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SUMMARY

Waves may be generated in a wind-tunnel test section for various rea-
sons. It is possible that certain frequencies of waves may be amplified
because of resonance. A theory that uses acoustic impedance concepts for pre-
dicting resonance modes in a two-dimensional, slotted-wall wind tunnel with a
plenum chamber is described. The equation derived is shown to be consistent
with known results for limiting conditions. The computed resonance modes com-
pare well with appropriate experimental data. When the theory is applied to
perforated-wall test sections, it predicts the experimentally observed closely
spaced modes that occur when the wavelength is not long compared with the
plenum depth.

INTRODUCTION

Various phenomena may give rise to waves in the flow in a wind-tunnel test
section. BAmong these phenomena are the oscillations of an airfoil, the motion
of the compressor fan blades, and random fluctuations associated with flow
turbulence. It is possible that certain frequencies may be amplified as a
result of resonance that arises because of the geometry of the test section and
the plenum and because of the flow boundary itself.

The influence of the plenum chamber on resonance phenomena in ventilated
wind-tunnel test sections has been studied both theoretically and experimen-
tally, as reported in reference 1. The experimental arrangement described in
reference 1 included a small, two-dimensional test section with a box-like
plenum chamber. This arrangement does not closgely resemble those used in most
operating wind tunnels, but the results obtained with this basic device have
nevertheless provided valuable insight into the nature of wind-tunnel resonance
phenomena and have provided a useful set of experimental data.

The analysis presented in reference 1 includes the derivation of equations
for the resonance modes for both slotted- and perforated-wall test sections.
Various combinations of steady-flow and unsteady-flow boundary conditions were
used to derive the equations. The equation for the slotted-wall case yielded
an inconsistent Mach number variation. Therefore it was discarded, and the
perforated-wall equation was applied to the slotted-wall condition. This
procedure gave much better agreement with the data than did the analysis of
reference 2, which used only steady-flow boundary conditions.

The present analysis of slotted-wall test-section resonance is based on a
somewhat different approach than that of reference 1. Tt uses the concept of
the acoustic impedance of the test-section boundary and relies entirely on
unsteady~-flow considerations. The resulting equation for the resonance modes
is characterized by a slightly different Mach number variation than that given
in reference 1, and it contains the slotted-wall parameter rather than a per-



forated-wall equivalent of it. Furthermore, the consideration of the possibil-
ity of an inductive effect of the plenum air for the higher modes appears to
resolve some of the previously found discrepancies with experimental data.

SYMBOLS

In all calculations, length dimensions are nondimensionalized in terms of
the wind-tunnel semiheight.

A coefficient (see eq. (5))

B coefficient (see eq. (2))

b nondimensional slot spacing

c speed of sound

D nondimensional plenum-chamber depth
f cyclic frequency, kHz

>y
|

2 2 4
B k1D\}1 - M“/B
i = -1

k wave number

L nondimensional slotted-wall parameter
M Mach number

n integer index

o) local pressure, Pa

R reflection coefficient

r open ratio of slotted wall

s parameter, k1 cos a1

t time, sec

U wave phase velocity along the boundary
v stream velocity

v velocity component in y direction
X,¥Y coordinates in direction of stream and normal to stream, respectively



z acoustic impedance of boundary

a angle that wave-propagation vector makes with direction normal
to free stream
B = fr-m2
¢ acoustic velocity potential
¢o = exp[ik,(x - Ut) sin a1]
o] air density
w circular frequency, rad/sec
Subscripts:
1 flow side of boundary
2 chamber side of boundary
b boundary
c plenum chamber
i incident
r reflected
T refers to waves pattern in test section
t transmitted
ANALYSIS

Basic Considerations

For the purpose of studying resonance phenomena, a two-dimensional model
spanning a wind-tunnel test section with slotted top and bottom walls is
assumed. (See fig.: 1(a).) The plenum chamber, which is not shown in fig-
ure 1(a), is assumed to have solid walls parallel to the top and bottom boun-
daries of the test section. The oscillations of the model are forced by an
external driver.

Although the waves emitted by a two-dimensional model tend ultimately to
become cylindrical waves propagating outward at all angles from the model, only
the part of the wave surface that propagates in certain critical directions
contributes to the resonance condition. This effect is illustrated in fig-
ure 1(b) (which is similar to fig. 3(a) of ref. 1). Resonance occurs when a
segment of the wave front returns, in phase, to the driving source after



reflection from the boundary. This condition is obtained only when the
upstream component of the sound velocity exactly equals the stream velocity, so
that the ray path is always perpendicular to the stream direction. (See

fig. 1(b).) That is, if a is the angle of propagation relative to this per-
pendicular direction, then sin a = M.

In order to determine the combinations of frequency and stream Mach number
for which resonance occurs, the change in phase of the wave (at the wall) must
be calculated. This phase change is determined by the acoustic impedance of
the boundary.

Calculation of Boundary Impedance

For the purpose of studying the wall impedance, a plane wave incident at
angle o on a wall situated at y = 0 will be considered. The velocity
potential for such a wave (see ref. 3) can be written as

¢i = exp{ik1[y cos a, + (x - Vt) sin o, - ctl} (1)

1 1

The wave reflected from the boundary has, in general, a different amplitude:

¢r = (1 + B) exp{ik1[—y cos a_ + (x - Vt) sin a, - ctl} (2)

1 1

When a wave propagates through a slotted wall in the absence of a flow,
the wall has the effect of a uniform acoustic inductance on the wave as it
appears some distance from the wall, provided that the slot spacing is small
compared with the wavelength (ref. 4). On the other hand, when a wave is inci-
dent on an interface of relative motion in the absence of a wall, then, depend-
ing on the magnitude of the relative velocity and the angle of incidence, it
may be totally reflected or it may be partly reflected and partly transmitted
with refraction. For the latter situation, the refraction angle o and the
wave number k in the outside stationary air are determined by the conditions
of compatibility of the waves at the boundary (see ref. 3):

c csc a1 + V = ¢ csc a2 = U (3)

and

k1 sin a1 = k2 sin a2 = kb (4)

where k,, and U are the wave number and the phase velocity of the boundary
displacement.



When both a slotted wall and a flow interface exist coincidentally, a wave
is propagatéd through this boundary when the conditions represented by equa-
tions (3) and (4) can be satisfied. At some distance from the wall, the wave
will appear to have been transmitted through a homogeneous boundary, with a
definite phase velocity U along the boundary. The wave will also be subject
to a definite phase change consistent with the known acoustic inductance effect
of the slotted wall (refs. 4 and 5). The velocity potential of the transmitted
wave will therefore be

= . . - 5
¢t A exp[lkz(y cos a, + x sin a, - ct)] (5)

If the region outside the flow boundary is not infinite in extent but is a
chamber with a solid wall at a distance D beyond the ventilated boundary,
then, in order to satisfy the boundary condition at the solid wall, the solu-
tion for the waves in the chamber must contain a term representing the wave
reflected from the solid boundary in addition to that for the transmitted wave:

= 3 + 1 -
¢c A exp[lkz(y cos a, x sin a, ct)]

+ A exp{ikz[—(y - 2D) cos a, + x sin o, - ctl} (6)

At the boundary y = 0, the acceleration of the air through the wall is
proportional to the pressure difference across the wall:

3
Pi+Pr-pc—23—y(pi+pr+pc) (7)

where the slotted~wall parameter £ is

L= (%) 1n csc (%5) (8)

The condition that the slopes of the streamlines be the same on both sides
of the boundary yields the equation

SRR

1
U - dy =Ty (9a)

or, with equation (3)



3(¢i + ¢r) 09

. c
qQ - . a — 9
sin a, 5y sin a, 3 (9b)

Define ¢O as follows:
= 3 - : o
¢o exp[1k1(x Ut) sin 1] (10)

Then, at the wall (y = 0),

p, = -P 3¢ ik, pcd (11a)
L o= - -3— = i a
i t e, 1 o)

where the subscripted vertical bar indicates that the quantities y and
X - Vt are held constant in the differentiation. Similarly,

o]
[l

(1 + B)ik1pc¢o (11b)

and

4e]
1

i i o +
Alkzpc[exp(ZDJ_k2 cos 2) 1]¢o (11c)

Differentiating these equations yields the following expressions:

9p, 5
i
Sy —k1 pc cos a1¢o (12a)
Pr_ (1 + Bk 2pc cos a_¢ (12b)
dy 1 170
and
apc 2
35—-= —pAk2 c cos a2[1 - exp(2D1k2 cos a2)]¢0 (12¢)



Substituting equations (11) and (12) into equation (7) yields

i + - i + i o
pc1k1(2 B)(bo pc1k2[1 exp(2D1k2 cos 2)]A¢o

2 2 .
= pc%k1 cos a1B¢o - chk2 cos a2[1 - exp(2le2 cos a2)1A¢o (13)

Computing the derivatives in equation (9b) from equations (1), (2), and (6)
yvields

s in a o - in o a _ . a
1k1 sin 1 cos 1B¢o 1k2 sin 2 cos 2[1 exp(ZDJ.k2 cos 2)]A¢o (14)
The coefficient A can be eliminated between equations (13) and (14) to give

sin 2a1 1 + exp(2Dik2 cos a2)

+ + i
k‘)(2 B) lk1 sin 2a2 1 - eXp(ZDikz cos a2)

sin o, cos
1 1

B + £k1k2 sin az B (15)

= 2k2 cos a1

Equation (15) determines the impedance 2z, which is given by

z _1+R (16)
ipc 1 - R

where the reflection coefficient R is 1 + B. Thus

s+ B sin 2a
z
= = a
ipc -B sin 2&2 cot (Dk2 cos 2)
sin a1
- - 17a)
2<k1 cos @, + k2 cos @, ——— %, (

In terms of k1, z can be written

sin 2a sin a1
= cot (Dk, cot O_ sin a1) - % k1 cos a1 + k1 cos G1 —_—

ipc sin 2a2 1 2 sin az

(17b)



Equation (17a) (or, similarly, eqg. (17b)) is the formula for the boundary
impedance. For various limiting conditions, equation (17a) reduces to known
results. For o >+ 0 and M *> 0, it reduces to the results given in refer-
ence 5. If the outside plenum wall is removed, the exponential term in equa-
tion (11c), which represents the wave reflected from the plenum wall, is
absent. Consequently, the cotangent in equations (17a) or (17b) is replaced
by i, yielding the result given in eguation (25) of reference 6 for the
impedance of a slotted wall at a flow interface.

Derivation of Equation for Resonant Modes

Equation (17a) (or (17b)) for the boundary impedance can now be used to
determine the resonant frequencies. In the wind-tunnel test section both boun=-
daries must be considered. Therefore the x-axis is now taken on the test-
section centerline, with the boundaries at y = +1. If attention is again
restricted to waves inclined at the angle o for which resonance occurs, the
velocity potential for this symmetric set of waves is

¢T = gin (k1y cos a1) exp{k1[(x - Vt) sin a1 - ctl} (18)
Then,
3¢T
Pq = -p Frani k1pc sin (k1 cos a1) exp{k1[(x - Vt) sin a1 - ct]} (19)
and
3¢T
v = 35— = k1 cos a1 cos (k1y cos a1) exp{k1[(x - Vt) sin a1 ~ ct]} (20)

By definition, at the boundary,

o]

"T

z = =% (21)

or, setting y = 1 and using equation (17b},



tan (k1 cos a1) sin 2a_.
— = cot (k. D cos @&, tan &, cot uz)

" cos a1 sin 2a2 1 1 1

sin a1 2
- 2k1 cos (11 1 + _m—a (22)
S 2/ |

The angular frequency is given by
w=k1(c+Vsin a1) (23)

(See ref. 3, eq. (2.4).) But since the waves considered are at the resonant
angle ay for which sin ay = =M, then

W = k1c(1 - M2) = k1c cos2 a1 (24)

Therefore, if equation (22) is solved for the parameter s = kq cos a,, the
resonant frequency is sc cos Qg

For the resonant condition,

N
cos a, = B
sin a, = é% > (25)
and
cos a, = V1 - (M2/B4)
y

Making these substitutions in equation (22) yields

4 J—
tan (Bk1) = — 8 cot [?2k1DV1 - (M2/64Zl - 32k12(1 + 84) (26)
\/1 - (M: /B I)

Equation (26), when solved for s = Bk1, gives the resbnant frequenéies from
equation (24):




w = Bsc (27)

Although equation (26) is somewhat different from the corresponding equa-
tion derived in reference 1 for the perforated-wall tunnel, it reduces to the
same equation for M * 0, provided that the wall parameter £ is taken to be
one-half the empirical parameter used in reference 1 (since the factor
(1 + 84) + 2 as M + 0) . The term containing £ represents acoustically the
inductive effect of the ventilated wall.

The other term on the right is generally considered to represent the
capacitative effect of the air in the plenum. (See ref. 5.) For small values
of the argument H = 32k1DV1 - MZ/BI, which gives cot H = 1/H so that, in
this case, the term corresponds to a spring effect. However, as H increases,
the approximation becomes invalid and eventually negative values of the cotan-
gent have to be considered. In the latter case this term adds to the induc-
tance effect. This change in sign of the cotangent term at multiples of m/2
for the argument sometimes leads to closely spaced resonant modes.

The quantity cos a, = d1 - (M2/84) vanishes at M = 0.618. Conse-
quently, near this Mach number the cotangent term tends to dominate the impe-
dance. For M > 0.618, the reflection from the boundary is complete, since in
this case cos a2 becomes imaginary. When this occurs, no energy is trans-
mitted into the plenum, according to the plane-wave analysis; however, the
boundary does not behave like a solid wall, since in general the reflection
coefficient is not 1.0 (ref. 3).

Equation (26) differs somewhat in its Mach number dependence from the
corresponding equation derived in reference 1 for the perforated-wall tunnel.
Equation (26) differs more markedly from the relation for the slotted-wall
tunnel derived in reference 1. That relation led to an inconsistent Mach num-
ber variation and was not used in the calculations of reference 1.

If the slotted wall becomes fully closed, £ + ®, In this case, the solu-
tions of equation (26) are

Bk, = (2n - LYE (n =1, 2,3, «..) (28)
Thus, the solutions for the resonant frequencies are

W= (2n ~ 1)nB¢ (n =1, 2, 3, « « &) (29)

which is the result given %p reference 7. This result jg glso that which is obtainec
of . . . .

from equations Al7 and A275reference l.Similar results are obtained if the

plenum-chamber depth approaches zero.

At the beginning of the "Analysis" section, some justification was given
for limiting the analysis to plane waves inclined at the resonance angle a.

10



The weaknesses incurred by applying this restricted theory to waves excited by
a source at the origin have not yet been discussed. If one considers a cylin-
drical wave front to be the envelope of a family of plane waves propagating
outward, it would appear to be valid in an analysis of resonance phenomena to
ignore the waves propagating in directions other than the resonance direc-
tion, except at one point in the analysis. In the derivation of equation (6)
the wave reflected from the solid back wall of the plenum was assumed to be
inclined at angle @5+ Such would be the case if the wave pattern in the test
section consisted only of waves inclined at angle a4 throughout the test
section, as was assumed in the analysis of reference 1. However, if the
emitted waves are cylindrical, segments of the wave front are incident on the
boundary at various angles, each associated with a different refraction angle a,
and, consequently, a different angle of reflection from the plenum wall. The
wave pattern in the plenum is therefore rather complex. Furthermore, some form
of wave pattern will exist in the plenum when, for M > 0.618, the plane-wave
analysis predicts the absence of plenum waves. BAlso, for the data available,
problems associated with the experimental arrangement arise when the plane-wave
results are compared with the data for M > 0.618, as discussed in the next
section.

For M < 0.618, the plane-wave analysis appears to give a reasonable
approximation in most cases.

RESULTS AND DISCUSSION

As already mentioned, equation (26) (for the slotted-wall-tunnel resonance
frequencies) resembles somewhat the equation derived in reference 1 for
perforated-wall tunnels. However, several differences should be noted. First,
there is an additional factor in the expression for the wall impedance.

Second, in the present analysis, the solution of equation (26) for Bk1 is
multiplied by Bc to obtain the resonant frequency, in accordance with
equation (24), whereas in reference 1 the corresponding solution is multiplied
only by c¢. Finally, the inductive term in equation (26) contains the actual
slotted-wall parameter £ rather than the perforated-wall equivalent of it.

Thus, in the calculation of reference 1 for slotted walls at M = 0, the
resonant frequencies are plotted against a semiempirical parameter which is a
perforated-wall counterpart of the slotted-wall parameter 2£. In figure 2,
these results are compared with the corresponding results from equation (26)
using the empirical wvalues for 2% taken from reference 1. This comparison
indicates that equation (26) with the slotted-wall parameter is appropriate for
predicting the slotted-wall configuration resonant modes at M = 0.

Figure 3 shows the theoretical and experimental resonant frequencies for a
slotted-wall parameter of 0.55. The presence of some resonant modes that
decrease in the middle Mach number range is a result of the change in sign of
the cotangent term in the wall impedance in the higher modes. These decreasing
modes are indicated in the data but were not prédicted by the theory of ’
reference 1.

11



The contribution of the plenum space to the acoustic impedance of the
test-section boundary is determined by the phase shift of the wave reflected
from the solid plenum wall. This phase shift is 2k,DBVB® - (M"/8%). vhen
this quantity is near 27, the wave approaching the slotted boundary in the
plenum is nearly in phase with the wave leaving it. In this case, closely
spaced resonant modes can occur. When the phase shift is small, the plenum
space acts as a pure capacitor and the resonant modes vary gradually with Mach
number. When k1D is large, small changes in Mach number cause rapid varia-
tion in the phase of the plenum waves, and consequently in the resonant
modes. Thus, for the higher modes, the resonant frequencies are not smoothly
distributed.

No attempt was made to correlate the theoretical values with experimental
data for M > 0.618. It would be interesting to determine if the plane-wave
analysis provided a reasonable approximation for the higher Mach numbers.
However, this theory for plane waves in the test-section flow predicts no
transmitted wave energy in the plenum. The data of reference 1 for M > 0.618,
however, was obtained with waves generated by speakers located in the plenum
chamber. The two conditions are therefore inconsistent and any correlation, or
lack of correlation, would appear to be fortuitous.

Figure 4 shows the comparison of theoretical and experimental frequencies
for a slotted wall with deep slots (i.e., a thick wall). The value of the wall
parameter used for the calculation is obtained by adding the nondimensional
wall thickness (0.31 in this case) to the value of £ obtained from equa-
tion (8). (See eq. (18) of ref. 5.) This procedure yields a value of the
parameter of 0.95, which is so different from the value of 2.04 given in
reference 1 that, in this case, the theoretical value was used for the
calculation.

The gquestion arises as to the possibility of applying equation (26) to the
calculation of resonant modes for perforated-wall tunnels. The theory should
be applicable if the slotted-wall parameter is replaced by the empirically
determined perforated-wall parameter and if the structure of the perforated
wall does not destroy the character of the transmitted wave. That is, the
effect of the boundary must at some distance appear as if it were disturbed in
accordance with the boundary conditions (eqs. (7) and (9b)). Under the
assumption that such is the case, calculations were performed for one value of
the perforated-wall parameter (0.11). Comparison of the calculations with data
from reference 1 is shown in figure 5. It is seen that, at least for this
small value of the wall parameter, the values agree to the same order as that
obtained for the slotted-wall termed calculations. The presence of multiple
modes for larger values of k1D is apparent both in the data and the
theoretical values.

CONCLUDING REMARKS
A theory for predicting resonant modes in a two-dimensional, slotted-wall
wind tunnel with a plenum chamber has been presented. The analysis used the
concept of the acoustic impedance of the boundaries and unsteady-flow relations

throughout the development. The equation derived was shown to be consistent

12



with known results for limiting conditions. The computed resonant modes com-
pared well with appropriate experimental data.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

June 3, 1981
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Figure 1.~ Basic geometry.
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