

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

"YAlan Bawden

Glenn S. Burke

Carl W. Hoffman

LABORATORY FOR
COMPUTER SCIENCE

to
MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

MIT/LCS/TM-203

(N ASA -CR-11 64uo7)	 MALLISP LvII-N.;WNS
(tidssaci ► usetts 111st. of Tech.)	 72 1;
dC AJ4/M,F AU1	 CSCL 09J

MACLiSP EXTENSIONS

iR. r' D DEN''R. 00 1 -N'O'	 I OW] '0 -

Suly 1981

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACI-1-JSETTS 02139

0

N81-29802

(Inciab
GI/u1	 21171

MIT/LCS/TM-203

MACLISP EXTENSIONS

Alan Bawden

Glenn S. Burke

Carl W. Hoffman

July 1981

Support for this research was provided in part by National Institutes
of Health grant number 1 POI LM 03374-03 from the National Library of
Medicine, the Advanced Research Projects Agency of the Department of
Defense under Office of Naval Research contract numbers NG0014 -75-C-
0661 and N00014-77-C-0641, the National Aeronautics and Spa es	
Administration under grant NSG 1323, the U.S. Department of Energy
under grant ET- 78-C-02-4687, and the U.S. Air Force under Vp tCo'P(NAC`C

fix= r49620-79-C-020.

Madisp Extensions

July 1981

Alan Bawden
Glenn S. Barks

Carl W. Hoffman

This report describes research done at the laboratory for Computer Science of the Massachusetts
Institute of Technology. Support for this research was, provided in part by National Institutes of
Health grant number 1 P01 LM 03374-03 from the National Library of Medicine, the Advanced
Research Projects Agency of the Dei; ^rtment of Defense under Office of Naval Research Contract
numbers N00014 .75-C-0661 and N000.14-77-C-0641, the National Aeronautics and Space
Administration under grant NSG 1323,

'
the U. S. Department of Energy under grant Vl'-78-C-02-

4687, and the U. S. Air Force under grant F49620-79-C-020.

MASSACHUSETTS INSTITUTE OF 'ITRCHNOLOGY
LABORATORY FOIL COMPUTER SCIENCE

CAM131U GF.	 MASSACIIUSFATS 02139

Abstract

This document describes a common subset of selected facilities available in Maclisp and its
derivatives: Pi)P-10 and Muitics Maclisp, Lisp Machine Lisp (letalisp), and NIL. The object of
this document is to aid people in writing code which can run compatibly in more than one of
these environmeats.

AcknowkfgeineNs

Much of the documentation presented here is drawn from pre-existing sources and modified to
be presentable in this context. The documentation on sharpsign is derived from that written by
Richard S. Lamson as a Multics online help segment. The descriptions of backquote and defstruct
are derived from existing online documentation. The documentation on format shares some
portions with the Lisp Machine Manual; text has been exchanged in both directions. The
description of defmacro also draws heavily on the existing documentation in the Lisp Machine
Manual. 1'he lisp Machine Manual is authored by 'Daniel Weinreb and David Moon, and the
format documentation therein was contributed to greatly by Guy Steele; they have all thus
indirectly contributed a great deal to this paper, as have innumerable others who aided in the
preparation of the Lisp Machine Manual.

We would like to thank Joel Moscs for providing the motivation to bring Lisp up-to-date on
Multics, and Peter Srolovits, under whose auspices this document was produced.

Note

Any comments, suggestions, or criticisms will be welcomed. Please send Arpa network mail
to MACLISP-EX'I'T NSIONSGMIT-ML.

Those not on the Arpanet may send U.S. mail to

Glenn S. Burke
Laboratory for Computer Science
545'I'echnology Square
Cambridge, Mass. 02139

0 Cop yright by the Massachusetts instiuite of 'Technology; Cambridge, Mass, 02139
All riots rewrved.

a

Maclisp Extension%	 Table of Contents

Table of0^^^N^^ ~°N^^^»mmmm^Nm^^

lLIntroduction	 ,	 ,	 ~	 .	 .^	 ,	 ,	 ^	 ^	 ^^^	 ~	 ^	 ^	 ^	 '	 `	 ^	 '	 ^	 `	 ^	 `	 ^	 '	 '	 ^	 `	 ^	 ^	 ^	 `	 ^	 ' `	 '	 ^	 ^	 ^	 `	 ^	 I

1 ^ 1 Compatibility	 ,^,'	 ,	 ,	 ,	 ^	 ...	 , .	 .	 .	 ,.,	 ,	 ,	 ,	 ,	 ^	 , ,	 .	 .	 .	 ~	 °	 °		 ~.	 &

1 ^2 Conventions ,	 ,	 .	 '	 '	 '	 ^	 ^	 ^	 ^ ^	 '	 ^ ,	 ,	 ^	 '	 ^	 ,	 ^	 .	 ^	 .	 ,	 ~ ,	 .	 ^	 ,	 .	 .	 ^	 ,	 ,		 -	 ,	 ~	 .	 &

]L	 Backquote	 ,	 ,'.	 ~..^	 °	 ,	 ,	 .`..	 ^ ^	 '	 ^	 ^'	 ^	 ^	 '	 ^	 '	 '	 ^ '	 '	 '	 '	 ^	 '	 ^	 ^	 '	 ' ^	 ^'	 '	 ^	 ^	 ^	 2

]L	 Sharpsign ,	 ,	 ^	 ,		 ^	 .	 ^	 .	 .^^	 ^ `	 '	 '	 '	 ^^	 `	 '	 '	 `	 ^	 ~ `	 `	 '	 '	 ^	 '	 ^	 ^	 '	 ' ^	 '	 '	 ^	 '	 `	 °	 5

4, E*tmmdedDeffin . . .^ . . , . ,'^ , `	 ,	 ,	 .	 '	 '	 ^	 '	 .	 ^	 ^	 ^ ^	 ,	 ^	 '	 ^	 ^	 ^	 ^	 '	 ' ,	 ,	 ^	 '	 `	 '	 ^	 8

5iI)wftmmnmN	 .	 ,	 ,		 ,	 .	 .	 .	 -	 ,.	 . ^	 ^	 ~	 ,.	 °	 .	 ~	 ,	 .	 .	 , ,	 .	 ,	 .	 .	 -		 ~	 .	 ^	 .	 .	 .mN

&i Other Definition Facilities. 	 .	 ,	 . . ° "	 , .	 .	 .	 ^	 ,	 ^	 ^	 .	 ,	 .	 .	 ^ .	 ^	 .	 ,	 -	 .	 ^	 .	 .	 . ,	 .	 .	 ,	 ,	 .	 ^13

7.	 SekE	 ^	 ^	 .	 ,	 ,	 .	 -	 .	 .	 ^	 .	 .	 .	 ^	 ^	 .	 ,	 ^ `	 '	 '	 '	 '	 '	 '	 `	 ^	 ^	 ^	 ' `	 °	 `	 `	 `	 ^	 '	 '	 ^	 ^ `	 ^	 ^	 ^	 ^	 ^	 ` 15

0[New Functions and Special Forms . . . ,	 ,		 ^	 `	 '	 , .	 ~	 .	 .	 .	 ,	 .	 ,	 ,	 . .	 ,	 ,	 ^	 .	 .	 .17

8.8	 Bit Hacking	 °		 '	 -		 , °	 ^	 ^	 .	 ^	 ~		 ^ ,	 -		 ,	 .	 .	 . ,		 ,K7

8.8.1 Boolean Operations ^	 .	 .	 . ^ . .	 , .	 .	 ^	 .	 .	 .	 ,	 .	 '	 .	 .	 , .	 ,	 ,		 ^	17

8.1.2 Byte Manipulation . 	 .	 .	 ,	 ^	 . . ^	 - .	 ^	 .	 .	 .	 ,	 .	 ^		 '	 .	 ~	 ^		 ,	 ,	 ,uw

8.1.3 Testing	 .	 .	 ,	 .	 .	 .	 ,	 .	 .	 ,		 ,	 ^	 .	 .	 .	 ^	 .	 ^	 ^	 .	 . ,	 ,		 '		 -	 .&s

8.2	 Predicates	 .	 .	 .	 ,	 ^	 .	 .	 .	 '	 .	 .	 '	 '	 ^ ~	 .	 '	 ^	 '	 `	 '	 `	 '	 '	 `	 ' `	 '	 ^	 '	 `	 '	 ^	 -	 ^	 ' ^	 ^	 '	 ^	 ^	 '	 -18

8.3	 Lists	 ,	 ,		 ,	 ,	 .	 ^	 '	 '	 ^ '	 .	 '	 '	 '	 `	 -	 '	 ^	 '	 '	 ' '	 ^	 ^	 '	 '	 ^	 '	 ^	 '	 ^ '	 ~	 '	 '	 '	 '	 '»9

8.4	 Vmrimblmm.		 ^	 ~	 .	 .	 ^	 .	 , °	 ^	 ^	 '	 .	 ,		 , ,	 .	 '	 .	 .	 ,	 ,	 .	 .	 , ,	 ^	 ^	 .	 ^	 .	 ^20

8.5 Flow wfControl	 ,		 ~	 .	 . ^	 .	 ,	 ~	 ,	 .	 .	 ^	 .	 , ,	2X

0.5.1 Conditionals	 .	 ,		 ,	 ,	 .	 .	 .	 "	 ,	 ,	 .	 - ,	 .	 .	 .	 ^	 .	 ,	 ,	 .	 . ,	 .	 .	 .	 ,	 .	 .2u

8.5.2 SeL—cdon	 .	 .	 .	 ,	 .	 ,	 .	 .	 .	 '	 .	 '	 . .	 '	 ^	 .	 ^	 `	 ^	 -	 '	 '	 '	 ^ ^	 '	 '	 '	 '	 `	 '	 '	 '	 ' '	 '	 '	 -	 ^	 `	 '22

8,5L1^	 Itmrmtiom.		 ,	 '	 .	 .	 .	 ^	 . ,	 .	 ^	 ^	 ^	 .	 ,	 .	 ^	 ^	 .	 . .	 ^	 ~	 .	 ^	 .	 ,	 .	 .	 . ,	 .	 .	 ,	 .	 .	 .23

8.5,4 Nmn'&oc*30xits ^	 ,	 .	 ,	 ,	 '	 .	 .	 ^	 .	 ' ^		 ,	 ,	 ,	 ,	 ,	 .	 ^	 ,2w

8,6 Miscellaneous	 .	 .	 ,	 ^	 .	 .	 ,	 .	 .	 .	 ,	 . .	 ,	 .	 .	 ^	 .	 .	 .	 ,	 ^	 `	 ^ .	 .	 ~	 ,	 ^	 .	 .	 ^	 ^	 . .	 .	 ^	 .	 ^	 ^	 . 25

§L	 Delstruct.	 ,	 ^		 ^	 ^		 , ,	 .	 .	 -	 ,	 ,	 '	 .	 ,	 ,	 .	 . ,	 ~	 ,	 .	 ,	 ,	 .	 .	 .	 °	 .	 .@6

9\1 Kntmwdu*Kior	 ,	 .	 .	 .	 ^		 ,	 ,^,	 _	 ^	 .	 , ,	 ^	 ^	 .	 ,	 ,	 ,	 ,	 .	 , ,	 .	 _	 .	 ,	 .	 ,26

9.2 /kSimple F.xample , . 	 ,	 .	 .	 .	 , .	 .	 . ,	 ,		 ,	 .	 ^	 .	 .	 . ,		 ,	 ^	 ,	 ,	 . ,	 ,	 .	 ,	 ,	 ^	 ,26

9.3 Syntax of defstruct . 	 .	 .	 ,		 ' ,	 .	 .	 ,	 .	 '	 .	 '	 ^	 '	 '	 ^ '	 `	 ,	 -	 '	 '	 .	 -	 '	 ' ^	 '	 '	 ^	 `	 `	 '27

9.4 Options tmdefstroCt. 	 .	 ,	 '	 ~	 '	 '	 `	 '	 '	 '	 '	 '	 ' '	 ^	 '	 '	 °	 `	 ^	 `	 '	 ' ^	 `	 `	 -	 ^	 `	 ^28

.^	 pm,	 ,		 '	 ^9,4.1^ .	 ^	 .	 .	 .	 '	 ^	 '	 '	 '	 '	 ' '	 '	 `	 '	 '	 ^	 ^	 ^	 `	 ' ^	 `	 '	 `	 '	 ^	 ^ 20,

.2 mmnmt pto	 ..^		 ,		 '9.4.2rm ,	 .	 ,		 ^	 .	 ,	 ^ ,	 ,	 ,	 .	 .	 ,	 ,	 ,	 .	 . .	 ^	 ,	 ,	 ,	 ,	 , 30

9,4.3 mltmnmnt		 ^	 ^		 ,	 ^ .	 `	 .	 ^	 .	 ^		 ^	3&

9*4 dm	 .	 ,	 ^	 .	 '	 '	 '	 .	 '	 ^ .	 '	 '	 °	 `	 '	 ^	 '	 '	 '	 '	 ^ ^	 ^	 '	 '	 '	 '	 '	 '	 `	 ' '	 '	 '	 '	 `	 -	 '»2

9*5 cmmc-narne	 ,	 ^ ,	 .	 .	 .	 ,	 .	 ^	 ,	 .	 .	 ^	 ^ ^		 ^	 ^	 .	 .	 . ,		 ,D3

9.4.6	 include		 ^		 ^	 .	 .	 .	 ,	 ,		 , ^	 ^		 ^	DD

9,4.7	 nammd.		 ^	 .	 ,		 , .	 _		 ,	 . .	 ^	 .	 .	 ^	 ,	35

^49A.8 makc-array		 ^		 ,	 ,	 '	 '	 .	 ^	 .	 ,	 .	 ^		 ^	 .	 .35

9,4.9 xfa'fumnctiom	 '	 ,	 ^	 ^	 .	 .	 _	 ^	 '	 ^	35

9.4,10̂̂ ofa'mmnmc.		 '	 ,		 ^	 ^		 36

9.4-11.11	 r*tcrma-ptr,	 ^		 ^	 .	 ^	 ^	 ` .	 '	 .	 ^	 .	 .	 . 36

^4 12	
`	

nnhm\.		 ^	 .	 .	 . `	 `		 ^	 ^	 .	 .	 .	 , ^	 ^	 '	 ^	 ^	 ^	36

9.4.13	 $hz.c-macro	 ,36

9,4.14	 hidzd-offset		 ,		 "		 `		 ^ .	 ,	 .	 ^	 .	 .	 '	3h

2l'J[1I/0\

^	 I'ablemf Contents	 Maclisp Extensions

^	 9.4.15 but-first. . . , . . , , ^ . . . ^ ° , ^ ' , , ^ ^ , , . , , , , , . , , . . ^ ^ , . 	 37

9 .4.16	 ,^, ' . ^ ,^^^ ^ ^^ `'^ ^ ' ^ '^ ^ ^ `'' ^ ^^^^ °^^ ^^` 	 37

^	 9A.17 ewal-when . , , , - ^ , . , . , ~ , , . . . ~ , ^ ~ ^ ' ^ ° ^ ^ ' ' ^ ^ - ` ` ^ ^ ` ^ ^ ` ^	 37

^	 9.4.08 property ^ , ^ . . , . . ,` . ~ ^ . . ^ . . ^ , , . , ^ , , ^ , , , , , , , , , ^ , ° , , 38
^	 9A_19 A Tv^^^^^^N^^^^^^^^. . . , ^ , ^ ^ , . . ^ ^ ^ ` ^ , ^ ^ ^ ' " ` ` ' ^ ^ ^ ^ ^ ' ' 38

^
'

	

	
^^^0
	 -	 '	

^^Other Options . , , ^ , ,.. . ^ , , ^ ' ' ^ ^ , ^ ^ ` ` ^ ^ ~ ^ ' ^ ^ ° ' ^ ° `
r 9.5 llpu-̂ F^^^. , , , . , , ° . ^ . , . , ° , . , . . . , . . , , ~ , , , ~ . , ~ ~ ~ ` , ^ ' - ^ 38_.
 9.6 ANoxt_-_-~ . , _' , ^ . . , . ^ , , ^ , ` ^ . ' , ~ , ^ ' ' , ° ~ ^ ^ ` . ^ ^ ` 40

^	
^-_

9JThe 	 Structure - . , , . , ^ , . - ^ , . . ^ ^ . ^ ^ . . , , . ^ , , , ^ , 41
^

	

	 9j8 Bkmn$iommtodeKstrxct , . , , . . , . , . . . , , , . ~ ° , ^ , ~ ~ . , . , , . , , , . . , , 42

9,8.1 A Simple Example , . . . , , , . , . , . - ^ , . , . , , ^ . , ^ ^ ^ ^ , , , ' ' ' 42

9 .8.2 Syntax of 	 . . , . - . . ^ , , , ^ ' ' ' . ` , ' ^ ' ~ . ' ^ ' ` ^ ^ ^ ^ 43

9.8.3 Options to	 , .'. , ~ . . . ^ . ^ ^ . ' , . ^ ^ ° ^ ^ ^ , ^ ' , ^ ^ ^ ^ 43

	

9.8.3.1 cons . , , . ~ . . , . ~ ' . . , , . , - , , ^ ^ ^ . ^ ^ ^ ^ ^ ' . , , ^ ^ . ^ 	 43

	

9.8.3.2 ref . , . . - , . , , . ° . ^ ^ ^ , ^ , ^ ^ . . . , ° . , . . . , ° . . , . . , , ° ^ , ^ 	 44

9.8.3.3 overhead , , . ^ . , , . , . , . , , , , . , . ^ , . , ^ , ' ^ ^ ^ ^ ^ ^ ` , , ° 45

9.8.3.4 named , . . , . . . , . , , , . , ^ , . , ~ . . ^ ^ , ^ ^ . . ^ , ^ , , ~ , . , , , , ~ 45

9.0.3.5 keywords , . . , , , . ~ , ^ ^ ` , ` ^ ^ ` ' - . ^ ' ^ ' ` , ` ^ ^ ` ` ` ^ . ^ ^ 45

	

10.Fortimwt. . . . , - , , , , . , . . ° . . , . . ^ , . . , ~ ^ ^ , , . ' ^ . . . ^ , ~ 	 47

10,1 The OperMors ^ , ^. . , ^. ^, .. . , ..,. ^ ° , ^ . ., , ^.~ ^ ,^ ^^ ^.~ ^^ . 40

20.2 Other Entries ^ ,'. . . ^ . ,.^^. , . .,,^ ' , `^^ ^ ^^^~ .`^. .^ 54
10i3 Defining your own ,^ ' . ~ ° ,^ ' . ' ' ^^ '^ ^ ^ ' ' '^ ^ ' `'^ ` ^` ^ ' ^`' ^`^ 54

t0AU-ormmmkand Strings. . , . , ° , , , . . , , , . , . . ^ , . - , . . , , ` ~ ^ ^ ~ ^ 57

8X. System Differences , . , . , . . . - , . . , . . . , S8

11,1 PDP-10, ^ . ^ . , , ^ - , ^ , ^ ^ . ^ . ^ , . . . , ^ , , . ^ . . ^ , , , ~ ^ ^ . , 	 59

11.1.1 WhermTmF^dK^, . . , ^ .. . ^ ,.^ , ,, ' ., , 58

11. 1.2 '11fing«To Watch Out Fon. 	 .,, ^ ' , . .., . ^ . ^ ,-., ^ . . 59

1 .1.13 I^wnthenDocwmmentation. . . , , ^ ^ . , . . ^ , , . . , . ~ . . . ^ . . . ^ , 59

13 .7,NNultics , . , , , ' ^ ^ ° ^ ' ^ , ' ` , ^ ' ' ^ ' ` , . ^ ^ ^ ^ ^ ' ^ ^ ^ ^ ^ ^ ^ ^ ' ^ , ' '	 59

1l^.&WNve^:^mF^dUk, . , ^ .. , , , , , , ^ . . . , , - ^ 59

11 .2.2 'Ibing«'rw Watch Out For . ,,.. . .`. ., ^ - ., ., . , ,.. . . ,,. ,. ~.,. 60

112 .3 Fxmrt6cYDocumentation . , ^ . . . , , ^. ^ . ~ , . ^ , ^ . ^ , ^ ^ . ^ . ^ ^ . . ^ ^ , . 62

82.3 Lisp Machine , . . , , . , . . ^ . . , . . . ^ . , ^ , ' ^ , , , ,, , , ^ . . , 62

X1/00KimuaOnWriting Transportable Code. ` ^ , . , , , ^ . , . . , . ^ ^ . , , 62

11.4.1 Conditionalizatiott ',. .^^..,_,^,^,,.^.,^,,.,^,^,,,^^,°^ 62

11.4.2 Odds and Ends ^ . . ^ , , ' , , ^ . ^ `^ ` ' ^ . ' ^ ^^ ^ ' ^ ^^ ` ^ ` ^ , ^ ^ , ^ ^ ' 63

	

Index ^ ' , . ,,. . . ^ , , ,^ , . . - , . . .^ . ' . ^ , , ,. . ,.^' . ^. ^ . ^ ~, , , , 	 65

%1~JNk,81

A

Maclisp !extensions	 1	 Introduction

1. Introduction

11 Compatibility

This manual is about compatibility between the PDP•10 and Multics Dialects of Maclisp, and
the Maclisp derivative Lisps, Lisp Machine Lisp, and NIL.

Believe it or not, it really is possible to write code that runs in all of these Lisp dialects. It
is not always a completely, painless thing to do, but with a little bit of care it is possible to write
reasonable code that runs in many places, and that doesn't offend everyone who tries to read it,

The biggest stumbling block to writing code that rwis in a Lisp dialect other than the one
you are most familiar with is the fact each of these Lisps has grown a different set of additional
features since the original Maclisp Reference. Manual was written in 1974. How are you supposed
to be able to restrain yourself from using all the winning new features that the implementors of
your dialect have given you?

Weil, unfortunately, you are going to have to avoid some of them. After all, some are
probably impossible to implement everywhere. On the other hand, some of them are so useful
that they have already migrated to all of the places you are planning to move your code. TMose
are the features that are documented in this manual.

1.2 Conventions

The sytr,k:ol "_>" will be used to indicate evaluation in examples. Thus, when you see "too
nil", this means the same thing as "the result of evaluating fo(: is for would have been) nil".

The symbol "__>" will be used to indicate macro expansion in examples. Thus, when you
see "(too bar) __> (aref bar 0)", this means the same thing as "the result of macro-expanding
(too bar) is (or would have been) (aref bar 0)".

Most numbers shown are in octal (base eight). Numbers followed by a decimal point are in
decimal (base ten). IMpite growing sentiment in favor of decimal as the default base for Lisp
reading, it is still the case that most of the Lisps we are concerned v., , read numbers in octal by
default; the sole exception at this time is NIL.

Symbols are consistently written in lower case, This is because on Multics, most symbols have
lowercase printnames, and case translation is not done by default on input. In the other
implementations, where most symbols have uppercase printnames, lowercase characters are
translated to uppercase on input, so a symbol typed in lowercase will always be read correctly
everywhere.

MI. , MAC'D0QIN'I R0 7	 .'.1•.11.11. 81

liackquote	 2	 Maclisp Extensions

2. Badquote
The backquote facility defines two reader macro charactem, backquote (" I ", ash 140) and

comma (",", ascii 54). 'These two macro characters can be used together to abbreviate large
compositions of functions like cons, list, list • (page 19) and append, it is typically used to
specify templates for building code or othe r list structure, and often finds applicati ^a in the
construction of Lisp macros.

Ilackquote has a syntax similar to that of quote ("'", asch 47). A backquote is followed by a
single form. If the form does not contain any use of the comma macro character, then the form
will simply be quoted. For example:

'(a b c) - (quote (a b c)) - • (a b c)^

The comma mrxro character may only be used within a farm following a backquote, Comms also
has a syntax like that of quote. The coma s is followed by a form, and that form is evaluated
even though it is inside the backqucte. For zxample:

b c) - (cons a (quote (b c)))
n (cons a '(b c))

'(a .b c) a (list* (quote a) b (quote (c)))
n (list* 'a b '(c))

'(a b ,c) - (Dist (quota a) (quote b) c)
-	 (list 'a 'b c)

'(a . ,rest) - (cons (quote a) rest)
- (cons 'a rest)

In other words, all the componizntc of the backquoted expression are quoted, except those
preceeded by a comma. 'Thus, one could -write the common macro push using backquote by
proceeding from the standard defi!Ation

(defun push mccro (form)
(list 'setq (cadd y form)

(list 'cons (cads form) (cadd y form))))

to

(defun push macro (form)
'(setq ,(cadd y form) (cons ,(cads form) ,(cad4r form))))

Note how the code to build the macros output code begins to W.rok mole like the output code
itself: In fact, with a use of let, we can go all the way to

(defun push macro (form)
(let ((datum (cadr form))

(list (cadd y form)))
'(setq ,list (cons ,datum ,list))))

and produce very legible c(de. An even better method Cor defining macros is delmacro (chapter
5, page 10).

MI.:MAt:I)OC;l1ACKQt1 16 	 21-1UL-81

U

(Al i

Maclisp Extension$	 3	 Backquote

Rackquote expands into forms that call cons, list, list' or whatever other functions it deems
appropriate for the task of constructing a form that looks like the one following the backquote,
but with the values of the forms following the commas substituted in.

Since backquote's contract is specified not in terms of the code that it expands into, but
rather in terms of what that code produces when evaluated, assumptions should not be made
about what the code might look like. The backquote expansions shown in this section are only
possible expansions; it is not guaranteed that this is the way they will expand in any particular
implementation.

If a comma inside a backquote form is followed by an "at" sign ("Q", ascit 100), then the
form following the "A" should return a list. (On Multics, since the default line kill character is
@, the user may need to type \@ in ordar to get lisp to read a @,) Backquote arranges that
the elements of that list will be substituted into the resulting list structure. Frequently this
involves generating a call to the function append. For example:

'(,8a b c) _ (append a (quote (b c)))
(append a '(b c))

'(a ,8b c) _ (cons (quote a) (append b (quote (c))))
_ (cons 'a (append b '(c)))

'(a b ,Ac) _ (list* (quote a) (quote b) c)
= tlist• 'a 'b c)

Similar to following the comma by an atsign is following the comma by a dot (",", asch 56). The
dot is a declaration to backquote tclli:;g it that the list returned by the form following the 91,.90 is
expendable. This allows backquote to produce code that calls functions like nconc that rplac the
list.

Backquote examines the forms following the commas to see if it can simplify the resulting
code. For example:

'(a b . ,(cons x y)) _ (list* (quote a) (quote b) x y)
(list* 'a 'b x y)

'(a 3 ,b c ,17) _ (list* (quote a) 3 b (quote (c 17)))
(list* 'a 3 b '(c 17))

'(a ,8b ,Anil) _ (c(;ns (quote a) b)
(cons 'a b)

'(a ,.b ,@(nconc c d)) _ (cons (quote a) (nconc b c d))
_ (cons 'a (nconc b c d))

These examples should convince the user that he really cannot depend on what the code that
backquotc expands into will look like. A simple-minded backquote might expand (,@a ,@nil)
into (append a 'nil), but this cannot be used as a reliable way to copy a list since a sophisticated
Kwkytiotc can optimire the copying away.

h11.AAC'I 001ACKOU 10	 21-JUI.•81

e

Backquote
	

4
	

Maciisp Extensions

It is sometimes useful to nest one use of backquote within another, This might happen when
the user is writing some code that will cons up some more code that will in turn cons up yet
more code. T'hc usual example is in writing macro dchning macros. When this becomes necessary
it is sometimes difficult to determine exactly how to use comma to cause evaluation to happen at
the correct times. Ile following example exhibits all the useful combinations:

► .(a ,b ..c ►► .d)

• (list 'lists "a 'b c (list 'quota (list d)))

When evaluated once this yields:

(list* 'a b <c-at-time-1> 1(<d-et-time-1>))

Which when evaluated yields:

(a <b-it-time-2> <<c-at-time-1>-at-time-2> <d-at-time-1>)

Arhus "" means never evaluate, "," means evaluate only the second time, "„” means evaluate both
times, and ",'," means evaluate only the fiat time.

j.

i
	

l^

1111.; N1AC1)OC:1tA KQU 16
	

21-JUL-81

Maclisp FAtensions	 S
	

Sharpsign

3. Sharp.-Sign

The lisp reader's syntax can be extended with abbreviations introduced by sharp sign ('4 1%",
asch 43). These take the general form of a sharp sign, a kcond character which identifies the
syntax, and following arguments. Certain abbreviations allow a decimal number or certain special
"modifier" characters between the sharp sign and the second character, (On Multics, since talc
default erase character is #, it may be necessary to type \ # in order to get lisp to read a # ,)

List of # macro abbreviations;

/char
reads in as the number which is the character code far the character char, For
example, #/a is equivalent to 141 but clearer in its intent. This is the recemmanded
way to include character constants in your code, Note that the slash cruses this
construct to be parsed correctly by the F.macs and Zwei editors.

As in strings, upper and lower-case betters are distinguished after #/. Any character
works after #/, even those that are normally special to read, such as parentheses.
Even non-printing characters may be used, although for them #\ is preferred.

\ name
reads in as the number which is the character code tcir the non-printing character
symbolized by name, A large number of character names are recognized; these are
documented below, `i'ne abbreviations cr for return and sp for space are accepted
and generally preferred, since these characters are used so frequently. The rules for
reading riarne are the same as those for symbols; the name must be terminated by a
delimiter such as a space, a ca ,,Aage return, or a parenthesis,

^char
generates Control-char. Thus # -char always generates the character returned by tyl if
the user holds down the control key and types char,

#'form
is an abbreviation for (function fomi). form is the printed prepresentation of any
object. This abbreviation can be remembered by analogy with the ' macro-character,
since the function and quote special forms are somewhat analogous.

form
evaluates form (the printed representation of a lisp form) at read time, unless the
compiler is doing the reading, in which case it is arranged that firm will be evaluated
when the compiled output file is loaded, This is a way, for example, to include in
your code complex list-structure constants which cannot be written with quote, Note
that the reader does not put quote around the result of the evaluation. You must do
this yourself if you want it, typically by using the ' macro-character. All example of a
case where you do not want quote aroutid it is when this object is an element of a
constant list.

, fonn
evaluates ,/runt (the printed representation of a lisp form) at read time, regardless of
who is doliig the reading, This abbreviation would be used to utpply constant
parameters to the compiler, For example, a program might contain #, Pl, rattier
then 3.14153,

ML:MACDOC;S JAR I'M 22
	

21-JUL-81

lit,	 +

Sharpsign	 b	 Maclisp Extensions

Onumbe►
reads number in octal regardless of the setting of ibaae,

radixRnumber
reads number in radix radix regardless of the setting of ibaso. radix must consist of
only digits, and it is read in decimal.

her example, . # 38102 is another way of writing 11, and # 11 R32 is another way of
writing, 35. In Maclisp, supradecimal bases may be used if number is preceded by +
or -, (status +) is temporarily modified to make this work.

+ feature
'this abbreviation provides a read-time conditionidization fxitity. It is used as
+ fcaiure form, if feature is a symbol, thca this is read as form if (status feature

feature) 14. true, If (status feature feature) is nil, then Otis is read as whitespace.
Alternately, feature may be a boolcan expression composed of and, or, and not
operators and symbols representing items which may appe, r on the (status features)
list, (or lispm amber) represents evaluation o^ the predicate (or (status feature
lispm) (status feature amber)) in the read-time environment.

For example, # + iispm form makes form exist if being read by the Lisp machine.
+ (or lispm nil) form will make jbrn exist on either the lisp machine or in Nil-
Note that items may be added to the (status features) list by means of (sstatus
feature feature), thus allowing the user to selectively interpret or compile pieces of
cmic by parameterizing this list. `flee moat common features checked for using # +
are: lispm (present on Lisp Machines), Maclisp, NIL, Multics, ITS, TOPS-20 and
POP 10.

See also section 11,4.1, pap,, 62 for a more general discussion of conditionalization.
-featureform

Is equivalent to # + (not feature) form,

M farm
Is equivalent to # + Mwilep form.

#O form
is equivalent to # +liWvi JL-gin,

N form
is equivalent to # + NIL form.

N11 :N1 NC OC;sl111tI'M 20
	

? I .1l lL-81

1 ill

Maclisp Extensions
	

7
	

Sharpsir
	

i

'Ifie following are the recognized special character names, with their synonyms. These names can

I

	 be used after a "#\" to get the character code for that character.

backspace	 be
tab

4	 newitne
linefeed	 It
return	 cr
formf.ed	 tf	 fors
al tootle	 Mt

:apace	 ap
vt
null
help
delete	 rubout

Certain of these character groupings may overlap in some implementations, For example, on
Multics, help is simply the ?character. nevAine will generally be equivalent to either return or
linefeed, as appropriate ror the host operating system.

Ml ,1\1,1 AY)C;tilIARI'M ?U	 21-Ail •11,11

Extended Defun	 8	 Maclisp Extensions

4. Extended Defun

defun

	

	 Special Form
	 i

defun is the usual way of defining functions. it still works the way it always has, but
several improvements have been added over the years.

A defun form looks like:

(defun name lambda-list
body ...)

As in the past, name can be a symbol which is to be defined as a function. Alternatively,
name can be a list of the form (symbol properly). This arranges to give symbol a properly
property of the ;function, rather than defining some symbol to be that function. In other words,
after a defun like

(defun (too bar) (x)

(cons x x))

it would be the case that

(funcall (get 'foo 'bar) 34) g> (34 . 34)

In tfic simplest case lambda-list is a list of variables to bind to the arguments to the function.
this is as it tom always been, In addition, the keywords &optional, &rest and &aux are allowed
to appear there, (Thus these are no longer valid variable names, but nobody seems to have been
inconvienced by this,) 'Their meanings arc as follows:

&optional

	

	 All of the variables following the &optional keyword (and up to the next &-
keyword) are optional. 'Thus a lambda-list of the form

(a b &optional c d)

fficans that the function may be passed from two to four arguments, a and b are
called required arguments, c and d are called optional arguments (not surprisingly).
If an optional argument is not passed in by the • caller, then the corresponding
variable will be bound to nil. If some other default value is desired, then that
value may be specified as follows:

(a b &optiont+l (c 'default) (d b))

Thi,, will bind c to the sy►nbol default if the function is passed only two
arguments, If die function is passed less than four, then d will be bound to the
second argument, This is because the variables are bound in sequence, so their
default values may refer to the values of variables already bound.

It is also possible co find out whether an optional variable was supplied. The bA

(a b &optional (c 'default c-p))

will hind the tiariahlc z; -p to t if the function was passed three .arguments (i.e.. an
argument was supplied for c), nil ii' it was pasted only two.

Nl1.:AlL,''\C"IX)C;DFFLJN S	 21.JUTAI

lit' i

Maclisp Extensions	 9	 Extended IWun

Uetst	 'Iltis keyword must be followed by exactly one variable called the rest variable,
&rest mmst also appear after any required or optional variables. `Ilie rest variable
will be bound to a list of the remaining arguments that were passed to the
function, For example

a
(a b &rest c)

is the lambda• lis! em use for a function that accepts two or more arguments, The
v.riahle-c wiU be bound to a list of the arguments froth the third one on.

(a b &optional (c 0) &rest d)

would specify that the function takes two are more arguments, if called on
exactly two arguments, c will be bound to 0 and d will be bound to nil, it'
called ton three or more arguments, c will be bound to the third argument and d
will be bound to a list of Lite fourth through last argument.

In the Lisp Machine implonsicntation, the rest variable will be bound to is stack
allocated List that is only Wid during the invocation of that Rmction. ' Ibis means
that t►►e function should not incorporate this list into any permanent data-structure;
it should use a copy of the list instead.

In Nil., the rest variable will be bound to a vector which may be stack allocated.
fi,restl instead of &rest selects a list. Unfortunately, &restl is only recognized in
Nl)P-10 Maclisp and Nil.,

&aox Following the keyword &aux are some more variables called auxiliary variables.
&aux must follow all required and optional variables and the rest variable if it is
given, Auxiliary variables do not correspond to arguments to the function at all,
they are simply local variables that are bound sequentua lly after the argument
variables. For example;

(1 &optiona) (a t) &aux (ten (length 1)) tom)

is the lambda-list of a one or two argument function, b will be bound to t if the
second argument is not given, then ten will be around to the length of the list
that was the first argument, and tem will be bound to nil (presumably for use
later on,)

lit functions with optional or rest variables will be implemented using the lexpr
mechanism, In these implementations it may be necessary to declare these functions as lexprs in
order to assure proper compilation.

'i'he syntax

(defun name macro (form)
«,-)

is still undendood as it 	 to define it macro, but the new macro defitung macro detmacro Gs
now die prefered wary to do so. detmacro is doctmiented in chapter 5, page 10.

Nil.:MAt'i OC',i1FFON g
	

21-Al i t -81

u	 ^ .,,

Defmacro	 10	 Maclisp Extensions

5. DeNacro
deftacro Afacro

defmacro is a macro-defining macro which allows one to define macros in a more natural
or functional way.

If we want to define the first macro such that (first x) is equivalent to (car x), we could
do

(defun first macro (x)
(list 'car (cadr x)))

or, using barkquute (page 2).

(defun first macro (x)
'(car ,(cadr x)))

Just as backquote makes constructing list structure less cumbersome, defmacro allows us to
access the "arguments" to a macro ir. a much cleaner manner. The first macro looks like

(defmacro first (1)
'(car ,1))

when defined with defmacro.

In general, the argument list to a macro defined with defmacro is it pattern to be matched
against the body of the macro call. 'fhc symbols in the pattern will be bound to the
corresponding components, and then the body of the macro evaluated, the same as is done for an
ordinary macro. 'That is, for the macro call (first (get 'frob 'elements)), the pattern (1) is
matched against ((get 'frob 'elements)), and I gets bound to the form (get 'frob 'elements).

The macro push, which is defined on page 2 as

(defun push macro (form)
(let ((datum (cadr form))

(list (caddr form)))
'(setq ,list (cons ,datum ,list))))

could be defined with dofmacro by

(defmacro push (datum list)
'(setq ,list (cons ,datum ,list)))

Macros, and thus defmacro, are usefill for defining forms which provide syntax for some
kind of control stnlcturc. For example, someone might want a limited iteration construct which
increments a variable by one until it exceeds it limit (like the FOR statement of die BASIC
language). One might want it to look like 	 w

(for a 1 100 (print a) (print (+ a a)))

To get this, o11C Could write a macro to translate it into

s

Maclisp Extensions	 11	 DMmacro

(do a 1 (1+ a) (> a 100) (print a) (print (e a a)))

A macro to do this could be defined with

(defun for macro (x)
'(do ,(cadr x)	 (r,.addr x) (1+ ,(cadr x))

(> ,(cadr x) ,(cadddr x))
,@(cddddr x)))

Alternatively, for could be defined with defmacro:

(defmacro for (var lower upper 	 body)
'(do ,var ,lower (1+ ,var) (> ,var ,upper)

,@body))

If a pattern is not sufficient, or if a more function-like interface is desired, the argument list
to defmacro may contain certain &-keywords, `ifiese are analogous to the &-keywords accepted
by defun (see page 8). In this case, the argument list should not have a dotted end (like the for
example), although die components i ptiy themselves be patterns.

&optional denotes the start of optional "arguments" to the macro, F ich following parameter
is there of the firm variable, (variable), (variable de cult), or (variable default present-p). default
is a 'ibrn to be evaluated to provide a value of no corresponding ",argument" is present in the
call, present-p is a variable; it will be bound to nil if no argument is present, t otherwise. For
example,

'	 (defmacro print-in-radix (x &optional (radix 10.) (•nopoint? t))
'(let ((base ,radix) (•nopoint ,•nopoint?))

(print ,x)))

If variable is a pattern, then the first form is disallowed byccause it is syntactically ambiguous.
The pattern must be enclosed in a singleton list. Note: in some implementations, if variable is a
pattern, default may be evaluated more than once.

Brest says that the following item should be matched against the rest of the call. ' That is, the
argument list (&rest items) is equivalent to the argument list items, and the argument list for for,
(var lower upper , body), could have been written as (var lower upper &rest body), &rest
may be easier to read than a dotted list, and it allows one to use &aux.

&aux has nothing to do with pattern matching. It should come at the end of the pattern
(which thus cannot be a dotted list), and may be followed by one or more variable binding
snecifications,, of the form variable or (variable value). 'The variable will be bound to the specified
value, or nil.

&body is Uentical to &rest, and in certain implementations may leave some information
around for other programs to use to decide on how that form should be indented, T he for macro
should be defined with &body in preference to &rest,

'I`he &optional variable bindings are perfirnied seoluentually. ' Thus something like

(defmacro foo (a &optional (b a)) ...)

will define a macro that %hen c,illed with only one ;a rgument will bind both a and b to that
arewnent. N'hen Callod with two argimients a will he bourn to the li!^st arl;timrit^t, and b will be

Nil ,NIAClK)C;I)1T^MAC21 	 'I - JUL - 81

Dcl'macro	 12	 Maclisp Extensions

bound to the second.

The macro dolist (page 23) is defined such that

(dolist (var Nst % form-1 form-1 ...)

steps nor over the elements of list, evaluating all of the fomvi each time (sort of like maps) It
could be defined with defmacro by

(defmacro dolist ((var list) Uody forms
baux (list-var (gensym)))

"(do ((,list-var ,list (cdr ,list-var))
(,var))
((null ,list-var)),

(setq ,var (car ,list-varl)
,@forms))

i

Nit AWI X)CA)iaH\ AC 22 	 21-JUL-81

r ;

Maclisp Extensions
	

1.3
	

Other Definition Facilities

6.- Other Definition Facilities
datvar variable (inal (documentation)	 Special Form

defvar is the recommended way to declare the use of a globai variable in a program.
The form

(dotvar variable snit)

placed at top keel in a file is roughly equivalent to

(declare (special variable))
(or (boundp 'variable)

(so tq variable init))

If the init form is not given, then defvar does not try to initialize the value of the
variable, it only declares it to be special.

documentation is ignored in most implementations, although it is a good idea to supply it
for the benifit of those implementations that make use of it. It should be a "string" (see
page 63).

defconst variable (init) (documentation` Special Form
defconst is similar to defvar expect that if init is given, then variable is always set to
have that value, regardless of whether it is already bound. The idea is that defvar
declares a global variable, whose value is initialized to something but will then be
changed during the running of the program. On the other hand, defconst declares a
constant, whose value will never be changed by the program, only by changes to the
program. defconst always sets variable to the specified value so that if you change your
mind about what the constant value should be, and then you evaluate the defconat form-
again, variable will get set to the new value.

oval-when limes-list forms...	 Special Fong
evai-when is used to specify precisely what is to happen to the containing forms. M
evai-when form must appear at top level in a file. times-list can contain any combination
of the symbols evai, compile and load.

if evai is in times-list, then when the interpreter evaluates the eval-when form each of
the forms will be evaluated, If eval is not present, then the forms will be ignored in the
interpreter. The return value is not guaranteed to be anything in particular.

If compile is in times-list, then when the compiler comes across the evai-when fornr at
compile-time, it will evaluate each of the forms right then and there.

If load is in times-list, then when the compiler comes across the eval-when form in the
file, it will continue process the forms as if they appeared at top level in the file. Thus
the result of compiling the forms will be placed into the compiler output file so that they
may be loaded later.

Examples:

ML: NIACIJt1C;DI.l a'I:XT 11
	

21-JUL-81

.. .,. ._^.. r _ , ^.	 . a. ..r^	 .^ ♦; lw+n.., ...k ..w.w., n 7....,.n,.._r. nww,.u^Wu-+,+.W+rw+^°,ii+YY	 z •..'.;._	 i

tN Other Definition Facilities Maciisp extensions14

11

(oval-when (oval compile)
(setsyntax /" 'macro 'hack-strings)

(defun hack- strings ()

'Phis will f x)l with the syntax of doublequotc at run-time and compile-time (presumably to
allow the rest of the file to be read in properly), but when the file is compiled and
loaded the syntan of doublequote will be unchanged, and the function hack-strittgs will
not be defined.

(oval-when (oval)
(defun too (frob)
(and (atom frob)(barf))
(car frob)))

(oval-when (compile)
(defun too macro (x)
(list 'car (cadr x))))

'Phis will define foo as a paranoid error checking function when the program is being run
interpreted, but will arrange to define foo as a macro at compile-time so that it will
compile just like car. When the compiled file is loaded foo will not be defined at all.

(oval-when (oval compile load)
(defprop frobulato frobulate-macro macro)
(defun fr9bulate-macro (x)

'Phis is a way to define a macro by hand in Maclisp to be present whenever ft file is
being nun or compiled.

i ;

B

i

t	
N11	 F 12
	

21-JUL-81

W,

Maclisp Extensions 	 is
	

Setf

7. ^ Sed

sett	 Macro
setf provides a general mechanism for modifying the components of arbitrary Lisp objects.
A sett form looks like:

(sott reference form)

The setf form expands into code to evaluate form and then modify some lisp object such
that the form reference would evaluate to the same thing. For example:

(sett (car x) 47)	 n _>

(sett (cadr, x) nil) 	 __>
(sett (get a 'zip) 'too)	 __>
(sett (arraycall t a 1) t) __>
(sett (symeval too) bar)	 _•>
(sett too bar)	 _•>

(rplaca x 47)
(rplaca (cdr x) nil)
(putprop a 'too 'zip)
(store (arraycall t a 1) t)
(set too bar)
(setq too bar)

The order in which form and any forms found in reference are evaluated is not guaranteed
in any but the I DP-10 Maciisp an4 Nil, implementations of sett. Neither is the value
returned by the code sett expands into guaranteed in any way.

self also knowns how to perform macro expansions of any reference it doesn't recognize.
So if first is a macro defined to expand as

(first too)	 n _> (car too)

then

(sett (first too) t)	 M_> (rplaca too t)

sell's ability to expand macro forms makes it indispensable when using the defstruct macro
(page 26).

Several other common macros are defined to expand into code that includes a sett form, All
these other macros share the property with sett that in some implementations they are liable to
evaluate their various sub-forms in an order other than the one they were written in. In some
cases you even run the risk of having some sub-form evaluated more that once.

push

	

	
Afacro

push is defined to expand roughly as follows:

(p us If frob reference)

==> (s e t f reference (c o n s frob reference))

'Ilie yuatific,adons about order of evaluation given for sett apply to push also-:
additionally, only the 1911 -10 and NIT. implementations guarantee that fuinis in reference
will not he evaluated n ► tiltiple Times.

MI.:MAC.'IX)C;Sl?'11" 12
	

21ALT-$1

..,	 ^, ^;rslss+^u:^.^w^...e:^. :ryu..^s•,va=..,cry..^;^. :ac.a^x+ ^̂ „w^cwu^,.+.̂ .^:,:-.,_	 ..

Setf
	

16
	

Maclisp Fxtensions

POP

	

	
Macro

pop is defined to expand roughly as follows;

(pop reference)

on > (progl (car reference)
(s e t f reference (c d r reference)))

(proyl is explained on page 25.)

The qualifications given for push about order of evaluation and multiple evaluation apply
to pop also.

A11 :AIA('l)t)CC;Sla`I' 12	 21ALT-81

Maclisp Extensions	 17	 New Functions and Special Forms

8. New Functions and Special Forams

'Ifiis chapter documents a number of new functions and special forms that have been added
to thu Maclisp language.

Although many of the functions documented herd are shown shown as being functions, there
is no guarantee that any particular Lisp actually implements them that way, rather than as macros,

U Bit Hacking

All of the functions in this suction operate on integers of any size in Lisp Machine Lisp, but
only on fixnums elsewhere. Remember that all the integers shown here are in octal.

U.1 Boolean Operations

'[be following functions could be (and often are) implemented in terms of the Boole function,
Their use tends to produce less obs:,ure code.

logand &rest arts
Returns the bit-wise logical and of its arguments. At least two arguments are required.
Examples:

(logand 3456 707) n> 406

(logand 3456 -100) •> 3400

1 og for &rest args
'Returns the bit-wilse logical inclusive or or its arguments. At least two arguments are
required.
Example:

(logxor 4002 67) •> 4067

logxor &rest args
Returns the bit-wise logical exclusive or of its arguments. At least two arguments are
required.
Example:

(logxor 2531 7777) -> 5246

lognot number
Returns the logical complement of number. 'Ifiis is the same as logxor'ing number with
-1.
Example:

(lognot 3456) => -3457

MI.:MACD0QNl:WFtJN 57 	 21-JUL-81

Predicates
	

lg	 Maclisp Extensions

8.1.2 Byte Manipulation

Several functions are provided for dealing with an arbitrary-width field of contiguous bits
appearing anywhere in an integer (in Maclisp, this is restricted to a fixnum). Such a contiugous
set of bits is called a byte. Note that the tern byte is not being used to mean eight bits, but
rather any number of bits within an integer. These functions use numbers called byre spec#krs to
designate a specific byte position within any word. Byte specifiers are fixnums whose two lowest
octal digits represent the sire of the byte, and whose higher octal digits represent the position of
the byte within a number, counting from the right in hits, A position of zero racans that the
byte is at the right end of the number. For example, the byte-specifier 0010 (i.e., 10 octal)
refers to the lowest eight bits of a word, and the byte-specificr 1010 refers to the next eight bits.
These byte-specifiers will be stylized below as ppss. The maximum reasonable values of pp and ss
are dictated by the Lisp implementation, except of course ss may not "overflow" into the pp field,
so may not exceed 77 (octal).

1 db ppss num
Returns the byte of num specified with the byte-specifier ppss, as described above.
Example:

(1db 0306 4587) n> 66

dpb byte ppss num
Returns a new number made by replacing the ppss byte of num with byte.

8.1.3 Testing

bit-test x y
Returns t if any of the bits in x and y intersect; that is, if their logand is not zero. bit -
test could be (and sometimes is) defined as a macro such that

(bit-test x y) n -> (not (zerop (logand x y)))

8.2 Predicates

f ixnutttp x
Returns t if x is a fixnum. This corcri;sponds to a typep of fixnum.
Examples:

(fixnump 1) n> t
(fixnump (expt 259. 269)) -> nil

f 1 onump x
Returns t if x is a flonum. This corresponds to a typep of ftonum.
Examples-,

(f 1 onuipp 3.14)	 _> t
(flonuinp 17) _> nil

Note that this is the sane as floatp in most Lisps, which hzivc only one type of floating-
point representation. In Lisp Nttchine Iasi► however, there ;ire some kmt s of floating

Ntl ;N1.1t 0OQNI`WFUN 57	 21-JUL-81

{	 Maclisp Extensions	 19	 Lim

` point numbers that are not of type flonum. flonump will return nil for these objects. It
is probably the case that code that is trying to be compatible should use floatp in
preference to either flonump or (eq (typep x) ' ilonum).

erreyp x
_ Returns t if x is an array. Note that some lisps implement certain kinds of objects as

arrays; for example, PDP-10 Maclisp file objects are arrays, and lisp Machine Lisp
utilizes arrays for,most structures defined with defstruct (page 26).

evenp integer
Returns t if integer is even, nil otherwise. '11his complements the oddp function which
Lisp provides,

(• &rest args
(• requires at least two arguments. If any argument is greater than the next argument,
it returns nil, otherwise it returns t, In Maclisp, args should consist of either all fixnums
or all flonuma.

)• &rest args
Similar tot •

tboundp symbol
tboundp returns nil if the symbol symbol in not defined as a function or special form. It
returns something non-nil if symbol is defined. The exact nature of the non-nil object
varies from implementation to implementation,

It is not defined what fboundp returns if symbol has an autoload property and is
otherwise undefined.

V Lists

list* &rest args
list' creates what some people call a "dotted list".

(list* 'too 'bar 'baz) •> (too bar . baz)

(list* 'foo 'bar)	 _> (foo . bar)

(list* 'foo)	 •> too

list* makes certain unwieldy compositions of the cons function somewhat easier to type:

(list* 1 2 3 4)

is the same as

(cons 1 (cons 2 (cons 3 4)))
it

make-list length
make-list creates a list of nHs of length length, Example:

(make-list 3) => (nil nil nil)

Nil.: N1ACDOC';NFWFUN 57
	

21-,IUI -kl

1'aritbles	 20	 Maciisp Extensions

nth n list
(nth n list) returns the n'th clement of list, where the icroth element is the car of the
list, If n is large: than the length of the list, nth returns nil, Examples;

(nth 2 '(zero one two three)) 	 two

(nth 0'(abc)) a>a

nthcdr n list
(nthcdr n list) cdrs list n times, and returns the result. If n is larger than the length of
the list then nil is returned. Examples:

(nthcdr 3 '(q w e r t y)) -> (r t y)
(nthcdr 0 ' (a t a o i n r)) -> (a t a o i n r)

Note that

(nth n I)

is the same as

(car (nthcdr n I))

BA Variables

lot	 Special Fonn

(l ot ((var-1 val-1) (var-2 val-2) ...)
form-1
form-2
...)

binds varl to the value of val-1, var 2 to the value of val-2 etc., and evaluates each of
the f nn-i in that binding environment. 'That is, it is equivalent to

((lambda (varl var-2 ...)
form-1 fornt-2 ...)

vat-1 val-2 ...)

but displays the values in close proximity to the variables.

Notc that similar to do, a declaration is allowed as the first form in a let body..

lot* Special Form
let' has a syntax identical to that of let, but binds the variables in sequence rather than
in parallel. 'Ibus,

(let* ((a (too)) (b (bar a)))
(computate a b))

is like

Ail A1.1('IN1C,';1 ^1`I l!N 57
	

21-1111.-81
r

T

Maclisp F,xtensions
	

21
	

Flow of Control

((lambda (a)
((lambda (b)

(computat• a b))
(bar a)))

(too))

padt,%r 	 Special Fora

psotq is similar to aetq, In the multi-variable case however, the variables are set "in
parallel" rather than sequentualiy; first all the forms are evaluated, and then the symbol$
are set to Oe resulting values. For example:

(setq a 1)
(setq b 2)"
(psetq a b b a)
a•>2
b -> 1

8.5 Flow of Control

8.5.1 Conditionals

It predicalrjorm then form [elstfornj . Special Form
if is a convenient abbreviation for a simple cord which does a binary branch. predicate
form is evaluated, and if the result is non-nil, then then form is evaluated and that result
returned, otherwise elseforn is evaluated and that result returned. If no else-form is
specified and predicate-form evaluates to nil, then nil is returned, it can (and usually is)
defined as a macro such that

(i t prod then else)
_ n> (cond (pred then) (t else))

MW

(if pred then)
••> (cond (pod then) (t nil))

or
• •> (and pod then)

If there are more than three subforms, it assumes that more than one olherwise form was
intended; they will be treated as an implicit prom. For example,

if peel e2 e3)
Y	 =s> (cond (p c) (t el e2 e3))

There is disagreement as to whether this constitutes good programming style, so it is
possible that tliis last variant may be disallowed,

NII.Al W00C;Nl'.W UN 57
	

iI,JI]I.°R1

Mow (J Control	 22	 Maclisp Extensions

&5.2 Selection

selectq key form clauses... Special Form
selectq is a conditional which chooses one of its clauses to execute by comparing the
value of a form against various constants. Its form is as follows;

(selectq keyfarm
(test consequent forms..)
(test consequent forms..)

The first thing selectq does is to evaluate key-form; call the resulting value key. Then
selectq considers each of the clauses in turn. If key matches the clauses test, the
consequents of Otis clause are evaluated, and selectq returns the value of the last
consequent. If there are no matches, selectq returns nil.

A test may be any of

a symbol or integer The symbol or integer is compared with key. Symbols are
compared using eq; integers are compared on the same basis that
equal uses--equal types and equal values. Note that It and
otherwise are exceptions here.

a list

	

	 The list should contain only symbols and integers, which are
compared as above.

t or otherwise	 `1'he symbols t and otherwise are special keywords which match
anything. Either of these may thus be used to signify a "default"
clause, which to be useful, should be the last clause of the selw3q.

Examples:

(defun count-them (n)
(selectq n

(0 'none)
(1 'one)
(2 'two)
((3 4) 'a-few)
(t 'many)))

(count-them 2) n > two
(count-them 3) n > is-few
(count-them 7) n> many

(selectq 'one
(1 integer-one)
(one 'symbol-one)
(t 'something-else))

_> symbol-one

M ,

If the keys being tested against and the value of kej-(orrn are all of the Same type, caseq
should be used, as it may produce more efficient code depending on the implementation.
This is true in NW-10 Maclisp, Oich has rto I ► rimitice predicate that impletnews the
type of cumpari .. on that selectq uses. In .isp (Machine Lisp and Multics Maclisp there
shcadd he no difference unless higimms are used. Presently, hignums do not work

Nil :NlAt_'I OC:N1;WFUN 57

..

21-JLII -81

T

Maclisp i xtensions 	 23	 Flow of Control

anyway, but this is expected to be fixed.

caseq key firm clauses.. Special Porn►
caseq is the stone as seloctq except that it requires all of the keys being compared to be
of the same type, it is also an error for the value of key-,/ban to be of a different type
than the keys in the clauses.

Currently, in all but the PIP-10 implementation, caseq is implemented in terns of
selectq so does not provide this consistency checking, any qualifications given for selectq
apply to cmwq.

In POP-10 Machip, caseq does not accept the otherwise keyword; it is necessary for t
to be used. It also does not accept bignums.

8.5.3 Iteration

do 11 s t	 Special Norm
dolist is like a cross between maps and do.

(do l i s t (var list) bo*..)

evahiates the forms of Mill, for each element or list, with ►tier bound to the successive
elements. lxxly is treated as a prog or do body, m) it may contain prog tags, and calls
to return, which will return from the dolist.

dotimo s 	 Special Form
dotitres performs integer stepping, and is otherwise similar to dolist.

(d o t i me s (oar count) body...)

evaluates laxly count times; var takes on values starting with zero, and stops before
reaching count, For example,

(dotimes (i (// m n)) (frob i))

is equivalent to

(do ((1 0 (1+ 1))
(count (// m n)))

((not (< i count)))
(frob i))

except that the name count is not used.

dotimes is similar to dolist in that the body is treated its if it were a prog or do body,

loop	 Alncro
dolist and dotimes are convenient foi simple: cases, where the extra syntax necessitated by
maps or do is an annoyimce, For complicated cases, the loop macro nt ty he desirable,
it proOdes Aw Ille s(eppitlt; of 1 ►u ltiple ^aria)les, either in sequence or in parallel, and
tllcthods for perfilr111111; carious sorts of +tccttuu ► I,ltious, shell as Collecting a list, suuuuinit,
Mill CoUmitlt;; more than ono stiell accimikllaltion ill he performed, a lid die ly tweed not he
acuminated "in Sync" M01 (lie itrratiou, For example,

NII.:l11At'OOC:NiANTUN 57
	

21--it'll -81

I low of Control
	

24
	

Maclisp Extensions

(loop for x in 1 as y - (f x) collect (cons x Y))

produces a result like

(do ((*lists-1 (cdr ,lists)) (x) (y) (*result*))
((null *list*) (nreverse *results))

(setq x (car *list*))

(setq Y (f x))
(setq'•result• (cons (cons x y) *results)))

does. loop is extremely complicated so is not documented here; full documentation may
be found in MIT Laboratory for Computer Science Technical Memo 139 (January 1981).

8.5.4 Non-Local Exits

*catch tag form Special Form
The *catch special form is used with *throw to perform non-local exits. tag is evaluated,
and then fomi is evaluated. If during the evaluation of form a (*throw tag value) is
done, then the "catch returns value.

*throw tag value
Evaluation of (*throw tag value) causes a pending 'catch of tag to return value.

'catch and 'throw are slightly more general versions of the standard Maclisp catch and
throw special forms. They are more general in that the tags given to them are evaluated, and
thus need not be written into the code, but can be passed in, Additionally, the difference in
argument ordering can make for more readable code, viz

(*catch 'exit
rnob)-big-hairy-compuation-
that- is•continued-over•
manplines)

Lisp Machine Lisp, PUP-10 Maclisp, and NIL, support 'catch and '.throw as the basic catching
and throwing primitives; catch and throw are implemented as macros in terms of them. Multics
Maclisp implements 'catch and 'throw , as macros in terms of the existing catch and throw
special forms; thus it is impossible for 'catch and 'throw on Multics to accept anything but a
quoted atom for the tag.

It is advisable for *catch and *throw to be used in preference to catch and throw; at some
future time it is anticipated that catch and throw will be changed to be equivalent to *catch and
'throw. The names *catch and *throw are expected to remain valid indefinitely.

unwind-protect fonn cleanup-fomis..,	 Special Form
unwind-protect evaluates fonn and returns that result as its value, When control returns
froin (lie unwind-protect for any reason, whether it be a normal return, or a non-local
exit causes by a 'throw or an error, the cleanul)-forms will be evaluated. unwind-protect
can thus he used for "binding" something which is not really bindablc as a variable, or

o	 li ►r perlorming some nece!,s iry c)caimp action, such as closing a file.
Example:

i

NW: NIACIW: NIAVI'l. IN 57	 21-.1UL-81

Maclisp Extensions	 25	 Miscellaneous

(unwind-protect
(progn (turn-on-water-faucet)

(compute-under-running-water))
(turn-off-water-faucet))

8.6 Miscellaneous

prod first forms... 	 Special Form
progl is similar to prog2, only without the first argument. All of the argument to progl
are evaluated just as they would be for progn, however, the value returned by progi will
be tic value of the first form rather than the last. For example:

(rplaca x (progl (cdr x) (rplacd x (car x))))

can be used to exchange the car and the cdr of a cons.

lexpr-funcall frnclion &rest args
lexpr-funcall is a cross bcwecn funcall and apply. (lexpr-funcall function arg-1 arg-2
arg-n list) calls the function finnclion on arg-1 through arg-n followed by the elements of
list, for example

(lexpr-funcall 'list 'a 'b '(c d)) _> (a b c d)
(lexpr-funcall 'plus 3 4 '(2 1 0)) _> 12

Note that two argument lexpr - funcall is the same as apply, and that lexpr - funcall with
a list argument of nil is essentially funcall.

without-interrupts forms-	 Sp,^cial Forni
`I'his provides a convenient way of executing some code uninterruptibly. forms are
evaluated as with progn and the value of the last form is returned. It is guaranteed that
the evaluation will be performed as an atomic operation.

terror cundilion-namc forrnal-.string &rest formal-args
terror provides a mechanism for signalling errors using format (page 47) to generate the
error message, condilion-nanre is used to specify the type of condition which is to be
signaled; no mechanism for this exists in Maclisp. However, condition-name may be nil,
in which case an uncorrectable error occurs—nil is therefore the only value of condiliorr
aolne guaranteed to work everywhere.
Example:

(ferror nil "%%% Compiler error - call -S 767696"
(get 'compiler 'maintainer))

"I .IUi._SlC^II.;M.1C'i)O4.';NI^:1\'ITN 51

Aft.. .	 . ,	 .:.

Ikfstruc:t	 26	 Maclisp Extensions

9. Defstruct

9.1 Introduction

The features of defstruct differ slightly from one Lisp implementation to another. However,
defstruct makes it fairly easy to write compatible code if the wiser doesn't try to exercise any of
the more esoteric features of his particular Lisp impiementntion. The differences will be pointed
out as they occur.

One difference that we must deal with immediately is the question of packages. defstruct
makes use of a large nuznber of keywords, and on the lisp Machine those keywords are all
interned on the keyword package. However, for the purposes of compatibility, the Lisp Machine
defstruct will allow the keywords to appear in any package. The lisp Machine programmer is
discouraged from writing keywords without colons, unless the code is to be transported to another
Lisp implementation. Classes of symbols that defstruct treats as keywords will be noted as they
occur.

Other package related issues will be dealt with later.

9.2 A Simple Example

defstruct Macro
defstruct is a macro defining macro. The best way to explain how it works is to show a
sample call to defstruct, and then to show what macros are defined and what each of
them does.

Sample call to defstruct:

(defstruct (elephant (type list))

color

(size 17.)

(name (gensym)))

`Phis form expands into a whole rat's nest of stuff, but the effect is to define five macros: color,
size, name, make-elephant and alter-elephant. Note that there were no symbols make-
elephant or alter-elephant in the original form, they were created by defstruct. The definitions
of color, size and name are easy, they expand as follows:

(color x)	 (Car x)

(size x) __> (cadr x)

(name x) =_> (caddr x)

You can sec that defstruct has decided to implement wi elephant as a list of three things; its
color, its size and its name. The expansion of make-elephant is somewhat harder to explain,
let's look at a few cases:

1111.A11C1)0C':i)V STR 58	 21 Jlll,-81

a

Maclisp Fxtensions 	 27	 Syntax of defstruct

(make-elephant)	 - n> (list nil 17. (gensym))
(make-elephant color 'pink) 	 --> (list 'pink 17, (gensym))

(make-elephant name 'fred size 100) --> (list nil 100 'fred)

As you can see, make -elephant takes a "setq-style" list of part names and forms, and
expands into a call to list that constructs such an elephant. Note that the unspecified parts get
defaulted to pieces of code specified in the original call to defstruct, Note also that the order of
the sctq-style arguments is ignored in constructing the call to list. (in the example, 100 is
evaluated before Wed even though 'fired came first in the make-elephant form.) Care should
thus be taken in using code with side effects within the scope of a make-elephant. Finally, take
note of the fact that the (gensym), is evaluated every time a new elephant is created (unless you
override it).

The explanation of what alter- elephant does is delayed until section 9.4.3, page 31.

So now you know how to construct a new elephant and how to examine the parts of an
elephant, but how do you change the parts of an already existing elephant? The answer is to use
the setf macro (chapter 7, page 15).

(setf (name x) 'bill)	 --> (rplaca (cddr x) 'bill)

which is what you want.

And that is just about all there is to defstruct; you now know enough to use it in your code,
but if you want to know about all its interesting features, then read on.

9.3 Syntax of defstruct

Toe general form of a defstruct form is:

(defstruct (name option-1 option-2 ... option-n)
slot-description-1
slot-description-2

slot-description-m)

name must be a symbol, it is used in constricting names (such as "make-elephant") and it is
given a defstruct -description property of a stricture that describes the stricture completely.

Fach option-i is either the atomic name of an option, or a list of the form (oplion-nan►e arg
rest). Some options have defaults for arg; some will complain if they are present without an
argument; some options complain if they are present wilh an argument. The interpretation of rest
is up to tic option in question, but usually it is expected to be nil.

I ;;lch slot-description-,J is either the atomic name of a slot in the structure, or a list of the
firm (slol-name inil-codc), or a list of byte field specifications, inil -code is used by constructor
inacros (stich as make -elephant) to inhiaWe slots not specified in the call to die constructor. If
the inii-(ode is not Specified, then the slot is inithli%ed to whatcVer is most con^Onicilt. (In tale
elephant example, since the sirticture was a list, nil was usod. If' the structure had been a
fixmmn array, such slots would be filled with icros.)

NIl.;ni;1(,'1)(lt: I)IA STR 5R	 21-.11.11.-R1

Options to defstruct 	 28	 Maclisp Extensions

A byte field specification looks like: (field-name ppss) or (field-name ppss roll-code). N,.t i that
since a byte field specification is always a list, a list of byte field specifications can never be
confused with the other cases of a slot description, 'Me byte field feature of defstruct is
explained in detail in section 9.5, page 38.

9.4 Options to defstruct

The following sections document each of the options defstruct under.,tands in detail.

On the Lisp Machine, all these defstruct options are interned on the keyword package.

9.4.1 type

"I'lic type option specifics what kind of lisp object defstruct is going to use to implement your
structure, and how that implementation is going to be carried out, `Ilse type option is illegal
without an argument, If the type option is not specified, then defstruct will choose an
appropriate default (hunks on PPP-10s, arrays on lisp Machines and lists on Multics). It is
possible for die user to teach defstruct new ways to implement structures, the interested reader is
referred to section 9,8, page 42, for more information, Many useful types have already been
defined for the user, A table of these "built in" types follows: (On the lisp Machine all
defstruct types are interned on die keyword package.)

list

	

	 A.11 implementations
Uses it list. 'Ibis is the default on Multics.

named-list All implementations
I.ike list, except the car of each instance of this stnrcture will be the name
symbol of the structure. 'Phis is (tic only "named" stnicturc type defined on
Multics, (Sec the named option documented in section 9.4.7, page 35.)

tree All implementations
Creates a binary tree out of conscs with the slots as leaves. 'ft theory is to
reduce car-edring to a minimum. The include option (section 9.4.6, page 33) does
not work with stnrctures of this type.

list' All implenrentalions
Similar to list, but tic Iasi slot in the structure will be placed in the cdr of the
final cons of the list. Some people call objects of this type "dotted lists". The
include option (section 9.4,6, page 33) does not work with structures of this type.

array	 All implementations
Uses in array object (not a symbol with an array property). Phis is the default on
lisp Machines, i.isp Machine users may want to sec the make-array option
documented in section 9.4.8, page 3S.

!411 ..N1 W 0C_',l)ITS l h 58
	

21°JIT-81

Maclisp Extensions 	 29	 Options to defstruct

fixn6m ,, array All implementations
Like array, except it uses a fixnum array and thus your structure can only contain
fixnums. On lisp Machines defstruct uses an art-32b type array for this type.

flonum-array All nplernealalions
Analogous to fixnum-array, On Lisp Machines defstruct uses an art -float type
array for this type.

un -qc -array PDP-10 only
Uses a nil type array instead of a t type. Note that this type does not exist on
Lisp Machines or Multics, because un-garbage-collected arrays do not work in
those implementations.

hunk

	

	
PDP- 10 only

Uses a hunk. 'This is the default on PDP-10s.

named-hunk PDP- to only
Like hunk, except the car of each instance of this structure will be the name
symbol of the stnicture. This tan be used with the (status usrhunk) feature of
PDP-10 Maclisp to give the user Lisp Machine-like named structures. (See the
named option documented in section 9.4.7, page 35.)

a sfa PDP-10 only
Uses an SFA. ne constructor macros for this type accept the keywords sfa

-function and sfa-name. 'Their arguments (evaluated, of course) are used,
respectively, as the function and the printed representation of the SFA. See also
the sfa-function (section 9.4.9, page 35) and sfa-name (section 9,4,10, page 36)
options.

named-array
Uses an array with the name
structure in the first element.
9.4.8, page 35.)

array-leader
Uses an array with a leader.
9.4.8, page 35.)

Lisp Machine only
I structure bit set and stores the name symbol of the

(See the make-array option documented in section

Lisp Machine only
(See the make-array option documented in section

named-array-leader Lisp Machine only
Uses an array with a leader, sets the named structure bit, and stores the name
symbol in clement 1 of the leader. (See the make-array option documented in
section 9.4.8, page 35)

fixnum Ali implementations
'Phis type allows one to use the byte field feature of defstruct to deal symbolically
with fixnums that aren't actually stored in any structure at all. Essentially, a
structure of type fixnum has exactly one slot. `Phis allows the olcration of
retrieving the contents of that slot to be optimized away into the identity
operation. See section 9.5, page 38 for more information about byte; fields.

,it -

R
St

N NIACl)0C;1** STR 58
	

21-RIL-K 1

'lit	 I	 ''`'

i

Options to defstruct	 30	 Maclisp Extensions
	

i

external Afu/tics only
Uses an array of type external (only Multics Lisp has these). Constructor macros
for structures of this kind take the external-ptr keyword to tell them where the
array is to be allocated. (See section 9.4,2, page 30, for an explanation of
constructor macro keywords.) See also the external-ptr option described in section
9.4.11, page 36.

9.4.2 constructor

The constructor option specifies the name to be given to the constructor macro. Without an
argument, or if the option is not present, the name defaults to the concatenation of "make-" with
the name of the structure. If the option is given with an argument of nil, then no constructor is
defined. Otherwise the argument is the name of the constructor to define, Normally the syntax
of the constructor defstruct defines is:

(constructor-name
keyttv4l Cork-1
keywoarcP2 code-2

keywor&n code-n)

Rich keywrd i must be the name of a slot in the structure (not necessarily the name of an
acccssor macro; see the cone-name option, section 9.4.5, page 33), or one of the special
keywords allowed for the particular type of structure being constructed, For each keyword that is
the name of a slot, the constructor expands into code to make an instance of the structure using
code-i to initialize slot keywvrd i. Unspecified slots default to the forms given in the original
defstruct form, or, if none was given there, to some convenient value such as nil or 0.

For keywords that are not names of slots, the use of the corresponding code varies. Usually
it controls some aspect of the instance being constructed that is not otherwise constrained. See,
for example, the make-array option (section 9.4.8, page 35), the sla-function option (section
9.4.9, page 35, or the external-ptr option (section 9.4.11, page 36).

On the Lisp Machine all such constructor macro keywords (those that are not the names of
slots) are interned on the keyword package.

If the constructor option is given as (constructor name arglist), then instead of making a
keyword driven constructor, defstruct defines a "function style" constructor. 'Me arglisl is used
to describe what the arguments to the constructor will be. In the simplest case something like
(constructor make-foo (a b c)) defines make-too to be a three argument constructor macro
whose arguments are used to initialize the slots named a, b and c.

In addition, the keywords &optional, &rest and &aux are recognized in the argument list.
'llicy work in the wary you might expect, but there are a few fine points worthy of explanation:

(constructor make-foo
(a &optional b (c 'sea) &rest d &aux a (f 'eff)))

This defines make-too to be a constructor of one or more arguments, The first argument is uscj,
to initi,lliie the a slot. The second argument is tiled to initialize the b slot. If there isn't arFy
second a rgI111ulnt, that the default %ahie given in the bode of the defstruct (if given) is wiedl

Ili !NlAt,'i10(2;i)1+STV 58	 21-JUI.-M

Maclisp Extensions	 31	 Options to defstruct

instead, The third argument is used to initialize the c slot. If there isn't any third argument,
then the symbol sea is used instead. Thi: arguments from the fourth one on are collected into a
list and used to initialize the tf slot. if there are three or less arguments, then nil is placed in the
d slot. The e slot is not initialized. It's value will be something convenient like nil or 0. And

-	 finally the f slot is initialized to contain the symbol off.

The b and a cases were carefully chosen to allow the user to specify all possible behaviors.
Note that the tltaux "variables" can be used to completely override the default initializations given
in the body.

Since there is so much freedom in defining constructors this way, it would be cruel to only
allow the constructor option to be given once. So, by special dispensation, you are allowed to
give the constructor option more than once, so that you can define several different constructors,
each with a different syntax.

Note that even these " function style" constructors do not guarantee that their arguments will
be evaluated in the order that you wrote them.

9.4.3 aiterant

The alterant option defines a macro that can be used to change the val l ic of several slots in a
structure together. Without an argument, or if the option is not present, the name of die alterant
macro defaults to the concatenation of "alter-" with the name of the stnicture. If the option is
given with an argument of nil, then no alterant is defined, Otherwise the argument, is the name
of the alterant tc define. The syntax of the alterant macro defstruct defines is:

(alleranl-name code
slot- name- I code-I
slot-name-2 code-2

slot-name-n code-n)

code should evaluate to an insonce of the structure, each code-i is evaluated and the result is
made to be the value of slot sloe-name-i of that structure. The slots are all altered in parallel
after all code has been evaluated. ('Thus you can use an alterant macro to exchange the contents
to two slots.)
Example:

(defstruct (lisp-hacker (type list)
cone-name
default-pointer
alterant)

(favorite-macro-package nil)
(unhappy? t)
(number-of-friends 0))

(setq lisp-hacker (make-lisp-hacker))

Now we can peribrm a transformation:

f^tl.:^1r^('IK1C;1)I'1^'S'I'it 58
	

N -,I l 1 I .-2i 1

t ilt	 x

T

Options to detstruct
	

32
	

Maclisp Extensions

(alter-lisp-hacker lisp -hacker

favorite-macro-package 'detstruct

number-of-friands 23.

unhappy? nil)

n o > ((lambda (G0009)

((lambda (G0011 00010)

(setf (car 60009) 'detstruct)

(sett (cadd y G0009) G0011)

(sett (cadr G0009) G0010))

23.

nil))

lisp- hacker)

Although it appears from this example that your forms will be evaluated in the order in
which you wrote them, this is not guaranteed.

Alterant macros are particularly good at simulvineously modifying several byte fields that are
allocated from the same word. 'lltcy produce better code than you can by simply writing
consecutive sells. 'They also produce better code when modifying several slots of a structure that
uses the but-first option (section 9.435, page 37).

9.4.4 default-pointer

Normally the accessors are defined to be macros of exactly one argument. (They checkl) But
if the default-pointer option is present then they will accept zero or one argument. When used
with otic argument, d ►cy behave as before, but given no arguments, they expand as if they had
been called on the argument to the default-pointer option. An example is probably called for:

(detstruct (room (type tree)

(default-pointer **current--room+•))

(room-name 'y2)

(room-contents-list nil))

Now the accessors expand as follows:

(room-name x)	 ••> (car x)

(room-natne)	 nn> (car **current-room**)

If no argument is given to the default-pointer option, then the name of the structure is used
as the "default pointer". default-pointer is most often used in this fashion.

A11 :N1A("00t,';111:FSTR 58	 21AL11 -81

--9

Maclisp Extensions 	 33	 Options to defstruct

9.4.5 cone-nowe

Frequently all the accessor macros of a structure will want to have names that begin the same
way; usually with the name of the structure followed by a dash. T he conc-name option allows
the user to specify this prefix. Its argument should be a symbol whose print name will be
concatenated onto the front of the slot names when forming the accessor macro names, if the
argument is not given, then the name of the stricture followed by a dash is used, If the ecne-
name option is not present, then no prefix is used, An example illustrates a commen use of the
cone-name option along with the defauh-pointer option;

(defstruct (location default-pointer

cone-name)

(x 0)

(y 0)

(z 0))

Now if you say

(sotq location (make- location x 1 y 34 z ti))

it will be the case that

(location-y)

will return 34, Note well that the name of the slot ("y") and the name of the accessor macro for
that slot ("location-y") are different.

9.4.6 include

The include option inserts the definition of its argument at the head of the new structure's
definition, In other words, the first slots of the new structure are equivalent to (i,e, have the
same names as, have the same inits as, etc,) the slots of the argument to the include option,
The argument to the Include option must be the name of a previously defined structure of the
same type as the new one, If no type is specified in the new structure, then it is defaulted to
that of the included one. It is an error for the include option to be present without an
argument, Note that include does not work can certain types of stnictures (c.,g, structures of type
trey or list'), Note also that the conc- name, default-pointer, but-first and callable-
accessors options only apply to the accessors defined in the current defstruct; no new accessors
are defined for the included slots,

ON

ill :NIM"00C:1>l"1S I R ,59	 '1 .lt 11 .X

t 4t

f

Options to defstruct 	 34
	

Maclisp Extcnsions

An example:

(defstruct (person (type list)
cone-name)

nerve
age
sex)

(defstruct (spaceman (include person)
default-pointer)

helmet-size
(favorite-beverage 'tang))

Now we can make a spaceman like this:

(setq spaceman (make-spaceman name 'buzz
age 46.
sex t
helmet-size 17.6))

To find out interesting things about spacemen:

(helmet-size)
(person-name spaceman)
(favorite-beverage x)

ffi•> (cadddr spaceman)
on > (car spaceman)
• n > (car (cddddr x))

As you can wee the accessory defined for the person structure have names that start with
of and they only take one argument. The names of the accessory for the last two slots of
the spaceman structure are the same as the. slot names, but they allow their argument to be
omitted. 'I'tie accessory for the first three slots of the spaceman stricture are the same as the
accessory for the person structure.

Often, when one structure includes another, the default initial values supplied by the included
structure will be undesirable, "llrese default. initial values can be modified at the time of inclusion
by giving the include option as:

(include name newinit-1 ... new-inlhn)

Fach new-init-i is either the name of an included slot or of the form (include& slot- name new-00).
If it is just a slot name, then in the new structure (the one doing the including) that slot will
have no iniiial value. If a new initial value is given, then that code replaces the old initial value
code for that slot in the new structure. The included structure is unmodified.

f .,„

Maciisp FAtensions
	

35	 Options to defstruct

9.4.7 named

This option tells defstruct that you desire your structure to be at "named structure", On
Pl)111-10s this means you want your structure implemented with a named-hunk or named-list.
On a Lisp Machine this indicates that you desire either a named-array or a named-array-
leader or a named-fist. On Multics this indicates that you desire it named-list, defstruct bases
its decision as to what named type to use on whatever value you did or didn't Rive to the type
option.

it is an error to use Wis option with an argument,

9.4.8 make-array

Avatilaable only on Lisp Machines, this option allows the user to control those aspects of the
array used to implement the structure that are not otherwise constrained by defstruct (such as ahe
area it is to be allocated in).

The argument to the make-array option should he a list of alternatting keyword symbols to
tic Lisp Machine make-array function (see the Lisp Machine manual), and form., whose values
;ire to he the arguments to those keyword;. For example, (make-array (type 'art 46)) would
request that the type of the areay be art-4b, Note than the keyword syanboN are not evaaluated.

Constructor macros for structures implemented as arrays all allow the keyword make-array to
be supplied, Its argument is of the same firm as the make-array option, and attributes specified
there (in the constructor farm) will override those given in the defstruct form,

Since it is sometimes necessary to be able to specify the dimensions of the array titan
defstruct is ga g ing to constnuct (far stnuctures of type array-leader liar example) lbe make -array
option or conort wtor keyword aiccepts die additional keywords ;length and :dimension (they nhcan
the same thing), 'IU argument io (his pseudo make-array keyword will be supplied as the first
argument to the make-array function when the constructor is expanded,

defstruct .hooscs appropriate defaults for those attributes not specified in the defstruct forgo
or in the constructor Harm, and defstruct overrides any'specified attributes that it has t>.

9.4.9 sfa-function

Available only on PIP-10s, this option allows the user to specify the function than will be
used in structures of type sla, Its argument should be a piece of code that evaluates to the

desired function, Constructor macros for this type of structure will take sfa function as a
keyword whose argument is also the code to evahiaate to get the function, overri(ig any supplied

w	in the original delstruct form,

If sfa-function is not present anywhere, then the constructor will use the miic-symbol of the
structure as the function,

MI .MA(00C , lWl til is 58	 'l ;Wl 81

k

,ions to defstruct 	 36	 Maclisp Extensions

.10 sfa-name

Available only on PDP-10s, this option allows the user to specify the object that will be used
the primed representation of. structures of type sfa. its argument should be a piece of code
l evaluates to that object, Constructor macros for this type of structure will take sfa-name as
cyword whose argument is also the code to evaluate to get the object to use, overriding any
plied in the original defstruct form.

If sfa-name is not present anywhere, then the constructor will use the name -symbol of the
icture as the function,

9.4.11 external-ptr

Available only on Multics, this option is used with structures of type external. Its argument
should be a piece of code that evaluates to a fixnum "packed pointer" pointing to the first word
of the external array die defstruct is to constrict. Constructor macros for this type of structure
will take external - ptr as a keyword whose argument overrides any supplied in the original
defstruct form.

If external ptr is not present anywhere, then the constructor signals an error when it
expands.

9.4.12 size-symbol

'["die size -symbol option allows a user to specify a symbol whose value will be the "size" of
the stn.icture. 71be exact meaning of this varies, but in general this number is the one you would
need to know if you were going to allocate one of these structures yourself. The symbol will
have this value both at compile time and at run time. If this option is present without an
argument, then the name of the structure is concatenated with "-size" to produce the symbol.

9.4.13 size-macro

Similar to size -symbol. A macro of no arguments is defined that expands into the size of
the structure. The name of this macro defaults as with size - symbol.

9.4.14 initial-offset

'Mis option allows you to tell defstruct to skip over a certain number of slots before it starts
allocating the slots described in the body. This option requires an argument, which must be a
fixnum, which is the number of slots you want defstruct to skip. To make use of this option
requires that you have Some familiarity with how defstruct is implementing you structure,
otherwise you will be unable to make use of the slots that defstruct has left unused.

1111.: ^1.1C'1)(1C':I)I^t^S'I'. 58	 21-.11 11.-31

1 lH

Maclisp Extensions 	 37	 Options to defstruct

9.4.15 but-first

This option is best explained by example:

(defstruct (head'(type list)

(default-pointer person)
(but-first person-head))

nose
mouth
eyes)

So now the accessors expand like this:

(nose x)	 __> (car (person-head x))

(nose)	 or> (car (person-head person))

The theory is that but-first 's argument will likely be an accessor from some other structure,
and it is never expected that this structure will be found outside of that slot of that other
structure, (In the example I had in mind that there was a person structure which had a slot
accessed by person-head,) It is an error for the but-first option to be used without an
argument.

9.4.1.6 callable-accessors

This option controls whether the accessors defined by defstruct will work as "functional
arguments". (As the first argument to mapcar, for example.) On the Lisp Machine accessors arc
callable by default, but on PDP-10s it is expensive to make this work, so they are only callable if
you ask for it, (Currently on Multics the feature doesn't work at all...) The argument to this
option is nil to indicate that the feature should be turned off, and t to turn the feature on. If
the option is present with no argument, then the feature is turned on.

9.4.17 oval-when

Normally the macros defined by defstruct arc defined at eval-time, compile-time and at load-
time. This option allows the user to control this behavior. (eval-when (eval compile)), for
example, will cause the macros to be defined only when the code is running interpreted and
inside the compiler, no trace of defstruct will be found when running compiled code.

Using the eval-when option is preferable to wrapping an eval-when around a defstruct
form, since nested evhl-whens can interact in unexpected ways.

N,11,:^L1C1)O(':I)I^I SIhSR	 21-Jl.111.•81

Byte Fields	 38	 Maclisp Extensions

9.4.18; property

For each structure defined by del€truct, a property list is maintained for the recording of
arbitrary properties about that structure,

The property option can be used to give a defstruct an arbitrary property, (property
propert)-name value) gives the defstruct a properly-nanie property of value, Neither argument is
evaluated, To access the property list, the user will have to look inside the defstruct- description
structure himself, he is referred to section 9.7, page 41, for more information,

9.4.19 A Type Used As An Option

In addition to the options listed above, any currently defined type (a legal argument to the
type option) call used as a option. This is mostly for compatibility with the old Lisp Machine
defstruct. It allows you to say just type when you should be saying (type type), Use of this
feature in new code is discouraged. It is an error to give an argument to a type used as an
option in this manner,

9.4.20 Other Options

Finally, if an option isn't found among those listed above, defstruct cheeks the property list
of die nante of the option to see if it has a non-null defstruct-option property. If is does have
such a property, then if the option was of the form (option-name value), it is treated just like
(property option-naive value). 'That is, the defstruct is given an option-name property of value.
It is ail 	 to use such an option without a value.

'I°his provides a primitive way for the user to define his own options to defstruct.. Several of
the options listed above arc actually implemented using this mechanism.

9.5 Byte Fields

On .Multics, the byte field feature will not work unless the user has arranged to define the
functions Idb and dpb (section 8.1.2, page 18). They are not yet present in the default
environment, but they are available as part of the extension library (section 11.2, page 59).

The byte field feature of defstruct allows the user to specify that several slots of his structure
are bytes in a fixed point number stored in one clement of the structure. For example, suppose
we had the following structure:

(defstruct (phone-book-entry (type list))
name
address
(area-code 617.)
exchange
line-number)

This will "ork just fine, EXCCItt you notice that in area-code and an exchange are both always
Ies,S than 1000., and so both can easily fit in 10, bits, and the line-number is always less ihan
108(x), and can 'thus fit in 14. bits, 'Thus you can pack all three parts of a phone number in 34.

N11 :M.AC D0C ,,DI+STR 58	 21-AIL-81

Maclisp Extensions	 39	 byte Fields

bits,* If you have a lisp with 36. bit fixnums, then you should be able to put the entire phone
number ik, one fixnum in a structure. defstruct allows you to do this as follows:

(defstruct (phone-book-entry (type list))
name
address
((area-code 3012 617.)
(exchange,1612)
(line-number 0016)))

`Ihe magic numbers 3012, 1612 and 0016 are byte specifiers suitable for use with the functions
ldb and dpb (page 18). 'things will expand as follows:

(area-code pbe) _._> (ldb 3012 (cadd y phe))

(exchange pbe) __> (ldb 1612 (caddr pbe))

(make-phone-book-entry
name 'Fred Derfj
address '259 Octal St.)
exchange ex
line-number 7788.)

==> (list 'Fred Oerfj '259 Octal St.1 (dpb ex 1612 115100017154))

(alter-phone-book-entry pbe
exchange ex
line-number In)

=> ((lambda (G0003)
(setf (caddr G0003)

(dpb ex 1612 (dpb In 0016 (caddr G0003)))))

pbe)

defstruct tries to be maximally clever about constructing and altering structures with byte
fields.

The byte specifiers are actually pieces of code that are expected to evaluate to byte specifiers,
but defstruct will try and understand frxnums if you supply them. (in the make-phone-book
example, defstruct was able to make use of its knowledge of the line-number and area-code
byte specifiers to assemble the constant number 115100017154 and produce code to just deposit
in the exchange.)

A nil in the place of the byte specifier code means to d '-fine an accessor for the entire word,
So we could say:

Nil	 'l^.illl X1

14
13

y q 	 ^._	 _.

About Autoloading	 , 40	 Maclisp Extensions

(defstruct (phone-book-entry (type list))

name
address

((phone - number nil)
(area-code 3012 617.)
(exchange 1612)
(line-number 0016)))

to enable us to do things Bite:

(sett (phone-number pbel) (phone-number pbe2))

to cause two entries to have the same phone numbers.

We could also have said just: ((phone-number) ...) in that last defstruct, but the feature of
nil byte specifiers allows you to supply initial values for the entire slot by saying: ((name nil Mil)

Constructor macros initialize words divided into byte fields as if they were deposited in the
following order:

1) Initializations for the entire word given in the defstruct form.

2) lnk: ' , Jions for the byte fields given in the defstruct form.

3) Initializations for the entire word given in the constructor macro form.

4) Initializations for the byte fields given in the constructor macro form.

Alterant macros operate in a similar manner. That is, as if the entire word was modified first,
and then the byte fields were deposited. Results will be unpredictable in constructing and altering
if byte fields that overlap are given.

9.6 About Autoloading

This section only applies to PUP-10 and Multics Lisp.

If you look at the property lists of the macros defined by defstruct, you will find that they
are all have macro properties of one of four functions: defstruct-expand-ref-macro, defstruct-
expand-cons-macro, defstruct-expand-alter-macro and defstruct-expand-size-macro.
These functions figure out how to expand the macro by examining the property list of the car of
the form they _,se asked to expand, defstruct-expand-ref-macro, for example, looks for a
defstruct-slot, property, which should be a cons of the farm (sln4clur&name . slot-name).

Since khc defstruct form only expands into putprops of the desired functions (instead of
actually constructing a full-fledged definition), loading a compiled file containing a defstruct
merely adds a few properties to sonic symbols. 'I'hc run time environment is not needlessly
cluttered with unwanted list structure or subr objets, If the user thinks he may wish to use any
of the nmcros defined by defstruct afte r compiling his file, he need wily give the four expanding
functioms aMoload properties of the name cif (lie file containing defstruct itself.

till.:NIACI)OC,I)I:1'STR 58 	 21-JLII,-81

Maclisp Extensions
	

41	 The defstruct•description Structure

For purposes of using defstruct interpreted, the two symbols defstruct and defstruct-
define-type should be given similar autoload properties. 'thus six symbols with autoload
properties suffice to make defstruct appear loaded at all times.

9.7 The defstruct-description Structure

This section discusseg the internal structures used by defstruct that might be useful to
programs that want to interface to defstruct nicely. The information in this section is also
necessary for anyone who s thinking of defining his own structure types (section 9.8, page 42),
Lisp Machine programmers will find that the symbols found only in this section are all interned
in the "systems-internals" package.

Whenever the user defines a new structure using defstruct, defstruct creates an instance of
the defstruct-description structure. `Phis structure can be found as the defstruct-description
property of the name of the structure; it contains such useful information as the name of the
structure, the number of slots in the structure, etc.

The defstruct-description structure is defined something like this; (This is a bowdlerized
version of the real thing, I have left out a lot of things you don't need to know unless you are
actually reading the code.',

(defstruct (defstruct-description
(default-pointer description)
(cone-name defstruct-description-))

name
size
property-alist
slot-alist)

The name slot contains the-symbol supplied by the user to be the name of his structure,
something like spaceship or phone-Gook-entry.

The size slot contains the total number of slots in an instance of this kind of structure. This
is not the same number as that obtained from the size-symbol or size-macro options to
defstruct. A named structure, for example, usually uses up an extra location to store the name
of the structure, so the size-macro option will get a number one larger than that stored in the
defstruct description.

The p-ozparty-alist slot contains an alist with pairs of the form (properly-name . properly)
containing, properties placed there by the property option to defstruct or by property names used
as optic>, is to defstruct (see section 9A.18, page 38, and section 9.4.20, page 38).

'Me slot-alist slot contains an alist of pairs of the form (slot-name . slot-description). A slot-
description is an instance of the defstruct-slot-description structure. The defstruct-slot-
description structure is defined something like (his: (another bowdlerized defstruct)

INil. :NIAC OOC;I)lTSTR 58	 21-J ►JI.-f,l

T

Extensions to defstruct	 42	 Maclisp lxtensions

(defstruct (defstruct-slot-description
(default-pointer slot-description)
(cone-name defstruct-slot-description-))

number
ppss
init-code
ref -macro-name)

'17hc number slot contains the number of the location of this slot in an instance of the
structure, Locations are numbered starting with 0, and continuing up to one less than the size of
the structure. 'file actual location of the slot is determined by toe reference consing code
associated with the type of the structure. See section 9.8, page 42,

'llhe ppss slot contains the byte specifier code for this slot if this slot is a byte field of its
location, if this slot is the entire location, then tic ppss slot contains nil,

'file init-code slot contains the initialization code supplied for this slot by the user in his
defstruct fiorm, if there is no initialization code for this slot then tie init-code slot contains the
symbol %%defstruct-empty%%.

The ref-macro-name slot contains the symbol that is defined as a macro that expands into a
reference to this slot,

9.8 Extensions to defstruct

defstruct-define-type	 Macro
The macro defstruct-define-type can be used to teach defstruct about new types it can
use to implement structures.

9.8.1 A Simple Example

Let us start by examining a sample call to defstruct-define-type. 'tlhis is how the list type
t°11' structure might have been defined:

(defstruct-define-type list
(cons (initialization-list description keyword- options) list

(cons 'list initialization-list))
(ref (slot-number description argument)

(list 'nth slot- number argument)))

This is the minimal example., We have provided defstruct with two pieces of code, one for
Coiosing till florins to Construct instances of the structure, the other to cons tip fion"s to reference
various elements of the structure.

Vrconh the example we can see that tic constructor consing code is gcoing to be run in an
cm il'onliieut \i hrre the v,oriable initializahtion list is bound to a list which is file ill itialinations to
the sl()ts of the structure arrdiwed in Corder, The variably description "ill he hotind to the
delstruct description suructure for the structure we are comsing a constructor fior. (See section
9,7, page 41.) '11he binding of' the variable keyword-options will be described later, Also the

Nil :nlAC)C1(';I I 'S I R SS	 21-.f111.-81

. ,,,

Maclisp Extensions 	 43	 Extensions to defstruct

symbol list appears after the argument list, this conveys some information to defstruct about how
the constructor consing code wants to get called.

The reference consing code , gets run with the variable slot-number bound to the number of
the slot that is to be referenced and the variable argument bound to the code that appeared as
the argument to the accessor macro. The variable description is again bound to the appropriate
instance of the defstruct-description structure.

This simple example probably tells you enough to be able to go ahead and implement other
structure types, but more details follow.

9.8.2 Syntax of defstruct-define-type

The syntax of defstruct-define-type is

(defstruct-define-type type
option, /

option-n)

where each option-! is either the symbolic name of an option or a list of the form (option-i ,
rest). (Actually option►-i is the same as (option-i).) Different options interpret rest in different
ways.

The symbol type is given a defstruct - type-description property of a structure that describes
the type completely.

9.8.3 Options to defstruct-define-type

This section is a catalog of all the options currently known about by defstruct ° define- type,

9.8.3.1 cons

The cons option to defstruct-define-type is how the user supplies defstruct with the
necessary code that it needs to cons up a form that will construct an instance of a structure of
this type.

ne cons option has the syntax:

(cons (inits description keywords) kind
body)

body is some code drat should construct and return a piece of code that will construct,
initialize and return an instance of a stmeture of this type,

The y symbol inits will be bound to (fie rode O g at the constructor- conser should use to initializc
the sluts of the structu re, '111C exact form of this aigunient is determined by the splhol kind.
There are currently (^^o kinds of itlitiaiiration, '1 here is the list kind, There inits is oound to a
list of` initialitations, in the correct order, with nits in uninitialited slots, And there is the alist

Nil :NIACI)UC',I)i'I'STR 58	 ?1 JUL-81

Extensions to defstruct 	 44	 Maclisp Extensions

kind, where hits is bound to an alist with pairs of the form (slot-nurnber , init-root).

'1'hc symbol description will be bound to the instance of die defstruct -description structure
(section 93, page 41) that defstruct maintains for this particular structure. This is so that the
constructor conser can find out such things as the total size of the structure it is supposed to
create.

'l'he symbol ke) ,wonts will be bound to a alist with pair's of the firm (keym)rd , value),
where each kry ►►titrd was a keyword supplied to the constructor tnacro that wasn't the name of a
slot, and value was die "code" that followed the keyword, (Sec section 9.8AS, page 43, and
section 9,4.2, page 30.)

It is an error not to supply the cons option to defstruct-define-type.

9.8.3.2 ref

`I7hc ref option to defstruct-define-type is how the user supplies defstruct with the necessary
code that it needs to cons up a form that will reference an instance of a structure of this type.

The ref option has the syntax:

(ref (number description arg-1 .. arg-n)
body)

boi& is sonic code that should construct and return a piece of code that will reference an
instance of a stntcture of this type.

The symbol number will be bound to the location of the slot that the is to be referenced.
This is the wine number that is found in the number slot of the defstruct-slot-description
structure (section 93, page 41),

'1't ► c syrhhbol description will be bound to the instance of the defstruct-description structure
that defstruct maintains for this particular structure,

'I'lhc symbols arg-i are bound to the forms supplied to the accessor as arguments, Normally
there should the only one of these, The last argument is the one that will be defaulted by the
default-pointer option (section 9.4.4, page 32), defstruct will check that the user has supplied
exactly n arguments to the accessor rnacro before calling the reference consing code.

It is an error not to supply the ref option to defstruct-define-type.

Nil ;^lA(A)OC:l)I .+SI'R 58	 21-JLI1 -81

Maclisp Extensions 	 45	 Extensions to defstruct

9.8.3.3 overhead

The overhead option to defstruct -define-type is how the user declares to Jefstruct that the
implementation of this particular type of structure "uses up" some number of slots locations in the

`

	

	 object actually constructed, This option is used by various "named" types of structures that store
the name of the structure in one location.

The syntax of overhead is:

(overhead n)

where n is a flxnum that says how many locations of overhead this type needs.

'Phis number is only used by the size-macro and size-symbol options to defstruct, (See
section 9,4,13, page 36, and section 9.4.12, page 36,)

9.8.3.4 named

The named option to defstruct-define-type controls the use of the named option to
defstruct. With no argument the. named option means that this type is an acceptable "named
structure", With an argument, as in (named lype.name), the symbol lypr-noire should be that
name of some other structure type that defstruct should use if someone asks for the named
version of this type, (for example, in the definition of the list type the named option is used
like this: (named named-list).)

9.8.3.5 keywords

The keywords option to defstruct-define-type allows the user to define constructor keywords
(section 9,4.2, page 30) for this type of structure, (for example tie make-array constructor
keyword for structures of type array on Lisp Machines,) The syntax is:

(keywords keyword I ... keyword-n)

where each keywordi is a symbol that the constructor conser expects to find in the keywords alist
(section 9,8.3.1, page 43),

9.8.3.6 defstruct

The defstruct option to defstruct-define-type allows the user to run some code and return
some forms as part of the expansion of the defstruct macro,

'The defstruct option has the syntax:

(defstruct (descriplion)
body)

borlr , is a piece of code that will he run whenever defstruct is exp;nhtiing ;r defstruct Form
fliat defines a strmwre of this type, The s^ , nrhol Gic 0111tio ►r «ill he horrid to Ghc instance of the
defstruct-doscrihtion structure that defstruct mainrains lirr this particrrlm, structure,

b,

t

^-	 All : Alr1l: l)UC^ ; i)i'a 'S`I lZ 5R 	 21 ^.I l`l ..81

Extensions to defstruct 	 46	 Maciisp Extensions

`Me value returned by the defstruct option should be a list of forms to be included with
those that the defstruct expands into. 'ntus, if you only want to run some code at defstruct
expand time, and you don 't want to actually output any additional code, then you should be
careful to return nil from the code in this option.

f

I^ll.,141.^L`IXK';i)I;I S!'It 58
	

21 1UL-81

M,',taclisp Extensions	 47	 Fortnat

10. Format

format destination control-string (Any-number•of args)
format is used to produce formatted output. format outputs the characters of control
string, except that tilde ("—") introduces a directive, The character after (fie tilde,
possibly preceded by arguments and modifiers, specifies what kind of formatting is desired,
Some directives use an element of args to create their output.

' The output is sent to destination, If destinations is nil, a string is created which contains the
output (see section 10,4 on format and strings, page 57), If destination is t, the output is sent to
the "default output destination", which in Maclisp is the output filespec nil---rthe terminal
(controlled by the variable ^w) and outfiles (controlled by ^r), With those exceptions, devination
may be any legitimate output file specification.

j A directive consists of a tilde, optional decimal numeric parameters separated by commas,
optional colon (",") and atsign ("Q") modifiers, and a single character indicating what kind of
directive this is. The alphabetic case of the character is ignored, Examples of control strings;

"-S"	 'Phis is an S directive with no parameters,
"-3, 4 : 03"	 ; This Is an S directive with two parameters, 3 and 4,

and both the colon and atsign flags.

format includes some extremely complicated and specialized features, It is not necessary to
understand all or even most of its features to use format efficiently. The beginner should skip
over anything in the following documentation that is not immediately useful or clear, The more
sophisticated features are there for the convenience of programs with complicated formatting
requirements,

Sometimes a numeric parameter is used to specify a character, for instance the padding
character in a right- or left-justifying operation, In this case a single quote (') followed by the
desired character may be used as ' a numeric argument, For example, you can use

" ^'6, ' Od"

to print it decimal number in five columns with leading zeros (the first two parameters to —D are
the number of columns and die padding character),

In placer of a numeric parameter to it directive, you can put the letter v, which tikes an
argument from args as a parameter to the directive, Normally this should be a number but it
doesn't really have to be, This feature allows variable column-widths and the like, Also, you can
use the character # in place of a parameter; it represents die number of arguments remaining to
be processed,

It is possible to have a directive name of more than one character, The nanic nced simply be
enclosed in backslashes ("\"); for example,

t	 (format t "-\nowV" (status daytime))

As alw;iys, case is itnorcd hcrc. There is no way to quote a backslmh in such ;i construct, No
iiiulti°characteI , opel-MOls cook with format,

N11.+t)RMA 1`,F 1Kit1-V1' PROI 00	 21•JUL-8I

,,;

'Me Operators	 48	 Maclisp Extensions

Note that the characters (and \ which are used by format are special to rite default
Multics input processo, r, and may treed to be quoted accordingly when typed in (normally, with

Once upon it Ume, various strange and wonderful interpretations were made on control-string

when it wits neither a string nor it symbol, Some of these are still Supported for compatibility
with existing code (if' any) which uses them; new code, however, should only use a string or
symbol for cun!rol•slrtng,

This document deuribes an implenientation of format which is currently in use in Maclisp
(bath VD1 1-10 and Multics), and is intended to be transported ,o NIL It thus is oriented towards
the Maclisp dialect of lisp. The behaviour of format operators should be fairly consistent across
I isp dialects; entries documented here other than format, however, exist only in the Maclisp
implementation at thi s; time, Although they could be added to other format implementations
without difficu ty,

10.1 The Operators

litre are the operators, 	 t

-A	 arg, any I isp object, is printed without slashifrcation (like print), -nA inserts spaces
on the right, if necess;try, to mak" the column width at lent n,

r►► i►►<'r,1,cr^li►u, ►rtinprrd,p^ ►cicluaA is the full form of — A, which Allows aleborate control
of the padding. The string is padded on kite right with at least ►►finpad copies of
p dchara padding characters we then inserted coline characters at a time until die total
width is at least ►nineol. The defaults are q for ounce ►l and minpad, l for colinc, and
)AWC for palc car. The atsign modifier causes the output to be right-justified in the
field instead of left-justified. (The same algorithm for calculating how many pad
characters to output is ►tscd,) The colon modifier causes an arg of nil to be output as
l).

—S	 This is identical to -A except that it uses prinl instead of print,

—D

	

	 Decimal integer output. arg is printed as a decimal integer. — n,nt,oD uses a column
width of ►► , padding, on the left with pad-character n (default of space), using the
character o (default comma) to separate groups of three digits, 'f ticse commas are
only inserted if the ; modifier is proient, Additionally, if the @ modifier is present,
then the sign character will be output unconditionally; normally it is only output if
the integer is negative, if' arg is not an integer, then it is output (using print) right-
justified in a field n wide, using a pad-charactcr of ►n, with base decimal and
• nopoint bound to t.

—0	 Octal integer output. Just like —D.

	

" "	 p	 (T" is for "plural",) —:P doles the Same—P	 if {Ir e is not 1, a lower-case s is Tinted:
thing, after hacking, up an argument (l ike "—:" below); it prints a lowercase s if
the /av argument was not 1, — @P prints "y" if' die argument is 1, or "ies" if it is

not. —, @P does the same thing, but backs up first,
h.xample;

(format r,il " ND Kitt—AP" 3) => 1 3 Kitties"

K1l ;I =OI.AI VT;FORMA 1 1'901.(x, 	 21-JUL-81

Maclisp Extensions
	

49
	

'I'hc Operators

	• 	 ignores one arg, - n • ignores the next n arguments, n may be negative,	 :•
backs up one arg; - n: 0 backs up n args.

-nG "Goes to" the nth argument, NAG goes back to the first argument in args,
Directives after a -nG will take sequential arguments after die one gone to, Note
that this command, and -', only affect the "local" args, if "control" is within
something like -(

Outputs a newlinc. -n% outputs it 	 No argument is used,

-3 'Che fresh-line operation is performed on the output stream. M n8 outputs nµ1
newlines after the fresh line. 'I'hc fresh-fine operation says to do a terpri finless the
cursor is at tiie start of die line, 'Ibis operation will virtually always succeed in
Maclisp, since ail Maclisp file arrays know dicir charpos, Implemented by format-
fresh-line, page 56.

	_X	 Outputs a space, -riX outputs is spaces., No argument is used.

Outputs a tilde. M n- outputs is tildcs, No argument is used.

newline
'I'ilde immMiately followed by a carriage return ignores the carriage return and any
whitcspace at the beginning of tie next line, With a ;, the whitespace is left in place.
With an @, die carriage return is left in place, `l'his directive is typically used when
a format control string is too long to fit nicely into one line of the program;

(format the-output-stream "-&This is a reasonably ^
long string-%")

which is equivalent to formating die string

" w&This is a reasonably long string-V

Outputs a formfeed, -ill outputs it formfeeds, No ,irgunient k used. 'i'his is
implemented by format-formfeed, page 56,

-T Spaces over to a given column, 'I'hc full form is -dr,^sti►tnlioti,i►rcreirtetilT, which will
output sufficichit spaces to move die cursor to ;.olumn destination, If the cursor is
already past column destination, it will output spaces to move it to column
rfcslination + increntenl • k, for die smallest integer value k possible, increment defaults
to 1, 'I'his is implemented by the format .-tab-to function, page 56,

	

^Q	 -0 uses one argument, and applies it as a function to parants, it could thus be used
to, for example, get a specific printing function interfaced to format without defining
a specific operator for that operation, as in

(format t	 The frob -vQ is not known,-9t"
frob 'frob-printer)

The printing, function should obey the conventions described in section 10.3, page 54.
Note dint die function to -Q follows tile arguments it will get, because they are
passed in as format parameters which get collected berorc the operator's argument,

-fmtfl -;slt°I-;,,,-;.mlrn -1 is a set of a11(VI-I lli% , Cont 1O1 strings. 'I'he ail(ormit1,CS (Callksd
t'hl octi) are separated by --, and the e.oll"tlllct, 1'i 1e1`111ina1tt"d by -1.	 i`or Q%olllllle,
"-[Siamese.;Manx -;Persian -jodoi,e-Shall -;Ticjc.r -;Yu IhAa.anrj]kitty"
'i'hc arg(h altrt,laltive k sclected, 0 selects the first. If' it numeric h111-MI Ater is Miyoll

h11 ,I .ORNI V1,H)h` IXI , OPS	 i 11 1 1 °gl

'I'hc Operators	 50	 Maclisp Extensions

(Le, — nO, then the parameter is used instead of an argument (this is useful only if•
the parameter is " # "), If arg is out of range no alternative is selected. After the
selected alternative has been processed, the control string continues after the -J.

-[s1tO-1,str1 -;.., —;strn-:.,„default — j has a default case, If the last M ; used to separate
clauses is instead —:;, then the last clause is an "else" clause, which is performed if
no other clause is selected, For example, " [Siamese — ;Manx — ; Persian
— ;Tortolse-Sheli ;Tiger — ;Yu-Hsiang :;Unknown —) kitty".

^[^1agOp,lagOl ;str0^l^zglt7,.,,;s1r/.., ^) allows the clauses to have explicit tags. The
parameters to each —; are numeric tags for the clause which follows it. That clause is
processed which has a tag matching the argument, If —:a1,a2,b1,b2,,.,; is used, then
tore following clause is tagged not by single values but by ranges of values al through
a2 (inclusive), b! thr-igh b2, etc. —:; with no parameters may be used at the end
to denote a default clause. For example, 	 +	 * ,'// ; operator -'A,'Z,a,rz;letter
_`D,'9;dig1t — :;other -j".

,[false-;!rue —J selects the false control string if arg is nil, and selects the true
control string otherwise.

~@[1rue-] tests the argument. If it is not nil, Bien the argument is not used up,
but is the next one to be processed, and the one clause is processed. If it is nil, then
the argument is used up, and the clause is not processed.

('setq prinlevel nil prinlength 6)
(format nil	 @[PRINLEVEL = —D-] —@[PRINLENGTH= —D]"

prinlevel prinlength)

_> " PRINLENGTH=6"

N R If Ocre is no parameter, then arg is printed as a cardinal English number, e.g. flour.
With the. colon modifier, arg is printed as an ordinal number, e.g. fourth, With the
atsign modifier, arg is printed as a Roman numeral, e.g. IV, With both atsiga and
colon, arg is printed as an old Roman numeral, e,g. IIII.

If there is a parameter, then it is the radix in which to print the number. 1'he flags
and any remaining parameters arc used as for the — D directive. Indeed, — D is the
same as — 10R, 'Ne full form here is therefore -radix, nnincol,padchar,cornmacharR,

_C

	

	 arg is coerced to a character code, With no modifiers, —C simply outputs this
character, -@C outputs the character so it can be read in again using the # reader
macro: if there is a named character for it, that will be used, for example
" # \Return"; if not, it will be output like "#/A", — :C outputs the character in
hurnan-readable form, as in "Return", "Meta-A". — :@C is like •• :C, and
additionally might (if warranted and if it is known how) parenthetically suite how the
character may be typed on the user's keyboard.

'1`o find the name of it character, —C kooks in two places. The first is the valu(, of
the symbol which is the value of format:'/#-var, which is initialized to be the
variable which the # reader macro uses. It is not necessary for the vralm of
format:'/# --:;3ir to he bound. 'I`he second price is 'format-chnames; this is used
primarily to handle non-printing characters, in case die # reader macro is not loazled.
Both of these are a-lists, of the form ((i►rriruv , code) (ai(t1rtc , code) ..,),

hll.;l^l)1:^1,^`I';}^ORf^t;1'f 6)I'S 	 21ALJ',-$1

Maclisp Extensions
	

51
	

The Operators

The Maclisp/NiL format has no mechanism for telling how a particular character
needs to be typed on a keyboard, but it does provide a hook for one, if the value of
format: • top- char- printer is not nil, then it will he called as a function on two
arguments: the character code, and the character name. If there were bucky-bits
present, then they will have been stripped oft' unless there was a defined name for the
character with the bits present. 'lbe filnction should do nothing in normal cases, but
if it does it should output two spaces, and then the how-to-type-it-in description in
parentheses. , See section 10,3, page 54 for information on how to do output within
format.

-mincol, colinc, tninpad,padchar< text -> justifies text within a field ntincol wide. text
may be divided up into segments with -;—the spacing is evenly divided between the
text segments. With no modifiers, the leftmost text segment is left justified in the
field, and the rightmost text segment right justified; if there is only one, as a special
case, it is right justified. The colon modifier causes spacing to be introduced before
the fir't text segment; the atsign modifier causes spacing to be added after the last.
minpad, default 0, is the minimum number of padchar (default space) padding
characters to be output between each segment, If the total width needed to satisfy
these constraints is greater than ntincol, then .-nincol is adjusted upwards in colinc
increments. colinc defaults to t, For example,

(format nil 11 - 10<foo-;bar-> 1')	 => "foo	 bar"
(format nil 11 - 10 :<foo-;bar->")	 => " foo bar"

(format nil 1'- 10:@<foo-;bar->") => " foo bar "

(format nil 1 ' - 10<foobar-> 11)	 => "	 foobar"

(format nil "-10 :@<foobar-> 11)	 =>
to 	 "

(format nil "$- 10,,,1* <-3f->" 2.59023)	 => 11S****** 2,59"

if -^ is used within a -< construct, then only the clauses which were completely
processed are used. For example,

(format nil "-15<-S-;-^-S-;-^ S->" 'foo)
=>	 to

(format nil 11- 15<-S-;-^-S-;-^-S->" 'foo 'bar)

=> 11 F00	 BAR"

(format nil 11- 15 <-S-;-^-S-;-^-S->" 'foo 'bar 'baz)

=> 11 F00	 BAR	 BAZ"

If the first clause of a -< is terminated with -:; instead of -;, then it is used in a
special way. All of the clauses are processed (subject to -^, of course), but the first
one is omitted in performing the spacing and padding. When the padded result has
been determined, then if it will fit oil current line of output, it is Mitput, and the
text for the first clause is discarded. If, however, the padded text wio not fit on the
current line, then the text Rw the first clause is output before the padded text, The
first clause ought to contain a carriage return, The first clause is always processed,
and so any arguments it refers to will be used; the decision is whethrr to use the

	

resuhillg piece of text, not whcthcr to process the first claust. If' the 	 has a
nunwric parameter n, then the I p oddl.d text +bust fit on the currant line v001 it

Chat',ldel' 1XIS' 0115 to sprlt'e to ;ivoiid 1111tpUtting thr, flt'St Ch IMO'S text.	 V01' eX,1111ple,

tho Control string

N11 AA)iM:1"I": ORMATOPS	 21-.1111 -81

'I`Itc Operators	 52	 Ma clisp Extensions

ll ti
Y : 1 ^^^^^^^! f m 1 r , wrSwr^nr A f wr^ , nn^11

can be used to print a iist of items separated by commas, without breaking items over
line boundaries, and begitming each line with f ;; ", The argument I in —1:; accounts
fo►r the width of tie conlnla which will follow the justified item if it is nut. the last
clement in tie list, or tits period if it is, If —:, has as second nunicric paramcter,
theta it is used as the width of ate line, thus overriding the natural line width of the
output strea im To make the preceding example use a line width of 50, one would
write

0 —%*,*, —(—<-%;: —1,50:: NS->-v lH) -%"

Note that the segments —< breaks the output up into are computed "out of context"
(that is, tocy are first recursively formatted into strings), 'I^lus, it is not a good idea
flor any of ate segments to contain relative-positioning commands (such as -T and
-&), or any line breaks, If —;; is used to produce a prefix string, it also should not
use relative-positioning commands.

-(Sir —)

This is an iteration construct, '11te argument should be it list, which is used as it set
of arguments as if for it reciu-sive call to formal, The string Sir is used repeatedly as
the control string, Fach iterations can ,absorb as many elements of the list as it likes,
If b0bre ,my iteration step the lust is empty, then the iteration is terminated, Also, if
it 1ltameric parameter rt is given, ten there will be at most rn repetitions of processing
of Sir,.

— ;(Sir —) is similar, but the rargunsent should be a list of sublists, At cacti repetition
step one sublist is used as tie set of arguments tier processing sir; o il 	 next
repetition it 	 sublist is used, whether or not all of the last sublist had been
processed,

^C (str M) is similaar to (Sir), but instead of rising one argument which is to list,
,111 (lie rclslaining ;arguments ,arc used as the list of ;arguments for the iterat ion,

, (Sir es) corsbines the features of — ,(Sir —) and — @f sir~). All the retraining
argkimetits are used, and cacti one must be a list, Oil cacti iteration one argument is
used its it list of argunsents,

Terminating the repetitions construct w"`h -,) instead of —) forces Sir to be processed
at least once even if the initial list of argunsenta is null (however, it will not, override
an explicit numeric parameter of zero).

If Sir• is null, thell all argument is used as Str, It must be a string, and precedes any
art taments processed by the iteration, As III 	 the following arc equivalent;

(q)ply (functjon forruat) (list+ stream string args))

(forinat strown	 string args)

This will use string its to formatting; slrhig; The — 1(stays it will be pnwessed at most
once, shill the 5,11s it will be processed 'at Icast ofice, Therefore it is processed
exactly once, using; args as (he Barg uIlIcIlts,

Nil	 ?I-,ll!I -81

21-.Ills.-81

4

l

Maclisp Extensions
	

53
	

The Operators

Terminates a -(. It is undefined elsewhere.

This is an escape construct. If there are no more arguments remaining to be
processed, then the immediately enclosing -(or -< construct is terminated. (In the
latter case, the -< formatting is performed, but no more clauses are processed before
doing the justification. The -^ should appear only at the beginning of a -< clause,
because it aborts the entire clause. It may appear anywhere in a -(construct.) If
there is no such enclosing construct, then the entire formatting operation is
terminated.

If a numeric parameter is given, then termination occurs if the parameter is zero.
(Hence -^ is the same as -#-,) If two parameters arc given, termination occurs if
they are equal. If three are given, termination occurs if the second is between the
other two in ascending order.

If _^ is used within a -,(construct, then it merely terminates the current iteration
step (because in the standard case it tests for remaining arguments of the current step
only); the next iteration step commences immediate'^y, To terminate the entire
iteration process, use ~;

-F outputs arg in free-format floating-point. -nF outputs arg showing at most n digits,
-n;F will show exactly n digits, No other variations are guaranteed at this time;
neither is the exact interpretation of n. It is reasonable to use this, however, when
one desires to print a flonum without showing lots of insignificant trailing digits; for
example,

(format nil "-6f" 259.268995) => 11269,259"

-E

	

	 Outputs arg in exponential notation, e.g., "2,59259e+2", -nE interprets n the same
as -F. No other parameters or flags are guaranteed at this time.

^$ ('That's a dollar sign,) -rdig,ldig field,padchar$ prints arg, a flonum, with exactly rdig
digits after the dccinial point (default is 2), at least ldig digits preceding the decimal
point (default is 1), right justified in a field field columns long, padded Out with
padchar. 'Che colon modifier says that we should cause the sign character to be left
justified in the field. The atsign modifier says that we should always output the sign
character. The ldig allows one to specify a portion of the number which does not get
zero suppressed.

This is not really an operator. If one desires to use a multi-character lormat operator,
it may be placed within backslashes, as in -\now\ for the now operator. See page
47.

Other Entries	 54	 Maclisp Extensions

10.2 'Other Entries

?f ormat destination control-string (Any-number-of frobs)
This is equivalent to format except that destination is interpreted like the second argument
to print—nil means "the default", and t means "the terminal". This only exists in
Maclisp at the moment.

1.0.3 Defining your own

define-format-op	 Macro

'I'his may be used in two formats:

(define-format-op operator varlist bodrforms...)

and

(define-format-op operator fixnum-character-code)

The operator may be the fixnum code for a character, or a symbol with the same print-
name as the operator, Whichever, it is canoniralized (into upper case) and will be
interned into the same obarray/package which format resides in. For example, the format
operator for tilde could be defined as

(define-format-op

where "#/-" represents the fixnum character code for tilde,
For the first format, the type of operator is determined by decoding varlist, which may
have one of the following formats:

(params-var)
An operator of exactly zero arguments; params-var will get bound to the
parameters list.

(params-var arg-var)
An operator of exactly one argument; pararns-var will get bound to the
parameters list, and arg-var to the argument.

(parants-var . args-var)
An operator of a variable number of args; parants-var will get bound to the
parameters list, and args-var to the remaining arguments to format (or to the
recursive -(arguments). The operator should return as its value some sublist
of args-var, so that format knows how many were used.

A definition for the appropriate function is produced with a bvl derived from the variables
in varlist and a body of body farms. (The argument ordering in the function produced is
compatible with that on the Lisp Machine, which is arg-var (if any) first, and then
params-var,)

standard-output Variable
00tput from format operators should be sent to the st ream which is the value of
sttuidard-output, In the Multics implementation Of format, this value may sometimes be
an object which is not suitable fir twiug fed to sttn dird Lisp Output functions (c.g„
pdnc); format has definitions of various output functions which handle this case properly,
and may be used fir defining uperaturs which will work c, ,mpatibly ir, Multics Maclisp.

NW: FOR NIAT:FORMA ITURDOC	 21- JUL-8I

Maclisp Extensions 	 SS	 Defining your own

'They are documented below, Note that because of the way format interprets its
destination, it is not necessarily safe to recursively call format on the value of standard-
output in PDP- 10 Maclisp. It is safe, however, to use ?format (page 54) instead, or to
call format with a destination of the symbol format.

Maclisp format will also accept a destination of format to mean "use the format destination
already in effect". This is primarily for the benefit of Multics Maclisp, since there the value of
standard - output cannon be passed around as a stream. The format operator now, which prints
the current lime, could be defined as

(define-format-op now (params)
params	 ; unused
(let ((now (status daytime)))

(format 'format 11-2,1OD:-2,'OD:-2,1OD"
(car now) (cadr now) (cadd y now))))

with the result that

(format nil "The current time is —\now\.")

could produce the string

"The current time is 02:69:00."

format: coton-flag Variable
format: atsign-f lag Variable

These tell whether or not we have seen a colon or atsign respectively while parsing the
parameters to a format operator. Thcy are only bound in the toplevcl call to format, so
are only really valid when the format operator is first called; if the operator does more-
parameter parsing (like —[does) their values should be saved if they will be needed.

These variables used to be named just colon-flag and atsign .-flag, In the interest of
transporting format code to Lisp implementations with packages, their names have been
changed, 'Thus., in either implementation one references them with the "format," at the
front of the name, which in Maclisp is just part of the print-name,

The params are passed in as a list. This list, however, is temporary storage only, If it is
going to be passed back, it must be co/lied. In WrAisp and NIL, it is an ordinary list which, in
PI)N-10 Maclisp, will be reclaimed after the operator has run. On the Lisp Machine, it will be a
list-pointer into an art-q-list array, possibly in a tem^,por iry area. Thus, although it is safe to
save values in this list with rplaca, one should not ever use rplacd on it, either explicitly or
implicitly (by use of neonc or nreverse),

Conceptually, format operates by performing output to some stream, In practice, this is what
occurs in most implementations; in Maclisp, there arc a few special ShAs used by format. This
may not be possible in all implementations, however, To get around this format has a
mechanism for allowing the output to go to a pscudo-stream, and supplies a set of functions
which will interact with these when they are used,

fX11.:I*Ol^Nl,\'I';I-OI:,Nl;\'I Ol:i S 	 21-.I111A]

T__

Defining your own 	 56	 Maclisp Extensions

format-tp character
tyos character to the format output destination.

format-prine object
prints object to the format output destination.

format-prini object
prints frob to the, format output destination.

format-leprine string capitalize?
This outputs string, which must be a string or symbol, to the format output destination
in lower-case. if capitalize? is not nil, then the first character is converted to upper case
rather than lower.

format-terpri
Does a terpri to the format output destination,

format-charpos
format-11ne1

Return the charpos and linel of the format output destination. Since in the Maclisp
implementation multiple output destinations may be implicitly in use (via outfiles, for
instance) this attempts to choose a representative one, The terminal is preferred if it is
involved.

format-fresh-line
This performs the fresh - line operation to the default format destination, In PDP-10
Maclisp, this first will try the fresh - line operation if the destitation is an SFA and
supports it, Otherwise, if the destination is a terminal or an SFA which supports
cursorpos, it will try (cursorpos 'a). Otherwise, it will do a terpri if the charpos is
not 0, In the Maclisp implementation, where multiple output destinations may be
umplicitly involved (via outfiles, -for instance), this handles each such destination
separately.

format - tai-to (6xnum destination) (Optional increment?
This implements -T to Lhc current format destination (q.v.). In 1 DP - 10 Maclisp, this
operation on an SFA will use the tab-to operation if it supported, passing in arguments
of destination and incrernew (as a dotted pair); otherwise, charpos will be used to
compute the number of spaces to be output. If charpos is not supported, two spaces will
be output,

format-formfeed
Performs a formfeed on the format output destination. In Multics Maclisp, this will
normally just tyo the character code for a formfeed. In PDP-10 Maclisp, this will use the
formfeed operation if the destination is an SFA and supports it, otherwise it will do
(cursorpos 'c) if the destination is a TIN file array (or an SFA) and supports it,
otherwise it simply outputs the character code for a formfeed.

h11..1^t^1^l^1A"l ;l'I^ItMA'I' ll)I^.FS 	 21-1U AI

I -.I (_l I . 81ML: I 'C)RN1 AT: 1'0RIN IAT II)1`I'S

a

Maclisp Extensions 	 57	 Format and Strin;s

formit-f1etc	 Marro

(format-f t atc forml form2 ... formn)

The forms are evaluated in an environment similar to that used inside of format: the
various format output-performing routines such as format-tyo and format-princ may be
used to "perform output". In all but the Multics Maclisp implementation, standard-
output will be a stream which simply counts the characters output —it will only support
the tyo operation.

104 Format and Strings

In the PDP- 10 Maclisp implementation, format has provision for using a user supplied string
implementation, Normally, format expects to use symbols. However, if (fboundp 'stringp) is
true, then format will use the stringp predicate to see if its argument is a string. If that is the
case, then the function string-length will be used to find the size of die string, and char-n will
be used to fetch characters out of the string, both of these routines should have been declared
fixnum when compiled (i.e., be ncallablc). Internally, tests are ordered such duat string-ness is
independent on atomic-ness. In addition, the character routine may be used to canonicalize
something to a character code.

Ibe Multics implementation is similar to the PDP-10 Maclisp implerncntation, but uses
different routines; stringlength to get the size of the string (or symbol), and getcharn to fetch a
character out of the string, The character routine is not used.

d

O format - string - generator Variable
`Phis variable, which exists only in the Maclisp implementation of format, should have as
its value a function to convert a list of characters to a "string" to be returned by format.
In the PDP-10 implementation, this defaults to maknam, but may be modified if
"strings" are being supported. in the Multics implementation, it is a function which does

(get_pname (maknam character- list))

and may be modified, , if desired, to something more efficient. in the PDP-10
implementation, the list of characters should neither be modified nor returned to free
storage, as it will be reclaimed.

The PUP-10 Maclisp hack of returning an unintcrned symbol which has itself as its value
and a + internal-string -marker property is not handled here; it is done by the outer call
to format itself, and only if the returned "st ring" is a symbol and the value of `format-
string-generator is maknam, 'This is done so as to not add unnecessary overhead to
internal uses of "strings" by format.

The name of this variable differs from that of other user-accessible format variables for
historical reasons; it will not be changed, because it only exists in Maclisp.

-. n«,.^,.^ww'.^.^+tHw...,w.er+3tu:. ^.*A : . v , at. S^ 9^.(.:

System Differences	 SS	 Maclisp Emensions

11.^ System Differences
This chapter describes differences you may encounter in using these tools in each of the

various Lisp dialects in which they have been implemented, One section is devoted to each
implementation, and a final section deals with transporting code between them, The system-
specific sections are broken into parallel subsections.

Since not all of the tools documented herein will be a part of die default lisp environment,
the first subsection simply describes how to make Utem available, 'Mis will in general involve
placing a form at the head of a source file to establish the appropriate read-time and compile-time
environment.

'I'hc next subsection lists a number of things to watch out for in using a particulaf
implementation (j • in writing transportable code. It deals with miscellaneous incompatibilities
related to these tools and to the I.isp implementations in general. Some options which are specific
only to a single implementation are documented here.

The final subsection contains references to other sources of documentation, including that
which is available online.

113 PD111•10 ..

PDP-10 Maclisp is currently in a state of flux with regard to how these tools are provided and
exactly where they are fixated. Some are present in the default environment while others must be
requested, explicitly, Check the online documentation for the current status.

11.1.1 Where To Find It

The sharpsign and backquote reader macros are present in the default environment, loop and
format have autoload properties. Many of the functions and special forms described in chapter g
are present natively or are autoloaded from. ((LISP) MLMAC) (for Macl.isp MACros). The rest
may be loaded from ((LISP) UMLMAC) (for User Macl,isp MACros), defstruct may be loaded
from ((LISP) STRUCT),

To use the bit-test, dolist, and dotimes macros, place the following form at the head of the
source file,

(eval-when (eval compile) (load '((lisp) umlmac)))

To use defstruct, include the following form.

(eval-when (eval compile) (load '((lisp) itruct)))

This will cause defstruct to be present during the interpretation or compilation of a file. 'ro use
defstruct during debugging of the compiled file, see section 9,6, page 40,

MI.:NIAC'Ix0t. DIF S 46
	

11-JUL-81

Maclisp Extensions	 39
	

M ultics

It. 1.2 Things To Watch Out For

defunik-check^erg• Variable
The "extended defun" facility (page 8) provides little or no argument count checking for
functions by default. By setting this variable to t, the function being defined will contain
additional code which will provide a more meaningful error message when the function is
called with the incorrect number of arguments.

A feature is provided whereby sequences of characters surrounded by balanced double-quotes
are read as un-interned symbols which are bound to themselves, 'I'his provides partial
compatibility with newer Lisps that have strings. They are primarily useful as arguments to princ,
load, and format, and are not intended to be used as first-class data objects as on those systems
which support them natively.

11.1.3 Further Documentation

For the latest changes to this implementation, see the file , INFO,; LISP RECENT on any ITS
system. Earlier editions of this file are archived in . INFO. ; LISP NEWS. 'I'he file , INFO,; LISP
FORMAT contains a chart of tie format operators suitable for printing on an ascii console. The
files , INFO, ;LISP LOOP and LIBDOC; STRUCT > contain die Bolio Source for the loop memo
and the defstruct portion of this memo. Perhaps someday these will be replaced by something
formatted for a console,

11,2 Multics

'l'hc Multics implementation is also changing, As of this writing, only some of tie extensions
described in this document are available from the standard libraries, but we expect the remainder
to be installed in die near future. Check die online documentation for the current status,

11.2.1 Where To Find It

Only a few of the improvements to Multics Maclisp since 1974 are now a part of the default
environment, Primarily, these are die special forms which need to be primitively understood by
tic compiler, such as eval-when and unwind-protect and certain simple functions such as list*,
The special forms let and let` are also in die deft ult environment, 'The other tools documented
here may be accessed by die Multics Lisp special form %include. `Phis form causes a text file to
be inserted inline during the interpretation or compilation of a file. The form;

(%include library)

can be placed at the front of tiny file of Lisp code that wants to utilize all of the features
documented here, This Harm will arrange for thi., correct oval-time, compile-time and run-time
environments to be present whenever die file is being processed in any way, 'l'o arrange for this
extended environment to be present whenever die lisp interpreter is being used, this form may be
placed in the file start— up.1isp in the user's home directory,

Ml,:NlACl)0C";1)1V S4fi 	 21-R-11 •lit

Since the %include form is unique to the Multics implementation, a variant on the following may
be used to allow the file to also read into other Lisps;

(oval-when (oval compile) (or (status feature Multics) (road)))
(%include library)

Those Multics Lisp users who wish to be more selective about the facilities they use may instead
use the form

(%include module)

where module is one of backquote, sharpsign, defun, defmacro, defstruct, aetf, format, or
loop, Selective loading of packages may be desired to prevent name or syntax clashes or to speed
compilation, Note that some packages will load others as :needed, For instance, defstruct will
load sett.

%include uses the translator search list to find the file to be included, To see the full
pathname of the file which is found, type

where—search— paths translator backquote.incl.lisp

The actual object segments are bound together as bound - 1 isp_library_

where bound-lisp-library-

will find the frill pathnantc of this segment.

"fhc modules listed above may be broken into three categories: read-time (backquote,
sharpsign), compile-time (defun, defmacro, self, defstruct, loop), and run-time (format).

The behavior of the include file for each module depends upon its type, For read-time and
compile-time files, the include file will load the file at eval-time or compile-time, but will not add
any forms to the object segment, For run-time files, the include file will place a form in the
object segment which will load the desired module, either directly or via an autoload property, It
will also provide the appropriate function declarations for the compiler.

TO use an oval-time or compile-time module at run-time, you can type (%include module) to
the interpreter or place this form in a file to be read into the interpreter, such as the
start_up.lisp file, Alternately, you can load die object segment directly, as in (load
">exl>object>lisp_backquote_"), but this is not recommended since it requires specifying an
absolute pathname.

11.2.2 Things To Watch Out For

The characters sharpsign ("#") and atsign ("@") are default erase and kill characters on
Multics. If these characters are being used for input editing, you will have to type "\#" or
"\@" to enter cheat, Likewise, remember that to directly enter a backslash, two must be typed.

Most other lisp readers translate lowercase characters to uppercase characters in symbol
names,. The Multics implementation flocs not do this case translation by default, This firm will
ntodi(jr the readtable to correctly read files which are written in uppercase:

Nil .:NlAC'000;PIl-+S46	 21-JUL-81

Maclisp Extensions	 61	 Multics

(do ((i #/a (1+ i)))
((> i N/=))
(setsyntax (- i No40)

(boole 7 (apply 'status (list 'syntax i)) NO500)

M

'Ilse syntax used for reading strings is also different from that used elsewhere, in other Lisps,
the / character will quote the next character, so /" will insert a double quot%, character into a
string, In Multics Lisp, the / character loses its special meaning and is interpreted m in ordinary
alphabetic, To insert a double quote character into a string, the character is typed twice,
fallowing the Multics system convention, This incornp,itibility arose since the irnpli^mcntation of
strings in Multics lisp predated their implementation elsewhere,

While no installed facility is available at the moment for resoling these syntax differences,
the authors have a private reader which is compatible with the PD1 1-10 case and string syntax,.
Contact one of them for more information,

When die Multics Lisp compiler needs to generate an anonymous function, it creates a
symbol to put the definition on: 'Phis will occur whenever a function is passed as an argument
using (function (lambda ,,,)), or when using (defun (►mane prop) ,..), for example,
Unfortunately, you get the same names every time you run the compiler, Doing

(declare (genprefix unique-naine))

will fix this problem; the compiler will then use unique- ►rn►►te as a basis for its generated names,
For example, the loop module does

(declare (genprefix loop-iteration/l-))

so that the compiler will generate names loop- iteration/I M 1, loop-iteration/1-2, etc,

error works incompatibly. The second argument is output Following the first, rather than
before, as is done elsewhere, It is recommended that you use terror instead, or define your o%
error signalling primitive, 'Phis is often a good thing to do anyway,

The default setting of the 'rset switch is nil, You may find it helpful to turn it on in your
startup,lisp,

if you find a symbol which has become mysteriously unbound, chances are that you have
taken the car of a symbol or bignum someplace. The object rettirncd by such an operation is the
special marker stored in unbound value cells,

The recently written Multics command display - lisp-o b,j e c t_ s e grne n t (short mime
dlos) may be used to examine the contents of compiled lisp object segments. It is quite useful
in verifying the proper execution of complex macros and compile-time ficilitics,

Nil.:NI1('OOC-I 	 -16	 21-flat -81

Lisp Machine	 62	 Maclisp I xtensions

111.2:3 fur, r Documentation

Online Lisp documentation resides in the directories >oxl> info and >doc>info, The info
segment lisp , changes , info describes the latest changes to the Multics implementation.
1 i ap_rnanua l_update ,info describes earlier changes.	 A	 collection of segments
1 i s p_n►rxlule , i n f o, where module is as above, repeat the do ►cumentatio,, contained in this
manual,	 finally, the segment d i sp l ay_l i sp_ob,j ec t .segment, Info describes the
dispI ay — Iisp_object_segment command.

'These segments may be perused by means of the help command, For instance, type
"help 1 i sp, changes" to view the first of these segments,

11.3 Lisp Machine

On the Lisp Machine, everything described in this document is a part of the default
environment, No changes need be made to source tiles.

Further documentation may be found by consulting the lisp Machine Manual, the IMMAN
directory on the Al machine, and finally the source code itself. The 'lmaes command Meta -
period will prompt for a function or variable name and read the source file in which it is defined
into a buffer,

11.4 flints On Writing Transportable Code

This section contains some hard-knocks knowledge gathered by the authors over many tea-
filled nights of grief. While we have done our best to distill some coherent advice from our
experience, fhcre are no easy answers. This is at times a black art.

No doubt there are techniques (and pitfalls!) which we have overlooked, If you have
sonaet?ainl which could be added to this section, the authors would like to hear from you.

11.4.1 C'onditionalitation

Ultimately, despite everyone's best cfforts, you are likely to find that your code must be
conditionali/ed in sonic manner, In this eventuality there are a couple of things to be aware of

The sharpsign reader macro (chapter 3, page S) is a very handy tool for conditionaliiing code
for different sites, However, its indiscriminant use can result in highl) , unreadable code,
Frequently, when it seems that conditio► naliiations are going to need to be sprinkled throughout a
piece of' code, it is poassible to identify a common pattern between them, and replace them with
an ,appropriately defined macro. This macro will have a definition that will be conditionalized for
cat;h site that the code runs, and will serve to localize the ugly imple ►7caatation dependent details.
Sonactinacs this operation actually improves the readability of the code, since it forces the
programmer to give a name to a pattern present in many places,

As an example, the following macro provides a systean-indepeaident way of determining the
screen siie of a console stream,

ii11 :Nl AC DOC j)1Fl-S 46 	 21-JUL-81

	

Maciisp Fillensions 	 63	 Hints On Writing'I'ranspoi table Code

(detmacro screen-size (stream)

	

M+ITS	 '(status ttysize ,stream)
N+Lispm '(multiple-value-bind (width height)

(funcall ,stream ',size-in-cliaracters)
(cons height width))

0-(or ITS Lispm) "(90. , 24.))

Another problem with using any of the conditionalization features of the sharpsign reader
macro is the fact that although something like

M+NIL form

does cause the form f6mi to be ignored in Lisps that aren't of the NII variety, it is nevertheless
necessary that fi►r►►i be readable in those other lisps, In other words, if f)r►n contains tic use of
a reader syntax that is only supported in NII., then it won't work to conditionali e fimn in this
manner, because other lisps are going to have to parse it,

Currently, a frequent cause of such problems is the use of a special character name afler #\
that isn't universally understood.

In some s :uations, large portions of Ea program will need to be written differently f'roin system
to systrni. Often such portions will deal with issues of` operating system interf4ice, Buell as console
or file i/o, in such crises, it is ',hest to define a common interface to this portion, so that this
code may be factored out into separate files,

11.4.2 Odds and Ends

Avoid directly inserting int , your code constants which are specific to the byte, word, or
pointer sire of a machine, For instance, use (rot 1 -1) instead of 1_43 to reference the most
negative fixnuin on a POP-10, Similarly, use (Ish -1 -1) for the most positive fiximin and
(haulong (rot 1 -1)) for the number of bits in a fixnum,

'!'here is only one reliable way to define a function that ignores one or triore of its arguments
without complaint front the compiler;

(defun ignorersecord-arr (first second third)

	

second	 ; ignored
(list first third))

Other conventions do not work universally.

Not all Lisps have st=ings, However, in most, text surrounded by douhlequotes will read in
tis some kind of object which will print out again in a readable format, This object is suitable for
passing to fiuiitions such as print and format, but cannot be universally g,uartinteed to behave
reasonably with functions such as equal,

In Maclisp, the default syntax of the colon character is alphabetic, but it has special nieaning
oil the Lisp Machine, 0on't. use it in the name of I sy'1111)01 times~ you know what you are
doing,

N11 : Nl ACD0(.'; i il1 :FS . 16	 21-JUL-81

W

Hints On Writing Transportable Code 	 64	 Maclisp Extensions

If colons are being used only for denoting keywords, then it is useful to give colon &se syntax
of whitespace outside the Lisp Machine. This can be accomplished with this Maclisp form:

(set,syntax -1 : 1 ' 1 1 oil)

Don't leave control-V's (circle-plus on the Lisp Machine) lying around randomly, like in valret
strings, 1bey have special syntactic meaning on the lisp Machine.

All Pl)1'-'10 Maclisp compiled output ("FASL") files use the same format. It is therefore
possible to transport the compiled file between PDP • 10s (e.g., from an ITS to a TOPS-20), if the
code contained therein is not conditionalized on those differences, The source code for loop, for
example, does not contain any # + or # r conditionalizations which distinguish between any
PDP-10 implementations; the FASL file for loop used on TOPS-20 and TOPS-10 sites is the same
one used on ITS.

M

T

MI.:MAC'DOCO)IF S46	 zl Jill,-$I

_

Maclisp Extensions	 65	 Index

, *catch Special Form.
'

. 24.24
°^nm^wt-m^^g-genw^NmrVmm6^^/ , , ,		 ,	 ,		 '.	 ,	 "	,37
*mset	 Vmviable.	 .	 ,		 ,	 .	 ,.	 .	 , ,	 ,		 ,	 .	 ,	 .'	 -	 .	 .	 .6K
*throw Function .	 .	 .	 ,'.	 .	 ,	 .	 ,	 '	 ^		 ^	 .	 .	 ,	 .	 .	 ,	 ^	 ^	 ^		 ^	 .	 .	 . ^	 ^	 .	 '24

Function	^	 '	 ,	 .	 .^'	 , .	 ,.^.	 ^	 ^	,	 ,	 .	 .	 ^		 ^.	 .19
Function	~,	 ,	 ,..,	 ,	 ,	 .	 .	 ,		 ,		 ^ .	 .	 '	 .19

?$mrnmat Fuwmtion.	 ...'	 ,	 -,.,	 . ,		 ,	 ,	 ,..	5#
mrmayp Function ,	 ^	 .	 .	 .	 ,	 ,	 .	 .	 ^	 ^	 . '		 ^	 ,	 .	 .	 ,	 '	 .	 .	 .	 '	 .	 '	 ` '	 .	 .	 '19
bit -test Function	 .	 .^.	 ,		 ^	 .	 ,	 .	 .	 .	 ^	 .	 '	 . .	 .	 ,	 .18
nmne translation		 ,		 ,	60
nwseqSpecial Form .^ .	 ,		 ,	 .	 .	 .	 '	 ,	%3
char-oEWmution ^		 ,		 ,	57
character Function	 .,.	 .	 ,	^		 ,	 .	 . .	 ,..57

 dofconst Special Form ..,	,	^^	 ^^.	 ^		 ^	 '.	 '	 ..	 ' .	 '	 ..13
define -Onroat-6i., Macro	 '	 '	 .	 ^	 '54
defimmoroMzcro	 '	10
dnfstnuct Macro	 '	 .	 .^		 ^	 ,	 .	 .	 .26

^	 drfstnut -doOno -typeMacrw	 ^		 ,4%
dcfuo Special Form	 ^.		 0
dcfun& -check -args Nmriable.59

`	 dcfvarSomcial Form.	 ,	XD
dwist Special Form23
dmbmuooSpecixFom.	 '33
dmb	 Fuoedum.	 .	 ,		 ,		 °	l0
error Function		 `	 .,.	 ^ '		 ^		 '	 .	 .	 '	 .	 .	 . '	 .	 .	 '61
rval-when SpecialForm .' 	 '	 ...,.	 '		 ,l3
cvompFuoutimm.		 "		 ^	l9
fbonuodo Function	 ,	 '	 .	 .	 ^	l9
ferrmrFunotion 	 ^		 ,	Z5'6l
fixoummp y uwct6om. lN
Onounmpflunciionz.	l0
8mrnumt Function47
format - charpos Function	 ^		 ^	56

! format-flutc Macro	 ^	57
8/nnmt-hnmKned Function	 '	5#
bmnmat -frowh-Dnc Function56

' format-	 ncFmotion.	30
h`nnut-UndFbwc yiow...	,	'	5G
hxnnut-	 'n}	 Function	5&

"	 8onnat-phncFuwctioo	56
Oornnut-uih-b0	 Function^.	,		 ^	56

.	 ,	 8nUnat-tern,	 1,^x'Yoo..	56
^	 h/nnut-kx>Puor/km	50

hx)noL:'/#-vo[Variable,	j0
hxmiiot:*km-ch//i--photerI'a,kble..91
0xnlxcx(i
	

-Dxo	 1\xi^h/	*.	 ,	55

3|~Ji1|'8)

t'
Index 66 Maclisp Extensions

formaccolon-flag Variable 55
genprcfix Compiler Declaration 	 61
if Special Form	 21
ldb Function.	 18

let Special Form 20
let* Special Form	 20
lexpr-funcall Function 25
list'	 /unction	 19
logand Function 17
logiorFunction	 17
lognot Function 17
logxorFunction 17
loopMacro	 23
make-fist Function	 19
nthFunction 20
nthcdr	 Function 20
pac ',tage prefix	 63
packages26, 28, 30, 41, 55
popAlacro.	 16
progl Special Form		 A	 25
psctqSpecial Form	 ,	 21
push Alacro 15
selectq Spacial Form 22
setfAlacro.	 15
standard-output Variable 54
string-length	 Function 57
stringp	 Function 57
strings		 59, 61, 63
unwind-protect Special Form „	 24
without-internipts Special Forst 25

t

21-JUL-81 L-81

	1981021264.pdf
	0001A02.tif
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001A14.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif
	0001B06.tif
	0001B07.tif
	0001B08.tif
	0001B09.tif
	0001B10.tif
	0001B11.tif
	0001B12.tif
	0001B13.tif
	0001B14.tif
	0001C01.tif
	0001C02.tif
	0001C03.tif
	0001C04.tif
	0001C05.tif
	0001C06.tif
	0001C07.tif
	0001C08.tif
	0001C09.tif
	0001C10.tif
	0001C11.tif
	0001C12.tif
	0001C13.tif
	0001C14.tif
	0001D01.tif
	0001D02.tif
	0001D03.tif
	0001D04.tif
	0001D05.tif
	0001D06.tif
	0001D07.tif
	0001D08.tif
	0001D09.tif
	0001D10.tif
	0001D11.tif
	0001D12.tif
	0001D13.tif
	0001D14.tif
	0001E01.tif
	0001E02.tif
	0001E03.tif
	0001E04.tif
	0001E05.tif
	0001E06.tif
	0001E07.tif
	0001E08.tif
	0001E09.tif
	0001E10.tif
	0001E11.tif
	0001E12.tif
	0001E13.tif
	0001E14.tif
	0001F01.tif
	0001F02.tif
	0001F03.tif

