |
1

!_“'.'41‘

fond Gmd oad

»»»»»

17

ground at an elevation angle selected by the rotational angle of the
mirror. This 1is used to simulate multiple lasers firing at a number
of preselacted angles (see Figure 7).

The multi-detector receiver is composed of a linear array of
photodiode elements. Currently two such devices are being examined
fo} this use. One is a 20 element photodiode chip and the other is a
1024 element charge-coupled photodiode shift register chip. The 20
element chip receiver is known to work, but has the disadvantage of a
limited number of receiver cones with non-alterable cone angles. On
the other hand, the 1024 element chip has a greater resolutiom, and
cone angles can be altered by assigning a different number of elements
per receiver. Unfortunately the 1024 element chip has some noise and
sensitivity problems which require more investigation. One possible
method to increase the resolution of the 20 element chip raceiver is
to use two of ch;m; however this creates problems in the désign of
the receiver optics.

Since the 20 element detector will probably be the first one
used, it can be seen that the cone angles and sizes will be fixed by
the optics selected. The laser elevation firing angles, however, are
alterable and will be selected by a PROM (Programnable Read Only
Memory) in the controller. In addition, the number of shots fired per
azimuyth, the number of azimuths, and the azimuth angles are also PROM
selectable. At this time, the number of azimuths and the number of
laser shots per azimuth must have a product less than or equal to 1024
(e.g., 16x64, 32x32 and 153x20). The controller must also insert the

proper flags (e.g., end of azimuth) into the data stream to synchronize

@

‘z-—vu' l'-u-.l. '-ow»* | S——1 H _ - -

19

the data with the scan.

It 1s obvious that the elevation scanning system carries a
great deal more information than the one laser-one detector system.
Each laser data return is not a go - no go flag any more, it is a
word specifying which receiver cone, if any, sensed the laser shot.
Also, since the optics makes it possible for more than one receiver
element to see the shot, each laser data return word contains the up-
permost and lowermost ~ones to sense each shot (see Figure 8).

Besides the scanning system, other rover systems were up-
graded. A new wheel-speed controller was designed which uses a Mo-
torola M 6800 microprocessor to provide the reliability of digital
control. A new telemetry system was necessary because of the greater
data rate required by the new scanning system. And finally there were
many modifications made to the electrical and mechanical subsystems
3uch as.rewiring and wheel strengthening.

B. The Prime Computer Svstem

With the new scanning system, it was obvious that the Varian
computer would not be able to perform realtime control very easily.
The amount of raw data alone is about 1000 times more than before.
3ince the Varian would limit the complexity and precision of any new
algorithms, it was cucided to look for an alternative. The Image Pro-
cessing Lab's Prime 500 computer was chosen as the best alternative.
The Prime 500 is a new machine delivered in January 1979. It is a
ainicomputer with 32 bit internmal architecture, hardware floating point
and a very powerful instruction sert implemented in microcode. As an

example of performance, a3 single precision floating point multiply

Iy A et e

ey Gid fesed A Amm o

o~

[poe—
v

PE——

NN

20

UP?ER 2 F a el
LOWER
i
V 0
oPT:.LS
210- ELEMENT
OETECTOR
15 10 9 5 &4 0
10 0 0 0 0 OfJUPPER | LOWER]
FIGURE 8. Mulzidetector Data

—

Ty T

e . - Y -

k|

DA A i s
T R SaMA LS maaal hat " TR T ——rE T

21

takes about 4.0 usec.

Besides having 512K bytes of main memory, virtual mapping is
used to provide each user with up to 32 M bytes. The system includes
two 80 megabyte disk drives, a mag-tape drive, a Versatec printer-
plotter, and a number of terminals of which one is a dedicated opera-
tor's console. The Prime operating system is written for a timeshar-
ing environment servicing up to 63 terminals. Software includes FOR-
TRAN IV, BASIC, Prime assembler, and a very powerful filing system
(see Reference 7).

The ability to use higher level languages provides the bene-
fit of easy program development and debugging. An added benefit is the
direct compatability between programs developed for the simulator and
for realtime.

The Prime 500 will shortly be replaced by a Prime 750 which
is much faster. No instruction execution times are available as yet,
but the Prime 750 includes a high=-capacity cache memory, an instruc-
tion prefetch unit and a high speed floating point unit.

C. The New Rover Interface

To communicate with the rover it became necessary to build a
new computer interface. Unfortunzately, this was one of the things
about the Prime that was most troublesome. What was to be a
reasonably simple design task turned up some problems which are still
as vet unsolved.

For the hardware part of the interface, a general purpose
interface board (GPIB) was purchased from Prime. The GPIB enables the

use of programmed input-output (PI0O), standard and vectored interrupts,

& ~d Sinad Siind Sowis Susned

Py

& et 4

[S]

Secinni

22

and a set of direct memory functions (DMX or DMA, DMC, DMT). DMA is
direct memory access where tﬁe starting address and word count are kept
in the register set. Up to eight DMA channels (total) are supported by
the computer. DMC is very similar to DMA, and stands for direct memory
channel. In this case the starting and ending addresses are stored in
high speed memory, providing up to 2000 DMC channels. DMT is direct
memory transfer, where the data address and word count are maintained
external to the computer. The address must be applied to the bus with
the data when requesting a DMT. This allows a random accessing of
memory. In our case, DMT is preferred because the laser data returns
will not be in any particular order. This is because the mast con-
troller fires the laser as soon as the angular position of the mirror
corresponds to one of the desired elevation angles.

Initially, rather than wasting the time building and de-~
bugging the full-blown interface, it was decided to build a simple test
interface. This would allow testing of both hardware and software con-
cepts. The interface would test PIO, a hardwired vectored interrupt,
and a hardwired DMT. Initially, nothing worked. After talking with
Prime for a while, it was found that our GPIB documentation was incom-
plete, and in a few minor locations, incorrect. Eventually, after more
testing, the board started to show signs of life. The PIO, interrupt
and DMT all worked fine separately, but when a vectored interrupt was
.alternated with a DMT, strange results occurred. The system would run
fer about 20 seconds and tnen crash. Using a program to display the
data as it came in, bad data words could be seen every once in a while.

As another syaptom, whenever the disk was active (reading or writing),

Groct Romnd feeseld Measite

& om——y ’ B mmtnbind
. .

[

[P

| R
'

S T A By T —r ey

23

the system would crash even faster. This disk-GPIB interaction seemed
to imply some kind of priority problem, but little difference was ob-
served as the GPIB priority was changed through every level. The same
result occurred when our GPIB was tested on a different Prime 500,
thus eliminating a hardware problem on our- particular computer. It

is still not known whether the problem is in hardware or software and
even Prime is unable to supply an explanation.

It was decided to put our upper level realtime interface
aside and work on a degraded interface which would allow the input and
storage of data for off-line processing. Once data is available for
software testing, the realtime interface testing can resume.

For a description of the upper level interface see Figure 9.
Each telemetry data word received by the interface is composed of 16
bits of information and 16 bits of address or identifier. The address
also contains any mast interrupts such as end of scan or end of azi-
muth. This 32 bit word is received in serial and converted to parallel.
In the upper level interface, a portion of the address will be con-
catenated with a register containing an offset address into real memory.
DMT will be used to put the data into memory. Finally there will be
one vectored interrupt which uses a status register to identify various
conditions such as mast interrupts, data overruns, or timeouts.

The temporary degraded interface can be seen in Figure 10.
DMC will be used to insert all 32 bits of the telemetry data word, and
DMC will be followed by an interrupt. It will then be up to the inter-
rupt service routine to decide where to put the data from the address

and to strip the scan status from the address part of the data. The

|

-

9oevjiaju] duFITEIY ‘6 AdNOI1A

H -) B f
Tt g Porema p Proveacs g P——. e 4 s .

S mhMSMaat ._.mm:w.wm_ - sna ¥GaY 1saneay SN8 vivd
, A .E:Mc N YNYILX3 1WaG YNHILX3
i YyALSI9AY y3R.1s1934
w ¥aay ¥o193A SALYILS
¥31s193Y
o] TYLNI L — 135440
w 23S 1| L4M1NI .
¢ N0 ﬁ - l (
4003WIL
o414 od4\d | | ¥3I15193Y
_ﬁ gs3ayaay Yvivaq ANYWWOD
r 1 [
_w 1311U8Yd 0L qyiy3s ol
NAYUY3A0 WIN3S NERRLENE)
Haniadly WILLIWINYYE
oy oL

e

ey

25

PO T

FROM
RECEIVER
SERIAL
TO PARALLEL
g1
o e
REGISTER CNTRL
VECLTOR ADDR
REGISTER
V Y
EXTERNAL pDMC INTERRUPT VECTOR
DATA BVS REQUEST REBQUEST ADOR BUS

FIGURE 10. Temporary Interface

feem Gumy R G G

B —
. '

» r—— & =k .
1 .

TR

4

I

26

degraded interface will not allow the realtime processing of data, but
should enable the accumulation of up to about 20 scans of data for

off-line post processing.

D. The gzgggéc Test Platform

A dynamic test platform on which the elevation scanning mast
can be mounted is currently under construction (see Figure 1l1l). The
idea is to enable accurate in-house testing of the hardware and soft-
ware responsible for hazard detection.

The platform is motor driven such that the pitch and roll of
the mast is dynamically variable. Both pitch and roll are separately
controlled and each has variable amplitude and rate. An attitude gyro
is mounted on the platform to provide pitch and roll data to the com-
puter.

This platform is expected to aid a great deal in soicware
testing since the actual laboratory sceme can be accurately compared
to the computer results. It should also help in the difficult job of

calibrating the optics.

i
|
|
!

27

MAST MOUNTED ON THE DYNAMIC TEST PLATFORM

Figure 11

.w"

e T
'

Rt
.

P o

-

o ta— Bredirsneny B E—
- ¢ - . »

L R s]

. REALTIME SUPPORT SOFTWARE

A. Software Overview

The new realtime software has been written on the Prime 500
minicomputer and is intended for the higher level interface. Because
of unsolved problems with the interface it may become necessary to
modify the software; however, the basic flow can be left intact.

The objective of the realtime software is still to implement
control of the new Mars rover and to record the raw data from either
the rover or the platform (see Figure 12). Most of the software is
written in FORTRAN; though, some assembler was used.

The basic data consists of an interrupt status flag, laser
data, and vehicle state data (see Figure 13). The possible interrupt

status flags include:

EOA: End of azimuth; the data consists of laser
returns and vehicle state information.

E0OS: End of scan; same data as EOA, but also
signals that a full scan has been taken.

VI: Vehicle interrupt; the data consists of
vehicle state information only.

Timeout: No interrupts have been received for
at least one second; it signals a possible
hardware problem.

Overrun: New data has written over old data be-
fore old data was read; stop vehicle and
wait for next EOS before accepting new data.

Telemetry data will enter the Prime via DMT into an azimuth
buffer, one azimuth at a time, followed by the appropriate interrupt.

Azimuths can be broken into two types: a laser azimuth and a vehicle

28

-

il aiins o N

?ﬂ""..’““..?"‘ﬂﬁmmﬁ

© ot g S > ra—
. «

!\“" » ~sutury FYn—
' . . N

BN ey ey

29
ROVER
TELEMETRY
PRIME
INTERFACE
DMT
AZIMVUTH
ROVER BUFFER
COMMANDS
.
{ H
A B SCAN
BUFFERS

X

; I

REALTIME SOFTWARE
INTERACTIVE POST-PROCESSOR
CONTROL DATA
4 \
TERMINAL DISK
FIGURE 12. Realtime Hardware - Software Interface

& uuy iy

& o By & utog

[aa e] T e w—y
’ . . .

-

(SRR W

EOS

30

CENTER OF SCAN
4 2sec/ReEv
EoA
(LasER AZIMUTH)

FRONT SIDE
oF SCAN

BACKSIDE
OF SCAN

\A
(venicLe AZimuTw)

FIGURE 13. Scan Timing

N o v s S

3

!: azimuth. A laser azimuth would occur on the frontside of a scan and

P would be followed by an EOA or EOS. A vehicle azimuth would occur on
the backside of a scan and would be followed by a VI. Because the
vehicle data is not needed as often on the backside of a scan (for
navigation), the vehicle azimuths can occur less frequently.

From the azimuth buffer, the data is moved to one of two scan

i
[
!: buffers. Each scan buffer is large enough to hold an entire .:can with
the azimuths stored sequentially. There are two of them to provide a
1 double buffering scheme such that the software can be processing one
! scan while another is arriving.
A macro description of the overall realtime system will now
{ be given (see Figure 14). The main routine, called EXEC, is in charge -
of the entire system flow. After the user gives the RUN command, the
system is initialized. The system then waits for an nterrupt to sig-

nal that some data is available. After an interrupt, NAVIG is called

to convert the data to a usable format and to perform navigation. If

an EOA interrupt occurred, then the data includes laser returns, and

the MODEL routine is called to analyze these returns.

§ semmatay

The terrain modeller analysis can be further broken down in-

to inpath and crosspath. Inpath is along an azimuth and can be done

@ ruvm——
B .

for each azimuth as it arrives. Crosspath is along the scan and can
only be done after the EOS interrupt occurs. If an EOS did occur, then

after performing a crosspath analysis, the modeller would pass its re-

Py S upany
< [}] .

sults to the path selection routine (PSA). Using both current and past

ey

information, the PSA would select an optimal path and send the appro-

priate turn command to the rover. Finally the data would be saved for

)) R T T

32

¢y Sty

8-aney

INITIALIZATION

'

EXECUTIVE

WAIT PFOR
[INTERRUPT | SToP
| I

DATA CONVERGION
f AND NAVIGATION

& wammmry

Py

" o s goA?

ygs

TERRAIN MOOELLER
INPATH ANALYSIS

NO
e gos?

Y&s

CROSSPATH ANALYSE!S

Y

PATH ~
SSLERCTION w

POST- PROCRSSOR
DATA COLLECTION

FIGURE 14, Realtime System Flow

il kit s ad

by

ey e VR

fa e Guy Oam

el S

r

§ ey B m——
1 « .

g poy

I e e s e e e e o — -~

3

the post-run analysis and the process would be repeated.
B. lower Level Routines

Many modifications had to be made to the Prime operating sys-
tem to implement realtime control of the rover. This was further com-
plicated by the fact that the operating system was more suited te
timesharing rather than to resltime control. The Prime operating sys-
tem (PRIMOS) is very complex and therefore will not be descridbed here.
More information can be found in the Prime manuals and listing (see
Reference 7).

PRIMOS is a multilevel operacing system existing in levels
II, III, IV, and V. Our operating system 1s a sodified version of
PRIMOS V Rev 15.0.% Note that moving to a new vrevision may require
significant changes. Space was left in the operating system for the
addition of new system processes by the addition of two spare templates:
SP1 and SP2. We took over the SP2 template throughout. Besides those
changes, three routines encompass the major additions to the operating
system. These are DEVEIO, MRVDIM and TSROVR. Also a new common block,
MRVCOM, was added. Flowcharts for all of the realtime support routines
can be found in Appendix. B.
B.1. DEVEIO

DEVEIO is a two argument system subroutine, written in as-
sembler language, which allows FORTRAN programs to execute I/0 instruc-
tions. The first argument is the instruction, function, and device
code while the sescond argument is an input or output if required. It

is called as a FORTRAN function subroutine and returns true if success-

*Note that at the time of this writing, our version of the operating
systes is being updated to Rev. 16.0.

—Wz‘:—w‘

D A

34

ful and false if unsuccessful.
B.2. MRVDIM

Vectored interrupcs from the GPIB interface go through lo-
cation 1613. The interrupt service routine will automatically disable
any further interface interrupts. It will then NOTIFY the interrupc
process MRVDIM by the use of the LEVSEM semaphore and roturn.

A senaphore is a two word software devica used to asynchro-
nously start-up or schedule other processes. The first word is the
semaphore count, and the second worl is a poliuter to the wait lisc.
There are two operations that can be performed on a semaphore by a
user. A user can NOTIFY a pafticular senarhore, which just decrements
that semaphore count. When the computer gets around to examining the
semaphores, if it finds any that are less than or equal to zaro, it
takes the highest priority process from that wait list and puts it on
the ready list. The highest priority process on the ready list runs.
A user can also WAIT on a semaphore, which increments the count, and
puts that process on the wait list. Note that if a process does a
WAIT, and the count remains less than or equal to zero, that process
.8tays on the ready list.

Initially the MRVSEM semaphore starts out with a count of one,
and MRVDIM on the wait list. When the MRVDIM process is started, it
disables any further DMX and inputs the interrupt status register. It
then checks the status for a hardware overrun condition. This could
occur if the MRVDIM process took too long with the last sec of azimuth
data, therefore losing some of the next azimuth data. On an OVERRUN,

the stopped flag (RVSTOP) is checked. RVSTOP declares whether the

L s L R S

Guakg i SR Qe

lm-!

T

& nmusny Sunenmy
« Iy .

pa—— » Ay
. . .

y cnmema—y £ ama—
’ . «

ey *~anssne
N . .

L3

?-‘Mq.

S S o

T T T e T R e e TR TR O IR R L Y S ey T e e Sk i 22 ol

5

rover is currently halted by the MRVDIM process for either a hardware
or software overrun. A software overrun occurs when the user process
is uot done with either scan buffer before MRVDIM receives more data.

If RVSTOP is set then ignore the OVERRUN since the vehicle
is already stopped. If RVSTOP is not set, then put a -2 in the current
buffer status word to signal an OVERRUN and NOTIFY the MRVFUL sema-
phore to si..t up the user process. Also, set RVSTOP and send a HALT
command to the vehicle. MRVDIM will now wait until the next EOS so it
can re-synchronize the scan. Finally, whether RVSTOP was set or not,
re-enable DMX and interrupts and WAIT on MRVSEM.

. If there was no OVERRUN then check the status for a TIMEQOUT
condition. This interface generated interrupt signals a lack of ex-
ternal interrupts for at least one second. On a TIMEOUT, put a -3 into
the current buffer status word to signal TIMEOUT and again NOTIFY the
MRVFUL semaphore. Then send a HALT command to the rover and WAIT on
MRVSEM. Note that by not re-enabling interrupts the MRVDIM process
cannot be restarted.

When there is no OVERRUN or TIMEOUT, examine RVSTOP., If
RVSTOP is set, then check the status for an EO0S. If no EOS then ignrre
the interrupt, re-enable DMX and interrupts and WAIT on MRVSEM. But if
an EOS was received then try to re-synch the scan. Check to see if one
of the scan buffers has been declared empty by the user process. If
there is no empty buffer, then do nothing except re-enable DMX and in-
terrupts, and WAIT on MRVSEM for another EOS. 1If there is a free
buffer, then restart the rover. Then set up the new buffer poiuters

and clear RVSTOP. Finally, re-enable DMX and interrupts, and WAIT on

e A e e

5%

e B T2 TR PV e

S masvres

A oot

LR

4 ——c—y

& agmising ey € i
[. .

$ g

$oniecl

36

MRVSEM.
If there was no OVERRUN or TIMEOUT, and RVSTOP was not set,

then there is some azimuth data to move. First get the current time
(TIMNOW and VCLOK), accurate to 1/330 second, and store it in the
last two words of the azimutn buffer. Then move the azimuth buffer
to the current scan buffer. Since both buffers should be locked in
memory (from being paged out), if a fault occurs on the data move in-
struction (ZMVD), the user process must have abnormally terminated
execution. In this case send a HALT command to the rover and again
WAIT on MRVSEM without re-enabling interrupts. This is the system
failsafe; if the user process terminates, the rover is automatically
halted.

If there was no fault, then the move was successful. In that
case NOTIFY MRVFUL, update the pointer to the scan buffer and them
check for an EOS. If no EOS then again re=-enable DMX and interrupés
and WAIT on MRVSEM. But if an EOS was received, then put the positive
azimuth count in the buffer status word to signal an EOS to the user.
If the other scan buffer is empty then set up the pointers to load into
it next. If it 1is not empty, then set RVSTOP and halt the rover.
Finally, empty or not, re-enable DMX and interrupts and WAIT on
MRVSEM.

B.3. TSROVR

TSROVR is a system routine written to simplify and protect
the user-system software interface. It is a tive argument FORTRAN sub-
routine, and has five basic functions. 1t allows the user to initial-

ize the interface, to stop the interface, to send rover commands, to

empty a scan huffer, and to WAIT on MRVFUL. The first argument selects
the function. Error-checking with appropriate messages safeguards
against incorrect usage.

TSROVR first checks to see if the rover is assigned to-the
user. The rover has been made an assignable device, and as such must
be assigned and unassigned using:

ASSIGN ROVER
UNASSIGN ROVER

Next it makes sure that the first call to TSROVR is an initialization in-
struction. Then it jumps to the function selected by the first argument.
Initialization is the most complicated function. First, the
scan buffer addresses, arguments 4 and 5 are checked for valid ad-
dresses. Then the azimuth buffer size and number, arguments 2 and 3,
are checked for validity. The azimuth buffer size is restricted to be
between 1 and 1022, while the azimuth numbq; must be between 1 and 256.
Now T$ROVR checks to see if this is the first initializationm call. If
so then the device status is checked using DEVEIO to see if the GPIB re-
plies. If everything is satisfactory then MAPIO is called to map the
1024 word DMX buffer into the MRVDIM azimuth buffer. Then LOCKPG is
called to lock MRVDIM, the azimuth buffer and the two scan buffers into
memory. Finally, using DEVEIO, DMX and interrupts are enabled and an
INIT command is sent to the rover. The MRVFUL semaphore count is
zeroed and TSROVR returns.
The stop function starts by looping until the RVSTOP flag is
set signalling that the rover has been stopped. It then calls UMAPIO
to unlock or free the two scan buffers. Using DEVEIO, it again sends

the HALT command to the rover, disables DMX and {interrupts and then

I

inman BN © B < BN

P m—

38

TSROVR returns.

The command function calls DEVEIO to send a command to the
rover. It also loops until it is successful and then returns.

The empty function is used to declare a scan buffer empty
and to switch to the other buffer. The second argument selects the
buffer being emptied. Note that successive calls must alternate buf-
fers. Since an OVERRUN may have stopped the rover, the third argument
may be used to specify what restart command, if any, should be given.
RVFILL is a variable used to keep track of which buffer is currently
being filled, and RVNEXT, the buffer to fill next. The MRVDIM process
will £ill the buffer selected by RVFILL, move RVNEXT into RVFILL, and
clear RVNEXT. If MRVDIM finds RVFILL equal to zero, then no buffers
are empty and a software OVERRUN occurs. The empty function sets up
RVFILL and RVNEXT.

Last is the WAIT function. It checks RVFILL to make sure at
least one scan buffer is empty. It then does a WAIT on the MRVFUL

semaphore.

C. Svstem Routines

The system routines make up the user process and include the
realtime system executive and its subroutines. Two of these subrou-
tines: the terrain modeller (MODEL) and the path selection routine
(PSA) will not be discussed here.

C.l. EXEC

The main upper level routine is the Mars system executive.

This is the user process which performs the realtime analysis and con-

trol. EXEC basically controls the flow of the system, with the real

asg Ssd pa—

L]

& wnpdnd,
. [

ot

L et]

39

work done by subroutines (see Figure 15). All of the routines are
linked together by the main common block RVRCOM (see Table 1). Once
EXEC is started, the user has the ability to run as many realtime ex-
periments as desired without restarting the system. The user can
change parameters, select different PSA and MODEL routines, and evea
run the rover manually from the keyboard.

On starting the system, EXEC first tries to initialize the
important ruantime parameters with default values. To do this it
ATTACHes to the MARS.DATA subUFD (sub-User File Directery) and makes
that its home UFD. Thi: is done to keep all the runtime data files
separate from any programs being developed, and to try to keep them all
together. EXEC thea cpens the MARS.DEFAULT file and reads the default
values. Keeping default values in a separate file rather than in the
EXEC prograa itself makes them easier to change and does not require a
recompilation of EXEC. The parameters initialized and the file format
is shewn in an example copy of the MARS.DEFAULT file (see Table 2).
Note zlso that new parameters can be added easily.

EXEC displays the jarameter values and then enters the inter-
action processor. The interaction processor is just a segment of code
which allows :lie user to enter commands. The prompt for the interac-

tion processor is "CO:", and the command line syntax is:
<COMMAND><= or , or (blank)><VALUE>

Note that for some commands, the delimiter and value mav not be re- !
quired. The value may be ei:lier real or integer, and will be converted
automatically if necessary. Also, if a required value is omitted, the

process wiil ask for it. The possible commands are kept in the array

ST FReem E T LTV o TR TR e R AT T T 5 T

M
INTERACTION pPRAME STOoP
PROCESSOR »
lco

) PRERUN
INITIALIZATION

'

WAIT FOR INTERRUPT

i' INITIALIZATION

NAVIGATION TIMEOVT
AND DISPLAY UPDATE "

KEYBOARD QuIT
PRocE&SSOR RoVvER
COMMANDS
f
l Y&S
—

!

MANVAL
; e

AuToNOMQUS

’ TERRAIN MODELLER
| o
: e N EoS?

YES

PATH SE&ECTION ROVER
COMMANDS

FIGURE 15. Flow Diagram of EXEC

S

B ontneg Y
Ll » »

“U“.

==

N
R S
B o i i i e e i s — PR

v B o oL LdC Anibet o C AR i e A O st Ak AT At L A

L £ W)

1 COMMON /RVRCOM/ /* Realtime System Common

iv BUFA(2048) /* Buffer for Raw Data
BUFB(2048) /* Buffer for Raw Data

! LBUFF(1024) /* Buffer of Lower Laser Data

’ UBUFF(1024) /* Buffer of Upper Laser Data
PITCH(64) /* Vehicle Pitch per Azimuth (Rads)

E ROLL (64) /* Vehicle Roll per Azimuth (Rads)

| HEADNG (64) /* Vehicle Heading per Azimuth (Rads)

| AXROLL(64) /* Front Axle Roll per Azimuth (Rads)
STEER(64) /* Steering Angle per Azimuth (Rads)
SPEED(64) /* Vehicle Speed per Azimuth (M/Sec)
DTIME(64) /* Delta Time between Azimuths (Sec)

‘ XLOC(64) /% X Location of Vehicle ()
YLOC(64) /* Y Location of Vehicle (M)
ZL0C(64) /* Z Location of Vehicle (M)
TIME /* Total Time Since Beginning of Rum (Sec)
DHEAD /* Desired Heading (Rad)
NUMAZL /* Number of Laser Azimuths per Scan
| NUMAZV /* Number of Vehicle Azimuths per Scan
NUMLAZ /* Number of Laser Shots per Azimuth
| NUMSEN /* Number of Sensors per Azimuth

TABLE la. RVRCOM

XFINAL
YFINAL
DELTXY
IMOD
IPSA
DSPTIM
NUMAZT
SCAN
AZMUTH
MAPX
MAPY
ORIGX
ORIGY
MRVCMD
OVRRUN
TIMOUT
EQA

vi

EOS
INIT

RUN

TABLE 1b.

/%
/*
/*
/*
/%
/*
] *
/%
/*
] *
l*
l*
/*
/%
l*
/*
l*
/*
/*
/*
] *

RVRCOM

42

X Location of Target (M)

Y Location of Target (M)

Desired "Closeuess" to Target (M)
Version of MODELLER to Use
Version of PSA to Use

Time between Display Updates (Sec)
Total Number of Azimuths per Scan
Current Scan Number

Current Azimuth Number

Map X Axis Range (M)

Map Y Axis Range (M)

Map X Origin

Map Y Origin

Command Sent to Rover

Buffer Overrun Flag

Timeout Flag

End of Azimuth Flag

Vehicle Interrupt Flag

End of Scan Flag

Initialization Flag

Run Flag

F— P smae P ammnsany
. -)

[

s

o , o —— e,
e pev— ey
i T >

43

* MARS.DEFAULT File: A Sample

16
4
20
20
10.0
10.0
0.5

0.25

NUMAZL: Number of Laser Azimuths per Scan
NUMAZV: Number of Vehicle Azimuths per Scan
NUMLAZ: Number of Laser Shots pef Azimuth
NUMSEN: Number of Sensors per Azimuth
XFINAL: Target X Coordinate

YFINAL: Target Y Coordinate

DELTXY: Desired "Closeness" to Target
IMOD: MODELLER Version

IPSA: PSA Version

MAPX: Map X Axis Range

MAPY: Map Y Axis Range

ORIGX: Map X Origin

ORIGY: Map Y Origin
DSPTIM: Time between Display Updates

TABLE 2. MARS.DEFAULT File

v @ H n ~

b4

TBL1, ana grovide for easy expansion (sec Table 3).

The interaction procussor starts by.inputting up to 40
characters from the keyboari into the array KBUF., A subroutine, called
GETTOK, strips the first token from the coummand line, which should be
the command, and returns it in the array IBUF. Another subroutine,
GETCMD, then searches the TBL1l sarrzy for a match to IBUF. If there is

no mat: then the message
ILLEGAL COMMAND

is output and the processsr goes back for another command. If a match
is found then the command number is returned in the variable CMD. Each
command in TBL) is followed by a key which tells what kind of value, if
any, should follow the command. CMD is used to index into TBL1l to get
this key, which is assigned to the variable KEY. If KEY equals zero
then there are no parameters and so EXEC jumps to execute that command
through a computed GOTO, indexed by CMD. Otherwise GETTOK is called
again to get the parameter. If the parameter is missing, it is re-
quested only once using the prompt: "PAR=", And i{f the user enters
nothing, then the command is ignored. If there is a parameter then the
subroutine CNVPAR is called to convert the parameter from ASCII to
either integer or real as determined by KEY. If there is an error on
the parameter conversion then the message

ILLEGAL PARAMETER

PAR=
is issued and the user can try again. Finally, EXEC jumps through a
computed GOTO, indexed on CMD, to execute the command. Note that when

executing a command with a parameter, the parameter is always checked

TN

e e s e et <

e e

amcd Eusmng

!

) DISPLY Display default parameter values.

i PRIME Return to PRIMOS.

1 NuMazL (Value) Change NUMAZL to (Value).

. NUMAZV <Va1uc> Change NUMAZV to <§a1u.>.

j NuMLAZ (Value) Change NUMLAZ to <V.1ug>.

t NUMSEN (Value) Change NUMSEN to <Valut>.

g XFINAL <Value> Change XFINAL to <Value>.

j YFINAL <Va1ue) Change YFINAL to <§a1ug>.
DELTXY <Value) Change DELTXY to <Valuf>.

i IMOD <Value> Change IMOD to <Value>.

| 1PSA <Value> Change IPSA to <ba1ug>.

f MAPX <Va1ue) Change MAPX to <§a1ug>.

5 MAPY <Value> Change MAPY to <Valuﬁ>.

{ ORIGX <Va1ue) Change ORIGX to <&a1ue>.

g ORIGY <&alue> Change ORIGY to <&alue>.

DSPTIM <Va1ue> Change DSPTIM to <&a1ue>.

GO Begin accepting realtime data.

TABLE 3. Interaction Processor Commands

B
'

I
I
|
!

g
H

!r

boany oy

46

for validicy firsc.

On a GO command, all necessary flags and counters are
initialized first. To enable the PSA and MODEL routines to initialize
themselves (since different versions may exist), they are called with
the variable INIT set true. Next, T$ROVR is called to initialize the
interface. A post-processor file is then opened to hold the runtime
data for this particular run. Each realtime experiment gets a new

post-processor file with a unique name of the form
M. MM/ DD/ YY .# NN

where MM, DD, and YY are the two digit representations of the curreant
month, day, and year respectively. NN is a two digit number between 00
and 99, starting at 00 and incrementing for each new run of that par-
ticular day. After opening this file, EXEC writes an information
record with the format shown in Table 4.

Next, tha CRT screen is set up for the runtime display (see
Figure 16). During the run, these parameters will be updated periodi-
cally. The STATUS variable will show the current interrupt type: EOA,
EOS, VI, TIMEOUT, or OVERRUN. The COMMAND label will show the last
command sent to the rover, and the TTY CO label will show the operator
command input during runtime.

The pre-run initialization concludes by calls to T$SROVR to
empty both scan buffers and a call to NAVIG to allow it to initialize
itself. Finally, EXEC does a WAIT call using TSROVR which begins the
realtime execution phase of EXEC.

On an interrupt, the huffer result subroutine, BUFRES, is

called. BUFRES checks the reason for the interrupt, stores the raw

.-

nh Wv» S W N -

! 11-12
13-14
15-16
17
18
19-20

g pmer e

&7

CONTENTS
Record Length (=20 words).

Record Identifier (-1 = Informacion Record).

Current
Current
Current
Current
NUMAZL:
NUMAZV:
NUMLAZ:
NUMSEN:
XFINAL:
YFINAL:

DELTXY:

Month (01 - 12).

Day (01 - 31).

Year (00 - 99).

Time (24:00).

number of laser azimuths.
aumber of vehicle azimuths.
number of lasers per azimuth,.
number of senscrs per azimuth.
target X coordinate.

target Y coordinate.

desired "closeness" to target.

IMOD: version of MODELLER used.

IPSA: version of PSA used.

DSPTIM:

time between display updates.

TABLE 4. Post~Processor Information Rccord‘

48

oy LGamd ey

ARRARLARANRAAR AR ARARRRRAARARARRRRARRARAR CARARRARAR TIME:
HEADING:
PITCH:
ROLL:

X LOC:

Y LOC:
AX ROLL:
SPEED:
STEER:
LASER:
STATUS:
COMMAND :

Ay
- ¢

om—— Sronnmny
. 4 .

TTY CO:

L 2 B B BB N NE N N R N N N N R B 2 I 4
L BB R Bk B Bk NE O BE I B B B BE B R B J

RARARRARARARARARRRAARARAARRARRAARARARRARRRRRRARARRAR A

X RANGE: Y RANGE:
X ORIG: Y ORIG:

[——

FIGURE 16. Runtime Display

G REM Ausg Saand

£m—— # ma— PR ~Ce—— ———
. . . N

49

data, calls NAVIG, and updates the display by calling the subroutine
SCREEN. If a TIMEOUT interrupt was received then the run is halted
and control returns co the interaction processor. Otherwise a segment
of code called the keyboard processor is emtered.

The keyboard processor allows the operator to enter commands
during runtime. At runtime, the terminal is automatically plaéed into
half-duplex mode, so that nothing the operator types will show up on
the screen. This is necessary since the cursor is flying all over the
screen updating the map and the display parameters. The keyboard pro-
cessor reads what is typed on.the keyboard from an internal buffer,
and displays it following the TTY CO label.

A subroutine called KEYBIN reads and displays the keyboard
input. When it comes across a line-feed character, it sets the flag
ENTER true, and returns the text in the array BUF. The xeyboard pro-
cessor then uses the subroutines GETTOK, GETCMD and CNVPAR just as in
the interaction processor. A different command table, CMDTBL, is used
to contain the possible runtime commands (see Table 5). Also because

of limited space, an error is signalled by an asterisk as
* TTY CO:

An At character "@" has the effect of erasing the current command.

Note that after a GO command in the interaction processor,
data will be accepted, stored, and decoded, but the rover will be in
the manual mode. Therefore, the PSA and MODEL routines will be skipped
until the RUN command is given.

Finally, if EXEC is in the autonomous control mode, the

selected MODEL routine will be called. Then, if an EOS interrupt was re-

§

“mree Mraaxu y Srtmenyy

RUN
STOP

F <Value>

R <Value>

T <Value>

TABLE 5.

50

Begin autonomous control.
Stop rover.
Forward command where:
F1l Slow
F 2 Medium
F 3 Fast
Reverse command where:
R1 Slow
R 2 Medium
R 3 Fast
Turn command where:
<?alu€> can take on the values (=7 to +7)
and refers to 1 of 15 absolute gteeting
angles.
T =7 90° Left turn
T O 0° Turn

T 7 90° Right turn

Keyboard Processor Commands

P AN T

PR

& vow——

3Ly Fanyisy
. . N

L

oy e

51

ceived, the selected PSA routine will be called. The PSA will send
coummands to the rover through a TSROVR call and then the used scan
buffer will be emptied by another TSROVR call. Whether an EOS was re-
ceived or not, the azimuth and scan counts (AZMUTH, SCAN) are updated
and EXEC jumps back to do a T$SROVR WAIT call on MRVFUL again.
C.2. NAVIG

The NAVIG subroutine has the job of converting the raw data
to a form which can be used by the other programs, as well as keeping
track of navigation. The raw azimuth data format is shown in Table 6.
The individual word formats can be found in Appendix A.

NAVIG is a four argument subroutine called from the BUFRES
subroutine.

NAVIG (VBUF, LAZBUF, UPBUF, LOBUF)

The argument VBUF is the address of the start of the current vehicle
data buffer located within the scan buffer. LAZBUF is the address of
the start of the current laser data buffer, also located within the
current starting addresses in the UBUFF and LBUFF arrays respectively.
Those arrays hold the upper and lower receiver comne numbers for each
laser shot.

In the beginning of NAVIG, the routine checks the variable
INIT, located in RVRCOM, fo see if it should initialize itself. There
are many variables to zero out sirce NAVIG uses a cumulative technique
to perform navigation. If INIT is false, then NAVIG begins to decode
the data.

The time, in seconds, since the beginning of the run is com-

puted and kept in the variable TIME. Note that the MODEL routine uses

P Gecey Limed

ity

& Te———

ey

10
11
12
13
14
15
16
17
18

52

CONTENTS

Not
Raw
Raw
Raw
Not
Not
Not
Not
Raw
Raw
Raw
Not
Raw
Yot
Raw
Raw
Raw

Raw

TABLE 6.

used.

Steering Anglé.

Left-Rear Tachometer Reading.
Right-Rear Tachometer Reading.
used.

used.

used.

used.

Front Axle Roll Angle.

Roll Angle.

Pitch Angle.

used.

Right-Front Tachometer Reading.
used.

Left-Front Tachometer Reading.

Heading Angle.
Time (minutes).

Time (330's of second).

Azimuth Buffer Format

-

aEa afeaa .

Teicaa k4, Sl

e i A Stk

SRR RN Y

. I a lot of information on a per azimuth basis when it does a crosspath
. analysis. Therefore, an array, DTIME, is formed to contain the time
l* between azimuths for each azimuth.

Next the heading angle, in radians, is computed and stored
in the ar;ay HEADNG, one entry per azimuth. It i{s necessary to touch
on the matter of bad data. Since data transmitted from the vehicle
might be lost because of interference, it is important to detect this
error and to minimize its damage. The solution is to make the in-
terrupt process, MRVDIM, pack the empty azimuth buffer with impossible
data. Luckily, an all ones pattern cannot appear in the current data
chosen. To minimize the damage, NAVIG will substitute the last valid
value of that particular variable. It will also put an asterisk next
to that label on the display screen. If the operator sees that a data :
word is consistantly wrong, then he could stop the rover, since there '

might be a hardware problem. In the laser data, a missing return will

be substituted for a bad data word and the number of bad laser data
words will be displayed next to the LASER label on the screen.

After the decoded heading angle has been saved, the pitch,
roll and front-axle roll are decoded and stored in the arravs PITCH,

ROLL, and AXROLL respectively. The speed is calculated from the average

of the two front wheel tachometer readings, and stored in the array

.
P

z SPEED. Next, the X, Y, and Z locatiouns of the rover are calculated
.g using the formulas given in Table 7. They are stored in the arrays
; -
! ! XLOC, YLOC, and ZLOC respectively.
g- Now NAVIG checks to see if it is processing a VI interrupt.
. If so, then it returns because there is no laser data. If it is pro-

R IR L. 4 Bhata] Shiuh

g

L oma
. '

e

B vasp~

S s e e TR T R T T TR TNy e R T R LAk r ot d

54

AVG(SPEED) = SPEED(K 2+osrszn K-1

BETA(K) = HEADNG(K) + STEER(K)

AVG(BETA) = BETA(K)2+OBETA(K-1)

+ -
AVG(PITCH) = PITCH(K)2 OPITCH(KALL

XLOC(K) = XLOC(K-1) + AVG(SPEED)COS(AVG(BETA))

YLOC(K) = YLOC(X=-1l) + AVG(SPEED)SIN(AVG(BETA))

ZLOC(K) = ZLOC(K-1) + AVG(SPEED)SIN(AVG(PITCH))

where VARIABLE(K) = Current value

VARIABLE(K-1l) = Last value

TABLE 7. Navigation Formulas

- s — T Y I T

I A e Smems s

— e e i o L X ST KR I -

53

P gy

cessing an EOA or EOS, then there is laser data. The upper and lower

receiver cone numbers must be separated from each laser data word and

ny

*

stored in the arrays UPBUF and LOBUF respectively. Data errors are
made into missing returmns, and a count is kept in the variable LDERR.
Finally NAVIG returns.

C.3. BUFRES

BUFRES is a subroutine which determines the interrupt status,

saves the raw data, calls NAVIG to perform conversions and navigationm,

PO

and calls SCREEN to update the display. It has one argument, BUF,

? BUFRES (BUF)

; which is the current scan buffer sddress.

BUFRES first decodes the interrupt status fram the first word
i of the current scan buffer and outputs it to the display next to the
. STATUS label. If a TIMEOUT or OVERRUN occurred, then that information

is written to the post-processor file and BUFRES returns. On an EOA,

P 75 DT

EOS, or VI interrupt, a similar post-processor record is written with
the format given in Table 8. Next, the starting addresses for the ve-
hicle data and laser data within BUF, and the laser data destination

within UBUFF and LBUFF are calculated, and used in the call to NAVIG.

a4

Finally the subroutine SCREEN is called to update the CRT display.

C.4. GETTOK

& Sm—
. .

GETTOK is a general purpose subroutine which will parse a

B WEany
.

$

command line, returning tokens on consecutive calls. The delimiters

recognized include a blank, a comma, and an equals sign. The Prime

e
13

¢

subroutine RDTKSS also returns tokens but it uses a different set of

e

P L

LN 2 alleadS

LA I T b Lt Maas LA

Suny Sun oty

.\ﬁ

v

ETo——y » 2wy
- - 1

.

. m—————

prose—,

g - r———
. .

S
N

¥ My
L] ’ 1

e B

| s

WORD

[N o

10

11

36

CONTENTS

Record Length.

Record Identifier where:

-1
1

7

Last

Information Record
EOA Record

VI Record

EOS Record

OVERRUN Record
TIMEOUT Record
MODELLER Record
PSA Record

command sent to rover.

Current Scan Number.

Current Azimuth Number.

Not used.
Raw Steering Angle.
Raw Left-Rear Tachometer Reading.
Raw Right-Rear Tachometer Reading.
Not used.
Not used.

TABLE 8a. Post=-Processor General Record

4?!5:2ﬁ~ﬂﬂ

hats
I ————
. 1

22
23

24=-up

57

CONTENTS
Not used.
Not used.
Raw Front Axle Roll Angle.
Raw Roll Angle.
Raw Pitch Angle.
Not used.
Raw Right-Front Tachometer Reading.
Not used.
Raw Left-Front Tachometer Reading.
Raw Heading Angle.
Raw Time (minutes).
Raw Time (330's of second).
Raw Laser Data (if EOA or EOS).
TABLE 8b. Post-Processor General Record

R P S Py T R T e

gy

38

delimiters.

There are six arguments to this subroutine.
GETTOK (IPTR, BUF, LEN, IBUF, ILEN, NCHAR)

IPTR is the current position within the command line. BUF is the com-
mand line array, packed two characters per word, of length LEN
characters. IBUF is the returned token array, also packed two charac-
ters per word, with a maximum length of ILEN words. NCHAR is the num-
ber of characters in the returned token. Any unused characters are
packed with blanks.

GETTOK starts by packing IBUF with blanks. It then searches
BUF from the current pcsition, IPTR, until the beginning of a token is
found (the first non-delimiter). Finally, it searches BUF for the next
delimiter while updating IPTR and NCHAR, and moving each character into
IBUF.
C.5. GEIOMD

GETCMD is a simple subroutine which searches a given command

table for a match to an input token. There are six arguments.

GETCMD (TBL, LEN, WID, CMD, BUF, NCHAR)

TBL is the input command table of dimensions LEN and WID. CMD returns

the index into TBL of the command which matches the token in the array
BUF. If no match is found then CMD is set to zero. NCHAR is the num-
ber 2f non-blank characters in the array BUF. Note that WID is one
greater than the number of words in each command of TBL. This is be-
cause every command has a key which declares the type of parameters,
if any, to expect.

The subroutine compares a command in TBL with the token in

39

BUF on a word by word basis. If it fails then it tries the next com-

mand, until finally either finding a match or exhausting the table.

Gy Gy Sy

C.6. CNVPAR
CNVPAR is a simple subroutine which converts numerical tokena

@ sy
v L)

from ASCII to numerical values. There are six arguments.
| ! CNVPAR (BUF, NCHAR, KEY, IVAL, RVAL, IER)

BUF is the numerical token in ASCII format of length NCHAR characters.

» wo—

The variable KEY which 18 obtained from the command table, declares

Py—

the type of numerical value expected where:

l KEY = 0 No parameter

KEY = 1 Integer

€

KEY = 2 Real

’ IVAL and RVAL are the variables which return the integer or real value
respectively. IER is the return code where:

! IER = 0 Normal return

IER = 1 Invalid key

r———y

IER = 2 1Invalid token
[' The subroutine uses FORTRAN DECODE statements to convert
directly from ASCII to numerical form as required.

I C.7. KEYBIN

' i' KEY3IN is a subroutine which allows keyboard input during
) runtime. There are three arguments.
!. KEYBIN (KNUM, ENTER, IBUF)
} 3- KVUM is the current number of characters input from the keyboard. Run-

} time commands are kept short to save precious time and therefore KNUM

P P A e 4t . P T B N S

[e | []
. . M «

-

)

e 4 I e =

is limited to a maximum of 8. ENTER is a logical variable which is
set true when the command has been entered. This is determined by
finding a line-feed character in the keyboard buffer. The command
is returned in the array IBUF.

The subroutine starts by setting ENTER false and calling
the Prime subroutine KEYB$$. KEYBS$ returns a one if anything is in
the keyboard buffer, and a zero otherwise. If KEYB$§ returns a Zero
then KEYBIN returns. But, 1f it returns a one, the Prime subroutine
T1IN is called which gets a character from the keyboard buffer. If
KEYBIN finds the character "@," them it will erase the array IBUF
and the text after the TTY CO label on the screen. A line-feed
causes ENTER to be set true. If the character is not an At or line-
feed, then it is stored in IBUF, and it is output next to the TTY CO
label. The routine then loops back to the KEYB$S call to check for
any remaining characters in the buffer.

C.8. SCREEN

SCREEN is a subroutine which updates the values on the dis-
play screen. It also calls the subroutine MAP which updates the dis-
play map. There are no subroutine arguments.

The time between display updates, DSPTIM, is variable and
cap be set by the operator. This is provided because display updating
takes a fair amount of time. SCREEN starts by determining whether it
is time to update the display or not. If it is, then SCREEN updates
the time, heading, pitch, roll, front-axle roll, X and ¥ locationms,
speed, steering, laser status, and last rover command. The laser

status is the number of bad laser data words, if any, aad the last

[t} Rt [Y

Prmeumnm ¢ PYT—

LRy
.

-w

6l

rover command is the last command sent to the rover, usually by the
PSA routine. SCREEN also flags any bad value obtained from the rover
by putting an asterisk before the respective label. SCREEN finally
calls the MAP subroutine and then returns.

C.9. MAP

MAP 1is a subroutine which updates the display map on the CRT
screen. The map displayed is a top view of the rover, or the X-Y
plane. The X and Y ranges and origins are variables, and can be set
by the operator. These variables are displayed beneath the map for
reference during runtime. The screen size of the map is 50 characters
in width by 20 characters in height. Because of the poor resolution,
the rover is represented by a one digit number which increments
modulo-9 every update. If the rover stops or doubles back, the
operator will still see the position by the changing number. Note
that this map might be too crude to be of any use, tut only experience
will tell.

MAP starts by quantizing the rover X and Y locations on ‘ts
limited grid. If the location falls ocutside the map range,then it is
not plottad. The CURSOR subroutine is used to position the cursor,
and the digit marker is output. Finally the digit market is updated
and MAP returns.

C.10. CURSOR

The CURSOR subroutine is used to position the cursor on the
CRT screen. Note that this routine w+4ll only work when using an ADM-3
terminal, CURSOR is written in assembler because it is used often in

the runtime display updating. There are three arguments®

aaata

i —

e I A T e B

4

A e

62

CURSOR (ROW, COLUMN, IER)

ROW and COLUMN are the desired cursor locations, where the upper left
corner is (1,1). 1IER is a logical return code which is true om an
eTTOr.

CURSOR first checks the ROW and COLUMN variables for
validity, and then adds an offset of 237e to each variable. The
variables are then packed into a single word with the row in the first
byte and the column in the second byte. To position the cursor re-
Quires two words. The first is a special code, 1156758, OT an escape
followed by an equals. The second is the packed row and column data
word. The Prime subroutine TNOUA is called to send this data to the

terminal. Finally CURSOR sets IER false and returns.

8mmia

R R L PR
e T T N ¥ YT P P oY Torve. wrpr oy

PART 35
CONCLUSION
A. Summary

The laser triangulation method of hazaq@ detection has been
proven feasible by the results obtained during the one laser-one de-
tector system testing. Complete obstacle avoidance was possible with
this system at the cost of a slightly conservative path selection
ability. This conservatism was very much apparent in a field environ-
ment which included slopes. It was because of this inability of the
one laser-one detector system to interpret slopes that the elevation
scanning system evolved.

Simulation studies indicate that the elevation scanning sys-
tem does provide enough data for an accurate slope appraisal. Cur-
rently, all rover systems are being modified to implement this new
hazard detection system.

New realtime software has been written on a Prime minicom~
puter. The hazard detection and obstacle avoidance software develop-
ment work has been done using the simulator. However, the realtime
support- software has only had some limited testing since none of the
required hardware is working yet.

This support software has been designed to provide the user
with a simple interactive environment. The user can change and dis-
play parameters, control the rover either manually or autonomously,
and even run as many tests as desired without ever halting the pro-
gram. Important runtime values are displayed and all raw data is

saved for post-run analysis.

63

[] # r——y P oy
B « , * . i

64

B. Future Work

Once the problems with the Prime test interface are solved,
it is important that the lower level realtime software be completely
tested. After the test }nterface is understood, the realtime inter-
face can be designed and constructed.

The first realtime laser data will come from the dynamic
test platform. Initial testing should be done with a static platform.
Only when it appears that the hazard detection software can accurately
interpret any scene can the rover be tested under realtime control.

Programs to analyze the post-run data should be developed
immediately since they will be necessary when testing the hazard de-
tection software. Running off-line, the post-processor routines can
use computer graphics to help display data.

Although first testing should use a dedicated processor, it
may be possible to allow other users on the system during realtime
testing. This would require that our operating system be kept up to
date with the normal operating system and that it have a low probability
of crashing the system. Also, although unlikely because of time con-

straints, the possibility of realtime graphics should be investigated.

Enmed pasant Gashl Relig

S ey S m—
- . .)

#- cuvasan

i |

buiicig Gonag

1.

2.

3.

5.

6.

T T e A N DD R
Gl » Ly "

PART 6
LITERATURE CITED

Krajewski, Marjan, The Development and Evaluation of a Short Range
Path Selection System for an Autonomous Planetary Rover,
RPI Master's Report, RPI, Troy, N.Y., 1976.

Sadeghi, Tahun, Development of a Path Selection Program for the
Mars Rover, RPI Progress Report, RPI, Troy, N.Y., 1977.

Dunn, Paul, Progress in Path Selection Algorithms, RPI Progress
Report, RPI, Troy, N.Y., 1977.

Meshach, Bill, Elevation Scanning/Multi-Detector Hazard Detection
System: Pulsed Laser and Photo Detector System, RPI Master's

Project, RPI, Troy, N.Y., 1978.

Craig, John, Design and Implementation of the Laser Scanning/
Multi-Detector Controller for Hazard Detection System, RPI
Master's Project, RPI, Troy, N.Y., 1978.

Prime Software Documentation, Prime Computer, Inc., Framingham,
Mass., 1978.

65

i fe Sl A ke e

A A s 00 st o

APPENDIX A

Azimuth Data Word Formats

1. Steering Angle:

Range: =90° to +90°

15 12 11 0
Data Format: o000 0] A/D Data
A/D Data Steering Angle
=2047 -90°
0 0°
+2047 +90°
[}
s
-q0° . +a0°
2. Tachometers:
15 12 11 0
Data Format: fo 0o 00/ A/D Data |
A/D Data Wheel Speed
=-2047 Full Reverse
0 Stopped
+2047 Full Forward

66

(IR

‘m’ § s2%nbl & rtovmsrny
B N \ .

¥

L I

-0 T T TR TR TR AT T TR
IR i i i i e i R St o

67

3. Front Axle Roll Angle:

Range: =30° to +30°

15 12 11 0
Data Format: 0 0 0 0] A/D Data l
A/D Datca Front Axle Roll Angle
=2047 -30°
0 0°
+2047 +30°
+ 3
%* %‘* Av-Cf
-3¢0

Front View

Front Axle Roll

— e e

L]
. ’

Lt |

4. Roll Angle:
Range: =30° to +30°

15 12 11 0
Data Format: [5‘0 0 0| A/D Data |
A/D Data Roll Angle
-2047 -30°
0 0°
+2047 +30°
+30°
| | »
N} T > 0
-3¢0’

Front View

1 -

Roll

B m——— > ————

e Onam g
. »

£ mvomay
1 '

oy

O

e THTTRE F TR TS T e BT AT I TR TRRRTTT We W) T R T L

5.

e

Pitch Angle:
Range: =30° to +30°

Lahadt i

1 2 11 0
Data Format: . 0000 A/D Data
A/D Data Pitch Angle

-2047 -30°
0 0°
+2047 +30°

+30°

O"& _ o’

-3¢0’
Pitch

69

6. Heading Angle:
Range: 0° to 360°

"Data Format:

230" «=

15 12 11

0

-204%3

A/D Data per Segment

A/D Data

0
4

SEG Number
Y |
4
(]
o
Heading

+ 2047

70

' *

Gty gy

S R T ——"

APPENDIX B

‘ DEVE1lD ’

GET X/0 INSTRVCTION AND
APTIONAL ARGUMEBNT.
SEXSBCcuTs T/0 INSTRUCTION,

SAVE OPTIoNAL ARGUMENT,

T

71

S .unag ‘J-lﬁl' ‘«ilu‘_

0 ol -ty
. .

lh—m‘.

. |

B oo L SN

MRVDIM
o=

STOP DMT,
INPUT STATUS,

SRT BuFsFeR
STATUS TO T\MBoVT
AND NOTIRY USER.

ROVvER
StorPED BY
MARvVOIM ?

STORE TIME AND
DATA IN RVEI L

SCAN IUFFER.

<

RALT ROVER,
CLEAR ALL
PoInTRRS,

72

o o T TR ROy AN DR el o e E—r

73

NOT\EY USER.
SET RVEILL=

RVNGXT.

1

SET VP PoIinTER
TO LOAD INTO
NEwW BUFRRR,

€ .“'
.

.

. SET ROVER
' SToPPRD BLAG,
:. HALT RovaRr.

-
n

4

ENABLE OMT
AND INTERRUPTS,

€y
. 1

l-&t & Somaand
M .

§ ey

RN Ol Bung Gy ey

Y e ey ey

-y
L

o v——
‘. '

¢ —n—
a .

oo T R AR T RN e R ——

RESTART Tna
ROVER.

SET UP POINTER
TO LOAD INTO

NEw BuFran .

SET BUFFRR
STRATUS TD
OvERAVN.

SET RoveR
STOPPED BLAC,
HALT RovaR,

Pmg My pamg

73

T$ROVR

CALL SRRRTN
SQovar wner
AESI16MNED "

()

4

CALL ERRRTN

SMUST INZT
RevaR inST"

ABORT

Soo0Y

*840 ROVER
COMMAND S

ABoRT

1§ ARIMUTH NO

CALL SRRRTN
“3A0 BumFeR
ADPRESS "

RVNEXT = O

wAIT S mSec

4

CALL ERARRTN
“gAD RoVER
ARCUMENT *

ABORT

76

R

77

k

CALL ERRRTN
> "RoVER CNTRLR]
K | IS NOT worKkInNG ! ;
MAP TWE I/0 gurreR]
To S&¢. LERO And
Lock MRvOm

IN mEmoRy, ABORT

WORRING

CALLVLATE T™HE
SIBEOFTWE OLD
ScAN BUFFERS {
AND UNLOCR THEM
ARom mEMmoRY,

-

CALCVLATE THE
SIBE OF THE NEW
ScAN BUFFERS
AND LoCie THEM
IN MEMORY,

/
RVFILL=0
RYNEXT= 0

6 oy ey g
. ' . ‘ . .

> —

LN

COPY THE USER'S
OTARS (2k3)To
THE RovER
PROCESS DTARS.

4

OVTPYT THE
VECTORED INTRUPT
ADDRESS T° TWE

GP18 CONTROLLER.

A

OUTPUT THE
pMT BUFFER
AROORESS TO THE
GPIB CONTROLLER,

t

ENABLE DmT
ANO INTERRYATS

SEND AN 1T
COMMAND TO THE
ROVER,

Y

EmPTY THE
ROVEIL SEMAPHORE]

RETURAN

CETEY

78

o s g St cadorid

e, - S .

et e Pl . ke

SN

'S
THE ROVER
STOPPED?

wAIT § mSec

Y8S

Y

CALCULATE THE
SI2E OF THE
SCAN BUFFERS
AND LIVLOCK THEM
FRom 1MEmORY,

\

SEND A HALT

ComMmAND TD
THE RovER,

y

ODISABLE OmT
AND INTERRUPTS,

2

Z2ERO OUT THE
ROVER PROCESS
brars (243).

t

RvFILL =0
RVNEXT =0

79

!‘ L 2 oareak iGN

[—

F o ey
' .

§um e e

betg peq

CALL DEBVEILD
To Exécvre

TRE SPEC:FI&ED
I/0 CommAanD.

Az A e .

80

81

CL ERRRTN
“3R0 SosPeR
nNymgare *
L ABoRT
|
| }
' CALL ERRRTN
4700 rmewy
| Empri&BS #
f
: GET OPTM0O/NVAL
RESTHRT
] Commano. ABoRT
RVFiLL=07? Y£S }
RVNEXT = AO
no RVFILL = BUFFER
NUMBBR,
RVNEXT = BuFFE
NUMBER
Y&S

e N e

Ry

—
.

F E!
.

& ety
.

K

CALL GRRETN

S NoTwewG 7O
weironw ?

& g
. v

FEY
. s

CALL WAT

To WAIT ON THE
MR/ R
SEMAPKHORS,

e & et
l ' . i

.

&
1

e T

&

. - A B
5

L T B B

i

RETVRN

i
H

S i kv 1 © P s

Py NS4 Al e

By Lda]

e

B VA

» mmmm—e

¥ ey

«

L

Bamied B

IPRRRW. IV,

heidd

———a -T"mwwwvw“”“mmwm

EXEC
J

OPENTHE FILE
MARS. DEFAYLT
AND READ THE&
DEPAULT PARMS,

" o

ovTPVT PROMPT
AND READ TUE
COMMAND LING,

CALL GETTOK
70 RETURIY THE
COMMIAND ,

YES

NO

CALL GETCMD
TO IDENTIRY
TWE COMMAND,

LEGRL
COMMAND?

ouTPuUT

"L CeAL
CoMmMAND"

YES

Sl sttt SN ST

83

Somemay EXA— Bmang
. . «) "’ '

B Snpveany Ponnepay 5 Aty
B . . N > '

B iy

[.20] § camwma ¥ asewesg
1 « L3 . [y

L T I I S |

84

CALL ¢E8TTOK
TO RETURN THE
PARAMETER,

PARAMETER\ NO

ﬂlss.y
yes

QUTPVT PROMPT
AND INPUT THE

PARRMETER,

‘
CALL GE8TTOK
TO RETURN THE
PARA METER

PARAMETES
MISSING 7

CALL CNVPAR
T6 CONVERT PARM,

To NUMERIC,

ouTPUT
LT T 7]8
PARAMeTER "

|

PRRAMETERS

OISPLAY THE
ORFAULT

W?

aso

C
ConrAND
|
2

e

D6
D10

?
i

lf‘~'

r

Svemg
)

.

T

§ ey
0

*

¥ ey
.

»

¥ smowng
. '

e T T FUPEUURES PO

o€ IVALE (Y
1

ouTPutT
NUMAZL =IVAL SouT OFf RANGE
MR NUMABL"
| N]
o4
' NO
YES 4 IVALS 64
ouTPuUT
NUMAZY s ITVAL VauT oF RANGR
FoR NUMABYY
| . _
YE&S NO
ouTPu T
NUMLAZSIVAL ‘ouT OF RANGE
FOR NUMLAZY
[]

86

— = =TT ——

§ =ascmessy
- .

§ wavay PNy
4 .)

e BN o T 2aas |

YES

NO

()@

NUMSEN = IVAL

oUTPUT
“auT OF RANGE
ROR NUMSESEN *

L

|

() (-

XFEINAL=ZRVAL

(® @

YRINAL=RVAL

(=)

87

& asupaie

§ Awenry ¥ e——y

» bl
.

[4

L S = S SE

DELTXY=RVAL

T

RVAL 2 0.0
ouTPuUT

"DELTXY MusST
8t .oa. O.0"

OUTPUT

IMo0= IVAL “YERSION DOES
NOT BXIST Y
L _J

IPSA=IVAL

1

ouTpuT

"vERSIorN 008S

~nor @xiSTH

—J

88

T e TR R T

[89

RVAL 20.0
- [ourpur

MAPX = RVAL “SCALE MusT
og .6T. 0.0"

J

S moy
. .

ae 0T, 0.0

|]

{ MAPY= RVAL SSCALE MUST

-
B
2

0
oVTPUT
Hour o RANGE
ORIGX = TVAL FoR X ORIGans
T J

oy ey Sanngd

[3 "V}

9

o ——

amaam y

& — £ —

8 eed

X
QuUTPUT
ORIGY= IVAL BouT OF RANSA
FOR Y ORIGIN *
Dle
S&T Tima
SOTWEEN DISMAY
UPOATE :
OSPTIMm » RVAL

®

INIT ROR MANVAL
RUN ! RNAUTO = FRLSE

INIT FLARGS.
r7imouT B FALSE,
OVRAUN=.FALSE,
VI = 20358,
oA » . FALS S,
&03 = . FALS S,
INT COUNTS !
SCAN = ¢
ATMUTH =0

U P

Badicg

o o

L £ 0

M) far ua s

INMITIALIZTE THE
MODELLEBR AND
PSA RouTnes.

CALL TSROVR
TA INITIRUZE
THE MAVOIM

Y

OPEN R NEW
POST -PROCESSOR

Fu 8,
¥

WRITE AN InFo,
RE2CORD TOTHE
POST - PROCGSSOR
FILE.

¥

SET-UP THE
RUN-TIME
O(SPLRAY SCREEN.

_Y

CALL T3ROVR
70 EMPTY 8ory
SCAN BUAFFERS.

<

wRIT
AOR
INTERRVAT

<

CALL BULFRES
70 PRoCESS THE
CURREnNT 8CAN

SUERER,

S

- Sty

@ ves
NO

YES

No

CALL xByBaiN
To CHECK ON
KEYBQARD NPUT,

WAS
ANYTHING
ENTERED ?

CHLL GETTOK
TO RETUAN THE
AUN -TIME
COMMAND.

BLANK
comrmavo ?

CALL GETEMO
To 108NTIRY
THE COMMAND.

nNo

R

e

Cow. e

R S T

i &P

L N .]

L

FR—

!’ﬂ-‘. [AY 7" # Ay * wavenany
. ¢ . f . .

bind g

LEGAL
commMAND ?

PARAMETER
EXPECTED ?

CALL GE&TTOK
T0 REBTURN THE
PARAMETER.

CALL CNVPAR
TO CONVERT PARM.
To A Numggic,

Y YES

ERROR

N (ON?VERS“N

TR

—————— s

\4{.1: 70 .‘,
R

COMMAND

bbd

Jo

L)

ik

QUTPUT EBRROR
MARKER FoR
COMMAND LINE

(D (O

START AUTONAMOUS
RuUN:

RNAUTO = TRUE,

O

94

i et I Ak ok kot e e M AL i . M % - e .

b AT s ki docn a1 e

m—hkas abaimmia #s

e e g e

p A s B = B u-1

5 Ama 5wy € sum— & o
+ . . B .

e |

(D

CALL T$ROVR TO
OUTPUT SToP
COMMAND TO ROVER.
SE&T RuN ModE
To MANUAL.

(D @

CRLL TSROVR T0
MALT THE RUN,

CLOSE THE Posr-
PROCESSOR FiLE,

SET RUN MooE
TO MANUVAL,

FORM FORWARD
COMMAND AN,

CALL TEROVR TD
OUTPUT 1" 70 ROVER,

95

Foee Aam Maes Guest ey

&l Meneg

cammtang
. v

[L]
’ s

£y

oot Bl Reeed

Y. Y]

SET RUN Modg
TO MANVAL,

VALID
PRARAMETER

FORM REVERSE
CoOMMAND AND

CALL TISROVA TO
OUTPUT IT TO ROVER)

SET RUN mopeE
TO0 MANUVAL,

s 4 i i il it W i L w g b -

96

PR TURN
COMMAND AND
CALL TIROVR 70
OUTPUT T TO ReVER,

il i

T TNt epre g
T

R ey Ry

-

[T]

6. - ——

& snoamuny . emany
. « . .

ot B B

el hemd Rady

END OF
AZIMUTH 7
(EoR)

YES

CALL THE
SEBLECTED
MODELLER.

CALL TwE
SELECTED
PSA,

CRLL TIROVR T0
EmPTY THE
SCAN BUPEER,
&RN ®wSCIN + |

.

RAREIMUTH =0
EOS= FALSE,

i

EVR =, FILSE,
v =, FA(SE,

97

INITIALIZE

[4

ConNvVERT THE
Time,

IMiT1ALIZE
ALL VARIABLES

INITVALISE
TimE
YARIABLES

b=

CoOMmpuTE AND
SAVE RELATIVE
Timeg,

READING

DATH ERROR ?

COMPUTE N :A0ing
AND SAVE,

%me

SET HEROING
ERROR RLAG

s st e Oy o

ek oM i ari i

Svm—— S S enamiy

e] € wanmny [
H . . . f

t

e e T e

=3
SBT PITCH
ORTHW ERRIR
FLAE,
SET RoLL
ERRWR ALAG.
COMPUTE AND
SAvE RoLlL
SET AXLE
zg_a:eé.eeak
CoOMPYTE AX A,
RoLL o Sd"'ee.
RESET BRROR
LG

99

"‘N&—l“--

v [4
’ “‘1 m’ l--l' ¢ e - — [[aP— & iy [X ey
. . - . . 1

LS |

| Cemivid

SPRED vE&s
DT BRROR 7 -
SET SPEED
ne BRI\ FLAG.

ComMPUTE SPERD

AND SAVE,
SET STEERING
ERCOR FLAG,

ComPUTE STRBRING
AAD SAVE,
RESET BRADR

l__

COMPUTE AND
SAVE X.Yand2
PosS\TiONS.

N

CounT NO, OF
LASER DATH LLL0RS
AND SEPRARATE
DATR IVTD JPPER

AL 5y e oam

Y

RETURN

10¢

ey [e »
' ' —-—- § atmrm— L - onmmntey

’.‘

ong gy

OVTPUT “rimEouT" messaeE,
SBND STOP ComMAND TV ROVER)

WRITE 4 T'mEO0UT RECRD T
THE POST-PRICESIOR FiL 8.

SAY TiIMEOJT FLAE ,TRVE,

OUTPVT "ov@RRUN “ masspes,

SE&r 8uA(1)=O

WNRITE AN NEBRRIN RELORD
TD THE POST-PROESSON. M E,

SE&T ovERRMWN FlAC,TRVE,

RETURA

®

f

ABMUTH =
AZMYTN + |

|

ovVTPeVUT Syt
mEss AND

SET VL s
TRVEL

OUTAVT *@on”
MBS LA AND
S&T &oR KLA¢

A
Lressaed Smod

se&r egs L6

A

WRITE A
PosT -PROCESSOR
RECORD

CALL. NAVIGF T
PERROAM DT
CONVERSIoN AND
NAVIGCAT 6N .

CALL SCREgN
70 0PLATE TV

DISPLAY, BuF(\al

RETURN

102

P

N G e aed g

L] B E— & m———

» ol
0

e L |

e S o o e g il T
103

G

<

NCHARSO

yes

IPTR=LEN

D0 Ism) ,x\.ln
IBVE(Z)=8LANK

l_.}

I=IrTR

el

L 4

T>uen [YES

I NO
RETUAN

CHAR ™
GCHRSA (BUF, 1)

— e —————— . -
»

5 wemremny

[] R oy
M ¢ ' .

‘ i e I e

T=2T+\
Ye&s

I>Len

-

IPTR2?
CHAR =
GCNRSA(BUF,T)

CHAR A
DELIMITER

RETVRN

NCHAR 3 NCHAR + |

CALL MCHRSA (TOUF, NCHAR,
8ve, T

104

L

s B S

rSa—y 9 § wanceg [A 7] ' Ml'

mnd Rl

GETCMD

4

WID22Wid=4

BVF(z) =
TBL(T,amd)

CMmbD= cmo=i
“lembp+l cmp YES
Swen [’
NO
v cmo=90
I=2)
=T+t
X >wipz S5 .
~no
RETURN

R
b
l 106 | 1
;|
1
i
!
q |
I JTER=0 ‘
[|
" 1 2 *
1.'
ELSE
I
j DECODE (¥, BUF)IVAL IER=1 DecoDE (#,BUF)RVAL
i_
g .
RETURN
]
]
P

&’

e e N e

ENTER =
JFALSE,

CALL

e T T T R N e ST T

107

IS THERE ANYTHING
IN THE K&YB0ARD

[

Ktvu&{:coo &)

YES

NO

CALL

auEmeR ?

GET A CHARACTER
FRoMm T™WE& ~&YGB0ARD

TIIN(BUF(N)Y

vEs BuE())

= LINGEEES T

ENTER =
+TRVE,

L

BUFFER,

CALL CURSOR (16,69, TER)
CALL TNOVA (BLAAIKS, inum)
0°° :3."*
IByF(T)= BLANK
kNUM =0
ENTER= FALS E,

ERASE THe&
CommAND BuFFER
AND RETURYY, :

kNU™ = IENUM + |
CHAR ™ MCHR$A(TEUF Knum BF 2)
CALL CURSOR (16, kNum +6 8, TER)
CAWL T™OVA (chare,!)

SAVE CHNARARCTER IN
THE COmmAand Buﬁr—‘s&,

OUTPYT IT TO THE SCREEN
AND LDOP BACK FOR MORE,

IR e i T

e

s

il Gy vy

,l"lfv'
Ginay

< »P‘A‘GE Ie
qu‘;{,]T};

SCREEN

UPOATE TRE
DASPLAY INCREMER
AND ouT PUT THE

CURRBNT TIME,

HeapinG YES

TA ERROR?
DATA K«
SET "ARKER
TO ERROR,
CLEAR THE
MARKER
OUTPUT THE
MARKER And
CULRENT HERDING,
PITCH - YES
DATA BRROR . ¥
SET mRKRER
™ &ERROR.
CLEAR Tys
MARKER

108

‘“"ﬂvm.,._,mr”..n“ - - s

g Aaamd NN Ga Qemg

£ amasng 4 g & nawews L] 6 e
¢ ' . '

"

o=

§ tur g
° .

OUTPUT TAE
MARKERAND

CURRENT AT

RoLk

v&$
DATA ERROR ?

bé

SET MARKER
To ERROR,

CLEAR THE
MARKER.

—

9

OUTPUT THE
MARKER AND
CURRENT ROLL

Y
OUTPUT TheE

CURRENT X
LOCLATION

-9

OUTPUT THE
CURRENT Y
LOCATION

X

SET MARKER
To EQRoOR

CLEAR THE
MARKER .

S T e R W Ty

o e —-

OUTPAUT THR
MARKER AND
cu:aenr AXLE

----—--—-—---uo-u—-—-,

YE&S
X
SET MARKRER
TO BRROR
CLEAR THE
MARKER
‘ .
OUTPUT THE
MARKER AND
CURRENT SPEED,
STEERIN YES
DATA BRROR ? p!
SET MARKER
l 70 ERROR
CLEAR THE
’, vARUCER,
e
I ‘
OUTPVT THE
-y MARKER AND
CURRENT STEBERIN

[A]
- v

T T e . . R IO R—— W—— & S
e . e T e —_— ~ — gt
ol e e

T - T
' 111
X
SET mARKER
70 SRR0R

OUTPVT ThE

PMARKER AND
NO. OF LASER
DATR ERRORS .

OUTPUT TNE
LAST COMmmAND
Lg/vrn RovER,

<

CALL MAP TO
’ UADRTE T &
MAP DiSPLAY

y

: RETURN

| JE Sy

55020 ¥-ovmand

H
kale el

H

Aaned B g

§ oamich [5 ey

Y&S

MM > 9
?

1

NO

- MNUM=0O

XPoS = XLOC(AZMITH)

112

/ GET THE ROVER'S X
POSITION O TnE MAP

»(50/MAPK)* ORIGX

YPoS= 2| - YLOC (ARMUTH)

/Ger THE RoveR'S Y
POSITION ON THE MAP,

#(20/MAPY) - O0R\GY

STILL OGN MAP
?

CALL CVRSOR (YP0S, X POS TER)
CHAR® oA (L5 (Mmum,3), 130240)
CALL TNOUA (CHAR,1)

MNUM = MNUM S |

/MOVE THE CURSIR Te TNG

PROPER POSITION, OUTPUT

Y

RETURN

AND UPDATE THE ROVER
MARKRER.

S

WU . oy . . R - A e S . o

i Gl g

CURSOR f

'q

GET Twe
‘. Row vALVE
I NO
. O<ROWS 24
i Yes

ADO OFPSET 70 ROW AND
SAYE IN FIRST BYT& oF

ROWCOL. GET CoLumN,

[R——

NO

113

CALL TWOUAR TO OUTPUT ESCBAU
AND Rowcol (movE cumsoRr).

S&r IEBR = ,~9LSE.

0<CoLMANS 30 oot

§
ADD GARSET TO COLUMN AND JTER =
SAVE /N SECOND BYTE oF RowCoL, JTRUE,

-

RETURN

w4

> ——

[YRR e

[P

	1980022222.pdf
	0023A02.JPG
	0023A03.TIF
	0023A04.TIF
	0023A05.TIF
	0023A06.TIF
	0023A07.TIF
	0023A08.TIF
	0023A09.TIF
	0023A10.TIF
	0023A11.TIF
	0023A12.JPG
	0023A13.TIF
	0023A14.TIF
	0023B01.TIF
	0023B02.TIF
	0023B03.TIF
	0023B04.TIF
	0023B05.TIF
	0023B06.TIF
	0023B07.TIF
	0023B08.TIF
	0023B09.TIF
	0023B10.TIF
	0023B11.TIF
	0023B12.TIF
	0023B13.TIF
	0023B14.TIF
	0023C01.TIF
	0023C02.TIF
	0023C03.TIF
	0023C04.TIF
	0023C05.TIF
	0023C06.TIF
	0023C07.JPG
	0023C08.TIF
	0023C09.TIF
	0023C10.TIF
	0023C11.TIF
	0023C12.TIF
	0023C13.TIF
	0023C14.TIF
	0023D01.TIF
	0023D02.TIF
	0023D03.TIF
	0023D04.TIF
	0023D05.TIF
	0023D06.TIF
	0023D07.TIF
	0023D08.TIF
	0023D09.TIF
	0023D10.TIF
	0023D11.TIF
	0023D12.TIF
	0023D13.TIF
	0023D14.TIF
	0023E01.TIF
	0023E02.TIF
	0023E03.TIF
	0023E04.TIF
	0023E05.TIF
	0023E06.TIF
	0023E07.TIF
	0023E08.TIF
	0023E09.TIF
	0023E10.TIF
	0023E11.TIF
	0023E12.TIF
	0023E13.TIF
	0023E14.TIF
	0023F01.TIF
	0023F02.TIF
	0023F03.TIF
	0023F04.TIF
	0023F05.TIF
	0023F06.TIF
	0023F07.TIF
	0023F08.TIF
	0023F09.TIF
	0023F10.TIF
	0023F11.TIF
	0023F12.TIF
	0023F13.TIF
	0023F14.TIF
	0023G01.TIF
	0023G02.TIF
	0023G03.TIF
	0023G04.TIF
	0023G05.TIF
	0023G06.TIF
	0023G07.TIF
	0023G08.TIF
	0023G09.TIF
	0023G10.TIF
	0023G11.TIF
	0023G12.TIF
	0023G13.TIF
	0023G14.TIF
	0024A02.TIF
	0024A03.TIF
	0024A04.TIF
	0024A05.TIF
	0024A06.TIF
	0024A07.TIF
	0024A08.TIF
	0024A09.TIF
	0024A10.TIF
	0024A11.TIF
	0024A12.TIF
	0024A13.TIF
	0024A14.TIF
	0024B01.TIF
	0024B02.TIF
	0024B03.TIF
	0024B04.TIF
	0024B05.TIF
	0024B06.TIF
	0024B07.TIF
	0024B08.TIF
	0024B09.TIF
	0024B10.TIF

