NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

D, - - -

LABORATORY FOR , MASSACHUSETTS
INSTITUT
COMPUTER SCIENCE TECHNOLOGY

MIT/i.CS/TM-203
(NASA-CR-1640L07) MACLISP LXTENSLONS N81-2%4802
(Massacnusetts lust. cf Teches) 72 p
dC AV4/MF AU CS5CL 0Ys
' Unclas

Gd/o1 21N

MACL | SP EXTENSIONS

Alan Bawden
Glenn S. Burke
Carl W. Hoffman

REPROUUCTION RESTRICTIONS OVERRIDDEN
AR RAT S RO

NAC AR R o '\‘3;1(’5‘?\(“'C(;\a‘r’l‘ri’ 'A

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

MIT/LCS/TM-203

MACL ISP EXTENSIONS

Alan Bawden
Glenn S. Burke
Carl W. Hoffman

July 1981

Support for this research was provided in part by National Institutes

of Health grant number 1 POl LM 03374-03 from the National Library of

" Medicine, the Advanced Research Projects Agency of the Department of
Defense under Office of Naval Research contract numbers NCOO14-75-C-
0661 and NO0OI4-77-C-064]1, the National Aeronautics and Space
Administration under grant NSG 1323, the U.S. Department of Energy

under grant ET-78-C~02-4687, and the U.S. Air Force under gsaat (ohtMCT
r49620-79-C-020.

BT RTETY

Maclisp Extensions
July 1981

Alan Bawden
Glenn S. Burke
Carl W. Hoffman

This report describes research done at the Laboratory for Computer Science of the Massachusetts
Institute of Technology. Support for this rescarch was provided in part by National Institutcs of
Health grant number 1 P01 LM 03374-03 from the National Library of Medicine, the Advanced
Rescarch Projects Agency of the Depsrtment of Defense under Office of Naval Research Contract
numbers N00014-75-C-0661 and N00014-77-C-0641, tic National Acronautics and Space
Administration under grant NSG 1323, the U. S. Department of Energy under grant ET-78-C-02-
4687, and the U. S. Air Force under grant ¥49620-79-C-020.

MASSACHUSETTS INSTITUTE OF TECHNOILOGY
LABORATORY FOR COMPUTER SCIENCE

CAMBRIDGE MASSACHUSETTS 02139

Abstract

This document describes a common subset of sclected facilities available in Maclisp and its
derivatives: PDP-10 and Multics Maclisp, Lisp Machine Lisp (Zetalisp), and NIL. The object of
this document is to aid people in writing code which can run compatibly in inore than one of
these eavironments.

Acknowledgements

Much of the documentation presented here is drawn from pre-existing sources and modified to
be prescntable in this context, The documentation on sharpsign is derived from that written by
Richard S, Lamson as a Multics onlinc help segment. The descriptions of backquote and defstruct
are devived from existing online documentation, The documentation on format shares some
portions with the Lisp Machine Manual; text has been exchanged in both directions. The
description of defmacro also draws heavily on the existing documentation in the Lisp Machine
Manual. ‘The Lisp Machine Manual is authured by Danicl Weinreb and David Moon, and the
format documentation therein was contributed to greatly by Guy Steele; they have all thus
indirectly contributed a great deal to this paper, as have innumecrable others who aided in the
preparation of the Lisp Machine Manual.

We would like to thank Joel Moses for providing the motivation to bring Lisp up-to-date on
Multics, and Peter Szolovits, under whose auspices this document was produced.

Note

Any comments, suggostions, or criticisms will be welcomed. Please send Arpa network mail
to MACLISP-EXTENSIONS@MIT-ML.

Those not on the Arpanet may send U.S. mail to

Glenn S. Burke

Laboratory for Computer Science
545 Technology Square
Cambridge, Mass. 02139

REPLOGISTION RESTRICTIONS OVERRIDDEM

N aA “11‘;,0 and Toabiwtesd InPoegat v Fackl ity

® Copyright by the Massachuasetts Institute of Technology; Cambridge, Mass, 02139
AL pights reserved,

R e T e T P

Ay

Maclisp Extensions i Table of Contents

Table of Contents

® l.lﬂlﬂ)ducuon..‘..}........_..-.-w.-,...., R T N) 1
1.} Compatibility b b e e e s B |
1.2 Conventions L e e e e e e e e e e N |

2. Backquote . . L . e e e e e e e R
3.Sharpsign.o Ca e e 4 N -]
4 ExtendedDefun v o v v i i e e e e e e C e e e .. 8
S, DEfmacro.o e e e G e e Ve e e N 1)
6. Other DefinitionFacilities.o v v v v vt vt i 13
2 - A &

8. New Functions and Special Forms e e e e e e e 17
81 WtHacking . . . v . . o v e e e e e e e e e e 17
8.1.1 Boolean Operations e e b e e e e e e s e e e S V)
8.1.2 Byte Manipulation. C e e e e e e e e 18
Bl Testing i e e e e e e e e S
8.2 Predicates, e e e e N . .18
BILists, e e e e e e e e e e e e e e e 19
B4 Varables. » . . . v o e e e e e e e e e s SR |
8.5 FlowofControt , e e e e e e e e e e e e e e e 21
8.5.1 Conditionals, . , v o i i e e e B |
852 8elsction s L e e e e e e e e S ¥
8.5.7 lteration. C e e e e e e e e e e e e e e e N X
BS54 Non-LOCi BXitS, v it i e s s e e e e e e e e e 24
86 Miscellaneous v v v e e e e e e s e e e e e P 5.

9. Defstruct e e e e e e e e e e e e e e e e e 26
91 Introduction e e e e e G e e 26
92 ASIMple Example e e e e e e e s 26
93 Syntaxof defStruct e e e e e 1
9.4 OptionStodefSIUCL v v v v v v e e e e e e 2
94l type. e e e e L e e e e e e e e e .
942 CONSIIUCIOT . & v v« v o v v v v e v o s b e o a e e e e e e e e e e e 30
943 ACTANE . . . v v v e h e e e e e e e e e e e e e e e e)
944 default-pointer . . , o0 e e e b e e e e e e e Y/
945 CoNC-NAME. . . ., v v v v e C e r e e s s PR s P X
946 include . , e e e e e e e e e e e e e 3
9.7 NUIOE. .+ o ot s e e e e e e e e e e e e e e e e e 35
/ 948 make-array e e e e e e e e e e e e e e R 1
949 sfa-function e e e e e e S 1
9410 SIATIAMC. . . o v v v s e e e e e e e e C e e e e e 36
94,11 external-ptr, , .,o e e e e e e e P 36
9412 sivessymbol, L . .
QAL SIZEMUCTO « v v v v v s e e it e e e e e e e e e e e s A |
9.4.14 INILAl-OMSOl « o 0 ot e e e e e e e e e e 36

21-JUL-81

TP Sy

Table of Contents i Maclisp Extensions

94 1S but-fisst. e b v e e 6 e et e e e k1)
9.4.16 callable-acCeSSOMS v v v v u i e e e e e e e »
9417 cval-whem. e e e e e e b e e e b e h e e e . N
9418 property i e e e e by et e b e e e e e R |
94.19 ATypeUsed AsAnOption. e e e e e ... 38
9420 OtherOptioNS v v v v v o vttt e e e e e .. 38
9S ByteFields e e e e e 38
96 AboutAutoloading C e e e e e e e e e 40
9.7 The defstruct-descriptionStructure ., e e e e e e e 41
98 Extensionstodefstruct e e e s e e e v e e e 42
9.8.1 ASimplcExample. e e e e e e e e e e e e e .. 42
9.8.2 Syntax of defstruct-define-type. e e e e e e e e e 43
98.3 Optionstodefstruct-define-type v i i e e 4
9831 COMS. e e e e e et e e e e 43
98,32 ref et e e et e e e e e e s R
9833 overhead i . e e e e e e e e e e e e e .. 45
9834 named, s » 4 s 4 4 g na et e e b eaa s 45
983S keywords L e e e e Gt e e e e s e e s .o 45
98.3.6 dEfSINUCT vt e e e e e e e e e e e 45
10. Format. . .., et e e e e s e e e A 1)
101 The Operatorns. v v v v v vt e b v b et s o ot e s e e e 48
102 OtherEntries e e e e e e e e e e e e e .}
10.3 Definingyourown. v e e e e e e e e e .. 54
104 FormatandStrings. e e e ey - 1 |
10, System DIFerenCes. o i i e e e e e e e e e e e e 58
) T T 0. 3 (O 58
11.1.1 WhereToFindlt, e e e e e e e e e e e e S8
1L1.2 ThingsToWatchOQutFor. v v Ve e 9
1LL3 FurtherDocumentation. o v v v i v v v v v v v o e e e e 59
IL2 MUltics & . . v v s o e 59
1121 Where ToFind It.0 0 0 s e e e i e e e s e s it s e oo vt e e s 59
11.2.2 Things To WatchQutFor. Eh e e e e e e e e e b s e e e s e 60
11.2.3 Further Documentation. e e e e e e e e e e e e e e e e e 62
113 LispMachine 0 ot e e e e e e 62
11.4 Hints On Writing TransportableCode v v v v v v i n v vt e 62
11.4.1 Conditionalizaion i i e e e e e e e e e e e 62
1142 OddsandEnds b4 s b e s e s e s s e e 63
Y -3 65
21-JUL.-81

T T T

SR AL A S

B ‘S

Bl

Maclis; Bxtensions) 1 Introduction

1. Introduction

1.1 Compatibility

This manual is about compativility between the PDP-10 and Multics dialects of Maclisp, and
the Maclisp derivative Lisps, Lisp Machine Lisp, and NIL.

Believe it or not, it really is possible to write code that runs in all of these Lisp dialects, It
is not always a completely painless thing to do, but with a little bit of care it is possible to write
reasonable code that runs in many places, and that docsn’t offend everyone who tries o read it,

The biggest stumbling block to writing code that ruas in a Lisp dialect other than the one
you are most familiar with is the fact cach of these Lisps has grown a different sct of additional
features since the original Maclisp Reference Manual was written in 1974, How are you supposed
to be able to restrain yourself from using all the winning new features that the implementors of
your dialect have given you?

Well, unfortunately, you are going to have to avoid some of them. After all, some are
probably impossible to implement everywhere, On the other hand, some of them are so uscful
that they have already migrated to all of the places you are planning to move your code, Those
arc the features that arc documented in this manual,

1.2 Conventions

The symuol "=>" will be used to indicate evaluation in examples. Thus, when you see "foo
=> nil", this means the same thing as "the result of evaluating foG is {or would have been) nil”,

The symbol "==>" will be used to indicate macro cxpansion in cxamples. Thus, when you
sec "(foo bar) ==> (aref bar 0)", this mcans the same thing as “"the result of macro-expanding
(fos bar) is (or would have becu) (aref bar 0)".

Most numbers shown are in octal (base cigit). Numbers followed by a dccimal point are in
decimal (base ten). Despite growing sentiment in favor of decimal as the default base for Lisp
reading, it is still the case that most of the Lisps we are concerncd v, read numbers in octal by
default; the sole cxception at this time is NIL.

Symbols are consistently written in lower case. This is because on Multics, most symbols have
lowercase printnames, and case translation is not done by default on input. In the other
implementations, where most symbols have uppercase printnames, lowercase characters are
translated to uppercase on input, so a symbol fyped in lowercase will always be rcad correctly
ceverywhere, '

MIEMACDOCINTRO 7 21-JU01-8)

Backquote 2 Maclisp Extensions

2. Backquote

‘The backquote facility defines two rcader macro characters, backquote ("'", ascii 140) and
comna (*,", ascii 54). Thesc two macro characters can be uscd together to abbreviate large
compositions of functions like cons, list, list® (page 19) and append. (t is typically used to
specify templates for building code or other lst structure, and often finds applicati>n in the

construction of Lisp macros.

Backquote has a syntax similar to that of quote (*'", ascii 47). A backquotc is followed by a
single form, If the form docs not contain any us¢ of the comma macro character, then the form
will simply be quoted. For example:

‘(abc) = (quote (abc)) = °‘(abc)

The comma micro character may only be used within a form following a backquote. Comma alsc
has a syntax like that of quote. The comnia is followed by a form, and that form is evaluated
cven though it is inside the backquote. For 2xample:

‘(.abc) = (cons a (quote (b c)))
= (cons a ‘(b c))

‘(a ,bc) = (liste (quote a) b (quote (c)))
(Viste 'a b ‘(c))

‘(a b ,c)

{Yist (quote a) (quote b) c)
(vist 'a °b ¢)

‘(a . ,rest) = (cons (quote a) rest)
= (cons 'a rest)

In other words, all the components of the backguoted cxpression are quoted, except those
precceded by a comma. Thus, ¢nc could write the common macro push using backquote by
proceeding from the standard definition

{(defun push mzcro (form)
(1ist 'setq (caddr form) '
(1ist 'cons (cadr form) (caddr form))))

(defun push macro {(form)
‘(setq ,(qaddr form) (cons ,(cadr form) ,(caddr form))))

Note how the code to build the macro’s output code begins to Jook more like the output code
itself, In fact, with a usc of let, we can go all the way to

(defun push macro (form)
(let ((datum (cadr form))
(list (caddr form)))
‘(setq ,Vist (cons ,datum ,list))))

and produce very legible code. An cven betier method for defining macros is defmacro (chapter
S, page 10),

MLMACDOC BACKQU 16 21-JU1.-81

S 3 T A O R A

Maclisp Extensions 3 Backquote

Backquote expands into forms that call cons, list, list® or whatever other functions it deems
appropriate for the task of constructing a form that looks like the one following the backquote,
but with the values of the forms following the commas substituted in,

Sihce backquote's contract is specified not in terms of the code that it expands into, but
rather in terms of what that code produces when cvaluated, assumptions should not be¢ made
about what the code might look like. The backquote expansions shown in this section are only
possible cypansions; it is not guaranteed that this is the way they will expand in any particular
implementation.

If a comma inside a backquote form is followed by an "at” sign ("@", ascii 100), then the
form following the ",@" should return a list. (On Multics, since the defauls fine kill character is
@, the user may need to type \@ in ordar to get lisp to recad a @.) Backquote arranges that
the clements of that list will be substituted into the resulting list structure. Frequently this
involves generating a call to the function append. For example:

‘(,9a b ¢)

(append a (quote (b c)))
= (append a '(b c))

(cons (quote a) (append b (quote (c))))
= (cons 'a (append b '(c)))

‘(a ,8b c)

‘(a b ,08¢) (1iste (quote a) (quote b) c)

= (liste ’'a 'b ¢c)

Similar to following the comma by an atsign is following the comma by a dot (".", ascii 56). The
dot is a declaration to backquote telling it that the list returned by the form following the " " is
expendable. ‘This allows backquote to produce code that calls functions like nconc that rplac the
list.

Backquote examines the forms following the commas to see if it can simplify the resulting
code. For example:

‘(ab . ,(cons x y)) = (liste (quote a) (quote b) x y)
" = (Viste 'a 'b x y)

‘(a3 ,bc ,17) | (1iste (quote a) 3 b (quote (c 17)))

(1iste 'a 3 b '(¢ 17))

‘(a ,3 ,0ni1) = (cons (quote a) b)
= (cons 'ab)

‘(a ,.b ,@(nconc ¢ d)) = (cons (quote a) (nconc b c d))
= (cons 'a (nconc b c d))

These exatnples should convince the user that he really cannot depend on what the code that

backquote cxpands into will look like. A simple-minded backquote night expand (,@a ,@nil)

into (append a 'nil), but this cannot be used as a rcliable way to copy a list since a sophisticated
~backquote can optimize the copying away.

ML MACDOCBACKOQU 16 21-JUIL-8)

Backquote 4 Maclisp Extensions

It is sometimes uscful to nest one use of backquote within another, ‘This might happen when
the user is writing some code that will cons up some more code that will in turn cons up yet
more code. The usual example is in writing macro defining macros. When this becomes necessary
it is sometimes difficult to determine exactly how to use comma to cause cvaluation to happen at
the correct times. The following example exhibits all the useful combinations:

‘*(a ,b ,,c ,’',d)
= (Yist 'ligte *'a 'b c (Vist ‘quote (list d)))

When cvaluated once this yields:
(Viste 'a b <c-at-time-1> '(<d-at-time-1>))
Which when cvaluated yields:
(a <b-at-time-2> <<c-at-time-1>-at-time-2> <d-at-time-1>)

Thus "" mecans never evaluate, “,” means cvaluate only the second time, ",,” means evaluate both
times, and ",'," means evaluate only the fird time.

MEMACDOCBACKOQU 16 2-JUL-81

Maclisp Extensions b Sharpsign

3. Sharpsign

The Lisp rcader’s syntax can be extended with abbreviations introduced by sharp sign ("# ",
ascii 43). These take the general form of a sharp sign, a sccond character which identifies the
syntax, and following arguments. Certain abbreviations allow a decimal number or certain special
"modifier” characters between the sharp sign and the second character, (On Multics, since the
default crase character is #, it may be necessary to type \ # in order to get lisp to read a #.)

List of # macro abbreviations;

/char
rcads in as the numbes which is the character code for the character char. For
example, #/a is cquivalent to 141 but clearer in its intent. This is the recommended
way to include character constants in your codé, Note that the slash causes this

construct to be parsed correctly by the Emacs and Zwei editors.
’

As in strings, upper and lower-case letters are distinguished after #/. Any character
works after #/, cven those that are normally special to read, such as parentheses.
Fven non-printing characters may be uscd, although for them #\ is preferred.

\ name
reads in as the number which is the character code kv the non-printing character
symbolized by name. » large number of character names are recognized; these are
documented below, ‘The abbreviations cr for return and sp for space are accepted
and generally preferred, since these characters are used so frequently, The rules for
reading name are the same as those for symbols; the name must be terminated by a
delimiter such as a space, a coaviage return, or a parcnthesis,

~char
gencrates Control-char. Thus # ~char always gencrates the character returned by tyl if
the user holds down the controt key and types char,

#'form
is an abbreviatien for (function form). form is the printed prepresentation of any
object. This abbreviation can be remembered by analogy with the ' macro-character,
since the functiors and quote special forms are somewhat analogous.

#, form

cvaluates fornn (the printed representation of a Lisp form) at read time, unless the
compiler is doing the reading, in which case it is arranged that form will be evaluated
when the compiled output file is loaded, This is a way, for example, to include in
your code complex list-structure constants which cannot be wriiten with quote, Note
that the reader docs not put quote around the result of the cvaluation. You must do
this yoursclf if you want it, typically by using the ' macro-character. An cxample of a
"case where you do not want quote around it is when this object is an clement of a
constant list,

#. form
cvaluates form {the printed representation of a lisp form) at rcad time, regardless of
who is doing the reading. 'This abbreviation would he used to supply constant
parameters to the compiler. For example, a program might contain #, Pl, rather
thisn 3.14159,

MIMACDOCSHARPM 22 21-JL01.-81

Wmm_ma,mm IR b B b R A ¥ R) Wl

ia b e b e e eyt R SR e S e SR T by

Sharpsign 6 Maclisp Extensions

Onumber
reads number in octal regardless of the sctting of ibase,

radixRnumber ,
reads number in radix radix regardless of the sciting of ibasu, radix must consist of
only digits, and it is read in decimal,

For example, #3R102 is another way of writing 11, and #11R32 is another way of
writing 35. In Maclisp, supradecimal bases may be used if number is preceded by +
or -, (status +) is temporarily modified to make this work.

+ feature

‘This abbreviation provides a read-time conditionulization facility, It is used as
+ feature form, If feature is a symbol, they this is read as form if (status feature
SJeature) is true, If (status feature feature) is nil, then this is rcad as whitespace.
Alternately, feature may be a boolcan expression composed of and, or, and not
operators and symhols representing items which may appear on the (status features)
fist. (or lispm amber) represemts evaluation ol the predicate (or (status feature
lispm) (status feature amber)) in the read-time environment,

For cxample, # +lispm form makes form exist if being rcad by the Lisp machine.
+(or lispm nil) form will make form cxist on cither the Lisp machine or in NIL.
Note that items may be added to the (status features) list by means of (sstatus
feature feature), thus allowing the user to selectively interpret or compile pieces of
code by parameterizing this list. ‘The most common features checked for using # +
are; lispm (present on Lisp Machines), Maclisp, NIL, Multics, ITS, TOPS-20 and
PDP10.

Scc also section 11.4.1, page 62 for a more gencral discussion of conditionalization.

- feature form
is cquivalent to # + (not feature) form,

#M form
is cquivalent to # + Maclisp form.

#Q form
is cquivalent to # + lispm fivin,

#N form
is equivalent to # + NI form,

MENACDOCSHARPM 20 214U .-81

A R N 4 MRS e o g s . R i . T IR N Gard e shic s e D, BRSG A

Maclisp Extensions 7 Sharpsig

‘The following are the recognized special character names, with their synonyms. These names can
be used after a "#\" to get the character code for that character,

backspace bs

tad

newline

Tinefeed 114
return] cr
formfeed 144 form
altmode alt
space sp

vt

aull

help

delete rubout

Certain of these character groupings may overlap in some implementations, For cxample, on
Multics, help is simply the ? character. newline will generally be cquivalent to cither return or
linefeed, as appropriate for the host operating system.

MEMACDOCSHARPN 20 MR RIS

i e b O S b B LR ety A 5 e | B b - e e anwone s - . P . e 4 emen e s

Fxtended Defun 8 Maclisp Extensions

4. Extended Defun

defun Special Form
defun is the usual way of defining functions. It still works the way it always has, but
several improvements have been added over the years.

A defun form looks like:

(defun name lambda-list
body ...)

As in the past, name can be a symbol which is to be defincd as a function. Alternatively,
name can be a list of the form (symbol property). This arranges to give symbol a property
property of the function, rather than defiring some symbol to be that function. In other words,
after a defun like

(defun (foo bar) (x)
(cons x x))

it would be the case that
(funcall (get °'foo ‘'bar) 34) => (34 . 34)

In the simplest case lambda-list is a list of variables to bind to the arguments to the function;
this is as it kas always been, In addition, the keywords 8optional, &rest and &aux are allowed
to appear there, (Thus these arc no longer valid variable names, but nobody seems to have been
inconvienced by this.) Their meanings are as follows:

&optional All of the variables following the &optional keyword (and up to the next &-
keyword) arc optional. Thus a lamnbda-list of the form

(a b &optional ¢ d)

meats that the function may be passed from two to four arguments, a and b are
called required arguments, ¢ and d are called optional arguments (not surprisingly).
It an optional argument is not passed in by the.caller, then the corresponding
variable will be beund to nil. If some other default value is desired, then that
value may be specified as follows:

(a b &optiona) (c 'default) (d b))

This will bind ¢ to the symbol default if the function is passed oaly two
arguments, If the function is passed less than four, then d will be bound to the
sccond argument. This is because the variables are bound in sequence, so their
default values may refer to the values of variables alrcady bound.

It is also possible o find out whether an optional variable was supplied. The bl
(a b &optional (c ’'default c-p))

will hind the variable ¢-p to t if the function was passed three arguments (i.c.. an
argument was supplied for €), nil if it was passed only two,

MIMACDOCDEFUN 8 21-)U1 81

F s e g P TR A AT s T WA p Sy e

Maclisp Extensions 9 Extended Defun

&rest This keyword must be followed by exactly one variable called the rest variuble,
&rest must also uppear gflor any required or optional variables, ‘The rest variable
will be bound to a list of the remaining arguments that were passed to the
function. For example;

(a b &rest ¢)

is the lambda-list 20 use for & function that accepts two or more arguments, ‘The
variabie ¢ wili be bound 1o a Jist of the arguments fiom the third onc on.

(a b &optionai {(c 0) &resi d)

would specify that the function takes two are more arguments, If called on

exactly two arguments, ¢ will be bound to 0 and d will be bound to nil, 1r

called on three or more arguments, ¢ will be bound to the third argument and d
will be bound to a list of the fourth through last argument.

In the Lisp Machine implesientation, the rest variable will be bound to a stack
allocated tist that is only valid during the invocation of that function. 'This means
that Whe function should not incorporate this list into any permancnt data-structure;
it should use a copy of the list instcad,

In NIL, the rest variable will be bound to a vector which may be stack allocated.
&restl instcad of 8rest selects a list, Unfortunately, &restl is only recognized in
PDP-10 Maclisp and NIL.,

Saux Following the keyword 8aux are some more variables called auxiliary variables,
saux must follow all required and optional variables and the rest variable if it is
given, Auxiliary variables do not correspond to arguments to the function at all,
they are simply local variables that are bound scquentually after the argument
varigbles. For example;

() &ovptional (a t) &aux (len (length 1)) tem)

is the lambda-list of a one or two argurent function, b will be bound to t if the
sccond argument is not given, then len will be bound to the length of the list
that was the first argument, and tem will be bound to nil (presumably for use
later on,)

In Muclisp, functions with optional ¢r rest variables will be implemented using the laxpr
mechanism, In these implementations it may be necessary to declare these functions as lexprs in
order to assurc proper compilation,

The syntax

(defun name macro (form)

o)

is still understood as a way to define a macro, but the new macro defining macro defmacro is
now the prefered way to do so. defmacro is documented in chapter S, page 10

MEMACHOCDEFUN S PARALRLEG

Defmacro 10 Maclisp Extensions

5. Defmacro

defmacro Macro
defmacro is a macro-defining macro which allows one to define macrot in a more natural
or tunctional way.

If we want to define the first macro such that (first x) is cquivalent to (car x), we could
do .

(defun first macro (x)
{Yist ‘car (cadr x)))

or, using backquote (page 2)

(defun first macro (x)
‘(car ,(cadr x)))

Just as backquote makes constructing list structure less cumbersome, defmacro allows us to
access the "arguments” to a macro in a much cleaner manner. 'The first macro looks like

(defmacro first (1)
‘(car L1))

when defined with defmacro.

In general, the argument list to a macro defined with defmacro is a pattern to be matched
against the body of the macro call. 'The symbols in the pattern will be bound to the
corresponding components, and then the body of the macro evaluated, the same as is done for an
ordinary macro. ‘That is, for the macro call (first (get 'frob ’elements)), the pattern (1) is
matched against ((get 'frob ‘elements)), and | gets bound to the form (get ‘irob 'elements).

The macro push, which is defined on page 2 as

(defun push macro (form)
(let ((datum (cadr form))
(1ist (caddr form)))
‘(setq ,list (cons ,datum ,1ist))))

could be defined with dafmacro by

(defmacro push (datum list)
"(setg ,list (cons ,datum ,list)))

Macros, and thus deftmacro., arc uscful for defining forms which provide syntax for some
kind of control structure. For example, somcone might want a limited itcration construct which
increments a variable by one until it exceeds a limit (like the FOR statement of the BASIC
language). One might want it 10 look like

(for a 1 100 (print a) (print (e a a)))

To get this, one could write o macro to transtate it into

MEMACDOCDEFMAC 22 21-3U1-81

Maclisp Extensions 11 Defmacro

(do a 1 (1+ a) (> a 100) (print a) (print (¢ a a)))
A macro to do this could be defined with

(defun for macro (x)
‘(do ,(cadr x) ,(raddr x) (1+ ,(cadr x))
(> ,(cadr x) ,(cadddr x))
,8(cddddr x)))

Alternatively, for could be defined with defmacro:

(defmacro for (var lower upper . body)
‘(do ,var ,lower (1+ ,var) (> ,var ,upper)
,8body))

If a pattern is not sufficient, or if a morc function-like interface is desired, the argument list
o defmacro may contain certain &-keywords, These are analogous to the &-keywords accepted
by defun (scc page 8). In this case, the argument list should not have a dotted end (like the for
example), although the components 1ray themselves be patterns,

Soptional denotes the start of optional "arguments” o the macro, Each following parameter
is ther of the form variable, (variable), (veriable default), or (variable default present-p). default
is a form to be evaluated to provide a value of no corresponding "argument” is present in the
coli. present-p is a variable, it will be bound to nil if no argument is present, t otherwise. For
example,

(defmacro print-in-radix (x &optional (radix 10.) (enopoint? t))
‘(let ((base ,radix) (enopoint ,enopoint?))
(print ,x)))

If variable is a pattern, then the first form is disallowed byccause it is syntactically ambiguous.
The pattern must be enclosed in a singleton list. Note: in some implementations, if variable is a
pattern, default may be evaluated more than once.

&rest says that the following item should be matched against the rest of the call. ‘That is, the
argument list (&rest items) is cquivalent to the argument list items, and the argument list for for,
(var lower upper . body), could have been written as (var lower upper &rest body). &rest
may be casier to rcad than a dotted list, and it allows one to usc &aux.

&aux has nothing to do with pattern matching. It should come at the end of the pattern
(which thus cannot be a dotted list), and may be followed by one or more variable binding
specifications, of the form variable or (variable value). The variable will be bound to the specified
value, or nil.

&body is identical to &rest, and in certain implementations may leave some information
around for other programs to use to decide on how that form should be indented. ‘The for macro
should be defined with &body in preference to &rest,

The &optional variable bindings are performed sequentually, "Thus something like
(defmacre foo (a &optional (b a)) ..,)

will define a macro that when called with only one argument will bind both a and b to that
argument, When called with two arguments a will he bound 10 the fisst argumens, and b will be

MEMACDOC DEFMAC DY RERINIIE

WW“ AN - H - e s ¥ bt 5 e bty | o . . - .
3 R e e e A T Y Y e R g 8 i i G .
IR AR AL S il B il st

Defmacro 12 Maclisp Extensions

bound to the second.

The macro dolist (page 23) is defined such that
(doVist (var list) form-1 forn-2 .,.)

steps var over the clements of list, evaluating all of the form-i cach time (sort of like mapc). It
could be defined with defmacro by '

(defmacro dolist ((var 1ist) &body forms
&aux (list-var {gensym)))
‘(do ((,Yist-var ,list (cdr ,list-var))
(,var))
((rul) ,list-var)).
(setq ,var (car ,list-var})
.8forms))

MENACDOCDERNIAC 22 21-JUH -8

Maclisp Extensions o 13 Other Definition Facilities

6. Other Definition Facilities

defvar variable {inii) [doéuhenmtlon] Special Form
defvar is the reccommended way to declare the use of a global variable in a program.
The form

(defvar variable init)
placed at top level in a file is roughly equivalent to

(declare (special wariable))
(or (boundp °variable)
(setq variable init))

If the init form is not given, then defvar dnes not try to initialize the value of the
variable, it only declarcs it to be special,

documentation is ignored in most implementations, although it is a good idea to supply it
for the benifit of thosc implementations that make use of it. It should be a "string" (see

page 63).

defconst variable [init) [documentation} Special Form
defconst is similar to defvar expect that if inir is given, then variable is always set to
have that value, regardless of whether it is already bound. The idea is that defvar
declares a global variable, whose value is initialized to something but will then be
changed during the running of the program. On the other hand, defconst declares a
constant, whose value will never be changed by the program, only by changes fo the
program. defconst always sets variable to the specified value so that if you change your
mind about what the constant valuc should be, and then you evaluate the defconst form
again, variable will get set to the new value,

eval-when times-list forms... Special Form
eval-when is used to specify precisely what is to happen to the containing forms. An
eval-when form must appear at top level in a file. fimes-/ist can contain any combination
of the symbols eval, compile and load.

If eval is in fimes-list, then when the interpreter cvaluates the eval-when form each of
the forms will be evaluated. If eval is not present, then the forms will be ignored in the
interpreter. The return _value is not guarantced to be anything in particular.

If compile is in times-list, then when the compiler comes across the eval-when forini at
compile-time, it will evaluatc each of the forms right then and there,

If load is in fimes-list, then when the compiler comes across the eval-when form in the
file, it will continuc process the forms as if they appcared at top level in the file. Thus

the result of compiling the forms will be placed into the compiler output file so that they
may be loadcd later.

Examples:

MLMACDOCDEFEXT 1 21-JUL-81

Vel o 2R R 2R T 4 L

Other Definition Facilities 14 Maclisp Extensions

(eval-when (eval compile)
(setsyntax /" 'macro 'hack-strings)
(defun hack-strings ()

er))

This will fool with the syntax of doublequote at run-time and compile-time (presumably to
allow the rest of the file to be read in properly), but when the file is compiled and
loaded the syntax of doublequote will be unchanged, and the function hack-strings will
not be defined.

(eval-when (eval)
(defun foo (frob)
(and (atom frob) (barf))
(car frob))) '

(eval-when (compile)
(defun foo macro (x)
(V1ist ‘car (cadr x)}))

This will definc foo as a paranoid error checking function when the program is being run
interpreted, but will arrange to define foo as a macro at compile-time so that it will
compile just like car. When the compiled file is toaded foo will not be defined at all.

(eval-when (eval compile load)
(defprop frobulate frobulate-macro macro)
(defun frobulate-macro (x)

o))

‘This is a way to definc a macro by hand in Maclisp to be present whencver the file is
being run or compiled.

MEMACDOCDEFENT 12 21-UL.-81

Maclisp Extensions 15 Setf

7. Setf

setf ' Macro
setf provides a gencral mechanism for modifying the components of arbitrary Lisp objects.
A setf form looks like:

(setf reference form)

The setf form expands into code to evaluate form and then modify some Lisp object such
that the form reference would evaluate to the same thing. For example:

(setf (car x) 47) ==> (rplaca x 47)

(setf (cadr x) nil) ==> (rplaca (cdr x) nil)

(setf (got a ‘zip) 'foo) ==> (putprop a 'foo ‘zip)

(setf (arraycall t a 1) t) ==> (store (arraycall t a 1) t)
(setf (symeval foo) bar) ==> (set foo bar)

(setf foo bar) ==> (setq foo bar)

The order in which forn and any forms found in reference are evaluated is not guarantced
in any but the PDP-10 Maclisp and NII. implementations of setf, Neither is the value
returned by the code setf cxpands into guaranteed in any way.

setf also knowns how to perform macro expansions of any reference it doesn't recognize.
So if first is a macro defined to expand as

(first foo) ==> (car foo)
then
(setf (first foo) t) ==> (rplaca foo t)

setf's ability to expand macro forms makes it indispensable when using the defstruct macro
(page 26).

Several other common macros are defined to cxpand into code that includes a setf form, All
these other macros share the property with setf that in some implementations they are liable to
cvaluate their various sub-forms in an order other than the onc they were written in. In some
cases you even run the risk oi' having some sub-form evaluated more that once.

push Macro
push is dcfined to expand roughly as follows:

(push frob reference)

==> (setf reference (cons frob reference))

The qualifications about order of cvaluation given for sett apply to push also;
additionally, only the PDP-10 and NIL. implementations guarantee that foims in reference
will not be evaluated multiple times.

MIEMACDOCSETE 12 21-4U1.-81

Setf 16 Maclisp Extensions

pop Macro
pop is defined to expand roughly as follows:

(pop reference)

==> (progl (car reference)
(setf reference (cdr reference)))

(prog1 is explained on page 25.)

The qualifications given for push about order of evaluation and multiple evaluation apply
to pop also.

MEMACDOCSENE 12 21-JUH-81

Maclisp Extensions 17 New Functions and Special Forms

8. New Functions and Special Forms

This chapter documents a number of new functions and special forms that have been added
to the Maclisp language.

Although many of the functions documented her¢ are shown shown as being functions, there
is no guarantee that any particular Lisp actually implcments them that way, rather than as macros.

8.1 Bit Hacking

All of the functions in this section operate on integers of any size in Lisp Machine Lisp, but
only on fixnums elscwhere. Remember that all the integers shown here are in octal.

8.1.1 Boolean Operations

‘The following functions could be (and ofien arc) implemented in terms of the boole function,
Their use tends to produce less obscure code,

logand &rest args
Returns the bit-wise logical and of its arguments, At least two arguments are required.
Examplcs:

(1ogand 3456 707) => 4086
(10gand 3456 -100) => 3400

Yogior &rest args
Returns the bit-wise logical inclusive or or its arguments. At least two arguments are
required.
Example: .

(logior 4002 67) => 4067

logxor &rest args
Returns the bit-wise logical exclusive or of iis arguments. At least two arguments are
required.
Example:

(logxor 2631 7777) => 5246

Yognot number
Returns the logical complement of number. This is the same as logxor'ing number with
_1‘
Example:

- (Yognot 3456) => -3457

MLMACDOC:NEWFUN 57 21-JUL-81

Predicates 18 Maclisp Extensions

8.1.2 Byte Manipulation

Several functions are provided for dealing with an arbitrary-width field of contiguous bits
appearing anywhere in an integer (in Maclisp, this is restricted to a fixnum), Such a contiugous
sct of bits is called a byte. Note that the term byte is not being used to mean cight bits, but
rather any number of bits within an integer. These functions use numbers called byte specifiers to
designate o specific byte position within any word, Byte specifiers are fixnums whose two lowest
octal digits represent the -size of the byte, and whose higher octal digits represent the position of
the byte within a number, counting from the right in bits. A position of zero rucans that the
byte is at the right end of the number. For cxample, the byte-specifier 0010 (i, 10 octal)
refers to the lowest cight bits of a word, and the byte-specifier 1010 refers to the next eight bits,
These byte-specifiers will be stylized below as ppss. ‘The maximum reasonable values of pp and ss
are dictated by the Lisp implementation, except of course ss may not "overflow” into the pp field,
so may not exceed 77 (octal).

1dd ppss num
Returns the bytc of num specified with the byte-specificr ppss, as described above.
Example:

(1db 0306 4587) => 66

dpb byte ppss num
Returns a new number made by replacing the ppss byte of num with byte.

8.1.3 Testing

bit-test x y
Returns t if any of the bits in x and y intersect; that is, if their logand is not zero. bit-
test could be (and somctimes is) defined as a macro such that

(bit-test x y) ==> (not (zerop (logand x y)))

8.2 Predicates

fixnump x
Returns t if x is a fixnum, This carrisponds to a typep of fixnum.
Examples: '

(fixnump 1) => ¢
(fixnump (expt 269. 269)) => nil

flonump x
Returns t if x is a flonum. This corrcsponds to a typep of flonum.
Examples;

(flonump 3.14) => t
(flonump 17) => nil

Note that this is the samce as Hoatp in most Lisps, which have only one type of floating-
point representation. In Lisp Machine Lisp however, there are some kinds of floating

MEMACDOCNEWELUN §7 21-1U1.-81

Maclisp Extensions) 19 Lists

point numbers that are not of type Honum. fonump will return nil for these objects. It
is probably the case that code that is trying to be compatible should use floatp in
preference to cither flonump or (eq (typep x) ‘flonum).

srrayp x
Returns t if x is an array. Note that some Lisps implement certain kinds of objects as
arrays;, for cxample, PDP-10 Maclisp file objects arc arrays, and Lisp Machine Lisp
utilizes arrays for.most structures defined with defstruct (page 26).

svenp integer
Returns t if integer is cven, nil otherwise. This complements the oddp function which
Lisp provides. -

(s &Krest args
<= requires at least two arguments. If any argument is grcater than the next argument,
it returns nil, otherwise it returns t. In Maclisp, args should consist of cither all fixnums
or all flonums.

de &rest args
Similar to =,

fboundp symbol
fooundp returns nil if the symbol symbol in not detined as a function or special form. It
returns something non-nil if symbol is defined. The exact nature of the non-nil object
varies from implementation to implementation.

It is not dcfined what fboundp returns if symbo/ has an autoload property and is
otherwise undefined. ’

8.3 Lists

VTist® &rest args .
list* criates what some people call a "dotted list”.

(Viste 'foo 'bar ‘baz) => (foo bar . bez)
(V1iste 'foo 'bar) > (foo . bar)
(1iste 'foo0) => foo

list* makes certain unwicldy compositions of the cons function somewhat casier to type:
(liste 1 2 3 4)
is the same as
(cons 1 (cons 2 (cons 3 4)))
make-11st lengih

make-list creates a list of nils of length Jength, Fxample:
(make-list 3) => (nil nil nid)

MIMACDOCNEWIUN 57 -JUL-§1

P

Variables 20 Maclisp Extensions

nth n list
(nth n list) returns the n'th clement of liss, where the zcroth clement is the car of the
list, If nis larger than the length of the list, nth rcturns nil, Examples;

(nth 2 '(zero one two three)) => two
(nth 0 ‘'(a bc)) > a

nthedr n list
(nthedr n list) cdrs list n times, and returns the result, If n is larger than the length of
the list then nil is returned. Examples;

(nthcdr 3 '(qwerty)) > (rty)
(nthcdr 0 ‘(6 t ac inr))=>(etaoinr)

Note that
(nth nl)
is the same as

(car (nthcdr n 1))

8.4 Variables

Tot Special Form

(Yot ((varl val-1) (var2? val-2) ...)
SJorm-1
Jorm-2
|

binds var! to the value of val-/, var-2 to the value of wal-2 ctc., and evatuates each of
the form-i in that binding cnvironment. That is, it is equivalent to

((vambda (var/ var2 ...)
Jorm-1 form-2 ...)
val-l1 val-2 . ..)

but displays the values in close proximity to the variables.
Note that similar to do, a declaration is allowed as the first form in a let body.

lete® ' Special Form
let* has a syntax identical to that of let, but binds the variables in sequence rather than
in patallel. 'Thus,

(lete ((a (foo)) (b (bar a)))
{computate a b))

is like

MIMACDOCNEWEUN §7 ' 21-JU 81

Maclisp Extensions 2 Flow of Control

((Vambda (a)
((Yambda (b)
(computate a b))
(bar a)))
(foo))

pset’; Special Form
pestq is similar to setq. In the multi-variable case however, the variables are sct “in
paralicl” rather than sequentually; first all the forms arc cvaluated, and then the symbols
ave sct o e resulting values. For example:

(setq a 1)
(setq b 2)°
(psetq a b b a)
a=>2

b => 1

8.5 Flow of Control

8.5.1 Conditionals

10 predicate-form then-form [else-form). ‘ Special Form
if is a convenient abbreviation for a simple cond which docs a binary branch. predicate
Jorm is cvaluated, and if the result is non-nil, then then-form is evaluated and that result
returned, otherwise else-form is cvaluated and that result returned. If no else-form is
specified and predicate-fonn evaluates to nil, then nil is rctuined. it can (and usually is)
defined as a macro such that

(11 pred then else)
==> (cond (pred then) (t else))

(if pred then)

==> (cond (pred then) (t nil))
or

==> (and pred then)

If there are more than three subforms, if assumes that more than one otherwise form was
intended; they will be treated as an implicit progn. For example,

(if p c el e2 e3)
=x> (cond (p c) (t el e2 e3))

There is disagreement as to whether this constitutes good programming style, so it is
possible that this Jast variant may be disallowed,

MEMACDOCNEWEFUN §7 2-JUEAR]

Flow «i Control - Maclisp Extensions

8.5.2 Selection

selectq key-form clauses.. ' Special Form
selectq is a conditional which chooses one of its clauscs to exccute by comparing the
value of a form against various constants. Its form is as follows:

(sclectq key-form
(test consequent-forms...)
(test consequent-forms...)

-)

The first thing selectq docs is to evaluate key-form; call the resulting value key. Then
selectq considers cach of the clauses in turn. [If key matches the clauses test, the
conscquents of ihis clause are cvaluated, and selectq returns the value of the last
consequent. If there are no matches, selectq returns nil.

A lest may be any of

asymbol or integer The symbol or integer is compared with key. Symbols are
compared using eq; integers arc compared on the same basis that
equal uscs—cqual types and equal values. Note that t and
otherwise are exceptions here.

alist The list should contain only symbols and integers, which are
compared as above.

t or otherwise The symbols t and ctherwise arc special keywords which match
anything, Either of these imay thus be used to signify a "dcfault”
clause, which to be useful, should be the last clause of the selentq.

Examples:
(defun count-them (n)
(selectq n
(0 'none)
(1 'one)
(2 'two)

((3 4) 'a-few)

(t 'many)))
(count-them 2) => two
(count-them 3) => a-few
(count-them 7) => many

(selectq 'one
(1 integer-one)
(one 'symbol-one)
(t 'something-else))
=> symtol-one

If the keys being tested against and the value of key-form are all of the same type, caseq
should be used, as it may produce more cfficient code depending on the implementation,
This is true in PDI=10 Maclisp, which has a0 primitive peedicate that implements the
type of comparison that selectq uses, In Lisp Machine Lisp and Muliics Maclisp there
shauid be no diflerence unless bignums are used. Presently, bignums do not work

MUMACDOCNEWEFUN 57 21-JU1 -8

Maclisp Extensions pX) Flow of Control

anyway, but this is expected to be fixed.

caseq key-form clauses... Special Form
caseq is the same as seluctq except that it requires all of the keys being compared to be
of the same type. It is also an error for the value of key-form to be of a different type
than the keys in the clauses.

Currently, in all but the PDP-10 implementation, caseq is implemented in terms of
selectq so docs not provide this consistency checking, any qualifications given for selectq

apply (o caseq.

In PDP-10 Maclisp, caseq does not accept the otherwise keyword; it is necessary for t
to be used. It also does not accept bignums.

8.5.3 Iteration

dolist Special Form
dolist is like a cross between mapc and do.

(doVist (var list) body.)

evaluates the forms of body for each clement of list, with war bound to the successive
clements, body is treated as a prog or do body, so it may contain prog tags, and calls
to return, which will return from the dolist.

dotimes Special Form
dotimes performs integer stepping, and is otherwise similar to dolist.

(dotimes (war count) body..)

cvaluates body count times, war takes on values starting with zero, and stops before
reaching count. For example,

(dotimes (1 (// m n)) (frodb 1))
is equivalent to

(do ((1 O (2+ 1))
(count (// m n)))
((not (< ¥ count)))
(frob 1))

except that the name count is not used.
dotimes is similar to dolist in that the body is treated as if it were a prog or do body.

Yoop Macro
dolist and dotimes arc convenient for simple cases, where the oxtra syntax necessitated by
mapc or do is an annoyance, For complicated cases, the loop macro miy be desirable,
It provides for the stepping of multiple variables, either in sequence or in parallel, and
methods Tor performing various sorts of accumulations, such as collecting o list, summing,
and countings maore than one such accumulation o be performed, and they need not be
accumulated "in syne™ with the iteration, For example,

MEMACDOCNEWEUN 57 M-JU-81

ks L ek ikl ST,

R

Flow of Control 24 Maclisp Extensions

(Yoop for x tn 1 as y = (f x) collect (cons x y))
produces a result like

(do ((eViste) (cdr eliste)) (x) (y) (eresulte))
((nul) #liste) (nreverse sresults))
(setq x (car eliste))

(setq y (f x))
(setq ‘sresults (cons {cons x y) eresulte)))

docs. loop is extremely complicated so is not documented hérc; full documentation may
be found in MIT Laboratory for Computer Science Technical Memo 189 (January 1981).

8.5.4 Non-Local Exits

*catch wg form Special Form
The *catch special form is used with *throw to perform non-local exits. rag is evaluated,
and then form is cvaluated. If during the evaluation of form a (*throw tag value) is
donc, then the *catch returns walue,

*throw tag value
Evaluation of (*throw tag value) causcs a pending *catch of tag to return value.

*catch and *throw are slightly morc general versions of the standard Maclisp catch and
throw special forms. They arc more gencral in that the tags given to them are cvaluated, and
thus nced not be written into the code, but can be passed in. Additionally, the difference in
argument ordering can make for more readable code, viz

(ecatch 'exit
moby-big-hairy-compuation-
that-is-continued-over-
many-lines)

Lisp Machine Lisp, PDP-10 Maclisp, and NIL support *catch and °throw as thc basic catching
and throwing primitives; catch and throw are implemented as macros in terms of them. Multics
Maclisp implements *catch and *thiow as macros in tcrms of the existing catch and throw
special forms; thus it is impossible for *catch and *throw on Multics to accept anything but a
quoted atom for the tag. '

It is advisable for *catch and *throw to be used in preference to catch and throw; at some
futurc time it is anticipated that catch and throw will be changed to be cquivalent to *catch and
*throw. ‘The names *catch and *throw arc cxpected to remain valid indefinitely,

unwind-protect form cleanup-forms.., - Special Form
unwind-protect cvaluates form and returns that result as its value, When control returns
from the unwind-protect for any reason, whether it be a normal return, or a non-local
cxit causes by a *throw or an citor, the cleanup-forms will be evaluated. unwind -protect
can thus he used for "binding” something which is not really bindable as a variable, or
for performing some necessary cleanup action, such as closing a file.
Examplc:

MEMACDOCNEWEUN 57 21-3U1.-81

0 B A il oy RIS aob s TS FR 5 0y A ADE Al <. e g Fow A0 b e

Maclisp Extensions _ 25 Miscellaneous

(unwind-protect
(progn (turn-on-water-faucet)
(compute—undor-running-wator))
(turn-off-water-faucet))

8.6 Miscellancous

progl first forms... Special Form
prog? is similar to prog2, only without the first argument. All of the argument to prog?
are evaluated just as they would be for progn, however, the value returned by progt will
be the valuc of the first form rather than the last. For example:

(rplaca x (progl (cdr x) (rplacd x (car x))))

can be used to exchange the car and the cdr of a cons.

lexpr-funcall finction &rest args
lexpr-funcall is a cross beween funcall and apply, (lexpr-funcall function arg-1 arg-2 ...
arg-n list) calls the function function on arg-1 through arg-n followed by the clements of
list, for example

(Yexpr-funcall 'list 'a 'b '(c d)) => (a b c d)
{lexpr-funcal) 'plus 3 4 '(2 1 0)) => 12

Note that two argument lexpr-funcall is the same as apply, and that lexpr-funcall with
a list argument of nil is essentially funcall,

without-interrupts forms... Special Form
This provides a convenient way of executing some code uninterruptibly. forms are
evaliated as with progn and the value of the last form is returned. It is guarantced that
the evaluation will be performed as an atomic operation,

ferror condition-name format-siring &test format-args
terror provides a mechanism for signalling errors using format (page 47) to generate the
error message, condition-name is used to specify the type of condition which is to be
signaled; no mechanism for this exists in Maclisp, However, condition-name may be nil,
in which case an uncorrectable error occurs—nil is therefore the only value of condition-
some guarantced to work cverywhere,
Example:

(ferror nil "%%% Compiler error - call ~§ X%%"
(get 'compiler 'maintainer))

MEMACDOCNEWIFUN 57 MU

Defstruct 26 Maclisp Extensions

9. Defstruct

9.1 Introduction

The featurcs of defstruct differ slightly from one Lisp implementation to another. However,
defstruct makes it fairly casy to write compatible code if the nser doesn't try to exercise any of
the more esoteric features of his particular Lisp implementation. The differences will be pointed
out as they occur,

Onc difference that we must deal with immediately is the question of packages. defstruct
makes usec of a large nusmber of keywords, and on the Lisp Machine those keywords are all
interned on the keyword package. However, for the purposes of compatibility, the Lisp Machine
defstruct will allow the keywords to appear in any package. 'The Lisp Machine programmer is
discouraged from writing keywords without coions, unless the code is to be transported to another
Lisp implementation. Classes of symbols that defstruct trcats as keywords will be noted as they
OCCur,

Other package related issues will be dealt with later.

9.2 A Simple Example

defstruct Macro
defstruct is a macro defining macro. The best way to explain how it works is to show a
sample call to defstruct, and then to show what macros are defined and what each of
them docs,

Sample call to defstruct:

(defstruct (elephant (type list))
color *
(size 17.)

(name (gensym)))

This form expands into a whole rat's nest of stuff, but the effect is to define five macros: color,
size, name, make-elephant and alter-elephanmt. Notc that there were no symbols make-
elephant or alter-elephant in the original form, they were created by defstruct. ‘The dcfinitions
of color, size and name are casy, thcy expand as follows:

(color x) ==> (car x)
(size x) ==> (cadr x)
(name x) ==> (caddr x)

You can scc that defstruct has decided to implement an clephant as a list of three things: its
color, its size and its name. 'The cxpansion of make-elephant is somewhat harder to explain,
let’s look at a few cascs:

MEMACDOCDEFSTR 58 21-JU1.-81

K i ot i,) i TN R 156 AR A o

e

Maclisp Extensions 27 Syntax of defstruct

(make-elephant) =s> (1ist a1 17, (gensym))
(make-elephant color ‘pink) ==> (1ist 'pink 17, (gensym))
(make-elephant name ’'fred size 100) ==> (Vist ni) 100 'fred)

As you can sce, make-elephant takcs a "setq-style” list of part names and forms, and
expands into a call to list that constructs such an clephant. Note that the unspecified parts get
defaulted to pieces of code specified in the original call to defstruct. Note also that the order of
the sctq-style arguments is ignored in constructing the call to list. (In the example, 100 is
cvaluated before 'fred even though 'fred came first in the make-elephant form.) Care should
thus be taken in using code with side cffects within the scope of a make-elephant. Finally, take
note of the fact that the (gensym) is evaluated every time a new clephant is created (unless you
override it),

The cxplanation of what alter-elephant does is delayed until section 9.4.3, page 31.

S0 now you know how to construct a new elephant and how to examine the parts of an
clephant, but how do you change the parts of an alrcady existing clephant? The answer is to use
the setf macro (thapter 7, page 15).

(setf (name x) 'bill) ==> (rplaca (cddr x) 'bBil1)

which is what you want.

And that is just about all there is to defstruct; you now know encugh to use it in your code,
but if you want to know about all its interesting features, then read on.

9.3 Syntax of defstruct

The general form of a defstruct form is:

(defstruct (name option-1 option-2 ... option-n)
slot-description-1
slot-description-2

slot-description-m) .

name must be a symbol, it is used in constructing names (such as "make-elephant”) and it is
given a defstruct-description property of a structure that describes the structure completcly.

Each option-i is cither the atomic name of an option, or a list of the form (option-name arg .
rest). Somc options have defaults for arg; some will complain if they arc present without an
argument; some options complain if they are present wirh an argument. The interpretation of rest

is up to the option in qucestion, but usually it is expected to be nil.

Each slot-description-j is cither the atomic name of a slot in the structure, or a list of the
form (slot-name init-code), or a list of byte ficld specifications. init-code is used by constructor
macros (such as make-elephant) to initialize slots not specified in the call to the constructor. If

“the ini-code i not specified, then the slot iy initialized o whatever is most conmvenient, (In the

elephant cxample, since the siructure was a list, nil was used. If the structure had been a
fixnum array, such slots would be filled with zcros.)

MEMACDOCDEFSTR 58 21100 -81

Options to defstruct 28 Maclisp Extensions

A byte ficld specification looks like: (field-name ppss) or (field-name ppss init-code). N.s» that
since a byte ficld specification is always a list, a list of byte ficld specifications can never be
confused with the other cases of a slot description. The byte ficld feature of defstruct is
explained in detail in section 9.5, page 38,

9.4 Options to defstruct
The following scctions document cach of the options defstruct undentands in detail.

On the Lisp Machine, all these defstruct options are interned on the keyword package.

9.4.1 type

The type option specifies what kind of lisp object defstruct is going to use to implement your
structure, and how that implementation is going to be carricd out. The type option is illegal
without an argument. If the type option is not specificd, then defstruct will choose an
appropriate default (hunks on PDP-10s, arrays on Lisp Machines and lists on Multics). It is
possible for the user to teach defstruct new ways to implement structures, the interested rcader is
referred to section 9.8, page 42, for more information, Many useful types have alrcady been
defined for the user, A table of these "built in" types follows: (On the Lisp Machine all
defstruct types are interned on the keyword package.)

list All implementations
Uses a list. ‘This is the default on Multics.

named-list All implementations
Like list, except the car of cach instance of this structure will be the name
symbol of the structure. This is the only “named" structure type defined on
Multics, (Sce the named option documented in scction 9.4.7, page 35.)

tree . All implementations
Creates a binary trec out of conses with the slots as leaves. The theory is to
reduce car-cdring to a minimum. 'The include option (scction 94.6, page 33) does
not work with structures of this type.

list® . All implemeniations
Similar to list, but the last slot in the structure will be placed in the cdr of the
final cons of the lisi. Some people call objects of this type “dotted lists”. The
include option (scction 9.4,6, page 33) does not work with structures cf this type.

array ~ ' All implementations
Uses an array object (not a symbol with an array property). ‘This is the default ¢on
Lisp Machines, i.isp Machine users may want to sce the make-array option
documented in section 9.4.8, page 35,

MENACDOC:DEFSTR S8 20U -8

Maclisp Extensions 29 Options to defstruct

fixnum--array

flonum-array

un-gc-array

hunk

named-hunk

named-array

array-leader

All implementations
Like array, except it uses a fixnum array and thus your structure can only contain
fixnums. On Lisp Machines defstruct uscs an art-32b type array for this type,

All implemetations
Analogous to fixnum-array, On Lisp Machincs defstruct uses an art-float type
array for this type.

PDP-10 only
Uses a nil type array instead of a t type. Note that this type does not exist on
Lisp Machines or Multics, because un-garbage-collected arrays do not work in
those implementations.

PDP-10 only
Uses a hunk. This is the default on PDP-10s,

PDP-10 only
Like hunk, except the car of cach instance of this structure will be thc name
symbol of the structure. This can be used with the (status usrhunk) feature of
PDP-10 Maclisp to give the user Lisp Machine-like named structures. (Sece the
named option documented in scction 9.4.7, page 35.)

PDP-10 only
Uses an SFA. The constructor macros for this type accept the keywords sfa-
function and sfa-name. Their arguments (evaluated, of coursc) are used,
respectively, as the function and the printed representation of the SFA. See also
the sfa-function (scction 9.49, page 35) and sfa-name (scction 9.4.10, page 36)
options.

Lisp Machine only
Uses an array with the named structure bit sct and stores the name symbol of the
structurc in the first element. (Sec the make-array option documented in section
9.4.8, page 35.)

Lisp Machine only
Uses an array with a leader. (Sec thc make-array option documented in section
9.4.8, page 35.)

named-array -leader Lisp Machine only

fixnum

Uses an array with a leader, sets the named structure bit, and stores the name
symbol in clement 1 of the leader. (Sce the make-array option documented in
section 9.4.8, page 35,)

All implementations
This type allows onc to use the byte ficld feature of defstruct to deal symbolically
with fixnums that aren't actually stored in any structurc at all, Essentially, a
structure of type fixnum has cxactly onc slot. This allows the operation of
retricving the contents of that slot o be optimized away into the identity
operation, Sce section 9.5, page 38 for more information about byte ficlds.

MEMACDOCDEEFSTR 58 ' 21-JU1 81

Options to defstruct 3 Maclisp Extensions

external Multics only
Uses an array of type external (only Multics Lisp has these). Constructor macros
for structures of this kind take thc external-ptr keyword to tcll them where the
array is to be -allocated. (Sec scction 94.2, page 30, for an cxplanation of
constructor macro keywords.) Sce also the external-ptr option described in section
94.11, page 36.

9.4.2 constructor

The constructor option specifics the name to be given to the constructor macro. Without an
argument, or if the option is not present, the name defaults to the concatenation of "make-" with
the name of the structure. If the option is given with an argument of nil, then no constructor is
defined. Otherwisc the argument is the name of the constructor to define. Normally the syntax
of the constructor defstruct defines is:

(constructor-name
keyword-1 code-1
keyword-2 code-2

keyword-n code-n)

Each keyword-i must be the name of a slot in the structure (not necessarily the name of an
accessor macro; sce the conc-name option, scction 9.4.5, page 33), or one of the special
keywords allowed for the particular type of structure being constructed, For each keyword that is
the name of a slot, the constructor expands into code to make an instance of the structure using
code-i o initialize slot keyword-i. Unspecified slots default to the forms given in the original
defstruct form, or, if none was given there, to some convenient value such as nil or 0.

For keywords that are not names of slots, thc use of the corresponding code varies. Usually
it controls some aspect of the instance being constructed that is not otherwise constrained. See,
for cxample, thc make-array option (scction 94.8, page 15), the sfa-function option (section
94.9, page 35, or the external-ptr option (scction 9.4.11, page 36).

On the Lisp Machine all such constructor macro keywords (thosc that are nof the names of
slots) are interned on the keyword package.

If the constructor option is given as (constructor name arglist), then instcad of making a
keyword driven constructor, defstruct defines a "function style" constructor. The arglist is used
to describe what the arguments to the constructor will be. In the simplest case something like
(constructor make-foo (a b c)) defines make-foo to be a three argument constructor macro
whose arguments are used to initialize the slots named a, b and c,

In addition, the keywords &optional, &rest and &aux arc recognized in the argument list.
They work in the way you might cxpect, but there are a few fine points worthy of cxplanation:

(constructor make-foo
(a &optional b (c ’'sea) &rest d Baux e (f 'eff)))

This defines make-too to be a constructor of one or more arguments, 'The first argument is used
to initiglize the a slot. “he second argument is used to initialize the b slot. If there isn't ary
second argument, then the detaalt value given in the body of the defstruct (if given) is used

MENMACDOCDEFSTR S8 213U -88

T T, T

Maclisp Extensions ‘ 3l Options to defstruct

instcad, The third argument is used to initialize the ¢ slot. If there isn't any third argument,
then the symbol sea is used instcad. 'Tne arguments from the fourth one on are collected into a
list and used (o initialize the d slot. §f there are three or less arguments, then nil is placed in the
d slot. 'The e slot is not initialized, 1t's value will be something convenient like nit or 0. And
finally the f slot is initialized to contain the symbol eff,

The b and e cases were carefully chosen to aflow the user to specify all possible behaviors.,
Note that the 8aux "variables” can be used to completely override the default initializations given
in the body.

Since there is so much freedom in defining constructors this way, it would be cruel to only
allow the constructor option to be given once, So, by special dispensation, you are allowed to
give the constructor option more than once, so that you can definc several different constructors,
each with a diffcrent syntax.

Note that cven these "function style” constructors do not guarantee that their arguments will
be evaluated in the order that you wrote them,

9.4.3 alterant

'The alterant option defines a macro that can be used to change the value of several slots in a
structure together. Without an argument, oy if the option is not present, the name of the alterant
macro defaults to the concatenation of "alter-" with the name of the structure, If the option is
given with an argument of nil, then no alterant is defined. Otherwise the argument. is the name
of the alterant t define, ‘The syntax of the altcrant macro defstruct defines is:

(alterant-name code
slot-name-1 code-1
slot-name-2 code-2

slot-name-n code-n)

code shouid evaluate to an instance of the structure, cach code-i is evaluated and the result is
made to be the valuc of slot slot-name-i of that structure. The slots are all altered in paraliel
after all code has been evaluated. (Thus you can use an alterant macro to cxchange the contents
to two slots.)

Example:

(defstruct (lisp-ﬁacker (type list)
conc-name
detault-pointer
alterant)

(favorite-macro-package nil)
(unhappy? t)
(number-of-friends 0))

(setq lisp-hacker (make-lisp-hacker))

~ Now we can perfonn a transformation:

MEMACDOC;DEFSTR 58 2-IULL-8]

Options to defstruct n Maclisp Extensions

(alter-1isp-hacker Visp-hacker
favorite-macro-peckage 'defstruct
number-of-friands 23.
unhappy? nil)

==> ((lambda (G0009Q)

((1ambda (GOO11 GO010)
(setf (car GOOO9) 'defstruct)
(setf (caddr GO00R) GOO11)
(setf (cadr GOO09) GOO10))

23,

niv))

lisp-hacker)

Although it appears from this example that your forms will be ¢valuaied in the order in
which you wrote them, this is not guaranteed.

Alterant macros are particularly good at simultancously modifying several byte ficlds that are
allocated from the same word, They produce better code than you can by simply writing
consccutive setfs. They also produce betier code when modifying several slots of a structure that
uses the but-first option (section 94.15, page 37).

9.4.4 default-pointer

Normally the accessors are defined to be macros of exactly onc argument. (They check!) But
if the default-pointer option is present then they will accept zero or onc argument. When used
with onc argument, they behave as before, but given no arguments, they cxpand as if they had
been called on the argument to the default-pointer option. An example is probably called for:

(defstruct (room (type tree)
(default-pointer eecurrent-roomee))
(room-name °‘'y2)
(room-contents-1ist nil))

Now the accessors exsand as follows:

(room-name x) ==> (car x)
(room-naine) =s> (car securrent-roomes)

If no argument is given to the default-pointer option, then the name of the structure is used
as the "default pointer”. default-pointer is most often used in this fashion,

MEMACDOCDEFSTR S8 ‘ 21-1001 -§1

Maclisp Extensions 3 Options Lo defstruct

9.4.5 conc-name

Frequently all the accessor macros of a structure will want to have names that begin the same
way; usually with the name of the structure followed by a dash. ‘The conc-name option allows
the user to specify this prefix. lis argument should be a symbol whose print name will be
concatenated onto the front of the slot names when forming the accessor macro names. If the
argument is not given, then the name of the structure followed by a dash is used, If the cenc-
name option is not present, then no prefix is used. An example illustrates a commen use of the
conc-name option along with the default-pointer option:

(defstruct (locetion default-pointer
conc-name)
(x 0)
(y 0)
(z 0))

Now if you say

(setq location (make-location x 1 y 34 2 65))
it will be the case that

(location-y)

will return 34, Note well that the name of the slot ("y") and the name of the accessor macro for
that slot ("location-y") are different, -

9.4.6 include

The include option inserts the dcfinition of its argument at the head of the new structure’s
definition, In other words, the first slots of the new structure are cquivalent to (i.e, have the
same names as, have the same inits as, ctc,) the slots of the argument to the include option,
The argument to the include option must be the name of a previously defined structure of the
same type as the new one, If no type is specified in the new structure, then it is defaulted to
that of the included one. It is an error for the include option to be present without an
argument, Note that include docs not work on certain types of structures (e.g. structures of type
trea or iist*), Note also that the conc-name, default-pointer, but-first and callable-
accessors options only apply to the accessors defined in the current defstruct; no new accessors
are defined for the included slots.

MEMACDOCDEEFSTR S8 RS RIS 7!

Options to defstruct M Maclisp Extensions

An cxample:
(defstruct (person (type 1ist)
conc-name)
name
age
sox)

(defstruct (spaceman (include person)
default-pointer)
heimet-size
(favorite-beverage 'tang))

Now we can make a spaceman like this:

(setq spaceman (make-spaceman name 'buzz
age 48,
sox ¢
heimet-size 17.6))

To find out interesting things about spacemen:

(helmet-size) =s> (cadddr spaceman)
(person-name spaceman) ==> (car spaceman)
(favorite-beverage x) ==> (car (cddddr x))

As you can sce the accessors defined for the person structure have names that start with
"person-" and they only take one argument. The names of the accessors for the last two slots of
the spaceman structure are the same as the slot names, but they allow their argument to be
omitted. The accessors for the first three slots of the spaceman structure are the same as the
accessors for the person structure.

Often, when one structure includes another, the default initial values supplied by the included
structure will be undesirable, These default .initial values can be modificd at the time of inclusion
by giving the include option as:

(include name new-init-l ... new-init-n)

Each new-init-i is cither the name of an included slot or of the form (included-slot-name new-init).
If it is just a slot name, then in the new structure (the one doing the including) that slot will
have no initial value, !f a new initial value is given, then that code replaces the old initial value
code for that slot in the new structure, 'The included structure is unmodified.

MEMACDOCDETS TR 58 AR

i, e R 35 RS AW | s ity s

gt e

R i

Maclisp Extensions 35 Options to defstruct

9.4.7 named

This option tells detstruct that you desire your structure to be a "named structure”, On
PDP-10s this mecans you want your structure implemented with a named -hunk or named- list.
On a Lisp Machine this indicates that you desirc cither a named-array or a named -array -
leader or a named-list. On Multics this indicates that you desire a named-list, defstruct bases
its decision as to what named type to use on whatever value you Jdid or didn’t give to the type
option,

It is an error to use this option with an argument,

9.4.8 make-array

Available only on Lisp Machines, this option allows the user to control those aspeets of the
array used to implement the structure that are not otherwise constrained by defstruct (such as ihe
arca it is to be atlocated in).

The argument to the make-array option should be a list of alternating keyword symbols to
the Lisp Machine make-array function (see the Lisp Machine manual), and forny, whose values
are t0 be the argumenis to those keywords, For example, (make-array (itype ‘art 4b)) would
request that the type of the ariay be art-4b, Note that the keyword symbols are nor evaluated.

Constructor macros for structures implemented as arrays all allow the keyword make-array to
be supplied, Its argument is of the same form as the make-array option, and attributes specified
there (in the constructor form) will override those given in the defstruct form,

Since it is sometimes necessary to be able to specify the dimensions of the array (hat
defstruct is going to construct (for structures of type array-leader for example) the make -array
option or constructor keyword accepts the additional keywords :length and :dimension (they mean
the same thing). The argument fo this pscudo make-array keyword will be supplivd as the first
argument to the make-array function when the constructor is expanded,

defstruct chooses appropriate defaults for those attributes not specified in the defstrict form
or in the constructor form, and defstruct overrides any’specified attributes that it bas %,

9.4.9 sfa-function

Available only on PDP-10s, this option allows the user to specify the funciion that will be
used in structures of type sfa, lts argument should be a picce of code that evaluates to the
desired function, Constructor macros for this type of structure will take sfa-function as a
keyword whose argument is also the code to evaluate to get the function, overriding any supplied
in the original defstruct form,

If sta-function is not present anywhere, then the constructor will use the name-symbal of the
structure us the function,

MEMACDOCTDE S TR S8 ' 20T 8

Options to defstruct 36 Maclisp Extensions

9.4.10 sfa-name

Available enly on PDP-10s, this option allows the user to specify the object that will be used
i the printed representation of structures of type sfa. its argument should be a picce of code
that evaluates to that object, Constructor macros for this type of structure will take sfa-name as
a keyword whose argument is also the code to evaluate to get the object to use, overriding any
supplicd in the original defstruct form.

If sfa-name is not present anywhere, then the constructor will use the name-symbol of the
structure as the function,

9.4.11 external-ptr

Available only on Multics, this option is used with structures of type external. Its argument
should be a picce of code that evaluates to a fixnum "packed pointer” pointing to the first word
of the external array the defstruct is to construct, Constructor macros for this type of structure
will take external-ptr as a keyword whose argument overrides any supplied in the original
defstruct form,

If external-ptr is not present anywhere, then the constructor signals an error when it
expands.

9.4.12 size-symbol

The size-symbol option allows a user to specify a symbol whose value will be the "size” of
the structure. The exact micaning of this varies, but in gencral this number is the onc you would
need to know if you were going to allocate one of these structures yourself. The symbol will
have this value both at compile time and at run time. If this option is present without an
argument, then the name of the structure is concatenated with "-size” to produce the symbol.

9.4.13 size-macro

Similar to size-symbol. A macro of no arguments is defined that expands into the size of
the structure. The name of this macro defaults as with size-symbol.

9.4.14 initial-offset

This option allows you to tell defstruct to skip: over a certain number of slots before it starts
allocating the slots described in the body. This option requires an argument, which must be a
fixnum, which is the number of slots you want defstruct to skip. To make use of this option
requires that you have some familiarity with how defstruct is implementing you structure,
otherwise you will be unable to make use of the slots that defstruct has left unuscd.

MIEMACHOCDEFST, S8 21-5U1.-81

T e A Rl S R R A e e B

Maclisp Extensions |) k1) Options to defstruct

9.4.15 but-first

This option is best explained by example:

(defstruct (head (type 1list)
(default-pointer person)
(but-first person-head))
nose
mouth
eyes)

So now the accessors expand like this:

(nose x) ==> (car (person-head x))
(nose) ==> (car (person-head person))

The theory is that but-first’s argument will likely be an accessor from some other structure,
and it is never expected that this structure will be found outside of that slot of that other
structure, (In the cxample I had in mind that there was a person structurc which had a slot
accessed by person-head.) It is an error for the but-first option to be used without an
argument,

9.4.16 callable-accessors

This option controls whether the accessors defined by defstruct will work as "functional
arguments”. (As the first argument to mapcar, for cxample.) On the Lisp Machine accessors are
callable by default, but on PDP-10s it is expensive to make this work, so they are only callable if
you ask for it, (Currently on Multics the feature doesn’t work at all,.) The argument to this
option is nil to indicate that the feature should be turned off, und t to turn the feature on. If
the option is present with no argument, then the feature is turned on,

9.4.17 eval-when

Normally the macros defined by defstruct are defined at eval-time, compile-time and at load-
time. ‘This option allows the user to control this behavior. (eval-when (eval compile)), for
cxample, will cause the macros to be defined only when the code is running interpreted and
inside the compiler, no trace of defstruct will be found when running compiled code.

Using the eval-when option is preferable to wrapping an eval-when around a defstruct
form, since nested eval-whens can interact in unexpected ways.,

MEMACDOCDERSTR 38 21-JU1 -8

Byte Fields 38 Maclisp Extensions

9.4.18 property

For cach structure defined by defstruct, a property list is maintained for the recording of
arbitrary properti¢s about that structure,

The property option can be used to give a defstruct an arbitrary property, (proparty
property-name value) gives the defstruct a properiy-name property of value, Neither argument is
evaluated. To access the property list, the user will have to look inside the detstruct-description
structure himself, he is referred to section 9.7, page 41, for more information,

9.4.19 A Type Used As An Option

In addition to the options listed above, any currently defined type (a legal argument to the
type option) can be used as a option. 'This is mostly for compatibility with the old Lisp Machine
defstruct. It allows you to say just fype when you should be saying (type fype), Use of this
feature in new code is discouraged. It is an error to give an argument to a type uscd as an
option in this manner,

9.4.20 Other Options

Finally, if an option isn’t found among those listed above, defstruct checks the property list
of the namc of the option to see if it has a non-null defstruct-option property. If is does have
such a propeity, then if the option was of the form (option-name value), it is treated just like
(property opfion-name value), That is, the defstruct is given an option-name property of value.
It is an error to use such an option without a value,

'This provides a primitive way for the user to define his own options to defstruct. Several of
the options listed above are actually implemented using this mechanism,

9.5 Byte Fields

On Multics, the byte field feature will not work unless the user has arranged to define the
functions Idb and dpb (scction 8.1.2, page 18). They arc not yct present in the default
environment, but they arc available as part of the extension library (section 11.2, page 59).

The byte field feature of defstruct allows the user to specify that scveral slots of his structure
are bytes in a fixed point number stored in onc clement of the structure. For example, suppose
we had the following structure:

(defstruct (phone-book-entry (type list))
name
address
(area-code 617.)
exchange
line-number)

This will work just fine, Except you notice that an area-code and an exchange arc both always
fess than 1000, and s0 both can casily fit in 10, bits, and the line-number is alwayy Iess than
10000. and can “thus fit in 14, bits, Thus you can pack all theee parts of a phone number in 34,

ML MACDOCDEFSTR S8 . 21-5U01.-81

Muclisp Extensions 39 Byte Fields

bits.” If you have a lisp with 36, bit fixnums, then you should be able to put the entire phone
number in one fixnum in a structure. defstruct allows you to do this as follows:

(defstruct (phone-book-entry (type list))
name '
addross
((area-code 3012 617.)
(exchange 1612)
(Vine-number 0016)))

The magic numbers 3012, 1612 and 0016 arc byte specifiers suitable for use with the functions
Idb and dpb (page 18). Things will expand as follows:

(area-code pbe) ==> (1db 3012 (caddr pbhe))
(exchange pbe) ==> (1db 1612 (caddr pbe))

(make-phone-book-entry
name '|Fred Derf|
address '|2569 Octal St.|
exchange ex
line-number 7788.)

==> (Vist '|Fred Derf| '|269 Octal St.| (dpb ex 1612 116100017154))

(alter-phone-book-entry pbe
exchange ex
VYine-number 1n)

==> ((lambda (G0003)
(setf (caddr G0003)
(dpb ex 1612 (dpb In 0016 (caddr G0003)))))

pbe)

defstruct tries to be maximally clever about constructing and altering structures with byte
fields.

The byte specifiers arc actually picces of code that are cxpected to evaluate to byte specifiers,
but defstruct will try and understand fixnums if you supply them. (In the make-phone-book
example, defstruct was able to make use of its knowledge of the line-number and area-code
byte specificrs to assemble the constant number 115100017154 and produce code to just deposit
in the exchange.)

A nil in the place of the byte specifier code means to define an accessor for the entire word.
Sa we could say;

ML MACDOCDEFSTR 58 2100 -8

W =
]

PO £ Y

s

About Autoloading | 4 Maclisp Extensions

"(defstruct (phone-book-entry (type 1ist))
name
address
((phone-number nil)
(area-code 3012 617.)
(exchange 1612)
(Yine-number 0016)))

to enable us to do things li'ke:
(setf (phone-number pbel) (phone-number pbe2))

to cause two cntries to have the same phone numbers.

We could also have said just: ((phone-number) ...) in that last defstruct, but the feature of
nil byte specifiers allows you to supply initial values for the entire slot by saying: ((name nil inif)

ou).

Constructor macros initialize words divided into byte fields as if they were deposited in the
following order:

1) Initializations for the entire word given in the defstruct form.

2) Inii. i otions for the byte ficlds given in the defstruct form.

3) Initializatioas for the entire word given in the constructor macro form,
4) Initializations for the byte fields given in the constructor macro form,

Altcrant macros operate in a similar manner, That is, as if the entire word was modified first,
and then the byte fields were deposited. Results will be unpredictable in constructing and altering
if byte fields that overlap are given,

9.6 About Autoloading
This scction only applies to PDP-10 and Multics Lisp.

If you look at the property lists of the macros defined by defstruct, you will find that they
are all have macro propertics of one of four functions: defstruct-expand-ret-macro, defstruct-
expand-cons-macro, defsiruct-expand-alter-macro and defstruct-expand-size-macro.
These functions figure out how to expand the macro by examining the property list of the car of
the form they are asked to expand. defstruct-expand-ref-macro, for cxample, looks for a
defstruct-slot property, which should be a cons of the form (structure-name . slot-name).

Since the defstruct form only expands into putprops of the desired functions (instcad of
actually constructing a full-fledged definition), loading a compiled file containing a defstruct
merely adds a foew propertics to some symbols, The run time environment is not ncedlessly
cluttered with unwanted list structure or subr objeets, If the user thinks he may wish to use any
of the niacros defined by defstruct afier compiling his file, he need only give the four expanding
functions autoload propertics of the name of the file containing defstruct itsclf.

MEZMACDOCDEFSTR S8 21-JL 81

Maclisp Extensions 41 The defstruct-description Stiucture

For purposes of using defstruct interpreted, the two symbols defstruct and defstruct-
define-type should be given similar autoload propertics. Thus six symbols with autoload
properties suffice to make defstruct appcear loaded at all times.

9.7 The defstruct-description Structure

This scction discusses the internal structures used by defstruct that might be useful to
programs that want to interface to defstruct nicely, The information in this scction is also
necessary for anyone who ‘s thinking of defining his own structure types (section 9.8, page 42),
Lisp Machine programmers will find that the symbols found only in this scction arc all interned
in the "systems-internals” package.

Whenever the user defines a new structure using defstruct, defstruct creates an instance of
the defstruct-description structure. ‘This structure can be found as the defstruct-description
property of the name of the structure; it contains such uscful information as the name of the
structure, the number of slots in the structure, etc.

The defstruct-description structure is defined something like this; (This is a bowdlerized
version of the real thing, | have left out a lot of things you don’t need to know unless you are
actually reading the code.;

(defstruct (defstruct-description
(default-pointer description)
(conc-name defstruct-description-))
name
size
property-alist
slot-alist)

The name slot contains the*symbol supplicd by the user to be the name of his structure,
something like spaceship or phone-book-entry,

The size slot contains the total number of slots in an instance of this kind of structure. This
is not the same number as that obtained from the size-symbol or size-macro options to
defstruct. A named structure, for example, usually uses up an extra location to store the name
of the structure, so the size-macro option will get a number one larger than that stored in the
defstruct descripticn,

The property-alist slot contains an alist with pairs of the form (property-name . property)
containing, properties placed there by the property option to defstruct or by property names used
as optioss to defstruct (sce section 9.4.18, page 38, and section 9.4.20, page 38).

The slot-alist slot contains an alist of pairs of the form (slot-name . slor-description). A slot-
description is an instance of the defstruct-slot-description structure. ‘The defstruct-slot-
description structure is defined something like this: (another bowdlerized defstruct)

MEMACDOCDENSTR 58 21-JUL-81

Extensions to defstruct 42 Maclisp Extensions

(defstruct (defstruct-slot-description
(default-pointer slot-description)
(conc-name defstruct-slot-description-))
pumber
ppss
init-code
ref-macro-name)

The number slot contains the number of the location of this slot in an instance of the
structure, lLocations arc numbered starting with 0, and continuing up to one less than the size of
the structure. ‘The actual location of the slot is determined by the reference consing code
associated with the type of the structure. Sec scction 9.8, page 42,

The ppss slot contains the byte specifier code for this slot if this slot is a byte ficld of its
location, If this slot is the eatire location, then the ppss slot contains nil,

The init-code slot contains the initialization code supplied for this slot by the user in his
defstruct form, [f there is no initialization code for this slot then the init-code slot contains the
symbol %%defstruct -empty%%.

The ref-macro-name slot contains the symbol that is dcfined as a macro that expands into a
reference to this slot,

9.8 Extensions to defstruct

defstruct-define-type Macro
The macro defstruct-define-type can be used to tcach defstruct about new types it can
use to implement structures,

9.8.1 A Simple Example

Let us start by cxamining a sample call to defstruct-define-type. 'This is how the list type
of structure might have been defined:

(defstruct-define-type list
(cons (initialization-list description keyword-options) list
(cons '1ist initialization-list))
(ref (slot-number description argument)
(Yist 'nth slot-number argument)))

This is the minimal example. We have provided defstruct with two picces of code, one for
consing up forms to construct instances of the structure, the other to cons up forms to reference
various clements of the structure.

From the example we can see that the constructor consing code is going to be run in an
civirconment where the variable initialization -list is bound o a list which s the initializations to
the slots of the structure arranged in order, ‘The variable description will he bound 10 the
defstruct -description structure for the structure we are consing a constructor for. (See section
9.7, page 1) ‘The binding of the variable keyword-options will be deseribed later, Also the

MEMACDOCDEFSTR S8 21-JUL-81

N At s i P e R e A i

oot

e e iow w Raide wa, T b,

Maclisp Extensions) 43 Extensions to defstruct

symbol list appears after the argument list, this conveys some information to defstruct about how
the constructor consing code wants to get called.

The reference consing code gets run with the variable slot-number bound to the number of
the slot that is to be referenced and the variable argument bound to the code that appearcd as
the argument to the accessor macro. The variable description is again bound to the appropriate
instance of the defstruct-description structure,

This simple cxamplc.probably tells you cnough to be able to go ahead and implement other
structure types, but more details follow.

9.8.2 Syntax of defstruct-define-type

The syntax of defstruct-define-type is

(defstruct-define-type fype
option 1

option-n)

where cach option-i is cither the symbolic name of an option or a list of the form (option-i |
rest), (Actually option-i is the same as (option-i).) Different options interpret rest in different
ways,

‘The symbol type is given a defstruct-type-description property of a structure that describes
the type completely.

9.8.3 Options to defstruct-define-type

This section is a catalog of all the options currently known about by défstruct-define-type.

9.8.3.1 cons

The cons option to defstruct-define-type is how the user supplics defstruct with the
necessary code that it needs to cons up a form that will construct an instance of a structure of
this type.

-

The cons option has the syntax:

(cons (inits description keywords) kind
body)

body is some code that should construct and return a piecc of code that will construct,
initialize and return an instance of a structure of this type.

The symbol nits will be bound to the code hat the constructor conser should use to initialize
the slots of the structure, “The exact form of this argument s delermiined by the symbol Aind,
There are currently two kinds of initiatization, ‘There s the list Kind, where inirs is vound to a
list of initializations, in the correet order, with nils in uninitinlized slots, And there is the alist

MEMACDHOCDYESTR S8 21-JUH 8]

Extensions to defstruct 44 Maclisp Extensions

kind, where inits is bound to an alist with pairs of the form (slot-number . init-code).

The symbol description will be bound to the instance of the defstruct-description structure
(section 9.7, page 41) that defstruct maintains for this particular structure, This is so that the
constructor conser can find out such things as the total size of the structure it is supposed to
create.

The symbol keywords will be bound to a alist with pairs of the form (keyword . value),
where cach keyword was a keyword supplied to the constructor macro that wasn't the name of a
slot, and value was the "code” that foliowed the keyword. (Sec section 9.8.3.5, page 45, and
scciion 94.2, page 30.)

It is an error not to supply the cons option to defstruct-define-type.

9.8.3.2 ref

The ref option to defstruct-define-type is how the user supplies defstruct with the necessary
code that it nceds to cons up a form that will reference an instance of a structure of this type.

The ref option has the syntax:

(ref (number description arg-l1 ... arg-n)
body)

body is some code that should construct and return a picce of code that will reference an
instance of a structure of this type,

The symbol number will be bound to the location of the slot that the is to be referenced,
This is the same number that is found in the number slot of the defstruct-slot-description
structure (section 9,7, page 41), .

The symbol deseription will be bound to the instance of the defstruct-description structure
that defstruct maintains for this particular structure,

The symbols arg-i are bound to the forms supplied to the accessor as arguments. Normally
there should be only one of these, The lasi argument is the one that will be defaulted by the
default~pointer option (section 9.4.4, page 32). defstruct will check that the user has supplied
exactly n arguments to the accessor macro before calling the reference consing code,

It is an error not to supply the ref option to defstruct-define-type.

MIEMACDOCDEES TR 58 ‘ 21-JU) -81

Maclisp Extensions 45 Extensions to defstruct

9.8.3.3 overhead

The overhead option to defstruct-define-type is how the user declares to Jetstruct that the
implementation of this particular type of structure “uses up" some number of slots locations in the
object actually constructed, 'This option is used by various "named” types of structures that store
the name of the structure in one location.

The syntax of overhead is:
(overhead n)

where n is a fixnum that says how many locations of overhead this type nceds,

This number is only used by the size-macro and size-symbol options to delstruct. (Sce
section 94.13, page 36, and section 9.4.12, page 36.)

9.8.3.4 named

The named option to delstruct-define-type controls the use of the named option to
defstruct, With no argument the named option means that this type is an acceptable "named
structure”, With an argument, as in (named [ype-name), the symbol fype-name shouid be that
name of some other structure type that defstruct should use iff someone asks for the named
version of this type. (For cxample, in the definition of the list type the named option is used
like this; (named named-list).)

9.8.3.5 keywords

The keywords option to defstruct-define-type allows the user to define constructor keywords
(section 94.2, page 30) for this type of structure, (For example the make-array constructor
keyword for structures of type array on Lisp Machines,) ‘The syntax is;

(keywords keyword-l ... keyword-n)

where cach keyword-i is a symbol that the constructor conser cxpects to find in the keywords alist
(section 9.8.3.1, page 43),

9.8.3.6 defstruct

The defstruct option to defstruct-define-type allows the uscr to run some code and return
some forms as part of the expansion of the detstruct macro,

The defstruct option has the syntax;

(defstruct (description)
body)

body is a piece of code that will be run whenever defstruct is cxpanding o defstruct form
that defines a structure of this type. The symbol descripron wilt be bound ta the instance of the
defstruct -description structure that defstruct maintaing for this particular structure,

MEMACDOCDEFSTR 58 21-JU1 -8

e

Extensions to defstruct .46 Maclisp Extensions

The value returned by the defstruct option should be a liss of forms to be included with
those that thie defstruct cxpands into. Thus, if you only want to run some code at defstruct
expand time, and you don't want to actually output any additional code, then you should be
carcful to return nit from the code in this option,

MEMACDOCDEFSTR 58 21-3U1.-81

o o a Tan 4 n L SR s i et wa L e E e v o N
B e B R S S R

e . s

R S

Muclisp Extensions 4 Format

10. Format

farmat destination control-string (any-number-of args)
format is used to produce formatted output. format outputs the characters of control-
string, except that tilde ("~") introduces a dircctive, ‘The character after the tilde,
possibly preceded by arguments and modifiers, specifies what kind of formatting is desired,
Some dircctives use an clement Of args to create their output,

The output is sent to destination, If destination is nil, a string is created which contains the
output (see section 104 on format and strings, page 57). If destination is t, the output is sent to
the "default output destination”, which in Maclisp is the output filespec nil-—the terminal
(controfled by the variable ~w) and outfiles (controlled by ~r), With those exceptions, destination
may be any legitimate output file specification.

A dircctive consists of a tilde, optional decimal numeric paramcters separated by commas,
optional colon (*:") and atsign ("@") modifiers, and a single character indicating what kind of
directive this is. ‘The alphabetic casc of the character is ignored, Fxamples of control strings:

"~S" s Thisisan S dircctive with no parameters,
"~3,4:03" + ‘Thisisan S directive with two parameters, 3 and 4,
: and both the colon and atsign flags.

format includes some extremely complicated and specialized features, It is not nccessary to
understand all or even most of its features to use format cfficiently, ‘The beginner should skip
over anything in the following documentation that is not immediately useful or clear, ‘The more
sophisticatea features are there for the convenience of programs with complicated formatting
requirements,

Somctimes a numeric parameter is used to specify a character, for instance the padding
character in a right- or left-justifying operation. In this case a single quote () followed by the
desired character may be used as a numeric argument. For example, you can use

"~6 . L od"
to print a decimal number in five columns with leading zeros (the first two parameters (0 ~D are
the number of columns and the padding character),

In place of a numeric parameter to a dircctive, you can put the letter v, which takes an
argument from args as a parameter to the dircctive, Normally this should be a number but it
doesn't really have to be, This feature allows variable column-widths and the like, Also, you can
usc the character # in place of a parameter; it represents the number of arguments remaining to
be processed,

It is possible to have a dircetive name of more than one character, The name need simply be
enclosed in backslashes ("\"); for example,

(format t "~\now\" (status daytime))

As always, case is ignored here. There is no way to quote a backskish in such i construct. No
multi-character operators come with format,

MECFORMATHFORMAT PROLOG 201U -8

The Operators 48 Maclisp Extensions

Note that the characters @, #, and \ which are used by format are special to the default
Multics input processor, and may nced t0 be quoted accordingly when typed in (normally, with
\)'

Once upon a time, various strange and wonderful interpretations were made on control-string
when it was neither a stiing nor a symbol, Some of these are still supported for compatibility
with existing code (if any) which uses them: new code, however, should only use a string or
symbol for conirol-string. -

This document describes an implementation of format which is currently in use in Maclisp
(both PDP<10 and Multics), and is intended to bhe transported o NI 1t thus is oriented towards
the Maclisp dialect of Lisp. ‘The behaviour of format operators should bhe fairly consistent across
Lisp dialects; entries documented here other than format, however, exist only in the Maclisp
mpiementation at this time, although they could be added to other format implementations
without difficuliy,

10.1 ‘The Operators

Here are the operators,

~ A arg, any Lisp object, is printed without slashification (like princ). ~nA inserts spaces
on the right, if necessary, o make the column width at least n,
~mincol,coline, minpad, padeharA s the full form of ~A, which allows aleborate control
of the padding, The string is padded on the right with at least minpad copies of
padehar, padding characters are then inserted coline characters at a time until the total
width is at least mincol. 'Yhe defauits are O for nuncol and minpad, 1 for coline, and
space for padchar, "Vhe atsign modifier causes the output to bhe right-justified in the
field instead of left-justified, (The same algorithin for caleulating how many pad
characters to output is used.) The colon modifier causes an arg of nil to be output as
()

~S This is identical to ~A except that it uses prind instead of princ,

~D Decimal integer output, arg is printed as a decimal integer, ~n,m,0D uses a column
width of », padding on the left with pad-character m (default of space), using the
character o (default comma) to separate groups of three digits, ‘These commas are
only inserted if the @ maodifier is present, Additionally, if the @ modifier is present,
then the sign character will be output unconditionally; normally it is only output if
the integer i negative. I arg 18 not an integer, then it is output (using princ) right-
justificd in a field n wide, using a pad-character of m, with base decimal and
snopoint bound to t.

~0 Octal integer output. Just like ~D.

~pP If arg is not 1, a lower-case "s" is printed. ("P" is for "plural”)) ~:P docs the same
thing, after hacking up an argument (like "~:*", below); it prints & lower-case 8 if
the Loyt argument was not 1, ~@P prints "y" if' the argument is 1, or "ies” if it is
not. ~:@P does the same thing, but backs up first,
Example:

(format ril "~D Kitt~:QP" 3) => "3 Kitties"

METORMATFORMA T PROVLOG 21-3U00.-81

PRy g

Maclisp Fxtensions 49 ‘The Operators

-~

~X

I~

~* ignores one arg. ~n°® ignores the next n arguments, n may be ncgative, ~i*
backs up onc arg; ~n:* backs up n args,

"Goes t0" the nth argument, ~0G goes back to the first argument in args,
Directives after a ~nG will take scquential arguments after the one gone to, Note
that this command, and ~°, only affect the "local” args, iff "control” is within
something like ~{.

iutputs a newline. ~n% outputs n newlines, No argument is used,

‘The fresh-line opcration is performed on the output stream, ~n& outputs n-1
newlines after the fresh-line. The fresh-line operation says to do a terpri unless the
cursor is at the start of the line, 'This operation will virtually always succeed in
Maclisp, since all Maclisp file arrays know their charpos, Implemented by format-
fresh-line, page 56.

Outputs a space, ~nX outputs n spaces, No argument is used.
Outputs a tilde, ~n~ outputs n tildes, No argument is used,

~newline

Tilde immediately followed by a carriage return jgnores the carriage return and any
whitespace at the beginning of the next line, With a i, the whitespace is left in place.
With an @, the carriage return js left in place, ‘This dircctive is typically used when
a format control string is too long to fit nicely into one line of the program;

(format the-output-stream "~&This 1is a reasonably ~
long string~%")

which is equivalent to formating the string

"~8This 15 a reasonably long string~%"

Outputs a formfeed, ~n] outputs n formfeeds, No argument is used, This is
implemented by format-formfeed, page 56,

Spaces over to a given column, ‘The full form is ~destination,incrementT, which will
output sufficiens, spaces to move the cursor to solumn destination, 1f the cursor is
alrcady past column destination, it will output spaces o move it to column
destination + increment sk, for the smallest integer value Kk possible, increment defaults
to 1. This is implemented by the format-tab-to function, page 56.

~Q uses one argument, and applics it as a function 1o params, It could thus be used
to, for example, get a specific printing function interfaced to format without defining
a specific operator for that operation, as in

(format t “~&; The frob ~vQ is not known,~%"
frob 'frob-printer)

The printing function should obey the conventions described in section 10.3, page 54,
Note that the function to ~Q follows the arguments it will get, because they are
passed in as format parameters which get collected before the operator’s argument,

~[strtr sl ~,, ~sirn~] is aser of aliernative control stiings, The altermatives (called
chaeses) are separated by ~1 and the constriet s terminated by ~L o For esample,
"~[Siamese ~Manx ~;Persian ~;Tortoise-Shell ~Tiger ~;Yu-Hsianyg ~Jkitty”,
The argth alterpative iy selected: 0 selects the first, 1 a4 numeric parameter s given

MEFORMATEORMAT OPS R RS R B

‘The Opcerators 50 Maclisp Extensions

(i.e. ~n[), then the parameter is used instead of an argument (this is useful only ife
the parameter is "#")., If arg is out of range no alternative is sclected. After the
selected alternative has been processed, the control string continucs after the ~).

~lstr0~;strl ~;... ~strn~:: default~] has a default case, If the last ~; used to scparate
clauses is instead ~:), then the last clause is an "clse” clause, which is performed if
no other clause is sclected. For example, "~[Siamese ~;Manx -~;Persian
~;Tortoise-Sheli- ~;Tiger ~;Yu-Hsiang ~:;Unknown ~] kitty".

~[~1ag00,tag0l ... ;str0 ~tagl0,....strl...~) allows the clauses to have explicit tags. The
parameters to cach ~; arc numeric tags for the clause which follows it. That clause is
processed which has a tag matching the argument, If ~:al,a2,bl,b2,..; 15 used, then
the following clause is tagged not by singie values but by ranges of values al/ through
a? (inclusive), b through b2, etc. ~:; with no paramcters may be used at the end
to denote a default clause. For example, "~[~'+,'-,'*'// ;operator ~'A'Z'a, z letter
~'0,'9;digit ~;;other ~}".

~:[false~;‘rue~) selects the false control string if arg is nil, and selects the (frue
control string otherwise.

~@[true~] tests the argument, If it is not nil, then the argument is not used up,
but is the next one to be processed, and the onc clause is processed. If it is nil, then
the argument is used up, and the clause is not processed.

(setq prinlevel nil prinlength 6)
(format nil "~@[PRINLEVEL=~D~]~@[PRINLENGTH=~D]"
prinlevel prinlength)
=> " PRINLENGTH=6"

If there is no paramecter, then arg is printed as a cardinal English number, e.g. four.
With the colon modificr, arg is printed as an ordinal number, c.g. fourth, With the
atsign modifier, arg is printed as a Roman numcral, eg. 1V, With both atsign and
colon, arg is printed as an old Roman numeral, e.g. Il

If there is a parameter, then it is the radix in which to print the number. The flags
and any remaining parameters arc uscd as for the ~D directive. Indeed, ~D is the
same as ~10R. The full form here is therefore ~radix,mincol ,padchar,commacharR.

arg is coerced to a character code. With no modifiers, ~C siinply outputs this
character, ~@C outputs the character so it can be rcad in again using the # reader
macro: if there is a named character for it, that will be used, for example
"#\Return"; if not, it will be output like "# /A". ~.C outputs the character in
human-readable form, as in "Rcturn”, "Meta-A". ~:@C is like ~:C, and
additionally might (if warranted and if it is known how) parenthetically state how the
character may be typed on the user’s keyboard.

To find the name of a character, ~C looks in two places. The first is the value of
the symbol which is the value of format:*/ # -var, which is initialized to be the
variable which the # reader macro uses. 1t is not necessary for the valuc of
format:*/ # aar to be bound. ‘the second place is *format-chnames; this is used
primarily o handle non-printing characters, in case the # reader macro is not loaded.
Both of these are a-lists, of the form ((mune . code) (name . code) ..),

ML FORMATFORMAT OPS ' 21-JU: .81

Maclisp Extensions 51 The Operators

The Maclisp/NIL format has no mechanism for telling how a particular character
needs to be typed on a keyboard, but it does provide a hook for one, If the value of
format: *top-char-printer is not nil, then it will be called as a function on two
arguments: the character code, and the character name, If there were bucky-bits
present, then they will have been stripped off unless there was a defined name for the
character with the bits present. The function should do nothing in normal cases, but
if it does it should output two spaces, and then the how-to-type-it-in description in
parentheses. Sce section 10.3, page 54 for information on how to do output within
format.

~mincol ,colinc,minpad,padchar{text~> justifies tex/ within a ficld mincol wide. text
may be divided up into secgments with ~;—the spacing is evenly divided between the
text scgments, With no modifiers, the leftmost text segment is left justified in the
ficld, and the rightmost text segment right justified; if there is only one, as a special
case, it is right justified. The colon modifier causes spacing to be introduced before
the fir’t text scgment; the atsign modifier causes spacing to be added after the last.
minpad, default 0, is the minimum number of padchar (default space) padding
characters t0 be output between cach segment, If the total width nceded to satisfy
these constraints is greater than mincol, then smincol is adjusted upwards in colinc
increments, colinc defaults to 1. For cxample,

(format nil "~10<foo~;bar~>") => "foo bar"
(format nil "~10:<foo~;bar~>") => " foo bar"
(format nil) "~10:@<foo~;bar~>") => " foo bar "
(format nil "~10<foobar~>") = foobar"
(format nil "~10;@<foobar~>") => " foobar "
(format nil "$~10,,, ' e<~3f~>" 2,69023) => "Sessees2 59"

If ~~ is used within a ~< construct, then only the clauses which were completely
processed are used. For example,

(format nil "~15<~S~;~*~S~;~*~S~>" 'f00p)

= " FO0"
(format nil "~15<~S~;~A~S~;~"~S~>" 'foo 'bar)
=> "FOO0 BAR"

(format nil "~16<~S~;~~~S~;~"~S~>" 'foo ’'bar 'baz)
=> "FOO BAR BAZ" :

If the first clause of a ~< is terminated with ~: instead of ~;, then it is used in a
special way, All of the clauses are processed (subject to ~~, of course), but the first
onc is omitted in performing the spacing and padding. When the padded result has

“been determined, then if it will fit on the current line of output, it is cutput, and the

text for the first clause is discarded. If, however, the padded text wiit not fit on the
current line, then the text for the first clause is output before the padded text, The
first clause ought to contain a carriage return, ‘The first clause is always processed,
and so any arguments it refers to will be used; the decision is whether to use the
resulting picce of text, not whether to process the first clause. If the ~3 has a
numeric parmeter n, then the padded text must fit on the current line with »
character positions to spare o avoid outputting the first clause’s fext. For example,
the control string

M FORMATFORMAT OPS -0 -8Y

The Operators 52 Maclisp Extensions

”"'t; H ~(~<~’\,: 3 ~y ' ~SndmA .~) Ry 4

can be used to print a dist of items separated by commas, without breaking items over
line boundarics, and begitning cach tine with ";; ", The argument 1 in ~13; accounts
for the width of the comma which will follow the justified itein if it is not the fast
clement in the list, or the period i it is, 16~ has a sccond numeric parameter,
then it is used as the width of the line, thus overriding the natural line width of the
output streant, To make the preceding example use a line width of 50, one would
write

“~x‘; : ~(~<~x; s ~1 '60: 3 ~s~)~'" .~) .~‘z"

Note that the segments ~< breaks the output up into are computed “out of context”
(that is, tuey are first recursively formatted into strings), Thus, it is not a good idea
for any of the segments to contain relative-positioning commands (such as ~T and
~&), or any line breaks, If ~:; is used to produce a prefix string, it also should not
use relative-positioning commands.

~{str ~}
This is an iteration construct. ‘The argument should be a list, which is used as a set
of arguments as if for a recursive call to format, The string sir is used repeatedly as
the control string, Each iteration can absorb as many clements of the list as it likes,
It before any iteration step the list is empty, then the iteration is terminated, Also, if
A numeric parameter o is given, then there will be at most n repetitions of processing
of str.

~i{str~) iy similar, but the argument should be a list of sublists, At cach repetition
step one sublist is used as the set of arguments for processing sir; on the next
repetition a new sublist is used, whether or not all of the last sublist had been
processed,

~@{str~) is similar to ~{str~}, but instead of using one argument which is a list,
All the remaining arguments are used as the list of arguments for the iteration,

~@{sir~) combines the features of ~i{str~} and ~@{srr~}. All the remaining
arguments are used, and cach onpe must be a list, On cach iteration one argument is
used as a list of arguments.

Terminating the repetition construct with ~} instead of ~} forces sir to be processed
at feast once even i the initial list of arguments is null (however, it will not override
an explicit numerie parameter of zero),

If seris null, then an argument is used as str, 1t must be a string, and preeedes any
arguments processed by the iteration, As an example, the following are cquivalent;

(2pply (function format) (liste stream string args))
(format stream "~1{~:}" string args)

This will use string as a formatting string. The ~1{ says it will be processed at most
once, atnd the ~) says it will be processed at least once. “Therefre it s processed
eaactly onee, using args as the arguments.

METFORNATIFORMAT OPS 21000 -81

Maclisp Extensions 53 The Operators

'~} Terminates a ~{. It is undefined clsewhere,

~n This is an escape construct. If there are no more arguments remaining to be
processed, then the immediately enclosing ~{ or ~< construct is terminated. (In the
latter case, the ~< formatting is performed, but no more clauses are processed before
doing the justification., The ~~ should appear only at the beginning of a ~< clause,
because it aborts the entire clause. It may appear anywhere in a ~{ construct) If
there is no such enclosing construct, then the entire formatting operation is
terminated.

If a numeric parameter is given, then termination cccurs if the parameter is zero.
(Hence ~~ is the same as ~# ~,) If two parametcrs arc given, termination occurs if
they arc cqual. If three arc given, termination occurs if the sccond is between the
other two in ascending order.

If ~~ is used within a ~!{ construct, then it mercly terminates the current iteration
step (because in the standard case it tests for remaining arguments of the current step
only); the next iteration step commences immediately, To terminate the entire
iteration process, use ~;~,

~F outputs arg in free-format floating-point, ~nF outputs arg showing at most n digits.
~n:F will show exactly n digits, No other variations are guarantecd at this time;
neither is the exact interpretation of n. 1t is reasonable to use this, however, when
one desires to print a flonum without showing lots of insignificant trailing digits; for
example,

(format nil "~6f" 269.268995) => "269,2569"

~E Outputs arg in exponential notation; e.g., "2.59259e + 2", ~nE interprets n the same
as ~F, No other parameters or flags arc guarantead at this time,

~$ (That's a dollar sign.) ~rdig,/dig field,padchar$ prints arg, a flonum, with exactly rdig
digits after the decimal point (default is 2), at least IMdig digits preceding the decimal
point (dcfault is 1), right justified in a ficld field columns long, padded out wit
padchar, The colon modifier says that we should cause the siga character to be left
justificd in the ficld, The atsign modificr says that we should always output the sign
character. The Idig allows one to specify a portion of the number which does not get
zero suppressed.

~\ This is not rcally an operator, If onc desires to use a multi-charactcr format operator,
it may be placed within backslashes, as in ~\now\ for the now operator. Sce page
47.

ML FORMATTFORMAT OPS 21-JU1-81

Other Entries S4 Maclisp Extensions

10.2 'Other Entries

ttormat destination control-string (Any-number-of frobs)
'This is cquivalent to format cxcept that destination is interpreted like the sccond argument
to print—nil mcans "the default”, and t mcans "thc terminal”. This only exists in
Maclisp at the moment.

10.3 Defining your own

define-format-op Macro
This may be used in two formats:

(define-format-op operator varlist body-forms...)
and
(define-format-op operator fixnum-character-code)

The operator may be the fixnum code for a character, or a symbol with the same print-
name as the opcrator, Whichever, it is canonicalized (into upper casc) and will be
interned into the same obarray/package which format resides in. For example, the format
operator for tilde could be defined as

(defina-format-op /-~ #/~)

where "#/~" represents the fixnum cha}actcr code for tilde.
For the first format, the type of operator is determined by decoding varlist, which may
have one of the following formats;

(params-var)

An operator of exactly zero arguments; params-var will get bound to the
paramcters list.

(params-var arg-varj
An operator of cxactly onc argument; params-var will get bound to the
parameters list, and arg-var to the argument,

(params-var . args-var) .
An operator of a variable number of args;, params-var will get bound to the
parameters list, and args-var to the remaining arguments to format (or to the
recursive ~{ arguments), The operator should return as its value some sublist
of args-var, so that format knows how many were used.

A definition for the appropriate function is produced with a bvl derived from the variables
in varlist and a body of body-forms, (The argument ordering in the function produced is
compatible with that on the Lisp Machine, which is arg-var (if any) first, and then
params-var.)

standard-output Variable
Output from format opcrators should be sent to the stream which is the value of
standard-output, In the Multics implementation of format, this value may somcetimes be
an object which is not suitable for being fed w standard Lisp output functions (c.g.,
princ): format has definitions of various output functions which handle this case properly,
and may be used for defining operaters which will work compatibly in Multics Maclisp.

MECFORMATFORMA T PUBDOC 21-JUL-81

Maclisp Extensions) 55 Defining your own

They are documented below, Note that because of the way format interprets its
destination, it is not nccessarily safe to recursively call format on the value of standard-
output in PDP-10 Maclisp. It is safe, however, to use Mormat (page S4) instcad, or to
call format with a destination of the symbol format.

Maclisp format will also accept a destination of format to mecan "use the format dcstination
alrcady in effect”. This is primarily for the benefit of Multics Maclisp, since there the value of
standard-output cannot be passed around as a stream. The format operator now, which prints
the current time, could be defined as

(define-format-op now (params)
params ; unused
(let ((now (status daytime)))
(format 'format "~2,'0D:~2,°'0D:~2,'0D"
(car now) (cadr now) (caddr now))))

with the result that

(format nil "The current time is ~\pow\.")
could produce the string

"The current time is 02:69:00."

format:colon-flag Variable

format:atsign-flag Variable
These tell whether or not we have seen a colon or atsign respectively while parsing the
paramcters to a format operator. They are only bound in the toplevel call to format, so

are only really valid when the format opcerator is first called; if the opcrator does more

parameter parsing (like ~[docs) their valucs should be saved if they will be needed.

These variables used to be named just colon-flag and atsign-flag, In the interest of
transporting format code to Lisp implementations with packages, their names have been
changed. Thus, in either implementation one references them with the "format:" at the
front of the name, which in Maclisp is just part of the print-name.

The params are passed in as a list. This list, however, is temporary storage only. If it is
going to be passed back, it must be copied. In Mazlisp and NIL, it is an ordinary list which, in
PDP-10 Maclisp. will be reclaimed after the operator has run, On the Lisp Machine, it will be a
list-pointer into an art-q-list array, possibly in a temporary arca. Thus, although it is safe to
save values in this list with rplaca, one should not cver use rplacd on it, cither explicitly or
implicitly (by use of nconc or nreverse),

Conceptually, format operates by performing m'itput to some strcam. In practice, this is what
oceurs in most implementations; in Maclisp, there are a few special SEFAs used by format. This
may not be possible in all implementations, however. To get around this format has a
mechanism for allowing the output to go to a pseudo-strcam, and supplics a sct of functions
which will interact with these when they are used,

MLPORMANTFORMAT IDEES PARINIS 3!

O 7Y

Defining your own 56 Maclisp Extensions

format-tyo character
tyos character to the format output destination.

format-princ object
princs object to the format output destination.

forrat-prinl object
prinis frob to the, format output destination.

format-lcprinc string capitalize?
This outputs string, which must be a string or symbol, to the format output destination
in lower-case. If capitalize? is not nil, then the first character is converted to upper case
rather than lower.

format-terpri
Does a terpri to the format output destination,

format-charpos

format-1inel
Return the charpos and linel of the format output destination. Since in the Maclisp
implementation multiple output destinations may be implicitly in use (via outfiles, for
instance) this attempts to choose a rcpresentative one. The terminal is preferred if it is
involved,

format-fresh-1ine

This performs the fresh-line operation to the default format destination. In PDP-10
Maclisp, this first will try the fresh-tine opcration if the destination is an SFA and
supports it. Otherwise, if the destination is a terminal or an SFA which supports
cursorpos, it will try (cursorpos 'a). Otherwise, it will do a terpri if the charpos is
not 0. In the Maclisp impicmentation, where multiple output destinations may be
implicitly involved (via outfiles, for instance), this handles cach such destination
scparately.

format-ta:-to (fixnum destination) (Optional increment?)
This implements ~T to the current format destination (Qv). In PDP-10 Maclisp, this
operation on an SFA will use the tab-to operation if it supported, passing in arguments
of destination and increment (as a dotted pair); otherwise, charpos will be used to
compute the number of spaces to be output. If charpos is not supported, two spaces will
be output,

format-formfeed
Performs a formfeed on the format output destination. In Multics Maclisp, this will
normally just tyo the character code for a formfeed. In PDP-10 Maclisp, this will usc the
formfeed operation if the destination is an SFA and supports it, otherwise it will do «
(cursorpos 'c) if the destination is a TTY file array (or an SFA) and supports i,
otherwise it simply outputs the character code for a formfeed.

MEFORMATFORMAT IDEFS ‘ 21-3U1 -81

S Y T PY

o

[T

Maclisp Extensions 57 Format and Strin;s

format-flatc ’ Macro
(format-flatc forml form2 ... formn)

The forms are evaluated in an environment similar to that used inside of format; the
various format output-performing routines such as format-tyo and format-princ may be
used to "perform output”. In all but the Multics Maclisp implementation, standard-
output will be a strcam which simply counts the characters output—it will only support
the tyo operation.

10.4 Format and Strings

In the PDP-10 Maclisp implementation, format has provision for using a user supplied string
implementation, Normally, format expects to use symbols. However, if (fboundp ’stringp) is
true, then format will use the stringp predicate to see if its argument is a string, If that is the
case, then the function string-length will be used to find the size of the string, and char-n will
be used to fetch characters out of the string, Both of these routines should have been declared
fixnum when compiled (i.e, be ncallable). Internally, tests arc ordered such that string-ness is
indecpendent on atomic-ness. In addition, the character routine may be used to canonicalize
something to a character code.

The Multics implementation is similar to the PDP-10 Maclisp implementation, but uses
different routines; stringlength to get the size of the string (or symbol), and getcharn to fetch a
character out of the string, ‘The character routine is not used.

*format-string-generator Variable
This variable, which exists only in the Maclisp implementation of format, should have as
its value a function to convert a list of characters to a "string” to be returned by Yormat,
In the PDP-10 implementation, this defaults to maknam, but may be modified if
"strings" are being supported. In the Multics implementation, it is a function which docs

(get_pname (maknam character-list))

and may bc modified, if desired, to somcthing more . efficient. In the PDP-10
implementation, the list of characters should necither be modificd nor returned to free
storage, as it will be reclaimed.

The PIDP-10 Maclisp hack of returning an uninterned symbol which has itself as its value
and a + internal-string-marker property is not handled here; it is done by the outer call
to format itsclt, and only if the returned "string" is a symbol and the value of *format-
string-generator is maknam. This is done so as to not add unnccessary overhcad to
internal uses of "strings” by format.

‘The name of this variable differs from that of other uscr-accessible format variables for
historical reasons; it will not be changed, because it only exists in Maclisp,

MLEFORMAT:FORMAT IDEFS 2-JUL 81

System Differences 58 Maclisp Extensions

11.- System Differences

This chapter describes differences you may encounter in using these tools in cach of the
various Lisp dialects in which they have been implemented. One section is devoted to cach
implementation, and a final section deals with transporting code between them. The system-
specific sections are broken into parallel subsections.

Since not all of the tools documented herein will be a part of the default Lisp environment,
the first subscction simply describes how to make them available, ‘This will in general involve
placing a form at the head of a source file to establish the appropriate read-time and compile-time
environment,

The next subsection lists a number of things to watch out for in using a particular
implementation o in writing transportable code. It deals with miscellancous incompatibilitics
related to these tools and to the Lisp implementations in general. Some options which are specific
only to a single implementation are documented here.

The final subscction contains references to other sources of documentation, including that
which is available online,

1.1 PDP-10

PDP-10 Maclisp is currently in a state of flux with regard to how these tools are provided and
exactly where they are located. Some arc present in the default environment while others must be
requested explicitly, Check the online documentation for the current status.

11.1.1 Where To Find It

The sharpsign and backquote reader macros are present in the default environment, loop and
format have autoload propertics, Many of the functions and special forms described in chapter 8
are present natively or are autoloaded from. ((LISP) MLMAC) (for Maclisp MACros). The rest
may be loaded from ((1.ISP) UMLMAC) (for User Maclisp MACros). defstruct may be loaded
from ((LISP) STRUCT).

To use the bit-test, dolist, and dotimes macros, place the following forin at the head of the
source file.

(eval-when (eval compile) (load '((lisp) umimac)))
To use defstruct, include the following form.
(eval-when (eval compile) (load '((1isp) struct)))

This will cause defstruct to be present during the interpretation or compilation of a file. To usc
defstruct during debugging of the compiled file, see scction 9.6, page 40.

MEMACDOC; DIFES 46 21-JUIL-81

e TR TR

Maclisp Extensions 59 Multics

11.1.2 Things To Watch Qut For

defun&-check-args Variable
‘The "extended defun” facility (page 8) provides little or no argument count checking for
functions by default. By sctting this variable to t, the function being defined will contain
additional code which will provide a morc meaningful error message when the function is
called with the incorrect number of arguments,

A feature is provided whereby sequences of characters surrounded by balanced double-guotes
arc rcad as un-interned symbols which arec bound to themsclves. This provides partial
compatibility with ncwer Lisps that have strings. They are primarily useful as arguments to princ,
load, and ftormat, and arc not intended to be used as first-class data objects as on those systems
which support them natively.

11.1.3 Further Documentation

For the latest changes to this implementation, see the file . INFO. ;LISP RECENT on any I1S
system. Earlier editions of this file are archived in . INFO. ;LISP NEWS. ‘The file ,INFO,;LISP
FORMAT contains a chart of the format operators suitable for printing on an ascii console. The
files . INFO,;LISP LOOP and LIBDOC;STRUCT > contain the Bolio source for the loop memo
and the defstruct portion of this memo, Perhaps someday these will be replaced by something
formatted for a console.

11,2 Multics

The Multics implementation is also changing, As of this writing, only some of the extensions
described in this document are available from the standard librarics, but we expect the remainder
to be installed in the ncar future, Check the online documentation for the current status,

11.2.1 Where To Find It

Only a few of the improvements to Multics Maclisp since 1974 are now a part of the default
environment, Primarily, these are the special forms which need to be primitively understood by
the compiler, such as eval-when and unwind-protect and certain simple functions such as list®,
The special forms let and let* are also in the defsult environment. 'The other teols documented
here may be accessed by the Multics Lisp special form %include. This form causes a text file to
be inserted inline during the interpretation or compilation of a file, The form;

(%include library)

can be placed at the front of any file of Lisp code that wants to utilize all of the features
documented here, This form will arrange for the corrcet eval-time, compile-time and run-time
environments to be present whenever the file is being processed in any way, ‘T'o arrange for this
extended environment to be present whenever the lisp interpreter is being used, this form may be
placed in the file start_up.1isp in the user's home directory,

MESMACDOCDUIEES 46 2-JUT -8

Multics 60 Maclisp Extensions

Since the %include form is unique to the Multics implementation, a variant on the following may
be uscd to allow the file to also read into other Lisps:

(eval-when (eval compile) (or (status feature Multics) (read)))
(¥include library)

Those Multics Lisp users who wish to be more selective about the facilities they use may instead
use the form

(%include module)

where module is one of backquote, sharpsign, defun, cefmacro, defstruct, setf, format, or
loop. Sclective loading of packages may be desired to prevent name or syntax clashes or to speed
compilation, Note that some packages will load others as needed, For instance, defstruct will
load setf. '

%include uscs the translatoi search list to find the file to be included. To sec the full
pathname of the file which is found, type

where_search_paths translator backquote.incl.lisp
The actuai object segments are bound together as bound_Yisp_library_.
where bound_lisp_library_
will find the full pathname of this scgment,

The modules listed above may be broken into three categories: read-time (backquote,
sharpsign), compile-time (defun, detmacro, setf, detstruct, loop), and run-time (format).

The behavior of the include file for cach module depends upon its type, For read-time and
compile-time files, the include file will load the file at eval-time or compile-time, but will not add
any forms to the object scgment, For sun-time files, the include file will place a form in the
object segment which will foad the desired module, cither dircctly or via an autoload property. It
will also provide the appropriate function declarations for the compiler.

To usc an eval-time or compile-time module at run-time, you can type (%include module) to
the interpreter or place this form in a file to be rcad into the interpreter, such as the
start_up.lisp file, Alternatcly, you can load the object secgment directly, as in (load
">ex>object>lisp_backquote_"), but this is not recommended since it requires specifying an
absolute pathname.

11.2.2 Things To Watch Out For

The characters sharpsign (" #") and atsign ("@") are default erasc and kill characters on
Multics, If these characters are being used for input editing, you will have to type "\ #" or
"\@" to enter them, Likewise, remember that to dircctly enter a backslash, two must be typed.

Most aother Lisp readers translate lowercase characters (o uppercase characters in symbol

names, The Multics implementation does not do this case translation by default, "This form will
maodify the readiable 1o correctly read files which are written in uppercasc:

MEMACDOC; DUIFES 46 21-JU11.-81

Maclisp Extensions 61 Multics

(do ((1 #/a (1+ 1)))
((> 1 #/z2))
(setsyntax (- 1 #o40)
(boole 7 (apply 'status (list 'syntax 1)) #0600)
1))

The syntax used for reading strings is also different from that used elsewhere, In other Lisps,
the / character will quote the next character, so /" will insert a double quote character into a
string, In Multics Lisp, the / character loses its special meaning and is interpreted as an ordinary
alphabetic, To insert a double quote character into a string, the character is typed twice,
following the Multics system convention, This incompatibility arose since the implementation of
strings in Multics Lisp predated their implementation clsewhere.

While no installed facility is available at the moment for resolving these syntax differences,
the authors have a private reader which is compatible with the PDP-10 case and string syntax,
Contact one of them for more information,

When the Multics Lisp compiler needs to gencrate an aponymous function, it creates a
symbol to put the definition on. ‘This will occur whenever a function is passed as an argument
using (function (lambda ..)), or when using (defun (name prop) ..), for example,
Unfortunately, you get the same names every time you run the compiler, Doing

(declare (genprefix unique-name))

3 13 1 H i) i 'S ¥ ' P
will fix this problem; the compiler will then use unique-name as a basis for its generated names,
For example, the loop module does

(declare (genprefix loop-iteration/|~))

so that the compiler will generate names loop-iteration/|-1, loop-iteration/|-2, etc,

error works incompatibly, The sccond argument is output following the first, rather than
before, as is done elsewhere, It is recommended that you use ferror instead, or define your o
cerror signalling primitive, 'This is often a good thing to do anyway,

The default setting of the *rset switch is nit. You may find it helpful to turn it on in your
start_up.lisp.

If you find a symbol which has become mysteriously unbound, chances are that you have
taken the car of a symbol or bignum someplace. The object returned by such an operation is the
special marker stored in unbound value ccells.

The recently written Multics command display_lisp_object_segment (short name

dlos) may be used to examine the contents of compiled Lisp object segments, It is quite useful
in verifying the proper exccution of complex macros and compile-time ficilities.

MEMACDOCIDHES A6 21100 -8

Lisp Machine 62 Maclisp Extensions

11.2.3 Fui. rDocumentation

Online Lisp documentation resides in the directories >ex1>info and >doc>info. The info
segment Visp.changas,info describes the latest changes to the Multics implementation.
Visp_manual_update,.info describes carlier changes. A collection of segments
Visp_module .info, where module is as above, repeat the documentation contained in this
manual, Finally, the segment display_lisp_object_segment.’nfo describes the
display_lisp_object_segment command.

These segments may be perused by means of the help command, For instance, type
"help Visp,.changes” to view the first of these segments,

11.3 Lisp Machine

On the Lisp Machine, everything described in this document is a part of the default
environment, No changes nced be made to source files,

Further documentation may be found by consulting the Lisp Machine Manual, the LMMAN
directory on the Al machine, and finaily the source code itself, The Zmacs command Meta-
period will prompt for a function or variable name and read the source file in which it is defined
into a buffer,

11.4 Hints On Writing Transportable Code

This section contains some hard-knocks knowledge gathered by the authors over many tea-
filled nights of grief. While we have done our best to distill some coherent adyice from our
experience, there are no casy answers, This is at times a black art,

No doubt there are techniques (and pitfalls!) which we have overlooked, If you have
something which could be added to this section, the authors would like to hear from you.

11.4.1 Conditionalization

Ulttimately, despite ceveryone's best cfforts, you are likely to find that your code must be
conditionalized in some manner, In this cventuality there are a couple of things to be aware of,

‘The sharpsign reader macro (chapter 3, page 5) is a very handy tool for conditionalizing code
for different sites, However, its indiscriminant use can result in Aighly unreadable code,
Frequently, when it seems that conditionalizations are going to need to be sprinkled throughout a
picce of code, it is possible to identify a common pattern between them, and replace them with
an appropriately defined macro, “This macro will have a definition that will be conditionalized for
cach site that the code runs, and will serve to localize the ugly implementation dependent details,
Sometimes this operation actually improves the readability of the code, since it forces the
programmer to give a name o a pattern present in many places,

As an example, the following macro provides a systom-indepesdent way of determining the
screen size of a console stream,

MIMACDOCDIEES 46 ' 21-JU1.-81

Maclisp Extensions 63 Hints On Writing T'ranspaiiable Code

(defmacro screen-size (stream)
#+1TS '(status ttysize ,stream)
#+Lispm '(multiple-value-bind (width height)
(funcall ,stream ':size-in-characters)
(cons height width))
#-(or ITS Lispm) ''(80. ., 24.))

Another problem with using any of the conditionalization features of the sharpsign reader
macro is the fact that although something like

#+NIL form

does causc the form forn to be ignored in Lisps that aren’t of the NI, variety, it is ncvertheless
necessary that form be readable in those other Lisps, In other words, if form contains the use of
a reader syntax that is only supported in NIL, then it won't work to conditionalize form in this
manner, because other Lisps are going to have to parse it,

Currently, a frequent cause of such problems is the use of a special character name after #\
that isn't universally understood.

In some situations, large portions of a program will need to be written differently from system
to system. Often such portions will deal with issues of operating system interface, such as console
or file i/0. In such cases, it s hest to define a common interface to this portion, so that this
code may be factored out into separate files,

11.4.2 Odds and Ends

Avoid directly inserting intc your code constants which are specific to the byte, word, or
pointer size of a machine, For instance, use (rot 1 -1) instcad of 1_43 to reference the most
negative fixnum on a PDP-10, Simifarly, use (Ish -1 -1) for the most positive fixpum and
(haulong (rot 1 -1)) for the number of bits in a fixnum,

There is only one reliable way to define a function that ignores one or more of its arguments
without complaint from the compiler;

(defun ignore-secord-arc (first second third)
second ;ignored
(Vist first third))

Other conventions do not work universally,

Not all Lisps have strings, However, in most, text surrounded by doublequotes will read in
as some kind of object which will print out again in a readatile format, ‘This object is suitable for
passing to functions such as princ and format, but cannot be universally puaranteed o behave
reasonably with functions such as equal,

In Maclisp, the default syntax of the colan character is alphabetic, but it has special meaning

on the Lisp Machine, Don't use it in the name of a symbol unless you know what you are
doing,

MESMACHOCDIEES 46 =410 K1

Hints On Writing Transportable Code . 64 Maclisp Fxtensions

If colons are being used only for denoting keywords, then it is uscful to give colon the syntax
of whitespace outside the Lisp Machine. This can be accomplished with this Maclisp form:

(setsyntax 'f:| '| | nil)

Don't leave control-V's (circle-plus on the Lisp Machine) lying around randomly, like in valret
strings, ‘They have special syntactic meaning on the Lisp Machine.

All PDP-10 Maclisp compiled output ("FASL") files use the same format, It is therefore
possible to transport the compiled file between PDP-10s (e.g,, from an IS to a TOPS-20), if the
code contained therein is not conditionalized on those differences, The source code for loop, for
example, does not contain any # + or #- conditicnalizations which distinguish between any
PDP-10 implementations; the FASL file for loop used on TOPS-20 and TOPS-10 sites is the same
one used on ITS,

M1 MACDOC;DIFES 46 21-JUL-81

Maclisp Extensions 65 Index

Scatch Special Form., i i it e e e e a0 24
*format-string-generator Variable e 8T
®rset Variable. i e e e e e e e e e aBl
SAPOW FUNCHION. . . v v v o vt e e e e e e et e e e e e 24
C= FURCHiOR . . . o e s o s i e e e e e e e e e e e e e 19
Y= FUNCHON e e e e e e e e e e e e e 19
MWormat FURCHION v o o s e et e e e e e e e e . 54
arrayp Function. e e e e i e e, 19
bit-test Function e e e e e e e e e e e e e e e W18
case translation i e e e e e e e e e e e i e e e . .60
caseq Spectal Form e e e e e e e 0023
char-n Function. e e e e e e e e e e e e e 8T
character FUnction v v v i i e e e e 5T
defconst Specia! Form. . .13
definc-format-op Macro o . . Lo e e e e e e e 54
defmacro Macro, v . v i e e e e e e e e e e 10
defStruct Macro. . . . v o o i e e e e e e e e e e e e e .. .26
defstruct-define-type Macro« . e e e e e e A2
defun Special Form 0 i o i e e e e e e e e i e 8
defun&-check-args Variable e e Y9
defvar Special Form. o o 0 i e e e e e e e e e 13
dolist Snecial Formt ., 0 o e e e e e e e e e e .23
dotimes Special Form . , e e e e e e e e e e 23
dpb Funcrion e e e e e e e e e e e 18
eIror FUunction.« i e e e e e e e e e e e e e e e e e ..
eval-when Special Form.« e e e e e e e e e 13
evenp Funciion o e e e e e e e e i e e e e 19
fboundp Function. e e e e e e e e e 19
ferror Function i e e e e e e e e e e e e v ... 25,61
fixnump Function. . . ., e e e e e e e e . 18
flonump Function.« o v i e e e e e e e 18
format Funclion. v i e e e e e e e e e e AT
format-charpos Function« i e e e e e e . 56
format-flatc Macro v e e e e e e e e e e e Y4
format-formfeed Function 0 . i e e e e e e e e56
format-fresh-line Function 0 v i i e e e e e e .. 56
format-lcprinc Function.« . . e e e e e e .
format=linel Function. o e e e e e e 56
format-prinl Function e e e e e ... L 56
format-princ Function e e e e e e, 56
format-tab=to FUnction. v . v v v e e e e e e e e e e e, .56
format=terpri Funcion . . .« . e e e e e e e e e e . 56
format=ty0 Function e e e e e e .56
format:s/#-=var Variable, . . e e e e e e e e oL 50
format:*top-char-printer Variable e e S
formatiatsign=flag Fariable . . . o e e e e e e L8

-
.
.
-
-
.
.

.

21-JU1 -81

Index | . 66

formaticolon-flag Variable.
genprefix Compiler Declaration
if SpecialForm . .,

Idb Function, 0.
let SpecialForm
let* Special Form e e e e ..
lexpr-funcall Function, e e e
list* Function Ve e
logand Function. e e e e e
logior Function . ,
lognot Function
logxor Function,
loop Macro,
make-list Function
nth Function. . .,
nthedr Function C e e

5 . . .
» e
LI ‘.
L
L

Maclisp Extensions

. o [. L)
D) () ’
D L S) Vol e e e
LI | L I I e N
‘oe .. ‘e 0
----------- D S A
..... . PR T S S T T A
............. . o s
D) . ooy
D PR T T
. . ¢ « e e
............ .
P S T R T T S Y .
L I S R T T) DR
D I S) ‘

pactage prefix e e e e e e e e e e e e e
30, 41, 55

packages., 0w e Ve s
pop Macro. e e C e

progl Special Form

psciq Special Form. e e e

push Macro, e e e
selectq Special Form., oL

setf Macro.

standard-output Variable,,

e e e e e e ... 26,28,
..... L "l?.!"!‘l.!ll.
L L e e e e N L I T I I B] LI e]

L e R) .

e e

L O R I I I}

string-length Function. e e e e e e e e e e e e e e e e

stringp Function.
SUNES . . . v e e e e e e e
unwind-protect Special Form . . ,, ..
without-interrupts Special Forsy.,

63

16
25
21
15
22
15
54
57
57

59, 61, 63

24
25

21-JUL-81

	1981021264.pdf
	0001A02.tif
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001A14.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif
	0001B06.tif
	0001B07.tif
	0001B08.tif
	0001B09.tif
	0001B10.tif
	0001B11.tif
	0001B12.tif
	0001B13.tif
	0001B14.tif
	0001C01.tif
	0001C02.tif
	0001C03.tif
	0001C04.tif
	0001C05.tif
	0001C06.tif
	0001C07.tif
	0001C08.tif
	0001C09.tif
	0001C10.tif
	0001C11.tif
	0001C12.tif
	0001C13.tif
	0001C14.tif
	0001D01.tif
	0001D02.tif
	0001D03.tif
	0001D04.tif
	0001D05.tif
	0001D06.tif
	0001D07.tif
	0001D08.tif
	0001D09.tif
	0001D10.tif
	0001D11.tif
	0001D12.tif
	0001D13.tif
	0001D14.tif
	0001E01.tif
	0001E02.tif
	0001E03.tif
	0001E04.tif
	0001E05.tif
	0001E06.tif
	0001E07.tif
	0001E08.tif
	0001E09.tif
	0001E10.tif
	0001E11.tif
	0001E12.tif
	0001E13.tif
	0001E14.tif
	0001F01.tif
	0001F02.tif
	0001F03.tif

