General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

TABLE OF CONTENTS

I

a contractor

I

attraction of the second

(united in a

1

1.0 × 4

4

14

.

		PAGE
1.0	INTRODUCTION AND SUMMARY	l
2.0	MATERIALS EXPERIMENT CARRIER/POWER SYSTEM THERMAL CONTROL	
	SYSTEM TRADE STUDIES	2
	2.1 Description of Candidate System Concepts	6
	2.2 System Concept Evaluations and Comparisons	13
	2.3 TCS Installation and Instrumentation	26
	2.4 Low Temperature Payload Concepts	30
3.0	MEC COOLANT LOOP FLUID TRADE STUDY	34
4.0	MEC TO EXPERIMENT THERMAL INTERFACE STUDY	42
5.0	MEC THERMAL CONTROL COATING REVIEW	54
6.0	THERMAL CONTROL SYSTEM TECHNOLOGY DEVELOPMENT	
	RECOMMENDATIONS	54
7.0	CONCLUSIONS AND RECOMMENDATIONS	60
8.0	REFERENCES	60

		PAGE
1	25 kW Power System Reference Concept	3
2	25 kW Power System Reference Concept Flow Schematic	4
3	Reference Concept Stowed Radiator Envelope	5
4	MEC Coolant Loop Schematic • • • • • • • • • • • • • • • • • • •	7
5	Design Requirements	8
6	Comparison Baseline System Simplified Schematic	9
7	Concept A - 37 kW PS Heat Rejection Simplified Schematic	10
8	Concept B - Split PS Loop Simplified Schematic	12
9	Concept B1 - Split PS Loop Simplified Schematic	14
10	Concept C - 9 kW MEC Radiator Simplified Schematic	15
11	TCS Weight Summary Comparison Baseline TCS	16
12	TCS Weight Summary Concept A	17
13	TCS Weight Summary Concept B & Bl	18
14	TCS Weight Summary Concept C	19
15	Hardware Considered in Cost Comparisons	21
16	Sample PRICE Input Data Worksheet	22
17	MEC/PS TCS Cost Comparisons (Using RCA PRICE Routine)	23
18	PS/MEC TCS Concept Comparison	24
19	MEC TCS Installation	27
20	MEC Coolant Loop Instrumentation	28
21	MEC TCS Instrumentation	29
22	MEC Coolant Loop Schematic - Lo Temp Payload	31
23	MEC Coolant Loop Schematic - Lo Temp Payload	32
24	MEC Coolant Loop Schematic - Lo Temp Payload	33
25	Fluids Considered in MEC Fluid Trade Study	35
26	Fluid Trade Study - Pumping Power Parameter Comparison	36
27	Fluid Trade Study - Heat Exchanger Performance Comparison	38
28	Fluid Trade Study - Heat Transfer Parameter Comparison	39
29	Fluid Performance i, Radiators	40
30	MEC Fluid Selection Study	41
31	Candidate MEC Configurations	43
32	MEC Integral Structure Payloads	44

LIST OF FIGURES (CONT'D)

		PAGE
33	MEC Cylindrical Payload Container with Fluid Interface	
	Heat Exchanger	45
34	Segmented MEC Payload Container with Fluid Interface Heat	
	Exchanger	46
35	Cylindrical Contact Heat Exchanger	47
36	Cylindrical Payload Container with 8 Segment Cylindrical	
	Cortect Heat Exchanger Externally Pressurized	48
37	Segment Cylindrical	
	Contact Heat Exchanger	49
38	Disc Shaped Contact Heat Exchangers in Octagonal Pattern	51
39	Disc Shaped Contact Heat Exchangers	52
40	Segmented MEC Payload Container with 8 Disc Shaped Contact	
	Heat Exchangers Mounted On A Cylinder	53
41	Power System/Payload Interface Heat Exchanger Weight	55
42	MEC Vehicle Coating	56
43	MEC Radiator Coating	57
44	Thermal Control System Technology Development Items	59

1.0 INTRODUCTION AND SUMMARY

The Materials Experiment Carrier (MEC) Thermal Control System Study was conducted by Vought as an add-on to the Study of Thermal Control Systems for Orbiting Power Systems (F3), Contract NAS8-33560. The study was conducted for NASA Marshall Space Flight Center. Jim Owen was the Technical Monitor and Ken Taylor acted as overseer of the MEC work.

A previous study (Reference 1) of MEC thermal control had been conducted under subcontract to TRW, Inc. This limited study concentrated on the MEC radiator design and conducted additional evaluations of centralized vs decentralized radiator location. The issue of decentralized MEC radiators vs centralized Power System radiators was addressed in that study with the conclusion that total weight to orbit could be minized by centralizing the radiators on the Power System even though the PS radiators operate at lower temperature than is possible for typical MEC heat loads. The type of MEC radiators, i.e. pumped liquid, all heat pipe, hybrid heat pipe, was also addressed with the conclusion that pumped liquid, bumpered tube radiators were the lightest weight.

As a result of that study, further MEC thermal control system work was defined under the current add-on effort to concentrate on systems trade studies comparing various methods of obtaining MEC thermal control. In addition to these trade studies, a fluid selection study for the MEC transport loop was conducted, and a study of the MEC thermal control loop interface with the experiments was performed. Methods of obtaining low temperature cooling for some of the MEC payloads were also considered. In addition, a review of available thermal control coatings for the MEC vehicle and potential high temperature MEC radiators was conducted. The results of all the work were then reviewed and items which would require further technology development were identified.

Four possible arrangements of the MEC and PS thermal control loops were defined which would provide symmetric heat rejection (i.e. one KW of heat rejection for each kW of power) to the MEC payload. These arrangements were then compared to the baseline reference concept which provides only 16 kW heat rejection. The comparisons were intended to show the cost of obtaining symmetry in terms of dollars, weight, complexity, growth potential, ease of integration, technology and total launch weight. The results of these comparisons was that the concept which splits the PS thermal control loop into two systems, one to reject PS waste heat and one payload waste heat.

appeared favorable. The low temperature payloads are best accommodated with a separate PS/MEC low temperature heat exchanger if a low temperature PS thermal control loop is available. If a high temperature split loop is used further study is required to determine the best method to meet this requirement.

2

The fluid selection study resulted in recommendation of FC72 as the MEC heat transport fluid based on the thermal and physical characteristics. FC75 and FC77 are attractive alternates.

The coatings review indicated anodized and alodine treated aluminum surfaces or silver teflon are the best choices for the MEC vehicle where durability is an important factor. For high temperature radiators silver teflon or Zinc Orthotitanate are recommended choices.

2.0 MATERIALS EXPERIMENT CARRIER/POWER SYSTEM THERMAL CONTROL SYSTEM TRADE STUDIES

The Thermal Control System (TCS) trade studies were conducted using the results of the previous study discussed in Section 1.0 and the 25 kW Power System Reference Concept defined in earlier efforts of this contract and documented in Reference 2. The reference concept which was used as a basis for these studies is illustrated in Figures 1 through 3. Figure 1 illustrates the radiator configuration. Ninc panels are deployed by a scissors type mechanism along the PS axis. The heat transport fluid (assumed to be R21) flows through 14 tubes manifolded at each end of the 182 x 80 inch panels. Each panel contains two identical flow passages. The nine panels are flow connected in parallel with flex hoses providing fluid transfer across the The reference concept TCS loop is shown schematically in folding joints. Figure 2. Completely redundant loops are provided with one loop operating at Two pumps operating simultaneously are required to provide the a time. required 6400 lbm/hr flow rate with a standby pump in each loop to provide component redundancy. The remaining components in the loop besides the radiators are a temperature control valve, GSE heat exchanger coldplates, three payload heat exchangers and three payload heat exchanger control The payload heat exchanger temperature control valves are present to valves. insure return temperature from the payloads does not exceed the 100°F limit The stowed radiator configuration for the of the design requirements. reference concept is shown in Figure 3 illustrating the proximity of the

25kW POWER SYSTEM REFERENCE CONCEPT

FIGURE 1

VOUGHT

POWER SYSTEM TCS SCHEMATIC

🕯 a doue 🛔

I

AL GROUP AND

Contraction of the

Contration of the

Supposed in the second

REFERENCE CONCEPT STOWED RADIATOR ENVELOPE

stowed radiators to the reference concept payload design envelope. The equipment considered in the assumed MEC coolant locp is shown schematically in Figure 4. Four experiment containers with 6 kW power requirements each are assumed. This is representative of the "nominal" MEC vehicle from the TRW MEC Vehicle Studies described in Reference 3. The MEC electronic equipment requires 1 kW of power and heat rejection for a total of 25 kW. Redundant pumps are provided for reliability but a single loop used since the Reference 1 studies indicated the required reliability of 0.99 could be achieved with a redundant component approach. A temperature control valve is provided to accommodate the large temperature difference between the MEC and PS loop. This valve will provide a constant return temperature to, and heat transfer from, the MEC loop through a payload heat exchanger designed to transfer 16 to 25 kW at a much lower temperature difference for other payloads.

The objective of the system trades was to define alternate methods of obtaining 25 kW heat rejection for a MEC vehicle and compare them with the baseline system which provides 16 kW heat rejection. This comparison, along with comparisons of the alternatives were conducted to define the best methods of meeting the MEC requirements. Figure 5 contains the MEC requirements developed in this study for use as groundrules and guidelines in the concept definition and comparisons. Using these requirements four system concepts were defined and evaluated.

2.1

DESCRIPTION OF CANDIDATE SYSTEM CONCEPTS

Figure 6 shows a simplified schematic of the comparison baseline system. This system represents a combination of the reference concept TCS of Figure 2 and the MEC coolant loop of Figure 4. The payload heat rejection is that of the reference concept (16 kW) as is the total heat rejection (28 kW). Only 15 kW is available for MEC experiment heat rejection rather than the 24 kW indicated in the design requirements. The remainder of the concepts are configured to provide 25 kW payload heat rejection, a total of 37 kW total heat rejection. The desciption of the concepts will be given in terms of differences from the comparison baseline.

Concept A

A simplified schematic of Concept A is shown in Figure 7. This concept achieves the additional heat rejection by adding four additional

Bellen Bauftennen

Number of the

All restaurants

*

• •

MEC COOLANT LOOP SCHEMATIC

÷

FIGURE 5 DESIGN REQUIREMENTS

HFAT LOADS:

Electronics 1 kW Total Payload 24 kW (Full Sun Orbit - 65 kW?) Each Payload 6 kW

TEMPERATURES:

Electronics Coldplate Outlet = 100°F (38°C) Processing Equipment Outlet = 300°F (150°C)

POWER SYSTEM INTERFACE:

Upper (+Z) or Left (+X) PS Berthing Port Liquid-to-Liquid 16 kW Heat Exchanger Power System Supply Temperature = 35°F (2°C) Max Return Temperature = 100°F (38°C)

MEC/PAYLOAD THERMAL INTERFACE

Payload Changeout On-Orbit at 90 Day Intervals TMS or Orbiter RMS Payload TCS - Coolant Loop or Heat Pipes

POWER SYSTEM/MEC ORBIT (RADIATOR SINK TEMP):

235 N.M. Solar Inertial, X-axis Perpendicular to Orbit Plane, Z-axis Parallel to Sun Mine, Beta Angle 0°-90°

PELIABILITY:

No single Point Failure Will Result in Loss of Mission. Fail-Safe Probability of Survival = 0.99

LIFE:

MEC - 30 days to 1 year Payloads - 90 days maximum

<u>IOC</u>:

First Quarter 1986

GUIDELINES:

Design to low cost - utilize Orbiter technology.

ĺ
1)
I
I
and the second s
🚽 - othe Newson (C.o.)

COMPARISON BASELINE SYSTEM SIMPLIFIED SCHEMATIC FIGURB 6

MEC LOOP

PS LOOP (REDUNDANT LOOP NOT SHOWN)

I

and the subscription

A station

. .

. .

FIGURE 7 CONCEPT A - 37 kW PS HEAT REJECTION SIMPLIFIED SCHEMATIC

radiator panels on the reference concept configuration. The radiators are assumed to be of the same design as the reference concept radiators. A higher flow rate will be required to support the increased heat rejection while maintaining the same loop temperatures. Pump performance curves of the pumps originally considered for the reference concept, indicate the increased flow can be obtained by two pumps operating in parallel as was the case for the comparison baseline. No changes were made to the MEC Thermal Control System loop from the comparison baseline other than to increase the flow rate to accommodate the increased heat load.

Concept B

A simplified schematic of Concept B is shown in Figure 8. This concept increases the payload heat rejection in the Power System by spliting the loop into separate payload and PS thermal control systems. The PS loop uses four of the nine radiators to reject the 12 kW of PS waste heat and provide the required 35°F return from the radiators. The payload loop temperatures are not limited and are allowed to increase to the maximum possible (approximately 81.7°F payload heat exchanger inlet and 290°F This configuration will provide more than 25 kW payload heat outlet). rejection from the remaining five radiators since they are operating at a much higher temperature than in the comparison baseline case. Low temperature heat loads at the reference concept levels of 16 kW can be accommodated by operating the payload loop at lower temperatures. A variable set point temperature control valve is provided which can be adjusted to the desired payload heat rejection temperature for either high temperature MEC payloads or low temperature payloads. The maximum operating temperature of the radiators is approximately 290°F which is above the 250°F limit of the orbiter panel type design being considered for the reference concrpt panels. A new, high temperature radiator design would therefore be required for Concept B. Since the heat loads are lowered for each system the flow rate requirements are reduced from the comparison baseline. The Concept B flow rates can be achieved with one "Orbiter" type pump. Dismissing the requirement for two simultaneously operating pumps enhances the reliability and makes it possible to achieve the 0.99 level with redundant systems without a standby pump in The MEC loop differs from the comparison baseline in that the each.

requirement for a temperature control value is removed since this function is performed by the variable set point temperature control value in the PS payload thermal control loop.

Concept B1

Since Concept B required design of a new radiator panel, Concept Bl shown in Figure 9 was conceived which is identical to Concept B except that the maximum temperature is limited to 250°F so all radiators can be of the same design. The PS part of the split loop is identical to Concept B. The payload loop differs from Concept B only in removal of the requirement for the high temperature radiators lower operating temperatures. Payload heat rejections greater than 25 kW are still possible with the lower 250°F payload heat exchanger outlet. The MEC coolant loop is the same as for Concept B except limiting the radiator inlet temperature results in lower MEC operating temperature. The MEC loop operates over a 260 to 52°F range for Concept B1.compared to 300 to 92°F range for the other concepts.

Concept C

Concept C is illustrated in the schematic of Figure 10. This approach utilizes an additional, high temperature radiator in the MEC coolant loop to achieve the additional 9 kW heat rejection necessary to provide MEC the required 25 kW. As shown in Figure 10, a 74 ft² radiator is located in the MEC coolant loop directly downstream of the experiment heat exchangers reduces the payload heat exchanger inlet temperature to 225° F from 300° F. The only other difference between Concept C and the comparison baseline is the addition of a diverter value to bypass the MEC radiator when additional heat rejection is not necessary.

2.2 SYSTEM CONCEPT EVALUATION AND COMPARISON

The five configurations described in 2.1 were analyzed to provide data for evaluations and comparisons. Weight and cost evaluations were conducted then the concepts evaluated for complexity, ease of integration, potential growth, technology requirements and total launch weight.

Weight Evaluations

The component and total weight of the Thermal Control System are given in Figures 11 through 14 for the Comparison Baseline, Concept A, Concepts B and Bl and Concept C respectively. The weights were obtained,

VOUGHT 1288 1bm/hr 35°F	3112 lbm/hr GSE HEAT EXCHANGER	TEMP. RADIATORS (9) 28 ki CONTROL CONTROL CONTROL Ki	-93.5°F	- 84.3°F	6400 lbm/hr R/L PS LOOP (REDUNDANT LOOP NOT SHOWN)		
	. 35°F	PS EQUIPME		.100°F			GURE 10
ACCUMULATOR (1)	ACCUMULATORS (6)	P/L HEAT EXCHANGER 16 kw	QUICK DIS CONNECTS	1490 lbm/hr FC72	ERTER VALVE		F]
	91.7°F -	TEMP. CONT. VALVE(1)			ON/OFF DIV	OP	
MEC EQUIPMENT	-100°F	EXPERIMENT	EXCHANGERS (4) 24 ku	- 300°F 225°	MEC MEC 74 ft ² 9kW	MEC TO	

CONCEPT C - 9kW MEC RADIATOR SIMPLIFIED SCHEMATIC

I

FIGURE 11 TCS WEIGHT SUMMARY COMPARISON BASELINE TCS

POWER SYSTEM

•	RADIATORS (WITH DEPLOYMENT FIXTURES AND HOSES)	1883.0 LBm
•	TEMPERATURE CONTROL VALVES (2)	8.0
•	GSE HEAT EXCHANGER	17.0
•	PAYLOAD HEAT EXCHANGERS (3)	96.0
•	PUMPS (6)	32.4
•	ACCUMULATORS (2)	37.8
•	LINES (2 LOOPS)	127.0
•	OLICK DISCONNECTS (12)	24.0
•	OUICK DISCOMNECT ACCUMULATORS (6)	30.0
•	COLDPLATES (50 ORBITER TYPE)	425.0
		2680.2
•	PUMPS (2)	10.8
•	ACCUMULATOR (1 REDUNDANT DESIGN DRY)	9.5
•	COLDPLATES (3 ORBITER TYPES)	25.5
•	EXPERIMENT HEAT EXCHANGERS (4 SHUTTLE PAYLOAD HX)	131.2
•	TEMPERATURE CONTROL VALVES (2)	8.0
•	LINES	31.8
		216.8

MEC

TOTAL - 2897.0 LBm

Î

I

I

l

]

FIGURE 12 TCS WEIGHT SUMMARY CONCEPT A

POWER SYSTEM

	•	RADIATORS (WITH DEPLOYMENT FIXTURES AND HOSES)	2608.0 LBr
	•	TEMPERATURE CONTROL VALVES (2)	8.0
	•	GSE HEAT EXCHANGER	17.0
		PAYLOAD HEAT EXCHANGERS (3)	96.0
		PUMPS (6)	32.4
		ACCUMULATORS (2)	37.8
	•	LINES (2 LOOPS)	127.0
		QUICK DISCONNECTS (12)	30.0
	•	QUICK DISCONNECT ACCUMULATORS (6)	30.0
	•	COLDPLATES (50 ORBITER TYPE)	425.0
			3411.2
,			
M			
	•	PUMPS (2)	10.8
	•	ACCUMULATOR (1 REDUNDANT DESIGN)	9.5
	•	COLDPLATES	25.5
	•	EXPERIMENT HEAT EXCHANGERS (4)	131.2
		TEMPERATURE CONTROL VALVES (2)	8.0
		LINES	31.8
			216.8

MEC

TOTAL - 3628.0 LBm

İ

Ī

I

ļ

I

l

1

1

1

I

J

I

I

FIGURE 13 TCS WEIGHT SUMMARY CONGEPT B & B1

POMER SYSTEM

	•	RADIATORS (WITH DEPLOYMENT FIXTURES AND HOSES)	1964.0	LBI
	•	TEMPERATURE CONTROL VALVES (2)	8.0	
	•	VARIABLE SETTING TEMP CONTROL VALVES (2)	50.0	
	•	GSE HEAT EXCHANGER	17.0	
	•	PAYLOAD HEAT EXCHANGERS (3)	96.0	
	•	PUMPS (6)	21.6	
	•	ACCUMULATORS (2)	37.8	
	•	LINES (2 LOOPS)	139.7	
	•	QUICK DISCONNECTS (12)	24.0	
	•	OUICK DISCONNECT ACCUMULATORS (6)	30.0	
	•	COLDPLATES (50 ORBITER TYPE)	425.0	
	•		2813.1	
MEC				
	•	PUMPS (2)	10.8	
	•	ACCUMULATOR (1 REDUNDANT DESIGN)	9.5	
	•	COLDPLATES	25.5	
	•	EXPERIMENT HEAT EXCHANGERS (4)	131.2	
	•	TEMPERATURE CONTROL VALVES (2)	8.0	
	•	LINES	31.8	
			216.8	

TOTAL - 3029.9 LBm

FIGURE 14 TCS WEIGHT SUMMARY CONCEPT C

POWER SYSTEM

	RADIATORS (WITH DEPLOYMENT FIXTURES AND HOSES)	1883.0	LBm
•	TEMPERATURE CONTROL VALVES (2)	8.0	
•	GSE HEAT EXCHANGER	17.0	
	PAYLOAD HEAT EXCHANGER (3)	96.0	
•	PUMPS (6)	32.4	
•	ACCUMULATORS (2)	37.8	
•	LINES (2 LOOPS)	127.0	
	QUICK DISCONNECTS (12)	24.0	
•	OUICK DISCONNECT ACCUMULATORS (6)	30.0	
•	COLDPLATES (50 ORBITER TYPE)	425.0	
		2680.2	
MEC			
	RADIATOR	74.0	
•	DEPLOYMENT SYSTEM	40.0	
•	PUMPS (2)	10.8	
•	ACCUMULATOR (1 REDUNDANT DESIGN)	9.5	
•	COLDPLATES	25.5	
•	EXPERIMENT HEAT EXCHANGERS (4)	131.2	
•	TEMPERATURE CONTROL VALVES (2)	8.0	
•	ON/OFF DIVERTER VALVE (2)	8.0	
	LINES	31.8	
•	FLEX HOSES (2)	4.0	
		342.8	

3023.0 LBm

TOTAL -

where applicable, from the Reference 2 study. Other weights were generated from actual hardware where available or from similar hardware. Except for the radiators, mounting and structural attachment hardware were not considered in the weight evaluations.

Cost Evaluations

Comparative cost evaluations were performed for the five The objective of these evaluations was to obtain data to compare concepts. the relative costs rather than a determination of the total dollar costs of the systems. As a result, all of the components of the systems were not considered in these cost evaluations. Notable exemptions from the cost comparison were heat exchangers, coldplates and flow lines except for the flex hoses associated with the radiator system. These items are the same in all of the concepts in both number and design and therefore their omission will not affect the cost ccmparisons of the concepts. Figure 15 contains a list of the hardware which was considered in these cost evaluations.

This cost evaluations were performed using the RCA PRICE routine. This routine computes cost of individual components based on a set of inputs illustrated by the sample Input Data Worksheet shown in Figure 16. Given the number, weight and type of component the key input to the PRICE Routine is the Manufacturing Complexity. Where possible, this input was used from the Reference 2 analysis. In that study many of the complexities were generated using a feature of the PRICE Routine (called ECRIP) allowing input of actual costs for hardware and giving complexity as an output. These complexity figures can then be used for similar hardware.

In addition to the components, costs are calculated for the integration and testing of system. The final results include development and production costs of the components and costs of the system integration and test.

Results of the cost comparisons are shown in Figure 17 for the five concepts evaluated.

Concept Comparisons

A summary of the comparisons of the five concepts is given in Figure 18. The Comparison Baseline weight was 2897 lbm. The highest weight concept of the four 25 kW Payload Heat Rejection systems was the 13 Radiator

ľ

ľ

Wittenstratie (B

A submitted of the state of the

Alertandor and a second

Lineastero d

¶r-11746an-nagasates∰

In constraint the second
FIGURE 1> HARDWARE CONSIDERED IN COST COMPARISONS

	DACELTNE DC	CVCTEM	SYSTEM	I SYSTEM
HARDWARE	+ MEC TCS	CONCEPT A	CONCEPT B	CONCEPT C
	σ	13	4	6
RADIATOR PANEL - REGULAR PS	•) . ł		
RADIATOR PANEL - HI TEMP			S	1
PLIMP / MOTOR	80	8	9	œ
ACCUMULATORS	ñ	m	S	'n
TEMPERATURE CONTROL VALVES	m	£	7	m
TEMPERATURE CONTROL VALVES - VARIABLE SETTING			7	
ON/OFF DIVERTER VALVE				7
FLEX HOSES	40	56	56	42
DEPLOYMENT MECHANISM - MULTIPLE PANEL	T	1	T	п
DEPLOYMENT MECHANISM - SINGLE PANEL				

HE 0 0

Input Data Worksheet Basic Modes

File neme: Sheet of

RB

**PRICE 84 (This must be used only as the first line of the file.)

litie:					Drte:
General A	Production Quantity QTV	Prosstypin PROTOS	Weight (Ika) WT	Volume (h ²) VOL	NODE
General B	Charactery/Next Higher Assembly QTYNHA	NHA Imagration Etastronis INTEGE	Factore Structurel INTEQS	Specification Level PLTFM	Chandler View Cape of Annual State
Mechanical/ Structural	Structure Weight WS	Monufacturing Complexity MCP1.XS	New Stusture NEWST		
Electronics	Electronics Weight/It ³ WECF	Monufacturing Complexity MCPLXE	Now Electronics NEWEL	Replict	Constitution Const
Development	Conseption Stort DETART	1st Prototype Complete DFPRO	Development Complete DLPRO	Engineering Complexity ECMPLX	Testing A That Brunks differs differs Contents C
Production	Production Start PSTART	First Article Delivery PFAD	Production Complete PEND	Cost Process Factor CPF	Testings Test Basily PTLGTS RATCOL
Additional Data (Mode 10)	Electronic Volume Fraction UBEVOL	Structural Weight/H ³ WBC F	Target Cust TARCET		
Notes:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	FIGURE 16	SAMPLE PRIC	CE INPUT I	DATA WORKSHEE	TT
					EASIC MODES 1 E/M ITEM 2 MECHANICAL IT 6 MODIFIED ITEM

Note: Inputs in shaded area are optional.

I

Ī

I

I

I

I

The subscription of the su

and the major is

J

Į

J

1

Ţ

I

J

FIGURE 17 MEC/PS TCS COST COMPARISONS (USING RCA PRICE ROUTINE)

CONCEPT C (MEC RADIATOR)	4.430	.526 .350	.418	.113 1.779	.109 .36 4 .286 .992 .565	1.233	11.451
CONCEPT B1 (SPLIT LOOP CURRENT RADIATOR DESIGN	4.430	.440 .355	.418 2.451	.152 1.779	.364	1.165	11.663
CONCEPT B (SPLIT LOOP WITH HI TEMP RADIATORS	3.409 3.941	.440 .355	.418 2.451	.152 1.779	. 109	1.163	14.581
CCNCEPT A (MORE LO TEMP RADIATORS)	5.200	.350	.418	.141 2.049	. 109 . 286 	1.467	10.910
COMPARISON BASELINE	4.430	.350	.418	.113 1.779	.109 .364 .286	1.165	9.540
	POWER SYSTEM RADIATOR PANLLS-REGULAR RADIATOR PANLLS-HI TEMP	PUMP/MOTORS ACCUMULATORS	TEMP CONTROL VALVE VARIABLE TEMP CONTROL	FLEX HOSES DEPLOYMENT MECHANISM	MEC ACCUMULATORS PUMP/MOTORS TEMP CONTROL VALVE DIVERTER VALVE RADIATOR PANEL-HI TEMP DEPLOYMENT MECHANISM	INTEGRATION AND TEST	TOTAL

í.,

	IATORS)	2 1.Bm 8	Q	ONENTS	T ON PS	SURPACE.	F ADDI-				12.8/MEC KORE PER CH
	(MEC RAD	2680. 342.	3023.	20 COMP 3 SVST	NO IMPAC	FRUM MEC	DEPLOY O	PROM MEC	NEED HIG	11.45	2680 + 34 126 LBm P LAUN
CONCEPT BI (SPLIT LOOP-OME	RADIATOR DESIGN)	2813.1 LBm 216.8	3029.9	17 COMPONENTS 5 SYSTEMS	MUST TRANSFER 4	IST 4 PNL FOLDS.	WILL ACCOMMODATE UP TO 37 kW AT	MAX 250°F TEMP.	CURRENT PS	11.663	2813.1 + 216.8/ MEC LOWER THAN C AFTER 1 MEC
(SPLIT LOOP-HI TEMP	RADIATORS REQUIRED)	2813.1 LAm 216.8	3029.9	17 COMPONENTS 5 SYSTEMS	MUST TRANSFER 4 FLUID SYS ACROSS	IST 4 PANEL FOLDS.	WILL ACCOMMODATE UP TO 43 kM AT HI	TEMP ENALURES	NEED HIGH TEMP RAD PANELS	14.580	2813.1 + 216.8/MEC LOWER THAN C AFTER 1 MEC LAUNCH
(ADD MORE LO TEMP	FUNER SISTEM KAULATORS)	3411.2 LBm 216.8 1574 6		16 COMPONENTS 3 SYSTFMS	REQUIRES VIOLATION OF BASELINE ENVELOPE.		LITTLE WITH CURRENT PS DESIGN		CURRENT PS	110.01	3411 + 216.8/MEC LOWER THAN C AFTER 5 LAUNCHES
COMPARISON BASELINE		2680.2 LBm 216.8 2897.0		3 SYSTEMS	BASELINE		RESTRICTS MEC TO 16 kW		SA INTRAL AS	9.539	2680 + 210.8/MEC LOWEST
		- NEC TOTAL	TTIXELEN T		EASE OF INTEGRATION			ECHNOLOGY		UNPARATIVE COST \$M (PS + MEC TCS)	OTAL LAUNCH WEIGHT

FIGURE 18 PS/MEC TCS CONCEPT COMPARISON Panel Concept (Concept A) which was 731 lbm heavier than the Baseline. The other four concepts were equivalent in weight from 126 to 133 lbm heavier than the baseline.

An indication of the system complexity is indicated by the number of components and independent systems in each concept. The MEC Loop Radiator Concept (Concept C) requires the most components (20 compared to 16 for the baseline), however, the Split Loop Concepts (Concepts B and B1) have two more systems than the other concepts. The 13 Radiator Panel Concept (Concept A) is equivalent to the baseline.

Consideration of the ease of integration of the concept into the PS/MEC combination indicates significant integration problems for the 13 Panel Concept (Concept A) since it requires addition of four radiator panels. Figure 3 illustrated the lack of room for additional panels while remaining within the reference concept envelope. Unless the envelope can be relaxed by allowing the panels to be wider than the reference concept 182 in. (see Figure 1) or the vehicle will allow more stack height, the addition of more radiator area will pose a significant integration problem. The Split Loop Concepts (Concepts B and B1) require the transfer of 4 fluid systems across the 1st four folding joints in order to flow both primary and redundant systems to the five independent payload heat rejection panels. The MEC Radiator Concept (Concept C) has no impact on Power System integration but a space for a radiator in the MEC loop must be provided along with a deployment mechanism. It would seem that the Split Loop Concepts and the MEC Radiator Concept (Concepts B, Bl and C) are roughly equivalent in ease of integration with the 13 Panel Concept (Concept A) posing potentially significant problems.

There is little growth potential for the comparison baseline or the 13 Panel Concept (Concept A) if higher power levels are achieved by orbital or operational maneuvers. The Split Loop, High Temperature Concept (Concept B) will accommodate up to 43 kW of high temperature payload heat load and the Split Loop 250°F Limit Concept (Concept B1) up to 37 kW without modification. The MEC Radiator Concept (Concept C) could accommodate higher payload heat rejections with the addition of more MEC radiator panels.

Comparative costs were roughly equivalent for the 13 Panel Concept, the Split Loop 250°F Limit Concept, and the MEC Radiator Concept

(Concepts A, Bl and C) indicating a cost of from \$1.37 to \$2.12M to upgrade the payload heat rejection to 25 kW from the 16 kW of the reference concept. The Split Loop High Temperature Concept (Concept B) indicated a \$5 million increased cost.

Total launch weight (weight of the vehicles times the number of times the vehicle will be launched) is less after five missions for the 13 Panel Concept (Concept A) which launches raditors only once over the MEC Radiator Concept (Concept C) which launches the radiators each time the MEC is launched. The Split Loop Concepts (Concepts B and Bl) are lower than the MEC Radiator Concept (Concept C) in total launch weight if the MEC is ever launched again after the initial launch.

The results of these systems trades indicate a 250°F limit, split loop arrangement such as Concept Bl is an attractive method to accommodate 25 kW MEC heat loads while providing full 16 kW to low temperature payloads. Significant growth potential and flexibility to accommodate payloads other than MEC are also positive features of this type of system. If total launch weight is not an important consideration, putting radiators in the MEC loop appears to be approximately equivalent in these trades to the split loop. The financial burden for providing the additional heat rejection is placed on the Power System program for the Split Loop Concept (Concept Bl) while the MEC Radiator Concept (Concept C) puts the burden on the MEC project.

2.3

TCS Installation and Instrumentation

installation typical TCS on one of the MEC vehicle A configurations from the Reference Study is shown in Figure 19. This layout was used in the weight comparisons in determing line lengths for the MEC TCS. Three coldplates were assumed for the MEC electronics and a nominal size flow equipment package from existing Shuttle hardware also assumed. Figure 19 shows the location of this equipment on the outside of the MEC vehicle in the approximate scale of the assumed sizes.

The instrumentation for the MEC TCS that is recommended to provide experiment information and monitor system health and operational status is illustrated in Figures 20 and 21. Temperature measurements are located at the outlet of each experiment heat exchanger in order to determine waste heat production of the experiments. The three temperature measurements at the

FIGURE 19 MEC TCS INSTALLATION

Autor Council

ļ

1

Summer Section

T-Hallington

I

I

I

I

I

I

Ţ

1

1

1

I

1

I

I

I

FIGURE 21 MEC TCS INSTRUMENTATION

-	1						
RESOLUTION 8 BITS	0.43 deg/bit	•			0.78 psi/bit	26 lbm/hr/bit	N/A N/A N/A N/A
VOLTS @ SENSOR	2.78 to 7.18	•	•		0 to 10	0 to 4.46	ហហហហ
SAMPLE RATE	1 scm/sec				•		
DEVICE	KEYSTONE 'LINISTOR' MODEL 104/20				CONRAC 451315/200	CONRAC 4716/5	RELAY SWITCH
.ou	Ч	4	2	г	7	г	нана
MEASUREMENT	CONTAINERS INLET TEMPERATURE	OUTLET TEMPERATURE EACH CONTAINER	CONTROL VALVE INLET TEMPERATURES	CONTROL VALVE OUTLET TEMPERATURE	PUMP INLET & OUTLET PRESSURE	FLUID FLOW	STATUS SIGNALS-PUMP 1 ON PUMP 2 ON LO FLOW FAULT

inlet and outlet of the PS Payload heat exchanger monitor the operation of the temperature control valve and verify PS payload heat exchanger heat transfer. Pump inlet and outlet pressures and system flowrate provide pump operation data and can signal a pump failure to initiate switch to redundant pump. Status signals indicating which pump is operating and if a fault signal has been activated provide data on the TCS operational status. Figure 21 also shows recommended instrumentation hardware with the sample rate, output signal and resolution for the signal.

2.4 Low Temperature Payload Concepts

There is a possibility that certain of the MEC Biological experiments will require cooling at a lower temperature than those assumed in the Design Requirements shown in Figure 5. Some cooling at about 40°F can be required. Methods of meeting these cooling requirements while also cooling the higher temperature experiments were investigated.

Since the reference concept PS delivers 35°F fluid to the payload heat exchanger an attempt was made to use the low temperature out of the heat exchanger prior to mixing to the 91.7°F required for the high temperature cooling. In order to operate the heat exchanger at the higher payload temperatures the minimum heat exchanger outlet is 54°F as showr in Figure 22. The cooling available to the experiment is therefore significantly greater than the desired 40° F. A second approach to low temperature cooling is illustrated in Figure 23. A separate heat exchanger is used to provide the low temperature only to the experiment where it is needed. The experiment cooling loop could be used to provide the fluid flow for these cases so another fluid loop would not be required. This approach, however, would not be possible if the split loop arrangement with high temperatures in the payload loop (Concept B) were used. The Split Loop 250°F Limit Concept (Concept B1), however, could be used if the payload heat exchanger outlet were further limited to provide a lower radiator outlet.

Two other approaches are illustrated in Figure 24. Cooling is provided by a vapor compression or a thermoelectric refrigeration system which rejects heat to the higher temperature MEC loop. The required power input of the experiments is increased as indicated to 8 kW for the vapor compression and 18 kW for the thermoelectric in order to operate the refrigeration

I

I

Ĩ

Construction of the second

Contracting (seattheory)

Bring Blendersteiner u. M

t one is ware the

140 - 14

10000-000

Burning

MLC COOLANT LOOP SCHEMATIC - LO TEMP PAYLOAD FIGURE 22

!

I

Ţ

Construction and

Munuta Balancia

Invitindiate of the

H = 1000

.

In the stream

R Course of

systems. These power requirements assume the entire 6 kW heat load requires the lower temperature. If only a small amount of low temperature cooling is required the thermoelectric approach might be more attractive due to the simplicity and inherent reliability of this approach.

3.0 MEC COOLANT LOOP FLUID TRADE STUDY

1

FRINGHILL

Piercelling.

ŝ

The high operating temperatures of the MEC TCS result in different fluid requirements than for the Orbiter or Power System. R-21 is the fluid used in the Orbiter ATCS and was assumed for the PS Reference Concept, however, R-21 recently has been discovered to be considerably more toxic than previously thought. A recommendation is currently under consideration to reduce allowable levels in inhabited areas from the current 1000 parts per million to as low as 10 ppm. In addition, there is no current supplier of R-21 in the U.S. or, as far as can be determined, Europe either. R-21 vapor pressure at 300° F is 475 psi which could possibly prohibit use of Orbiter components in the MEC loop with R-21. For these reasons a trade study to investigate other fluids for the MEC loop was initiated.

The fluids considered in the trade study are listed in Figure 25, along with their key properties over a range of temperatures from 100° F to 300° F. Consideration was limited to fluids for which properties data was available from previous studies and fluids with critical temperatures above 300° F.

Three combinations of the candidate fluids' thermophysical properties were calculated and compared over the 100°F to 300°F temperature range. The first of these was the pumping power parameter:

$$p^2 cp^{2.75}$$

Where: μ = viscosity ρ = density Cp = specific heat

This parameter, plotted in Figure 26, indicates the relative power required to transport a given amount of heat using the fluid, thus, higher numbers indicate more power required and lower numbers less power. The second combination is the heat transfer parameter for turbulent flow:

$$\frac{k^{1/5}}{Pr^{7/15}}$$

Where: k = thermal conductivity Pr = Prandtl Number 34

FIGURE 25 FLUIDS CONSIDERED IN MEC FLUID TRADE STUDY

÷. [.

. [

S-manifestime

١,

<u></u>	VATCH	CRITTICAL		LENELTT		L/L	C1716 1	EAT.		SCOLITY	-	TREDUC		CTIVITI	
Putto	# 300*F	1997 - 1997 1997 - 1997	100*5		100 T	100*5	200 7	300 7	100 -	200 7	300 7	100%	200 7	300 7	70.07
71808 81	675	353	83.6	74.2	62.5	0.260	0.304	0.364	0.694	0.530	0.417	0.0%3	0.043	0.027	-12.1
2000W 77	300	360	90.2	10.9	68. T	0.214	0.220	0.246	0.905	0.496	0.350	0.0485	0.035	0.084	-168
71808 11452	177	418.1	131.0	121.1	110.4	0.166	0.172	0.178	1.500	0.925	0.645	0.0260	0.0203	0.01483	-166.8
71800 113	111	417.4	95.8	66.7	75.6	0.232	0.248	0.283	1.346	0.763	0.300	0.419	0.0353	0.0287	- 11
PC 72	364.4	358.4	102.0	93.0	83.6	0.260	0.283	0.307	1.365	0.721	0.454	0.0324	0.0266	0.0251	-130
77 77	61.9	483	108.9	100.5	91.7	0.253	0.205	0.299	2.703	1.247	0.693	0.0362	0.0335	0.0306	-264
PC 104	61.9	Liú	107.3	98.6	89.9	0.297	0.279	0.301	2.539	2.347	0.662	0.0363	0.0337	0.0310	- 85
PC 75	56.1	640	106.0	99.8	90.5	0.253	0.276	0.299	2.763	1.277	9.702	0.0364	0.0340	0.0314	-126
PC 40	32.4	530	113.6	1.5.2	98.5	0.2525	0.274	0.295	7.487	1.853	0.503	0.0368	0.0386	0.0383	- 70
PC 43	6.6	577	114.9	107.0	99.3	0.2525	0.274	0.295	7.993	2.075	0.647	0.0390	0.0307	0.0385	- 54
PC 70	1.7	638	119.2	112.6	105.9	0.2595	0.279	0.299	29.12	5.677	2.675	0.0413	0.0410	0.0409	- 13
THENGINGL 66 (NOD BETER)	0	77 355	62.4	59 .3	56.8	0.360	0.430	0.480	67.8	10.10	3.750	0.0703	0.0687	0.9670	0 °
THEREBOL 55	0	77 355	54.8	¥2.4	50. 1	0.472	0.522	0.572	61.5	10.30	4.09	0.0784	0.0753	0.0734	- 30 .
SERVICE 44	0	17 405	57-1	د. مز	51.5	0.476	0.508	0.542	8.05	2.34	1.07	0.0806	a.0760	0.0709	- 80
DC 111 SILICONE	0	77 400	57.7	54.6	51.ó	0.489	7 طبة . 0	0.467	10. 50	8.046	4.002	0.0763	0.0711	0.0654	-148
NYDRAULIC FLUID GROWITE 72773	0	77 420	54.T	52.5	50.4	0.450	0.496	0.545	156.H	15.63	8.79	0.0725	0.0697	0.0670	- 35
611001/WATER 62.5 / 37.5			66 .0	63.0	59.5	0.745	0.840	0.900	7.8	2.50	1.75	0.217	0.206	0.180	- 80
DOVTREDM A TREDUCIOL VP-1	<1 A2M	URE 20 750	65.27	62.46	59.5	0.368	0.426	0.463	6.29	2.57	1.40	0.0605	0.0765	0.9725	54
DOWZNERM G	<1 ATM	USE TO	68.0	65.24	60.59	0.395	0.480	0.454	36.20	7.00	2.90	0.755	0.0742	0.0725	29. h
DOWINGING J	<1 ATM	USE TO 572		51.470			0.470*			1.069*			0.0738		-100
COOLABOL 258	0	77 325	>5.0	52.6	49.7	0.659	0.516	0.57E	9.18	3.56	2.03	0.0753	0.0721	0.0688	-120
COOLABOL 35	0	77 350	54.6	51.5	18.6	0.459	0.507	0.560	14.77	5.00	2.45	0.0158	0.0714	0.0690	-320
COOLMOL 45	0	USE TO	55.2	52.5	49.9	0.459	0.507	0.560	34.27	8.76	.83	0.0770	0.0729	0.06	- 85

This parameter, plotted in Figure 27, indicates the efficiency which the fluid can effect forced convective heat transfer in turbulent flow. The third combination is a heat exchanger performance parameter derived in a previous study (Reference 4):

 $\frac{k^{2/3}cp^{1/3}p^{1/2}}{\mu^{1/6}}$

This parameter, plotted in Figure 28, indicates the efficiency with which a fluid will effect heat transfer in a typical compact heat exchanger core.

In addition to these comparisons the fluid performance in a pumped liquid radiator was investigated. Optimum radiator designs were generated for each fluid for a radiator rejecting 9 kW with a 300° F inlet and 100° F outlet temperature. The area, weight, required flowrate and radiator pressure drop for these radiator designs are shown in Figure 29.

From these studies five fluids were selected which indicated superior properties for the MEC applications. A comparison of these five fluids is given in Figure 30. The selected fluids were Freon 21, 60/40 mixture of Glycol Water, FC72, FC77 and FC75. The limitations and problems of R-21 have already been discussed. Glycol/water problems with aluminum at high temperatures make it less attractive although its other characteristics are The three FC fluids which are manufactured by 3M Company, are excellent. fully flourinated hydrocarbons, thus avoiding practically all of the usual Freon problems (toxicity, incompatibility, damage to ozone layer). Of these three the most attractive for this application is FC72. Although the vapor pressure is higher, it is at an easily manageable level at 300°F. Its heat transfer properties are superior to FC77 and 75. It is, however, only marginally better than FC75 and if other considerations, such as existing qualified hardware, favored FC75 over FC72 then they would override the small differences in performance identified in this study. There are no known space qualified FC72 or FC75 flow components such as pumps, valves, accumulators, etc. Qualification of existing R-21 hardware with these fluids would seem plausible and desirable rather than development of new components. Nothing in this study indicated the R-21 components could not be used with FC72 or FC75.

I

I

I

I

I

Į

J

I

and the second second

Ţ

I

FIGURE 29 FLUID PERFORMANCE IN RADIATORS

		WE	[GHT OPT]	IMUM DESIG	Z
	*	WEIGHT	AREA	FLCW	۵P
	FLUID	(TBm)	(FT ²)	(LBm/HR)	(ISI)
1.	ORONITE 6294	165.1	161.3	302.4	15.9
2.	FREON 21	106.3	103.6	539.2	8 . 5
С	FREON 11	108.3	104.0	715.8	7.8
4.	FREON 114B2	116.2	110.1	952.6	11.6
ى	FREON 113	109.9	106.1	559.2	9.5
6.	FC 72	109.9	107.0	579.2	11.7
7.	FC 77	114.0	114	557.2	16.7
8.	FC 104	113.7	103.5	587.2	15.7
.6	FC 75	114.1	110.6	548.2	18.3
10.	FC 40	119.3	116.8	560.6	23.3
11.	FC 43	123.6	118.7	560.6	29.2
12.	FC 70	213.2	207.0	585.5	25.5
13.	THERMINOL 66	169.4	161.5	380.8	17.0
14.	THERMINOL 55	162.0	155.6	313.9	16.7
15.	THERMINOL 44	155.1	155.4	322.6	9.8
16.	DC 331	166.0	159.3	366.4	15.9
17.	ORONITE 7277B	170.5	160.4	329.6	18.8
18.	GLYCOL WATER	l15.5	117.5	194.9	9.4
19.	DOWTHERM A	155.4	155.0	384.6	10.2
20.	DOWTHERM G	161.4	156.7	390.4	16.1
21.	DOWTHERM J	110.7	110.5	326.9	13.8
22.	COOLANOL 25	159.9	158.6	317.4	13.2
23.	COOLAIAOL 35	162.4	159.1	323.2	14.1
24.	COOLANOL 45	163.7	157.7	323.2	16.9

I

I

I

The structure for the second

- Andreasester

Section of the

Auffeige and an and

T

(and a strength

S. connection

and the state of the

and a second second second

and the second se

Bit Person and and

Ţ

FIGURE SU MEC FLUID SELECTION STUDY

						NUK NADIA N POR 9	FOR KW			-
					T ₁₁₆ =300	Tour	1.00			ILNT.
	PRESSURE		TT TT TT TT TT	JHTOd	AREA (FT2)	WEIGHT (ILBm)	4P (P81)	HANDLING	NATERIAL COMPATIBILITY	BAFING
FILLID	475	TOXICITY	NON	-212	103.6	106.3	8.5	SPECIAL HANDLING REQUIRED	CANNOT USE SOME ELASTOMERS	8
GLTCOL/WATER	101	NON	FLANNABLE	- 80	117.5	115.5	9.4	NO SPECIAL RANDLING	PROBLEM WITH AL	1
PC 72	164.4	NON	NON	-130	107.0	109.9	11.7	NO SPECIAL HANDLING	SMELLS SOME ELASTOMERS, COMP OTHERMISE	M
F C 77	61.8	NON	NON	-166	111.4	114.0	16.7	NO SPECIAL HANDLING	ELASTONERS, CONP CTARENS, CONP OTHERNISE	•
PC 75	56.1	B	NON	-126	110.6	114.1	10.3	NO SPECIAL RANDLING	BNELLS BONE ELAPTONENS, CON OTHERTSE	•

FC 72, LOWER &P, BETTER OVERALL HEAT TRANSFER, LOWER RADIATOR WEIGHT, NON TOXIC, GOOD COMPATIBILITY, LOW FREEZE POINT **RECOMMENDAT ION:**

4.0

MEC TO EXPERIMENT THERMAL INTERFACE STUDY

A design study was conducted to investigate two approaches to the MEC to experiment thermal interface. The two approaches were fluid-to-fluid compact heat exchangers and a mechanical interface contact heat exchanger. The two candidate MEC vehicle configurations shown in Figure 31 were assumed. These were the two configurations selected in the Reference 3 configuration study. The experiment container configuration was assumed to be that shown in Figure 32. The container is structurally integrated with the vehicle and the experiment payload elements are separable. One of the MEC configurations provides a cylindrical experiment container, the other a trapezoidal container.

From this study, three different types of configurations were developed. Each type of configuration is shown in the cylindrical MEC payload container and again in the trapezoidal segmented payload container.

Figures 33 and 34 illustrate a fluid interface heat exchanger. The heat exchanger used for this configuration is a derivative of the shuttle orbiter interchanger. The envelope dimensions used are the same as the Shuttle Orbiter design except the MEC system uses only one coolant loop from the MEC system and one coolant loop for specimen cooling rather than the two dual redundant cooling systems used in the Shuttle Orbiter interchanger. Quick disconnects have been mounted on the heat exchanger package to provide for automatic engagement of the MEC experiment coolant system when it is installed. Guide rails or a similar alignment system is required for installation of the experiment coolant system to insure proper engagement of the quick disconnects. A reservoir is installed with the heat exchanger to provide for thermal expansion of the experiment system fluid trapp-d in the heat exchanger when the experiment coolant loop is disconnected.

Figures 35 through 37 present an 8 segmented cylindrical contact heat exchanger configuration. Figures 35 and 36 show this configuration installed in the cylindrical payload container. The mating experiment heat exchangers shall be cylindrical in shape and made to fit inside of the MEC system heat exchangers shown. When the experiment system is used, the MEC system cylinder is pressurized with 300 psia nitrogen which causes it to clamp down on the experiment heat exchanger. To provide the pressure chamber for the eight heat exchanger segments, the segments are tied together with a thin stainless steel diaphragm of one convolution between each segment. The MEC

Ì

I

I

I

I

and the second second

T

1. Second second

FIGURE 31 CANDIDATE MEC CONFIGURATIONS

LOWER MEC STRUCTURAL WEIGHT **ADVANTAGE:**

- REMOVE AND REPLACE PAYLOAD AND/OR SAMPLE STORAGE SERVICING: ON-ORBIT ELEMENTS 4.
- PAYLOAD INTEGRATION AND CHECKOUT PARALLEL TO MEC INTEGRATION . Э.
- ~ ~

APPROACH

- PAYLOAD ELEMENTS INTEGRATED AT PAYLOAD CENTER (MSFC OR PAYLOAD CONTRACTOR FACILITY); PLACED INTO A SHIPPING CONTAINER. SENT TO MEC/PL "NTEGRATION SITE.

INTEGRAL PAYLOAD ENCLOSURE (LOAD CARRYING)

MATCHING RAILS

HINGED LID

SEPARABLE PAYLOAD ELEMENTS

I

-Jackweise

(Internetations of the

SUPPORT MODULE

PROCESSING MODULE

STORAGE

SAMPLE

GUIDES

BACK PLANE

10月1日にしたいないたいとうので、「おいころ」と、「また、10月1日」というであり、「おいろ」というであり、「おいろ」というであり、「おいころ」というであり、「おいろ」というであり、

Î

FIGURE 53

VOUGHT

l

I

I

I

Non-Party and a

FIGURE 35 CYLINDRICAL CONTACT HEAT EXCHANGER

-toning

 FIGURE 36

CYLINDERICAL PAYLOAD CONTAMER WITH B SEGMENT CYLINDRICAL CONTACT HEAT EXCHANGER EXTERNALLY PRESSURIZED

payload container is the outside wall of the pressure chamber. The fluid manifolds are mounted on the outside of the MEC payload container as shown. Each short tube connecting the MEC coolant manifold to the heat exchanger contains a single bellows convolution to allow for motion of the heat exchangers during clamping actuation. This system maintains a 300 psig force over the interface contact surface of the heat exchangers. It also requires that the MEC payload container be sealed for 300 psig nitrogen pressure where it is used as part of the pressure chamber around the heat exchanger.

Figure 37 shows a cylindrical heat exchanger of the same type installed in the trapezoidal segmented MEC payload container. In this configuration, the speciman heat exchanger would also fit inside of the MEC system eight segmented cylindrical heat exchanger. The 33 inch outside diameter of the cylinder used to pressurize the heat exchanger just fits adjacent to the bottom and two sides of the payload container.

Vought is presently developing and testing cylindrical contact heat exchangers similar to the configuration shown here.

Figures 38 throuh 40 show a pattern of eight flat round contact heat exchangers mounted on a cylinder. This system is similar to the eight segmented cylindrical system except it permit, the use of conventional round bellows in place of the cylindrical diaphragm. It would require less development and be less expensive than the cylindrical type.

Contraction of

adding the second

As illustrated in Figure 39, each heat exchanger is connected to the payload container by a conventional single convolution bellows assembly. Likewise the coolant supply and return lines, which are mounted on the ouiside of the payload container, are connected to each heat exchanger by a tube having a single convolution bellows. The cavity behind the heat exchanger is pressurized by a 300 psig nitrogen source through a supply fitting from a manifold line on the outside of the payload container. The mating experiment contact heat exchangers are mounted on a cylindrical drum which installs inside of the ring of MEC coolant system heat exchangers. An even distribution pressure on the flat contact heat exchangers is maintained by use of a lightweight cylindrical backup structure.

Figure 40 shows a similar configuration of eight round flat heat exchangers mounted in the trapezoidal segmented configuration MEC payload contaier. In this configuration a cylindrical drum would be required to mount

I

and not the state of

Lively de la constant.

Li Sundistan

to the area

di menerati

E unitation of

Same and the Second

the heat exchangers rather than the MEC payload container as the outer part of the nitrogen pressure chamber. The 42 inch diameter drum is tangent to the sides of the payload container and leaves a 6.5 inch space at the bottom for installation of controls and interface plumbing.

As illustrated in Figure 41, for a 9kW design, contact heat exchangers are considerably heavier than conventional compact designs. These studies indicate the additional volume and complexity involved. If the convenience of the contact mechanical joint is desired from operational considerations, the disc shaped approach appears to be the design with the least technical risk. Contact heat exchangers will require a technology development program. Compact heat exchangers require development of a quick disconnect which accommodates the "dead head" fluid on the experiment side of the heat exchanger.

5.0 MEC THERMAL CONTROL COATING REVIEW

A review was conducted of available thermal control coatings for both the MEC vehicle and MEC radiators. A summary of the vehicle coatings review is shown in Figure 43. For the MEC vehicle where handling and durability is of prime importance the recommended coatings are the anodized and alodine treated aluminum surfaces. An alternate where greater stability of optical properties is required is silver or aluminum backed Teflon. These coatings are easily cleaned. For the MEC radiator applications silver backed Teflon or Zinc Orthotitanate are recommended. Some development on adhesives for greater than 250°F temperatures would be required if the silver Teflon is used. The Zinc Orthotitanate will require flight qualification and development of specification and is costly to process. Both of these coatings, however, have good optical properties stability in orbital conditions.

6.0

n and a second

THERMAL CONTROL SYSTEM TECHNOLOGY DEVELOPMENT RECOMMENDATIONS

The results of these studies were reviewed to identify items which will require technology development. A list of the items identified are shown in Figure 44. The items which require development will depend on MEC program decisions on the TCS cofiguration ultimately selected.

16 kW

HEAT EXCHANGER EFFECTIVENESS

FIGURE 42 MEC VEHICLE COATING

ľ

I

1

ļ

]

APROX.	¢	ę	0.02 gm/148	0.01 gm/12	ę	د هر، در	
SPECIFICATION	Kone – lab process erlsts APML Lab	Boeing, fi ight experiment	la prepertion Bochweil	Tes, Nocime11	Tes, MIL Spec	Roy head made at coddard or CE	
PRI OR USE	Kone requires lab work 6 spec prepar- ation	(%) III expt.	orbiter herðvare	Orbiter hardware	Orbiter Pegasue	ISEZ spece- craft	
CDST- MAT'LS/ INSTALL.	nil muterial moderate labor	stailar to sulphuric acid	\$10/400 ft moderate labor; conven- tional apray paint	\$70/4/0 ft ² moderate Labor; conven- tional spray	nil meterial low labor	l'hknown lab quant- ittes only at present high	
REFT TRISH FENT PETHOD	Tank strip 6 tank electro- proceas details; hard to refinish assembled details; alodine touch up for email defects		Brush or apray touch up auch filght if necessary	Brush touch up	Brush on assemblica; dip or brush on details	Un labown	
EASE OF CLEANING	Excellent solvent vipe	Projected good	Excellent solvent vipe	Zxcellent solvent vípe	Excellent solvent vipe	Veitr deionized water	
HAMDLEABILITY	Face 1 en t	Projected good	Excel 1 ent	Excellent resiste R-21	Good; cam be acratched	cond expect ground	
L'ISTALL. Frocess Apptadyce	Tank electro- process- modified sul- phuric acid	Armonium Lartarate anodize 1199 Al	Spray paint white polyurethane binder	Sprey paint Breen	Brush or dip; mottled streaky appearance- tan	Spray paint yellow, ZnO + Al ₂ O ₃ + CO ₃ O ₄ , binder binder	P
THEPPAL VACUUM STABILITY	Zarellent	Lucellent	 40.129CM 41.027ML afterbake 	 12704 0.12701 1.027701 afterbake 	Escellent	Excellent afterbake	tam be justi
HAX. USE TEM.	4,05£		200 L	350°F	350°F	300 ⁰ F	
MORMAL. EMITTANCE	0.75	X	9 C	8. .0	0.35-0.50	06.0	ef ur bi olmen
SOLAR ABSORP- TANCE	0.15 2015 - 0.1 -0.2 @ 700 ESH	0.12 0.12 0.15 1500 155H	7.22 Ar 0.15 after 1000 hrs, solar low solar low orbit	0 . 38 Un kacem	8-95- 0.09	0.55 64 - 5 0-0.02 (1000 E5A	
COATINC	Clear Anodise Alusinum	Barrier Layer Amodic	A-276	Ko ropon 515-700	Chromate Conver- aicn Alurinum (Alodine)	NS55F Inorganic Yellow Costing Staric C'unge (C'dderd)	Any of apecialis, coatings from PEC Radiator Study if c

I

I

I

I

I

J

e D

FIGURE 43 MEC RADIATOR COATING

Weday	VEIGHT	0.2 m/12² Heavy	0.215 m/1n² Heavy	4	ę	0.02 a /12 ²	0.01 gm/1a ²
	8.700	37		38	25.4	동철교	
PRION	1 93	Orbiter Hardmare Numerous Satellit	Orbiter Rada- P/L Bay door liner, Kumerous	Satellitt Grbiter Rads, Door Side YCA bese plate,	Hous - Requires Lab work	orbiter Hardware	Orbiter Hardwere
MATTERIAL/	TIRTAL.	\$400/20 ft ² high labor 45 min pot life-very short	\$1400/33 ft ² high labor	nil Mati. low labor	nil Matl. Moderate Labor	\$100/400Pt ² Moderate Labor	\$70/400 ft ² Moderate Labor
REPURB	NETHOD	Brush	Hand Layup- Labori- ous	Brueh	Tank Strip a Tank Electro	Bruch or Spray Touch Up	Brush Touch Up
EASE OF	CLEMING	Pair Solvent Wipe	Fair Solvent Wipe	Excellent Solveat Wipe	Excellent Solvent Wipe	Excellent Solvent Wipe	Excellent Solvent Vipe
IIAN DIEABILITY-	DURABILITY	Feir-Chips easily 0.010 inches thick	Scratches Scratches easily; de- grades in solar radia- tion after scratching	Good-Can be scratched	Excellent	Excellent	Excellent After Solar Radiation, Resists B-Zl
INSTALLATION PROCESS -	APPEARANCE	Spray Faint	Hand layup autoclave cure-silver	Brush or Dip-Mottled Streaky ap- pearance- tan	Tank electro- process-modi- fied sulphur- ic acid	Spray Paint White, poly- urethane Binder	Stray Paint Green Epoxy Binder
THERMAL	TTTTTTTTTT	THE SO'L >	 0.1\$ VOH 1.0\$ TML 1.0\$ TML after bake 	Ercellent	Excellent	 0.1% VCM 1.0% TML after bake 	 6.1% VCM 1.0% TML after bake
MAXIMUM HIGE TEVE		300 0 F	250°F or 300°F 1f use 350° cure	350°F	350 °F	4 0007	350°F
NORMAL BALTTANCE		0.64 spec 0.69 typ	0.80	0.35-0.5	0.75	9.0	0.6
SOLAR ABSORPTANCE		0.22 spec 0.17 typ 0.1 typ 0.1 500 ESH (51 35, 050-111)	600 EJH 600 EJH 6000 EJH	0.05-0.15 4a/e = 0.09 e 1000 ESH	0.15 4a = 0.1 - 0.2 @ 700 ESH	0.22 $\Delta a = 0.15$ after 1000 hrs solar radiation	0. j8 da Unknown
ONTING	0 0000	07-:)FTe	dilver Teflon Embossed	Chromate Conversion Aluminum (Alodine)	Anodize Aluminum Aluminum	A-276	Koropon

FIGURE 43 (CONT'D)

l

and the second second

Ben-disk Kaple

and and the second s

-

• • • • • • • •

-

•

MEC RADIATOR COATING

APPROX.	Econy	Trice that of 2-93, beary	0.036 1b/ft ²	Approx. 0.04 1b/ft ²
3		Base at 2-53 fc : Pricess: Pignet	Po, Tech Man 75 06 eff es 16 P anaile	
	ISI	AF Sat. by Aero- space = 0.17 a = 0.24 after 1 yr GBO prbit	DSO-R. INE-R. MIS-b. Apollo experi.	Numerous Apollo Nadiator
COBT MATERIAL/ INSTAL.	Unimown-lah quantities only at present high labor	Hand Made Pigment by LITRI High Labor	Hand Made Pigment by ILASA Coddard High Labor	Hand Made Pigment by IITRI High Labor
REFURB	Unknown	Strip 6 Bre- Spray No Brush- ing	Brush Touch Up	Brush Touch Up
EASE OF CLEANING	Fair - Deionized Water	Not Cleanable	Unknown- Wrap in Poly Beg to Pro- tect, Iight Sending to Clean	Not Cleanable
HANDLEABILITY- DURABILITY	fair, expect ground do	Fourd An	Fair, expect ground do, 3 yr shelf life	Poor, An = 0.05 on ground
INSTALLATION PROCESS - APPEARANCE	Spray Paint Yellov/White ZuO + Al2 ⁰ 3 Silicate Binder	Spray Faint White Potas- sium silicate binder	Sprey Paint White, 200 + Al203 + T1- 02; Potessium silicate	Bpray Paint Zinc Oxide, Potessium Silicate
THERMAL VACUUM STABILIZE	Excellent After Bake	Excellent	Excellent	Excellent
MAXIMUM USE TIBUP	300 0 F	4°003+	+500°F	4 009+
NORMAL BALTTANCE	0.92	0.88		0.9
BOLAR ARSORPTANCE	0.20 0.20 0.20 0.20 0.20	0.14 As = 0.01 after 5000 hrs, low orbit,0.10 inches thick	a/e = 0.19 = 0.23 a.a/e = 0.01 030-H @ 80000 ESH	0.17 Ag = 0 6 2500 ESH
MATTING	WS43C Inorganic Yellow Coating- Static Charge Re- lief (Goddard)	Zinc Ortho- titanate (Zn2TI04) (Marshall)	MS-74 (Goddard)	2-93

ľ

· North Party of the Party of t

art dhuaisinneachaile

Britter Manuals of P

- manufacture of

A Harvestanding

Margan Hillson

- welling

THERMAL CONTROL SYSTEM TECHNOLOGY DEVELOP MENT ITEMS FIGURE 44

RADIATORS

● HIGH TEMPERATURE (≥ 250⁰F) RADIATOR COATINGS

FLUID LOOP

- CERTIFICATION OF COMPONENTS FOR USE WITH FC72 AT HIGHER TEMPERATURES
- VARIABLE SET POINT TEMPERATURE CONTROL VALVE

INTERFACES

- ZERO LEAKAGE HIGH FLOW QUICK DISCONNECTS WHICH ACCOMMODATE DEAD HEAD FLOW PATH THERMAL EXPANSION
- MECHANICAL INTERFACE CONTACT HEAT EXCHANGERS

EXPERIMENTS

SOURCE OF LOW TEMPERATURE COOLING FOR BIOLOGICAL EXPERIMENTS

7.0 CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations resulted from this study:

- Adding four additional radiator panels to the existing PS reference configuration will provide 25 kW payload heat rejection capability but will violate the current reference concept envelope.
- 2. A split loop Power System TCS will provide high flexibility and some growth potential at a competitive cost if radiator panel temperatures are limited to 250°F.
- 3. A radiator on the MEC vehicle will meet the requirements at a competitive cost but results in a higher total weight to orbit after one MEC launch.
- 4. The split loop arrangement appears favorable and should be considered to meet MEC and similar heat rejection requirements for payloads.
- 5. Low temperature cooling is best provided by a separate low temperature heat exchanger if the low temperature fluid is avaiable. More study is recommended to define the best method if the low temperature fluid is not available.
- FC 72 fluid is recommended for the high temperature MEC loop.
 FC75 is an alternative.
- 7. Payload thermal interfaces can be integrated into either candidate MEC vehicle configuration with contact or fluid/fluid compact heat exchangers. Both will require technology development items.

8.0 REFERENCES

- Materials Experiment Carrier Payloads Heat Collection and Rejection Subsystem Concept Definition Study, Vought Report No. 2-53020/0R-52462, 15 June 1980.
- "Study of Thermal Control Systems for Orbiting Power Systems",
 Final Briefing, 15 May 1980. (Contract NAS8-33560)
- 3. Materials Experiment Carrier Concepts Definition Study Final Report Volumes 1 - 5, Contract NAS8-33688, TRW Report Nos. MPS.6-80-285 through MPS.6-80-289, October 1980.
- 4. Alternate Fluid Trade Studies for the Orbiter Active Thermal Control Subsystem, Vought DIR 2-30320/ODIR-02, March 1980.