

DOE/NASA/0115-80/1
NASA CR-159841 80-BNI-002
DESIGN SIUDY OF A CONTINUOUSLY YARLABLE CONE - ROLIER TRACTION TRANSMISSION FOR EEECTRIC VEHICLES
Dan K. McCoin and Richard D. Walker, Authors
Bales-MicColn, Inc.
9032 Roseway
EL Paso. Texas
September 1980
Prepared for:
National Aeronmutice and Space Aduinistration Levis Research Center Cleveland, Ohio 44135
Under Contract DEN 3-115
For:
US DEPARTMENT OF ERERGY
Electric and Rybrid Vehicle Division
Office of Transportation Programs
Washington, D.C. 20545

tasle of contents

Page

EXECUTIVE SUNMRY 1
intaoduction. 3
PROGRAM SCOPE AND APPROACH 4
TASK I - Design Study. 8
TASR II - Design Requirements, Desfgn Critezla Identification of Required Technology 9
TASK III - Suicability for Alternate Appli- cations 11
TASK IV - Design and Technology Assessment Report 12
discussion
Tranamiseion Description 13
Materiale 23
Lubrication Syaten 24
Traction Control System. 24
Control System Component Description 25
ANALYTICAL RESULTS
Efficiency 29
Cost 50
Weight 50
Noise. 55
Reliability. 55
Maintainability. 56
Scalability 61
TABLE Of CONTENTS (CONTINUED)
Alternete Electric Drive 61PareAltetnate Kybrid-Electric Drive.
Potential Problen Areas. 6362
TECHNOLOGY ASSESSMENT 66
CONCLUSICNS AND RECOMELENDATIONS 67
LIST OR REFERENCES 69
APPENDIX. 70
LISTINGS
Figurea. III
Tables y
References 69
Appendices 70
Symbols. 188

LIST OF FIGURES

Figure No. Pigure Title Page1.
CrF ath Fiywheel and Electric Motor 5
CVI with Electric Drive Only 6
.3. CYT with hybrid, I.C. Engine and7
Electric Hotor16
photograph of key components in a Computer fraction control, RollerCone CVT
17
Regenerative CVT Configuration
18
A Regenarative CVI Configuration 6.
High Reduction (CVT/IVT) TorqueMultiplication limita with sifp.Study Design Range Overplotted19
Slip Control Block Diagran 22
8.
4
4
Typical Tract 27 27
9.
Typical Traction Force vS Slip 28
Curve Famiy . ${ }^{2}$
Net CVT Efficiency 7.5 KH (10HP) to11-15.
16. of Recirculating Hp to output 39
17-21.75 KK (100HP) YS Output Speed for theInput speed SpectrmeInput Speed Spectrum
RPP VS Total CVI Ratio.
RPP VS Total CVI Ratio.ciency vs Ratio of RecirculatingEfficiency vs Ratio of RecirculatingHP to Output HP and Total CVT RatioRespectively40-44
Yolmeteric Plot of Peak TractionCoefficient Over the Operating spec-Crum for the Regenerative CVIGeometry49
Figure No. Figure Iltle Page
Composite Traction Life VS Qutput speed. 38
Cone Power YS Output Speed 59
Alternate Roller Carrier and Shifting Mechanism. 73
Revised Cone Mount and Loading Syaten 14
Regenerative CVT with Forward Output Rotation 77
Radial Load Distribution in Regenerative CYT 78
Multispeed CYT Function Diagram. 81
Yolumeteric Efficiency; Regenerative CYT VS Multispeeding - Typical 82
Maltispeed CVT Functional Layout 83
Basic Slip Control Diagran 85
Alternate Analog Divider Diagram 90
Typical Traction Curve (Traction Force VS S1ip) 93
Typical Traction Curve (Normal Force vS Slip) 95
Typical Traction Curve Control Spike (a Slip/a Normal Force). 96
Optinized Traction Computer Diagram. 97
Control Response to Error 98
Dither and Control Response VS Time. 102
Encoder Aperature Duty Cycle Correction 106

LIST of tables

Table No. Table Ticle Page
1.
Regenerative Total Power Loss. 30
2. Regenerative Nat Efficiency. 32
3. Regenerative Losi Source Summary 45
4. Incremental Roller Poaicion. 47
5. Cone Diameter, Traction Ratio, and Cone Speed to RPM YS RPMo 48
6. Cost 51
7. Tranamisiion Weight, Itemized. 52
8. Bearing Life 57
9.Appendix:
10.
11. Input Planetary Gear Data. 115Transuisaion Ratio114
12. Input Planetary RPM/Flywheel RPM. 11813.
Output Plenetary Gear Data 119
14. Output Planet RPM VS RPMs. 120
15. Output Planet Power. 124
16. Spiral Bevel Gear Data 12617.18.19.20.
Helical Idler Gear Data. 128
Cone Torque. 135
Single Cone HP 137
Cone HP (4 Cones) 139

EXICUTIVE SURPMRY

- 2 为

This report presente the results of deafgn atudies of centinucusiy veriable ratio transuibaions (CVI) featuring cone and roller traction lements and computerized controls.

This work was part of the Electric and Hybrid Vehicle Program of the U.S. Departrent of Energy. It wes performed under contract DEN $3-115$ and managed by the Bearing, Gearing. and Transuiseion Section of the NisA Levis Research' Canter.

if A computer controlled traction drive CVT embodying traction cones and rollers in a regenerstive path epicyclic gear differential vas designed and analyzed.
fimpetailed assessment of cone-roller Traction CVI suitbility co the electerical vahicle application was made. Ei, Vehicle configurations included: 1) flyo . el energy itorage systen driving through che CVT to an lectric motor into the vehicle differential; 2) electric motor driving through the CVI into the differential: and 3) hybrid I.C. ongine driving through the CYI wich CVI and lectric motor input into the differential. (See Figures 1 through 3, pages 5 through 7).

The computer controlled regenerative traction unic controls the speed of the ring gear in the epicyclic gear differential. The craction unit consists of a crowned roller and four cones. The toller, driven by the center shaft through a recirculating bali spline, drives the traction cones. The center thaft also drives the sun gear of the epicyclic gear differential (Figure 4, 5 and 6 , pages 16,17

Speed variation of the output shaft is accomplished by moving the traction roller axially along the cones, thus varying the cone rotational speed and, in turn, varying the ring gear speed relative to the sun gear speed.
win
Power from a flywheel is transmitted through an input epicyclic reduction stage to the center shaft. The ring gear of the input raduction unit is controlled by a modulating clutch. The clutch allows de-coupling of the flywheel at flywheel speeds below uinimum (less than 14000 RPM), to de-couple the flywheel at output shaft speeds below 850 RPM and reverse output speeds.

The computer control system maintains optimum traction, speed, and power for all operating conditions via traction silp monitoring and slip control feedback. Continuous sumpling of system parameters (cone and roller apeed, zero


```
i
;
i
PROGRHY SCOPE
```

```
The scope of the progran encoupseses the desigr of
CYT of reasonable sise, voight, and cost to provide an
effective and rellable meane of controlling and utilizing
powar augmentation of an anargy atorage flywheel in an
Electric vehicle. The CVI mupe accepe power output fro: the
Elywheel at any apoed between 14.000 RPM and 28,000 RPM and
provide output shaft poser at any speed between 850 RPK and
3,000 RPM. De-coupling wust be sccouplished for output
shaft speede below 850 RPM, and reverse. An alternative to
de-coupling is a CVT deaign which provides neutral and reverse
(affectivaly an IYT, infinitely variable txanemisaion).
Figure 1. page 5.
Alternative applications are the pure electric and hybrid electric vehicles as deplcted in Figuras 2 and 3, pages 6 and 7. respectively.
```


APPROACH

The approach taken hereln wae to perform the deelign sudy through iterative leyout concurrent with an asiens. mont of posisble technology advancemente requitred to support the dealgn. The atudy was implomented through the following thtement of work.

A. Conduct an ent her necessary analysis to detearing deaign study and perform the continuously variable ermine the optiman arrangement of a continuously variable speed transmission (CVT) to couple the high apeed output thaft of an energy storage fiywheol to the drive train of an electric vehicle at shown in Figure 1 . page 5. The CYT hall be comprised of the variable speed element together with any anciliary mechanical componente such as couplings, clutches on gear tets, which are required to satisfy the requiremente ipecified below.

design requirements

The following dealgn requirements, based on a represen. cative vehicle heving a curb weight of 1700 Kilograma (3750 pounde). thall apply:

1. The speed ratio of the CVT shall be continuously controllable over the following range of input and output speeds:

High speed (fiywheel output shaft), 14,000 to 28,000 RPM
Low epeed (differential input shaft), zero to 5000 RPM .
If it is impractical to delign the proponed CVr to be con.
tinuoualy controliabla down to tero output epaed, then the cvt shall be deafgned to be continuoualy controilable dom to a minimue peed not to exceod 850 RFM and a varlable speed elutch inpuent shall be incorporated to regulate differentlal Input apeed to zero.
2. The CVT shall proulde forward vehicle opeed only, slice reverie may be accomplithed by reverolns electric wotor rotation, unleat reverie tan be accompliahed within the CVI witiout addicional complexity.
3. Disengagement of the tiywheel from the dilve train ohall de accomplinhed with the CVT or with a clutch, if required.
4. The CVT ahall be capable of withatanding all sudden shock loads and sudden corque conditions that may be expected in typical atomotive applications.
3. The CVT shall be capable of bl-directional power flow at the above power ratings for regenerative braking and for charging of the fiywheel with the electric motor.

The operating power and life requirements for the transmission as etipulated are:

1. Mean output power $=16 \mathrm{XN}$ (22 HP)
2. Mean output speed $=3,000$ RPM
3. Mean Input speed $=21,000 \mathrm{gPM}$
4. Life at mean conditions $=2,600$ hours at 90% aurviviabllity.
5. Maximum output speed - 5,000 RPM
6. Maximum input speed $=28,000 \mathrm{RPM}$
7. Minimum output speed $=850$ RPM (clutched to zero)
8. Minimua input apeed $=14,000 \mathrm{RPM}$

In addition, the following operating parameters axt considered:

1. Maximum useable energy froe flywheel $=1.8 \mathrm{~mJ}$ (1.5 KWH)
2. Maximum CVT trandient power output $=75 \mathrm{KH}$ (100 HP) for 3 sec.
3. Maximum cyt corque output at wheel $\operatorname{silp}=450 \mathrm{~N}-\mathrm{m}$ (330 fc. 1b.)
4. Maximus time from maximni to minimum reduction ratio. or vice verse, 2 eeconds.

OESIGN CRITERIA

The design of the cYT and apocieted drive gyatea come ponente, thalf be on the basis of the following criterta in order of ovarall laportance:

1. Efficiency - The tranamicalion ohall have high effielency over ifa entire opirating spectruat Special atcontion ahali
be given to maximizing transmiscion officiency under those operating conditions in which the tranamiesion spende most

Cont - The future production cost of the cranamiaiton, 2. Cont - The future production coits par year), shall be on carly conelderation. The use of special manufacturing proceseea and material: shall be avolded. Design techniques, as well as drive system components auch as bearings, gears. and seals, shail be typical of, and consistent with; automotive practice.

120
3. Size and Weight - The overall size and welght of the CVT, including auitable controls and all anciliary mechanical components, shail not be aignificantly greater than present automotive tranamission of equal horsepower capacity.
4. Reliabllity - The tranimisilon, including all support syatems (i.e., cooling and controlis, shall be designed to operate alnimum of 2600 hours at the conditions pecified in the design requirements.

$$
\begin{aligned}
& \text { 5. Nolae An important consideration in the early tages } \\
& \text { of dealan ohall be to eliminate potential no! ee generating }
\end{aligned}
$$

of deaign ohall be to eliminate potential no!.ee generating sources and to contain (within the transmission houting) that nolse which is unavoldaisly generated.
6. Control: The control ayatem uned to operate the transmiasion dive syatem shall be atable re'lable and reaponsive. The yytem shail provide driver "fel" responge similar to chat of a tandard paseenger vehicie, equipped with an internal combustion engine and standard automatic tranamission. the control syatem selected shall closely simulate the full. scale system required for actual vehicle apgifcation.
7. Maintainability . The eranemiealon ohall te designed with malntalnability equal to, or better than, the meintalinablilty of precent-day automotive automatic tranomission. All intermal components which require normal maintenance and/or occasional replacement shall be made readily accessible.

8. Task II - Identificatlen of Required Technology Advance. wente

Identify all technology adyancemente required to develop the selected CVT to the polnt of satisfylng the deeign require. mente and ericerts of taik 1 .

Define the nature of che required advancominte, define the difficulty of the probleme, and setimete the means and

to match an internal combuntion engine to the drave train of hybrid electric vehicle at show in Figure 3, page 7.

Design Requirements

- $2:$

1. The apeed ratio of the CVI hall be continuously controllable such that the output speed ehall range from zero to 3000 RPM with the input apeed and powar requiremente according to the specified engine operating ache3ule.
2. The cyt shall provide forward, reverte, neutral, and at-rest yehicle operation with ingle lever operation.
3. All other requiramenta, as atated in Taek 1 , shall apply, except tho storage device which are deleted from thle application.

Scalability of Selected CVT With Flyeheel Energy Storage for Alternate Haximum output Torques

Datermine the sultabslity of the CVT concept of Task I with fiywheel energy storage for ocaling to alternate maximun output torques. The desfgn requirements and criteria shall be the same as apecified In Iask I except that tha following alternate maximun output corques at wheel silp shall be coneldered. Low speed (differential input) hall be zero to 5000 APM and the cft input speeds shali be 14,000 to 28,000 gRM in all caces.

MAXIMUX CYI OUTPUT
(DIFFERENTEAL INPUT) TORQUE
1

$$
210 \mathrm{~N} \cdot \mathrm{~m}(155 \mathrm{lb}-\mathrm{ft})
$$

2

$$
\begin{gathered}
790 \mathrm{~kg}(1950 \mathrm{1ba.}) \\
10,000(22,000 \text { 166.) }
\end{gathered}
$$

$$
2.600 \mathrm{~N}-\mathrm{m}(1900 \mathrm{lb}-\mathrm{ft})
$$

D. Tack 14 - Draign and Technology Achesament, Report

Submit a deasgn report of the CYT concept togather with apporting data and analydis sufficient detall and analyait ham be provided to verliy that the dealsn ft credibie and capable of meating the requited design apectiticationi and criteris.

An estimation of the ateady atate efficiencies at 1.5 15. 30, 32, and 73 KH output apeed range of tero co 3000 NPM for input epeeds of $14,000,21, \mathrm{O}$, and $28,000 \mathrm{RPK}$.
 to the carrier output shaft, it will tend to decrease in Rpw. The ring gear and hence the cone Rpm would also tend to decrease. - The cont Rpm decrease produces ohear (slip) in the fluid film betwaen the traction conjunction and the reaulting shear force creates a torque load. The amount of corque load varies with the amount of shear (silp), temperature, contract geonetry and paripherial velocity but in the design atudied the maximum forax tranafer (optimum in $_{\text {a }}$ slip) ranged from 0.8% to 2.0% over the range of design 2 . variables. Due to the output planatary expanaion of cone ratio, the effect of silp is also expanded and appears as speed droop in the output shaft. Speed droop for the design ranged from 1.75% to 3.25% for 0.8% to 2.0% s11p respectively.
 Y It is clear from Figure 6, page 18, that a transmission with any deaired input to output ratio range can be deolgned using any given conn geometry by selecting the appropriate roller-cone diametert. This feature is used in the current design to expand the approxlamith traction cone-rollex ratio range of $3.5 / 1$ to produce the required overall transmission

Arancmigions which go to zero (neutral) as described are called "Infinitely variable Tranamisions (ivi)." Even thouth the dealgn preaented is not an IVT, it employs the theme regenerative principles to expand the batic cone ratio and therefore must be evaluated as a limlted range IYT, -w Specificaliy, regenerative gearing used in IVTis or in this cace a high reduction ratio "Continuously Variable Trantmisaion . (CVI)" produces magnification of power Internaliy and this (CYT)": produces magnification of power int raflected in the data and may be seen by noting that for is XW (100 HP) output the total cone-roller traction power varies from 95 KH (127 HP) co 316 KH (424 MP) In this design. (A magnification "m" value of 1.27 to 4.24).
he overall efficlency of the cranonision in lapacted The overall efficiency ofer. When internal power rises by any change in internal power is decrased becaute che above output power, efficiency is decreased bece appiled agalnet larger mounts of horsepower.
Aleo any Incrase in Incernal horgepoyer Increanes the heat load that must be diosispated by the oll cooler. So there is a compound effect to efficlency 1088 by uafig regeneration to expand balic cone ratio.

The transmision ratio yaritetion is accomplished by moving the traction roller along, and parallel to, the traction cones, thereby varying the rolifig radius of the cones. The speed of the output ring gear is therefore varied, which, in turn, proportionaliy varies the output shaft.
Traction forces are generated between che roller and cones through a normal force applied at the small end of the cone. The force is supplied by a hydraulic piston which houses a cone support bearing. The magnitude of the normal force is determined by the transmission output torque requirement traction coefficient (μ), ratio expansion and operating silp.

$$
5 \cdot 5^{2}+4
$$

Pressure modulation to the hydraulic cylinder (which furnishes the cone force) is provided by a signal from the computer control system. (See control system description, page 25).
Referring to Figure 5, page 17, vutput from the flywheel powers the sun gear of the input planetary assembly. The ring gear is clutched by a band brake to engage or disengage the flywheel. The input planetary carrier is attached to the splined through-shaft, as is the oll pump drive gear. Fity
The chrough-shaft is the inner race of a recirculating ball spline which drives the traction roller, while allowing relatively free axial motion of the roller to accomplish ratio change. The through-shaft also supporis, and is driven by, the output sun gear. Four traction cones, driven at high speed by the roller, transmit power to the spiral bevel-helical cluster gears which, in turn, drive the output ing gear. -
Spiral bevel gears on the idler are necessary to turn the 9.24° shaft angle of the cones to the centerline of the O . gearbox. The helical gear teeth have a helix angle which produces an opposite and equal axial force to the spiral bevel gear axial load. This enables the use of cylindrical roller bearings since no thrust exists. The use of helical gears also reduces noise generation. The action of helical and spiral bevel gears with adequate spiral or helix angles is much smoother than straight spur gears; hence, the operating noise levels are relarivaly much lower.

The output planetary carrier is the transmission output member. With the inputs of the through-shaft to the sun gear and the cones to the ring gear a variable ratio is accomplished to the carrier (output shaft). For normal input speed range of 14,000 to 28,000 RFM of the flywheel, the output speed range is from 850 RFM to $5,000 \mathrm{RPM}$.

The output shaft is de-clutched from the flywesl by the input planetary band clutch when zero output spead bs required. De-stutching is necessary to enable the drive motor to reverse direstion and drive the vehicle in reverse. The clutch also allows the electric motor to propel the vehtele when the flywheel is not charged.
A cooshed dise is mounted on the cone (or to reduce its aped and provide greater circumference it may be loeatad on the ring gear) to provide cone speed information to the is. controller via a photolectric or magnetic read head. Pulses or square waves are generated by the encoder read head as the aperatures rotate past the device.t Spatial timing or frequency to voltage $1 / 0$ procensing converts the encoder signsls into speed data. The syitem is insensicive to absolute accuracy of speed measurement because the cechnique employs speed ratios. See Figure 8, page 22.
is the ratio in speed indicated that is Important to
it is the ratio in ppeed indicated that is "Important or "true" ratio. This dramatically reduces the controller design requirements.
similarly the disc mounted on the input planecary carrier provides roller speed information. From the relative" cone-roller speed information, cone/roller speed ratio is derived by divieion producing KSR (Measured Speed Ratio). as above, the absolute accuracy of the MSR is unimportant. What becomes inportant is the ability of the controller to predict an equivalent Theoretical Speed Ratio (TSR) with no silp, which is based upon the selected component geometry and the rraction conjunction incation axially. This is accomplished by attaching 2 linear transducer between the case and the roller carrier assembly.

TSR positional accuracy in absolute terme is not needed. However. correlation between TSR and the MSR (with no-silip) If most important because deviation between MSR and TSR signals represents "slip" in the traction Junction. Freith
Traction component speeds are divided to produce Moasured Speed Ratio (MSR), which is then divided by Theoretical Speed Ratio (TSR) to produce a speed result. M - \% speed becomes \% slip and is subtracted from a varying slip reference to produce λ sifp error. The error is integrated and the driver amplifier modulates the pressure control valve to regulate normal force in a direction to correct for slip error. For a more decailed discussion on the syatem, and specifically regarding components of producing the variable silp reference. see control system details in the appendix starting on page 84.

Pigure $8:$

Lubrication System

The lubrication aystem consists of an ofl pump, ofl filter, pressure modulation valve; pressure reducing valve, and relief valve. The distribution of oll to the pertinent dynamic elements is accooplished by ofl cransfer tubes, cast passages, and an oll manifold/jet system on the roller positioner.

011 is pumped from the sump chrough the filter to the pressure modulator valve. The oll flow is then divided; part flowing to the cone loading cylinders, and part to the lubrication system of the gearbox.
粗

011 that is directed to the cone loading cylinders is pressure modulated to provide a closely controlled piston load on the cones. The modulating signal is produced through the computer to maintain the required amount of normal force between the rollers and cones to provide optimum slip. A flow control valve in each cylinder allows pressure rellef during load relaxation periods.

011 that flows to the pressure reducing valve is directed to the lubricating jets and passages at 34×10^{4} to 48 to 10^{4} $\mathrm{N} / \mathrm{m}^{2}$ (50 to 70 psi). Surplus ofl then flows through a relief valve to the sump.
 ह.
The jet system on the roller positioner consists of a manifold which supplies oll to four jets. These jets, in turn, spray ofl into the traction conjunction. A telescoping cransfer piston attached at one end to the forward bearing support provides ofl to the positioner.

fi. The instantancous corque capacity of the craction contact depends on the normal load between the roller and cone, the lubrication traction coefficient, peripheral velocity; surface finish, temperature and component geometry. Figure 9., page 27 depicts the relationship existing between roller and cone. craction force (proportional to torque) versus slip at constant normal force (proportional to control pressure). At sufficient rolling velocity (Vr), to form and maintain an elastohydrodynamic (EHD) film thickness great enough to separate the contacting elements, the transmitted torque increases rapidiy as alip ($V_{r}-V_{c}$) increases from zero until a peak is reached. This is the optimum operating slip value for the traction to exhibit maximum torque at the particular normal force. As can be sean the amount of torque chat may be genarated diminishes

ANALYTICAL RESULTS

 by suming the individual component power losess. Each gear and bearing is analyzed and the power losses multiplied by the number of like geara or bearings, chen added cogether. The traction component losses are likewise added to produce the cumalative effect of the four cone/roller contacts. Total power loss for varied input and output speeds the power is shown in Table 1, page 30. Corresponding efficiencies are shown in Table 2. page 32; and Figure 11 through 15, page 34

Figure 16, page 39. graphically expresses the inear relationship between the ratio of recirculating horsepower (iv) to total output horsepower, and the total CVT ratio Figure 17 through 21 , page 40 through 44 , are plots of total efficiency versus the total CVI ratio and the ratio of recirculating horsepower to total output horsepower. Fint,
ind The bearing: are analyzed by a high speed digical computer which calculates bearing lives, operating stresses, and tri internal loads, kinematics, and friction losses. Bearing; friction losses are predicated on a constant coefficient of : friction of . 075. - This value is reasonably close at very high bearing loads. but the actual friction coeffleient at moderate to low loads is quch lower. The power loss attributed to the bearings is therefore much icwer than is calculated by the bearings is thereiore much program. i corresponding increase in efficiency would be reflected through lower power loss if a variable friction coefficient vere used.

Gear losses are determined from the gear geometry, ratio, and friction coefficients as presented in Reference 1. Each different gear mesh is analyzed to determine the power loss factor then multiplied by the number of like meshes. Total power loss attributed to the garss is then determined for each power condicion by multiplying the gear loss factor by the operating power ($\mathrm{H}_{\mathrm{P}_{\mathrm{O}}} \mathrm{X} \mathbf{w}$). The component power loss factors
were assumed to be constant, for a conservative appraisal, and were used as such throughout the analysis. (Table 3, page 45).

REGENERATIVE CYT EFFICIENCY
3.5 KH (10 HP)

$\mathrm{Rpma}_{0}^{R p_{\mathrm{h}}} \longrightarrow$	28,000	21.000 Yercent	14,000
5000	90.0	90.7	90.9
4000	90.8	90.5	91.7
3000	89.9	90.1	92.0
1500	86.1	87.6	90.5
850	80.3	84.1	87.9

15. KW (20 HP)

5000	90.6	91.3	92.0
4000	91.4	91.8	92.1
3000	90.4	91.3	91.9
1500	85.7	87.8	90.4
850	79.7	83.5	87.7

30 KH (40 HP)

5000	91.2	91.0	90.9
4000	91.4	91.4	91.1
3000	90.1	90.8	91.1
1500	84.3	86.6	89.3
850	71.7	81.8	86.7
52 KW (70 HP)			
5000	90.5	89.9	88.7
4000	90.4	90.6	89.4
3000	89.0	89.7	89.3
1500	82.9	85.1	87.6
850 *(53.4 HP)	74.6 (80.72)*	79.1 (85.30)*	84.8 (89.61)*
Table 2: * ${ }^{\text {a }}$	slip Linit		

AEGENELATIVE CVI

Fleure lli cutifficlency at $2.3 \mathrm{~N}:(10 \mathrm{Mp})$:

Higupe 12 : cirefficiency At $15 \mathrm{KN}(20 \mathrm{Kp})$.

The t loss totals are of Internal horsepower. "m", and whel ilf lifit values producing net output efficiency over che operating epectrum of 76.64% to 92.1%.
table $):$

- \quad,

The traction unit losses are determined by using the method shown in Reference 1 as a guide. An example calculation is shown in the Appendix on page 159. a Incremental positions of the roller alons the cone (Table 4, page 47) for fixed flywheal Rpu (Rpm ${ }_{n}$ to fix output Rpm (kpmon
sumation cone diameters at specific transmisaion racto points (Table 5, page 48), and from which Iraction Ratio and Cone Speed may be equated. These relationships are caryied throughout calculations to determine cone rorque (Table 18, page 135), Cone Normal Load (Table 21, page 141), Single Cone Horsepower (Table 19, page 137), Total Cone Horgepower (Table 20, page 159), and Traction Power Los: (Table 25, page 149) at specific output horsepower levels to quantify efficiency over the operating spectrum under given conditions. Sample calculations of these values axe given in the Appendix as listed on page

The contact geometry is calculated (Appendix page 151), then the spin velocity in the contact area is determined (Appendix page 145). Finally, the power loss through the traction unit ($\mathbf{J 7 / 5 4}$), reference 1) is determined from tabulated values of 11ρ and spin parameters (Appendix page 163 and 164). The power loss factor is then used to eatablish power los: in the traction unit for each power spectrum trensmitted.

The coefflcient of traction was taken to be constant 0.01 for all calculations. Tigure 22, page 49, is a volumetric plot of computer calculated peak traction coefficients over the operating ipectrum for the regenerative CVT geometry.

Power loss due to windage of the gears was shown to be negligible. ${ }^{-7}$ (See Appendix $D_{\text {; }}$ page 112). An overall los: factor of 0.037 kN (0.05 HP) wes added to account for 11 ghtly loaded roller bearing conditions.

Study resulte indleate an overall operating efficiency of the regenerative CVT as 91.5\% for the mean pouer condition. 16KN (22HP) and 3.000 gpa output. Calculated efficiency ranged froin 92.1 at $15 \mathrm{KH}(20 \mathrm{MP}), 14,000 \mathrm{Rpm}$ in 3,000 Rja out, to 76.64% at wheel 81 ip "Torque limit" of $39.8 \mathrm{KN}(31.4 \mathrm{HP}$) vith 28,000 Rpat input and 630 Rpa output. Cone speed at the wean condiction is approximately 23,480 Rpwis roller speed is $7,200 \mathrm{Rpa}$. The Roller Rpa equates to the output planetary sun gear (Rpmes and is used In certaín calculations.

$$
R_{p A_{8}}=\text { Flywheel Rpm }\left(R_{\text {pa }}\right) / 2.91666 .
$$

(See Table 32, page 168).

CONE DIAMETER, Cr (1n.)

$\mathrm{D}_{\mathrm{c}}=11.53$	$\mathrm{c}_{\mathrm{c}}(4.65 \mathrm{in}$	RPMe $=$ RPMn/2.91666	
$\left.\mathrm{RPM}_{4}\right]$ RPMs	$\rightarrow 9600$	1200	4800
5000	3.15 (1.242)	2.60(1.022)	1.92(0.755)
4000	3.62(1.426)	$3.03(1.191)$	2.27(0.895)
3000	4.25(1.675)	3.62(1.426)	2.79(1.100)
1500	5.76 (2.266)	5.15(2.027)	4.25 (1.675)
850	6.80(2.671)	6.30(2.481)	5.50(2.164)

TRACIION RATIO
RPMO $=\left(.2154 R_{c}-.2857\right)$ RPMS \quad RPM $=$ RPMR/2.91666

RPTH0 RPMS	9600	1200	4800
5000	3.744	4.550	6.162
4000	3.261	3.906	5.195
3000	2.117	3.261	4.228
1500	2.052	2.294	2.777
850	1.137	1.874	2.149

CONE SPEED (RPM)

Tahle 5:

Yolume-graph of optimum slip for Santotrac 50 at 700% over normal operating range. (Current Geometery)
Figure 22:

Cost

A detalled review of all the elements comprising the transaission based on operating parameters and quantity per gearbox and a comparison to standard ajtonsotive parts was made. A weight and cost analysis was conducted for 5 makes of passenger car automatic transmissions in use for the past 10 years. Common elements in the CVT uses conventional automotive gears and bearings, planerary assemblies, and housinga. The weight and cost analyais (Table 6, page 51) indicates a cost/pound of $\$ 3.20$ to $\$ 7.40$ for exis ri.1g auto. watic transmissfons with torque converters. Elements that differ are corque converter, control valve body, disc clutches, and control system in the atandard automatic, and in the traction components and concrol systen in the CVT.

The automatic transmission is considerably more complex than the CVT in the areas of number of detall parts, machining requirements, and assembly time, based on 100,000 units of each. - The CVT has stringent tolerance and balarce requirements on the cones and the finish requirements are oil the order of antifriction bearing values.

A However, all machining and processing variables necessary to manufacture the cones and rollers are well established. Tooling requirements would be no more restrictive or costiy than for bearings or other precision components. Although no actual cost analysis has been possible (as oy a bearing manufacturer) the processiag techniques (grinding, heat treat, inspection) are weli developed. A qualitative statement based on relative similarities between detail parts and processes in the automatic cransmission and the CVI then would indicate a close similaxity in cost per pound for each on a like production level basis. Based on this premise, it is believed that che CVT cost vould be $\$ 330.00$. Dased on a dry weight of 34 KG (75 lbs.$)$.

Height
A detalled veight anisi
weight of 39 weight analysis of the CVT produced a total weight of $39 \mathrm{KG}(85 \mathrm{lbs})$, Table 7. page 52. The housings are cast aluminum and the planetary carriers as shown are forged aluminum. However, in a value analysis program for the gearbox, the carriers would probably be made from steel stampings with selective welded construction. The weight and cost would be reduced for a high volume production run.

aEGENERATIVE CVT
TRANSKISSION WEIGHT

ITEM	WEICHT (LB) KG	$\begin{aligned} & \text { QUAN- } \\ & \text { IITX } \end{aligned}$	TOTAL WEIGHT (LB) XG
Infut housing	(2.14) 0.97	1	(2.14)0.97
IAIN HOUSING	(11.86)5.39	1	(11.86)5.39
OUTPUT Housing	(3.39)1.54	1	(3.39)1.54
Input sun cear	(.71)0.32	1	(.71)0.32
input ring gear	(.89)0.40	1	(.89)0.40
InPut planet	(.07)0.03	3	(.21)0.10
INPUT CARPIER	(.44)0.20	1	(.44)0.20
input planet shaft	(.03)0.01	3	(.09)0.04
BRAKE	(.28)0.13	1	(.28)0.13
Encoder disc	(.21)0.10	1	(.21)0.10
OIL PUMP PINION	(.25)0.11	1	(.25)0.11
OIL PUMP GEAR	(.30)0.14	1	(.30)0.14
PLANETARY KEY	(.004)0.0018	1	(.004)0.0018
LEAD SCREX	(1.72)0.78	1	(1.72)0.78
WORM GEAR	(.05)0.02	1	(.05)0.02
WORM	(.06)0.03	1	(.06)0.03
ROLLER POSITIONER	(.97)0.44	1	(.97)0.44
ROLLER	(3.40)1.55	1	(3.40)1.55
BARL SPINE	(1.96) 0.89	1	(1.96)0.89
PISTON	(.17)0.08	4	(.68)0.31
SPRING	(.03)0.01	4	(.12)0.05
SPHERICAL SLEEVE	(.25)0.11	4	(1.00)0.45

Table 7

LTEM	WEICHT (L8) XG	$\begin{aligned} & \text { QUAN- } \\ & \text { IITY } \end{aligned}$	TOTAL WEIGHT (LB) KG
CONE	(5.05)2.3	4	(20.20) 9.18
$\begin{gathered} \text { CONE BUY } \\ \text { BRG END) } \end{gathered}$	(.05)0.02	4	(.20)0.09
CONE ENT (DUPLEX	(.05)0.02	4	(.20)0.09
DUPLEX LINER	(.60)0.27	4	(2.40)0.11
DUPLEX CLAMP PLATE	(.58)0.26	4	(2.32)1.05
CONE ENCODER	(.09)0.04	1	(.09)0.04
SPIRAL BEVEL PIMION	(.12)0.05	4	(.48)0.22
PINION KEY	(.01)0.0045	4	(.04)0.02
IDLER	(.43)0.20	4	(1.72)0.78
IDLER SHAFI	(.09).041	4	(.36) . 16
IdLER PLATE (LEFT)	(1.29)0.58	1	(1.29) . 58
IDLER PLATE (RIGHT)	(.71)0.32	1	(.71) . 32
SPACER, BALL SPLINE SHAFT	(.05)0.22	1	(.05) . 22
OUTPUT RING GEAR	(2.04)0.93	1	(2.04) .93
OUTPUE PLANET GEar	(.29)0.13	4	(1.16) . 53
OUTPUT PLANET SHAFT	(.07)0.03	4	(.28) . 13
OUTPUT CARRIER	(.70)0.32	1	(.70) . 32
OUTPUT SUN GEAR	(.34)0.15	1	(.34)0.15
output flange	(.18)0.08	1	(.18)0.08
BEARING, INPUT SUN DUPLEX (6904)	(.16)0.07	1	(.16)0.07
BEARING, INPUT RING BALL (6910)	(.28)0.13	1	(.28)0.13
bearing, baill spline DUPLEX (6004)	(.32)0.15	1	(.32)0.15

Table 7 (continued)

1TEM	wetcht (LB) KG	$\begin{aligned} & \text { QUAN- } \\ & \text { IITX } \end{aligned}$	TOTAL WEIGHT (LA) KG
bearing, roller POSITIONER BALL (SPECLAL)	(.24)0.21	2	(.48)0.22
bearing output ring $\text { BEALL }(6004)$	(.16)0.07	1	$(.16) 0.07$
bearing, output ball (6004)	(.16)0.07	1	(.15)0.07
$\underset{(304)}{\text { BEARING, CONE ROLLER }}$	(.38)0.17	4	(1.52)0.69
$\begin{aligned} & \text { BEARING, CONE DUPLEX } \\ & (7206) \end{aligned}$	(.90)0.41	4	(3.60)1.64
BEARING, INPUT PLANET ROLLER (B-78)	(.02)0.009	3	(.06)0.03
BEARING, BALL SPLINE ROLLER (B-167, IR-128)	(.08)0.04	1	(.08)0.04
BEARING, IDLER ROLLER	(.02)0.009	8	(.16)0.07
bearing, output planet ROLLER (MR-100)	(.02)0.009	8	(.16)0.07
OIL PUMP	*(.50)0.23	1	(.50)0.23
OIL	(9.38)4.26	1	(9.38)4.26
MISC. (NUTS, BOLTS, SMAP RINGS, SEALS, ETC.)	*(2.00)0.91	1	(2.00)0.91

TOTAL TRANSMISSION WEIGHT $=38.37 \mathrm{KG}(84.51 \mathrm{LB})$
DRY WEIGHT $=34.11 K G(75.13 \mathrm{LB})$
(DOES NOT INCLUDE CONTROLS, ELECTRONICS, OR FILTER)

Table 1 (Continued)

Nolse

Nofse generating components In the cri are gears, hydravilics and uindage loss components (wind nolse). Ha

The gear teeth in the CVT are hellcal spur designs and epiral bevel designs which are sized to have a sufficiently large helix (spiral) angle to pield a high (2 2.0) total contact ratio. Hellcal action at the beginaing and and of action of the conjugate teeth is much quieter than for straight spur gears. Gear tooth modifications of lead and profile also are used to assure smooth action. The gear teeth are lightly loaded so modifications wili be small. By virtue of the light loads and helical and spiral gear designs the nolse generated by the operating gears will be well below the audible range in the vehicle. The windage losses within the CVI are also quite low, hence the noise level will be below the audible level. :

The noise effect of bearings and traction components will be much lower than for the gears. Therefore it is expected that the CVI will run quieter than the comparable automatic transmission.

Rellability

The CYT is designed for 2600 hours minimum life at the mean condition of $16 \mathrm{KH}(22 \mathrm{HP}$) out at 3000 RPM output and 21,000 RPM inpur. The gear stresses at mean and maximun
 torque are all less than $82.7 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \quad(12,000 \mathrm{psi})$ and $413.7 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}(60,000 \mathrm{psi})$, respectively, which results in a virtual infinfte life for the maximum stressed component. Similarly, the lowest life bearing is the input planetary pinion roller bearing with a life of 22,960 hours at the mean condition (Table 8, page 57). ASME life modification factors

The minimum traction element life is 2920 hours (Appendix, page 134). as deterrined by the analytical method defined in Reference 3. The life of the traction elements, again, are deternined at mean condition: 16 KH (22 HP) out 21,000 RPM in, 3,000 RPM out. Stress calculations are based on an 11.8 cm (4.65 Inch) diameter roller, at 7200 RPH , with a 12.7 cm (5 inch) crown radius and $3,6 \mathrm{~cm}$ (1.426 inch) diameter cone, with a normal load of 2,217 n (498.5 13s). Figure 23, page 58 , illustrates the dramatic decrease in contact life as the power to the CVT is Increased. Hertz stress at the traction contact point at the mean and maximum torque conditions was $1.58 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$ (230,480 psi) and $2.97 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}(432,060 \mathrm{psi})$, respectively (Appendix LL, page is7).

The respective cone bending atresses vere $38,3 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ (5560 Psi) and $259.0 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}(37,530$ pil) (Appendix U. page 130). Figure 24, page 59, is single cone HP ve output RPM.
 icerion for determining gearbox longevity, it is equally t : criterion for determer wear. The elements which are subjected to relarive silding may produce wear and wear particlea which further accelerate the tendency to vear. Gear teeth, bearings, and traction elements are subject to wear, depending on the lubrication regime in which they oparate. In all instances the dynamic elements are operating at such a relative velocity as to preclude gross metal to metal contact. Each set of gears In mesh are separated by a film of oil sufficiently thick to virtually eliminate any metalifc contact. The game is true of the traction elements where the film thicknsss is $10.1 \times 10^{-4} \mathrm{~mm}$ $(39.6 \mathrm{in}$.$) at the mean poser condition (Appendix \mathrm{KK}$, page 153). The worst condition of power loading. 75 kW (100 HP) at $450 \mathrm{NH}^{\mathrm{N-m}}$ ($330 \mathrm{ft}-1 \mathrm{bs}$) output resultit in a film thickiess of $7.1 \times 10^{-4} \mathrm{~mm}$ (27.8 in.).

The ratio of filn thiciness to compsite roughness in the traction cone and roller is $h /=4.66$ (mean). There will be relatively insignificant wear associated with this condition. Table 9, page 60, reflects gear stresses at maximum and mean power conditiona.

Maintainability

i Maintenance requirements ior the CVT will be minimal. Due to the lack of wear exhibited by the dynamic components in conjunction with the variable load wechanism for the cones against the roller, it is anticipated that the only service required after intifial run-in will consist of r.o more than an ofl filter change.

Seal leakage, the wajor cause of transrission removal. will be minimized. The input seal is a carbon face magnetic seal, operating in a vell aligned state, which adequately accepts the speed of the input shaft (up to $28,000 \mathrm{RPM}$). The outpur aeal is a stindard double lip elastomeric seal operating at low rubbing sperd also in a well allgned condition. The only other seal its a double lip seal on the positioner motor. This seal is wel! above the static oil level in the CVT so no leakage is anticipated. This seal will be splash lubricated.

BEARING LIVES AT MEAN CONDITION

BEARING (LOCATION)	$\begin{gathered} \text { ASUE } \\ \text { LIFE } \operatorname{FACTOR} \\ \text { (REF. }(F) \end{gathered}$	L_{10} (HOURS)
BALL, DUPLEX (INPUT)	-	$>10^{6}$
BALL, INPUT (RING SUPPORT)	--	$>10^{6}$
ROLLER PLANETARY)	6	22,960
$\begin{aligned} & \text { BALL, DUPLEX } \\ & \text { (ROLLER SHATT) } \end{aligned}$	--	$=10^{6}$
$\begin{aligned} & \text { ROLLER SUPPORT) } \\ & \text { (CONE SUP } \end{aligned}$	6	23.480
BALL, DUPLEX (CONE SUPPORT)	6	34,590
BALL, OUTPUT (RING SUPPORT)	--	$>10^{6}$
ROLLER	-*	210^{6}
ROLLER (OUTPUT PLANETARY)	--	31,120
$\begin{aligned} & \text { BALL } \\ & \text { (OUTPUT SHAFT) } \end{aligned}$	\cdots	$>10^{6}$

Table 8

Table 9

Scalability

The design requirement and criteria for scalability are the same as specified previously, with the exception of maximum output torque at wheel silip. The wheel slip torgaes to be considered are 210 N -m (155 lb ft) and 2690 N -m (1900 15 ft).

In reference 3 it is shown that the life of a traction. conjunction varies in prcportion to the size to the 8.4 power. That is, the life increases at a very rapid rate with any increases in size. While no actual calculations were performed to verify a similar trend of capacity with size, one set of caiculations using a $22.9 \mathrm{~cm}(9.0 \mathrm{in}$.) diameter roller and a $7.6 \mathrm{~cm}(3.0 \mathrm{in}$.$) diameter cone was used to determine the$ capacity of the traction elements. With the surface velocity maintained the same as the baseline unit, $44.5 \mathrm{~m} / \mathrm{s}$ and using six cones, the capacity of the traction unit was $810 \mathrm{KH}(1086 \mathrm{HP}$) based on $13.2 \times 10^{8} \mathrm{~N} / \mathrm{x}^{2}$ (192.300 psi) Hertz stress in the conjunction. The rotational speed of roller and cones was reduced to maintain the same surface velocity. The veight of such unit would vary at alightly higher rate than the square of the diameters: That ls, the weight of an 810 kH $\therefore=\cdots{ }^{\text {anc }}$ gearbox would vary olightly more than $(9 / 4.65)^{2}$ e 3.76 times the 73 XH (100 HP) unit, which was designed for this study.

Downard scalablity is more difficult to atcain except by reducing the number of traction cones. In the case of the lower horsepower unit the rating was attalned by oimply reducing the number of cones from 4 to 2 . Although for other practical reasons it would be advantageous to redesign the unlt and mintain a uinlmum of 3 cones co maximize inherent component stability and equal distribution of forces and itresces withln the syiteri. An atcempt to reduce che size resulted in very liftle actual reduction when faced with mialntalning the life based on surface streases in the eraction conjunction.

Az
Alternate Electric Drive

i

($121:$
$\therefore *+2$
The electric motor input differs very ittele from the fiywhel input in actual funceion. The yse of the cri, being directiy dipuen by che electric motor and directily difulng the differential, will provide the requited performance. The only modification to the dasic cVt ahown in figure 1 will be raslo changes in the planetary and cluster gear ascemblica to produce the required output speed.

Abstract

 This will allow the traction portion of the transmission to remain virtually unchanged for the change in prime mover and operating speeds. The motor is allowed to operate at its optimum speed for the required vehicle drive power. The motor current would be monitored by the computer, with the control effect being to either speed up or slow down the motor, in conjunction with a CVI ratio change, to seek the minimum power drain for all conditions. Parameteric sampling by the computer would be exactly as with the flywheel input. The CVT would furnish the optimum performance for the electric motor only when compared to the use of atepping devices or other speed control means to control the motor. In all alternate schemes to provide an adequate vehicle speed for all terraina (1.e.. uphill), the motor lugs down or absorbs tou high a current draln to function efficiently. The use of the CVT, coupled with the constant monitoring by the computer, eliminates the adverse effects of excess power drain and assures optimum performance, to the extent that a cmaller motor could be used in the same vehicle and excecd the operating characteristics of the vehicle without the CVT. Alternate Hybrid-Electric Drive Hybrid-Electric Drive

A simlar altuation exigts with the internal combustion (I.C.) engine drivis.g into the CVI. it.C. Input speed would be reguired to go chrough a speed-up planetary assembly to provide proper traction component speeds. The CVT will perform the function of allowing the I.C. engine to operate at its optimum ISFC for all output power requirements: The addition of the electrlc motor to the output ihaft would have no effect on the actual CVT operation. The electrlc motor, wien augmenting I.C. engine power at high power operating regimes. would simply transfer power to the vehicle drive wheels. As previously described, the output planetary ratio and cone drive idier ratio would necesiarliy change in order to accomplish the output operating speed range. The ratio could be changed to accomplich the reverce and neutral conditionst as regulred. However, the efficiency at or near the neutral position suffers due co the regenerated power in the traction posith An an aliternative, the addicion of an output planetary wish reversing clutches could accomplioh the range change without dininishing the efficlency beyond accepted levels. further, a two or more speed unlt with clutches could malnitain the high efficlency for wose of the speed range with a minimure of additional complexity. Thlie multiapeeding addo some complexity and number of machined elemento to the syitem the effects on overall efficiency Increase are dramatic. See. Figure 30 , page 82 .

POTENTIAL FROBLEM AREAS

Certain elements and features of the CYT design present potential problems and require special attention. These are: reaction to the tanps-tial load on the cones (traction force). deflection of che a, \therefore and the associated traction contace pattern skew, hydraulic control response (piston motion and time). ratio change rate with the lead screw, binding effect of the axial force on the positioner imposed by the lead screw, piston relaxation time after pressure is reduced, and the accuracy and response time of the encoder/toothed disc monitor system. Addressing each item in sequence:

Reaction to the tangential load on the cones:
The traction force is reacted by the cone mounting bearing: which are iupported on the aft end by a quili in the cransmisito housing and on the forward end by the cone in loading piaton. This piston moves radially in plane with the cone/roller contact. . The craction force generated in the traction conjunction cause a side load on clic platon, which tends to bind the piston in the cylinder and prevent piston motion. To prevent the piaton from actually binding an Integril skirt is provided on either side of the pliston to accept the aide load. Further, the cast material will be a low friction material, such as 4032 aluminum, containing a hish percentage of silicon. The magnitude of the side force vili be lways lesa then 1780 N (40 O libs) and the relaxation will las the pressure drop. This alvays assures a load sufficient to maintain operation on che negative alde of the optimum alip point. See page 74 for an aliernative dealgn.

Deflection of the Cone:
Bending momente imposed on the cone by the loading syatem will cause a curved shape of the cone, diatorting the contact fattern in the craction conjunction. The roller is crowned With a $12.7 \mathrm{~cm}(5.0$ inch stom radius. The drop frow the point of the crown to the edge of the rolier if 033 cm (. 013 Inches) which is much greater than the deflection of the cone for any loeding condition. The roller le crommed to prevent edge loading under abnormal conditiona and to provide an absreviated major diameter of the contact elilpae. Croming ellainatea edge loading, provides reasonable contact ellipse dimeniions, and reducei ipin veloclity.

Hydraulic control response:
Response of the hydraulic system to a computer output signal is determined by the modulator valve response time and the compliance in the hydraulic system. . The response time will affect the slip rate and corrective traction force generation. If the response time is too great the output torque requirement may cause uncorrectable alip in the whe traction unlt, thereby causing a runaway condition. The wh modulator valve responds in a matter of $1=5 \mathrm{~ms}$ (miliseconds) and the hydraulle syatem has at least the oll system pressure present at all times. The presture lines are short with thlck wall passages. Therefore, the response tive is sufficiently short to allow all corrective wotions of the piston co occur. The enly feature to posisibly cause a lag in the response motion is in the relaxing direction. The side load may be sufficient to prevent immediate reduction of the load thereby maintaining the traction load. See page 74 for an alternative design.
Ratio rate chanze with the lead screw: . .
orm driven lead screw could limit the excurition time of the positioner from on end of the cone to the other end. The requirement to eraverse the length of the cone from maximum ratio to minimum ratio. and vice versa, is 2.0 seconds. The lead serew requires 6.5 turns co produce the cotal excurston. The worm-theel racio $1: 16.5: 1$ which requires the drive wotor $c 0$ rotate 107 curns to move the positioner from one end of the cone to the other. The averase speed of the motor would then be 3210 RPM. The positioner drite motor is 5,000 RPM reveraible d.c. motor. which provides adequate margin to accomplish the excursiontime task.

It is recognized that the cholce of a worm drive resulte in considerable loss in the werm wheel set. The drive wotor must therefore be sized to projuce the required power for all control reaponse inputs, the axial restraint of the roller as the traction conjunceion is an unknown variable whlch must be evalusted cn test, cherefore the actual alie of drive motor is an laperical factor. The vorm-wheel dealgn was done to maintain aimplicity in cuncept and may require o jower power loss dealen in prototype and production units. See page 73 for an alcernative dealgn.

Binding effect of the axlal force on the eositioner

Since the positioner lead acrev drives the positioner axialiy at a conalderabie radial distance from the roller centerline, abending woment is applied to the liad serev. The lead ocrew and drive motor way be unable to withatand the

TECRINOLOGY ASSESSNENT

The wechanical transmission design embodie"s "conventional" autotnotive detall components; gears, bearings, shafting end housing. The unique elements are the traction components. Uniqueness is only in respect to the use of traction to accomplish variable speed instead of a torque converter and uultispeed transmisaion. The traction roller and cons are fabricated of conventional materials using conventional procesaing. No new technology is required in

The traction conjunction phyalcs are aimilar to gear tooth action or ball bearing action in that rolling and sliding exists in a lubricated conjunction. The use of a craction fluid for a lubricant imparte a greater traction forse in the roliing-silding conjunction than with convencisnal gear lubricants. otherwise, the contacts are quite siallar.

" In the area of the control system, however, it was recessary to explore possible alternatives to the developed system presented hereln. The use of electronic components that yield much higher reaponse races or activity rates was investigated. Alternates to the coothed dibc and en. coder are programed aagnetic filim deposit with read head, digital signal generator and read head, and analog permanent magnet generator systems. Wille chese components do not of themselves repreaent new technology, their use in the control ayatem yould require some development and test in order to be feasible.

CONCLUSIONS AND RECOMMENDATIONS

The design study has resulted in a computer controlled continuously variable, transmission featuring multiple traction contracts, in a regenerative power. The traction elements are a crowned roller and four (4) cones in the regenerative design." The cones are aligned so that the cone axis is displaced at one half the cone angle from the transmission centerline. This puts the inner surfaces of che cones parallel to the roller axis. The roller is moved axially on a recirculating ball spline to affect a ratio change. Power is transmitted through the traction elements to an output planetary differential ring gear wille feedback power is transmitted through the sun gear of the output planetary differential rolier shaft. Iraction ratio changes cause the output shaft speed to change.

The CYT designs presented herain resulc in lightweight, highly efficient, cost effective transmissions to be used in an electric vehicle. The designs enable the use of a power atorage flywheel in conjunction with an electric motor, with an electric motor. slight modification to the basic design provides immediace adaptability.

The computer control aysten provides exact ratio and speed changes to match the storage flywheel speed to the vehicle driveshaft apeed. Power may be taken from the flywheel to propel the vehicle or it may be restored to the finweel through braking. The flywhel way also be charged by the electric potor.

Study results indicate an overall operating efficiency of the regenerative CVT as 91. 3 \% for che mean power condition, 16 KW (22 HP) and $3,000 \mathrm{Rpm}$ output. calculated officiency ranged from 92.1% at $15 \mathrm{kH}(20 \mathrm{kP}), 14,000 \mathrm{Rpai}$ in $3,000 \mathrm{kpm}$ out, to $76.64 x$ at wheel ilip "Torque limit" of 39.8 kN (33.4 HP) with 28,000 Rpa input and 850 Rpm output.

1. Tevaarwerk, Joseph L., Traction Drive Performance Prediction for Model. NASA Technical Yaper 1430, October 1979.
2. Dudley, D.H. et al; Gear Handbook, McGraw Hill, First Edition, 1962.
3. Rohn, D.A. Loewenthal, S.H., Coy, J.J.. Simplified Fatigue Life Analysis for Traction Drive contacts. ASme' Trans. Journal of Mechanical Design. Vol. iou, Apr. 1981, pp. 430-439.
4. Modern Methods of Gear Manufacture, National Broach and Machine Division/Lear Seigler Inc., Copyright 1972.
5. Bamberger, E.N. et al.; Life Adjustment factors for Ball and Rolier Bearings. ASME Design Gulde. Copyright ASME 1971.
6. Jones, A.B. Analysis of Stresses and Deflections, New Departure, Division of GM Copyright 1946.
7. Dandels, B.K., Non-Newtonian Thermo-Vlscoelastic EHD traction from Combined silp and Spin. Preprint No. $18-L C-2 A-2$ ASLE Preprínt.
8. Daniela, B. Traction Contact Optimization. Preprint No. 79-LC-1A-1 ASLE Preprint.

APPENDIX LISTING

Page
Appendices72
A. Structural Alternatives.
79
B. Multispeed Impact on Design
84
84
C. Control System Detail
112
D. Gear Kindage fower Loss.
113
113
E. Bearing Lubrication Factor
E. Bearing Lubrication Factor
114
F. Transmisoion Ratio Analysis.
115
G. Input Planetary Gear Data.
116
116
H. Input Planetary Sun Loss Factor 116
I. Input Planetary Ring Loss Factor 117
J. Input Planetary Assembly Power Derivation. 118
K. Output Planetary Gear Data 119
L. Output Planet Speed Derivation 120
M. Output Planutary Sur-Planet Power 121
DerIvation
DerIvation
N. Output planetary Ring-Planct Power 122
0. Outqut Planetary Assembly Power 123 Derlvationt
124
P. Output glanet Power Derivation
126
Q. Spiral sevel Gear Data
127
127
R. Spiral 3evel Gear Power loss ractor.
128
128
S. Hellcal idler Gear Data. 129
T. Helleal Idler Gear Power Loss Factor
130
U. Cone bending Stress. 110
V. Cone Hosse Power Derivation. 131

APPENDIX LISTING

 (Continued)Appendices Page
W. Traction Cone Life. 132
X. Traction Roller Life. 133
Y. Traction Composite Life 134
z. Cone Torque 135
AA. Single Cone Horsepower. 137
88. Total Cone Power (4 Cones) 139
cC. Cone Normal Load. 141
DD. Cone Bearing los: (4 Cones) 143
EE. Spin Velocity Derivation. 145
FF. J6. Dimensionless Spin Torque Factor. 146
GG. Traction Load Determination 147
HH. Traction Power Loss (4 Contact) 149
II. Contact Ellipse Dimensions. 151
JJ. " g " 133
KK. Elastohydrodynamic Fim Thickness at the Traction Contact 133
LL. Traction Contact Stress 137
MM. Iraction Lose Calculation 159
NN. Jj/J ${ }_{4}$, Lose Factor. 162
∞. J_{1}, Dimensfonless Slip factor 163
88. Jy, Dimensionless Spin Factor 164
QQ. $\quad O^{3} /\left(H_{n}\right)^{1 / 3}$. 166
RR. $R P H_{s} /$ Finwheel $R P M_{n}$. 168
SS. Bearing and Cetring Computer Data 169
TT. Symbol: 188

Based on the detailed analysis of the current design the following considerations are made as weans to fmprove design if required to resolve cited prospective problem areas.

1. -, Weight may be decreased and cost reduced by converting to a three cone syaters. An approximate 4π increase in cone radiua provides the added power capacity for the regenerative design and no change la required for 3 cones in a multispeed arrangement. The restraints being compressive stress and cone bearing performance.
2. Change the shifting mechanisu to a ball acrew powered by a revarsible-modulating wet clutch, driven by the input roller shaft. Or use a hydraulic cylinder to provide a less atrenuous, rapid shift capability, and to eliminate bending loads on a scres. Serengthen the roller carrier by using a lightwel ght webbed assembly to provide continuous, uniform thrust on the roller carrier bearings, or include two or more screws.
"GIbs and wayg" may be subatituted for the linear ball bearing: at che pade. Figure 25, page 13.
3. E Convert the piston loading and cone mounting to a configuration at depicted in Figure 26 , pige 74. The icifaligning Spherical Liners insure proper bearing normal forces under even alight cone deflection or bending. The bearing liner recepticles being fabricated Into the case for rigidity, (in lieu of one end being gubjest to deflection of the pieton in the cyifnder and cone loads inducing idd forcee on the control pliten).

+ coreatita

$$
\therefore \quad-\quad \operatorname{stc}+\cos
$$

- The gear end spherical ilperi were selected elighty larger In diameter to pernit the cone to pase through the liner recepticle on ascembily. The cone is merely passed through the hole and the lower journal illd into lte bearing. The inner and sear end bearing properly centering the cone. the cone 19 free to move axially in its bearings and followi its center ine angle toward the eransalasion center line until it contacts the rollor,

The cone will contact the rolier at a specific cone diameter deptnding on rolier location on aesembly.

Pictoral of End Loaded Cone Mount
Plewre 26 :

The spiral bevel gear shoulder ahould be accurately located a given distance from the large cone shoulder or a "finish to fit" sleeve used to space the gear properly along a keyed output shaft for correct gear mesh at cone contact with the roller.

The technique provides simpler assembly with assured alignment añ greater all around zigidity. fil.
是

In addition the spiral bevel angle can be designed to provide thrust in the contact loading direction as a function of traction force (torque). One of the major complications to the optimized control aystem was the external load induced slip changes and response required to acconmodate shock loads. Spiral bevel gear thrust with torque, insurea that a rapid rise in external load, is countered with inmediate rise in contact normal force. The load transient cannot induce slip withcut increased torque atomatically providing incicased normal load because of the traction force to silp relationship on the rising slope of the curve.
ahould be

The spiral beval angle should be selected carefully so as
\qquad to place its response just alightly lefs than the correaponding A TCP/A CS slope selected for computer operations. (A light "Inadequacy" to maintain traction for the traction coefficient of the best fluid considered for use). Regular ofl would then rely more heavily upon the computer to naintain proper traction. , 4. $=$.
The computer burden would be acutely reduced and its ability to respond greatly enhanced. Fi

One added notation (and benefit) Is the angle of the pressure piston. It is not perpendicular to the nomal force but has a mechanical advantage of $1 /$ tand. For the current cone dealen $1 / \operatorname{cin}^{\circ} \mathrm{E}\left(0.9 .24^{\circ}\right)$ T $6.147 / 1$. And the 3.3° cone has a $10.4 / 1$ advantage. The required control pressure is reduced comensurately; bringing pressures into the range of the iubication syitem, ihis eifininates the requirement fur a high pressure syatem, Also the platon is free floating (restralned from rotating) and auffers no effecte frow cone forces due to load. onty minor travel is required for loading and unloading which is accormodated within nomal gear facklash at the spiral bevel. A platon stop should litale the relaxation travel to restrain gear backlash to its maximur allowable value duritg $\mathrm{I}^{\prime \prime}$ tial atartups even though there is a opring In the cylinder to malntain minimur presiure.
slip in the Junction insures proper load sharing between the cones.

A anall orlfice through the piaton injecti lubrication to the lightiy loaded thrust betring separating the cone and pliston.

> ise pring in piston cylinder provides a ningmum load

A spring in the piston cylinder provides a mind inoures to preclude bearing akidding under light loads and ingure initial traction hence selrat geat reaction from the computer. loading with limited response then needed from the computer ow to provide conventional output
4. "Change power flow to provide conventionsl output shaft rotation using the amme Stresses are the same as before speeds. (Figure 27. page the stresses are tit require a alightiy larger planetary. Ring 140 teeth, aun 40 and planeta 50 teeth, in comparison to the original of 100,40 and $3 \mathbb{C}$ teeth respectively. \qquad itite ; , his
The increased size, however, is offset by the ellmination of the spiral bevel-helical idier geari, The new sipal bevel junction is larger in pitch diameter (20/120) and should prove wore efficient. However, Just removing the idler gears and bearings saves $1-3 \%$ over the operating range.
5. : The predominant 10 sis $15^{\text {g }}$ (at the highest reduction ratio) In the duplex cone bearings. Power loss curves closely resemble the bearing radial load curve. Figure 28 , page 78 show load distribution to the cone beirings, for the resenera. tive CVI. They share average loads equally but 91% of the iogheat load being cartied by the pliton bearing ($\mathrm{a}=1.27 \mathrm{x}$ 11ghteat 10ad being carcied bearing must carry 85%. of the hlghest loads, ($w-4.14 \times .85-3.6$). The duplex bearings then have a peak service factor 3.13 times as large as the piston bearings $(\div 2=1.565)$. Cone tearing radlai load dis. piston bearings, ($2=1.36$) inibution is enhanced by widing the upport bearing otance. This becomes readily acceptable in tie multispeed configuration where internal horepower is reduced to a fraction of regenerative CVT hortepower over the operating range. This reduces cone bearing loas sencitiviey to roller axial location and maintains a wore stable losifip In the bearing area.

fince.
MULTISPEEDING IMPACT ON DESIGN AND PERFORMANCE

Multispeeding step gear transmissions are common in the industry but muitispeeding in conjunction with aimited range CVI is of current consideration. First, one primary feature of a CYT, the simplicity, may be lost by multispeeding. Second, the drivability must be carefully consldered. Other consideraticns are cost, size, veight, control, efficiency and service life.

Size and weight appeax to be reasonable with the overall design envelope being conducive to retrofit if desired. Cost. control, drlyability and survivability all seem reasonable if the method of multispeeding is carefully considered. The efficiency and survivability of the traction components is greatly improved by multispeeaing.

Control and drivabillty are test achieved by clutching the existing planetary tc redirect powerflow to change range. Clutching the existing planetary also minimizes the number of parts added to the system, which is helpful from the size. weight, coat vantage polnt.

The additson of clutcher should not be detrimental to survivability ince elutchitg is designed to occur at points on the cone-rolier junction wherein there is minimum or no

Flgure 29 page 81 , reflecta the desired principle of F the clutched planetary power low change, for achieving range changes. Ulelmate efficiency is obtained by providing two.. direct cone drive ranges whereln power regeneration is avolded and In between these two ranges providing a regenerastve power flow through the planetary to reverge the cone function to that a zange change may be made without having to relocate. che roller as pati of the shift. While thls has been uuccess. fully done on paper it does require a complex clutching :". arrangement and another approach is indicated where acceptable co the epecific appleation. The clutching complexity 10 not intolerable and it does provide very low ifress, ilght velghe design of the traction componenti and operate continually at hish efficiency.

A almpler approach, show in rifura 11 , page 83 is to use a lockable corque converter to provide neutral and high initial reduction rations, for range 1 . The roller li located at the binor diameter of the cone and raming thare until come minimum dealgn speed is achleved, the torque convertes provides a swouth increase in apeed to the polnt that the ciftmay come into use. This provides the ame minimal itrasi deatgne ait before but with only about half as many clutches and components.

range 1 is with clutches " b " and " c " engaged and the torque converter in service. When the minimum speed (with some range overlap) is achieved, the torque converter begins to lock up. During this cransicion the roller only moves co maintaln a surge free shift, by compensating the traction ratio domvard to offset for the elimination of slip within the torque converter. This is a relatively minor roiler motion and while longer than other shifte in the multispeed design, it is no longer than the shift of a conventional automatic transmisaion: plus does not induce the surge or shock of a conventional shift incurred by the step change between ranges.

The power flow in range 2 is through the input spiral bevel gear driving the cones, through the traction function to the roller. With clutches " b " and " c " engaged and the torque converter locked, the output (sun gear) is forced to co-rotate with the roller and no relative gear motion is involved. As the roller is moved coward the major cone diameter the roller speed is Increased and hence the output speed increases.
ijin 1
When the roller approaches the major cone diameter a point is reached where the roller Rpm exactiy matches the input spiral bevel gear and clutch " A " may be closed without closing speed differentlal. clutch " c " is opened and power flow is now aplic with part ilowing from the input apiral beyel gear driving the concs and part through clutch "a" driving the planetayy carrier. The part flowing through the cones drives the roller which now only drives the planetary fing gear. As the roller is relocated toward the minor cone diaweter the ring gear is slowed and it may be acen that power flowing through the planetary carrier induces a step up speed to the output iun sear. The split power mode provides range 3 .
ringe 4 may be uted in some applicationg which 19. direct notor drive accomplithed by positioning the roller 10 that the input apiral beyel apeed matches the roller apeed, then engaging all clutches and locking the torque converter. by leaving the roller in this posicion the output apeed is a direce function of motor apeed and no traction contact logied or gear loases are geterated, thls could provide a uheful openroad range, hit
rcome the inherent thruat developed on the cones by
To overcome the inherent thrust developed on the conet by the cone angle in combination sith marque an gear thruat loading provide an excest ac mechancal the apral angle would run from is io yidg torque at the conet, the apral angle would tun from goto 23 "s "ane then "unloed"" the iraction contact to optionied the The computer then unfodancy. praton control preatures required power capacity and effleciency. platon control prestures required In the iltucture are reduced to nomal dubrication oll pregiures thereby ellainating the high preasure oll ayatea and further providea a falliafe control ince the iramaladion wili work vithout the benefit of opimization through unloading presture.

Aultlspeed function Diagram

Hgure 29:

A Regenerative cvi as Studied

- Typical Multispeed Design (See Fig. 31. pg 83)

Volumeteric Efficiency

Over the Operating Spectrum
of $7.5 \mathrm{KH}(10 \mathrm{HP})$ to 75 K (100 HP or"meelsilp Limit)

Pigute 301

- 03

APPENDIX C

CONTROL SYSTEM DETAIL

Referring to the analog flow diagram Figure 32, page 85 basic automatic silp control is achieved as herein described

TSI; Traction Speed In (Roller) and Traction Speed Out Cone); ISO, are either in the form of a voltage proportional on Speed (if permanent magnet generators are used) or pulses from an encoder are converted by a frequency to voltage converter (f/v).
f At this point either TSI or tso is appled to ahigh uality operational amplifier (OP amp) such as MC174icl with quality operanal being applied to a transconductance quadrant the other signal being appined to a transcoutput of the multipicer; for exampled to the MC149SL. The response of MC174icl is also applied to this loop is to multhal terminal as negative feedback. is applied to the MC MC1495L multiplier in combination with in this fashion the Mciugider with a net resulting output of the MClifilch forms a divider with a net
$V y=\frac{-10 V_{z}}{V x}=$ MSR (Measured Speed Ratio).
MSR and TSR are then applied to the inputs of another divider network with the resulting output being MSR/TSR or vice versa. Either arrangement produces a final output that represents $\%$ speed.

For example If - 104 out equals 100% (no-s11p), then 95\% would be -9.5 out. If the reciprocal mathematics were used, 93\% speed vould produce an output of $-10.5 v$. in each case 3) ilp produces $0.3 v$ change in the processor output.

it may be ceen that pasirifusting lov input to equal (OSN) thifting anplifier and ajusilp will produce $+1 \cdot 0.5 v$ Ov out, the $0.3 v$ change with sicicy as will be thown.) was output. : (This step is not necensary asmer thection phyalcs However to continu the tip contion. slip +1 , should not be Is indifferent to ilfp the condeviouliy, t/ . ilip denoces the confused with ${ }^{+/ \times}$silp used previo or excessive. Silp $+1 /$ it quantity of ilip as insuificient or exces or lower peripheral quanction of the roller having a higher or . Such translitions velocity than the cont (leading or lifging): Such trangitong can occur when the cone-ror durlng accelepation to braking corce to a d
trantitions

Since traction is a function of $+/$ - slip and is indifferent to whether the silp is in relation to the rolier leading or lagging the cone (alip $+/-1$. - The (OSN) slip amplifier output is applied to a precision rectifier ($P R$) constricted of two Operational Amplifiers (OA). This insures detection and mar linear amplification of very small signals. (Caution: simple diode rectifiers cannot be used without very high gain of the silp signal because the diode PN juncelon has a low voltage breakover region where current flow is a non-linear function to voltage.) The P.R. arrangement is very important ince out system is anlayzing low sifp values near zero voltage output. The alternative of making i\% equal 2 V means high gain and is prone to produce osciliation, drift and inatabilities that are generally to be avolded. And even at 1% = $2 V$, the PN Junction of some diodes are very non-1inear from 0.0 .4 V which $1 \mathrm{~s} 0.2 \%$ slip equivalent range that would become non-lifear.

The output from the P.R. is computed silp (CS) and is applied to differential amplifier (DF). The other DF input is a silp reference voltcge (RS). It doesn't matter if the - (inverting) or + (non-inverting) terminala are used. Whichever signal is applied to the - cerminal is subtracted from the + ignal and the output is proportional to the difference in the two respective inputs. The choice of + or inputs for a particular signal must agree with final drive supply voltage and the proper response on demand.

The output swings r/- in proportion to the difference between CS and RS dependirg on which is larger and which terminals have been selected.
oucputatis slip error (SE) and is applied to an integrator, which is an oh with capactilve feedbeck coupling. The output goes up with even the ilightest input current. The output rise is coupled to the cerminal and tries to suppress the rising output but as the capacicor charges, the negative feedback current diminiohes. With less feedback the output continues to rise." When the capacitor recelves a full charge the output will be at maxleun volitage. In this manner even 0.18 error continuest to demand more and more corrective action until error is 2 iro.

The diode is used to preclude the integrator from aturating in the opposite voltage if alip were leas than reference the integrator unminds froil ite saturated presture deviand condicion and would begin returning to eoro. If the diode is not vaed the amplifier would go pait zero and azturate at voliage supply instead of plue volti supply. Wien a ingle ended $+12 y$ aupply to the driver transistor the only lil effect would be the loas in reaponse to error requiring renewed preabure denend.

Sispeed Optional
Divider Structure
(Prom Figure 32 , page os)

Flifure 33


```
M
%
```



```
        Hence: }\quadRx=10K + Rz= 10K + 3.95K=13.95K
and
                                    Rx = 2.1K + 3Rz = 2.1K + J(3.95K) = 2.1K +
                                    11.85K - 13.95K
Likevise:
and
\(\frac{13.95 K}{I O K+3.93 K}\)
\(\frac{13.95 x}{.7 K+3.93 x}-1\)
Results:
```

$R x=13.95 K$
$R_{2}=3.95 \mathrm{~K}$

For different ratio rangea or different values of TSR resistance over the ratio range these values will vary. But se outlined here for a given no-alip" MSR, the $\%$ opeed tis: amplifier output will alwaya remin conatant at the transaiseion is shifted. If MSR is offset by virtue of the presence of silp. speed output will change. To achieve this the ISR leade are reversed 50 that when MSR - 3/1; TSR $=1 / 1$ and when MSR - $1 / 1$; TSR = 3/1, thereby providing the constant $\%$ speed output with no actual slip.
A)

Optinized Traction Control (OTC):
In 140 of
In lisu of eimple slip control which must be turned to empirical parameters and for maximum effect or benefit must use additional sensing (auch as temperature) another technique

That technique involves recognition that every craction fluid or oil has a peak traction point. \& This point (in terma of elip) varies from one fiuld to another, temperature, peripheral velocity, one transmission deaign geometry to another, and even at different ratio settings within a given transmiasion design. See figure 34, page 93.

The control system just discussed can be calibrated to specific transmission design. But to function over a wide range of environmental changea required added componenta to modify its response to such variables and would not work properly if a different fluld were substituted.

\{Invert for $\Delta T C P / \Delta C 5, \infty=0\rangle$

Pigure 36
Typicel Rate Control Curve
(\triangle CS/ \triangle TCP)
\square
96

the slope is too large and the norwal responce for correction In the - silp reglime ts to decreace preature but in the + silp regime pust Increase prefrure. That cundicion is dicallowed by the syatem rather than developing rejerse logic control.

This is accomplifhed firat by driving a comparator with the os ignal, the slope Linit Reference (SLR) Hill demand maximum correction anytime os falls below the preset SIR. It will continue to demand maximum presture for at long as os calculations fall below the SLR settinge.
Alt oflow the SLX secinge:

With adequate hydromechanical response dealgned into the system Initialiy the os Liatt (OSL) should preclude a + alip

nowever. the closer to the peak we can operate the more dramacic the benefits of oTC.- But consequently a greater hydromechanical response must be avallable to maintain control and the easier it becomes for shock loads to cause an uncon-

Therefore $C S$ and $O S$ signals are analyzed for cheir trends. It may be seen in Figure 35. page 95 , that as the traction peak is approached in the - sitp regime the slop values cecrease 1 th increased silp and siope values fncrease as $81 \mathrm{I}_{\mathrm{p}}$ decreases. But in the +8 sip regime slope values incrense as silp increases and vice-versa. In the + silp regime "parity" occurs in the slope and silp trends.

This fact is used to identify and prohibit continued operation in the regtme by constant demand for increased pressure.

This is accomplished by isolating $+/-4$ cS from a comparator using a diode. Only tcS becomes applied to the CA input. The other input is grounded such that any $+\Delta C S$ caused miximum output. The feedback diode preciludes spurious - saturation.

OS is applied to an $R A$ to provide $+1-\Delta$ OS and an identical structure reduces the signal to an " 0 " or " 1 " ($+\Delta 0 \mathrm{OS}$) output.

OS and '. Cs logic sigasls are applied to an "Exclusive NOR" (ENOR) Gate. The ENOR output is "O" for any conditions except two " 0 " inputs or two " 1 in inputs. Anytime cs and $\Delta 0 S_{\text {are }}$ the same, both " 0 " or both " 1 ". we are operacing in the + silp regime and tior response is a " 1 " output.

The ENOR output is applied to an OR Gate in conjunction with the oSL logic output. Anytime a " 1 " appears out the OR Gate, maximum pressure is demanded by the PCY Driver.

The result is a control system that controls pressure to maintain the traction junction operating at slope calculations


```
A hybrid sontrol \({ }^{i}\) abil
corque ensing in filloso; hy can replace the need for the spiral bevel to assist loading ased cone wounting using torque. torque.
```

```
operat can be seen that low slope valuea vill rasult from But che correct respone prax o: frou external load influences. correct response is increased pressure in both cases.
It can be seen that an external load increas slip to increase actuill an external load increace cassing slip to increase actusily zoves the operating point toward the produce also produces the correct slope calculation change to produce a corrective response.
But
But a load decrease (wich is in the aafe direction) could falsely inlicate nuar peak conditions and improper resporso (but safe) of increased pressure would reault.
\(1 f\) If
If a basic slip controller therefore were used as the primary control and slope calculations as a modifier are intruduced, a system of pressure response to slip (loid influence) around a selected slope point evolves.
```



```
and applifed to the slip slope error values would be averaged lifier. An oscillator could be reference vin a suming amplifier. An ogcillator could be used to insure continuous A TCP Dy providing 2 fixed dither signal to the demand; althoigh the use of the integrator in che ayatem as wail as dynamic loads may prove adequate on their own. See Eigure 39, page 102 . Gut
if In this manner a reasonable (safe) starting slip value may be establighed and the average slope error used to bring the reference into iine with environmental conditions but under short term transient conditions, respond to \(\triangle C S\) as load signals. on The net effect is a traction irive under torin responat with slip calculations responses to operate at or near peak triction cone control slope logic as well as \(\triangle C S\) ond CS modifiers conditions. And operation in + wlip regime. and CS modifiers to preclude operation in + slip regime. \(\because\)
```



``` complisnce to the dither signal necessitate a high degree of complisace to the dither signal as the slope values would need to be preciominately based on controlled \(\triangle T C\) ? effects on ACS in time frames nuch faster than acs produced of normal vehicle load changes.
This all becomes possible because for a given set of conditions there is a particular aCS in response to ATCP at specific operating slopes and lower fraquency dither may now be appliad and the baseline aTCP/ \(\triangle C S\) tiltered out. The remaining \(1 T C P\) and \(A_{C S}\) are vehicle load effect: and slip
```


 control response induced. The specific relationship of A TCP to $\triangle C S$ need not be known as it will change as a function of environmental variables. But on the average that informetion filters into the basic slip control and updates

In terme of tima, the aystem hydromechanical reaponse from no preseure to maximum presture ia $30-100$ gilli-seconds.

The presaure avallable it calculated at twice that roquired to handle peak design horsapower. ISo from zero to full load control capability in 25-50 milli-seconds; usual vehicle load chaingea are much alower than that and even thock loada s : (transients) would range from $100-300$ milli-seconds. Rubber tires, axles, drive shafts and the like, absorb most load spikes but lf necessary a torslonal coupling may be added to smooth out road hhock permitting the computer adequate time to respond.

USt
Optlmus operating slip will only change over a period of 1-5 ectonds with cemperature, speeds or ratio eeting sid alope averaging would allow $0,5-1$ second to make corrections to the silp reference.

1.

These basle concepte vere provided in analog form to becter facilitate comprehonaion. obviously uch a yatem may be conrerted to digital and placed under the control of a microprocessor.
 menta, temperature drift, non-linearitio calibration require. Its advantege iure drift, non-linearities and physical ilze. performing cont constant monltoring and a dediceted aystem

The microproceasor (MPU) (programmable) provides graster flexibiliey durling development; smaller packaging and figher toped as vell is is avallable to perform other caiks on a time sharing batis it suffers from senifivity to environmental electrical noise such as fans, curnlight flasherg and spatk plug firings. it can soon loge in termat of apeed because of the program required to fulfill complex computations.

The best ali around system would appear co be hybrid betwetn an HPV and analos converalong. by converting monitored date Into analog form, then multiplex that data elther directly or through a logrithmic converter, to an "anelog to disftal converter, allowe ut to supply a hish apeed mpus with digital numbers that need only to be added or suberacted (4 computer cyclea) to achieve adaition, subiraction, eultiplica. cion, or division.
 by the nomel unltiple prectéan tipication and division time ion or suberaction tha value of the number being processed and uatilly requiris a few hundred cycles if numbers large enough to provide 0.1% accuracy or resolution are used, (i.e.. 1,000 or greater is 10 Bite minimun in binary). Ifte, ojsin
ifit An alternative is to upply a ROM (Rad Only Memory) for logrithilc valuea over operating-ranges and 1 et input data adrass ite logrithmic equivalent for use by the MPU. This would basically double hPU cycles to 8 but eliminates multi. plexar and analog-logrithmic and analog ant" og converaiona. This would be an overall prefarred technique. It allowa minimizing procesaing tiwe without the bulk and complicatione of added external analog procesing. a
or exaple if the TSO ard Tsi dise has 60 aperatures and TSO is apinaing at $10,000 \mathrm{Rpm}$, each aperature would occupy 0.0001 of a second or 100μ eacond (100 mililonthe at apy econd). Using an internal clock frequency of 10 Miz (10 million cycles per second) 1,000 clock, pulsee would be counted per aperature. TSI at 5,000 Rpm meang 2,000 counta would accumulata, if ppeed were important for display. the MPU would divide $10,000,000$ by the counts accumulated.
$10,000,000 / 1,000=10,000 \mathrm{Rpm}$
$10,000,000 / 2,000 \cdots=\quad 5,000 \mathrm{Rpm}$

However, that tep is not necesiary to control, at previously shown, since the syatam is looking at ratios Therefore the counts would addreas a log equivalent pesmory and the respective logs would be aubtracted. The $\log _{10}$ of $1,000=3.000$ the $\log _{10}$ of $2,000=3.3010$.
$3.3010=3.000=0.3010$. The int1108 of $0.3010=2.000$ or te equivalent to $10,000 / 5,000=2.000$. If the clock frequency is not exact auch that $10,000=8,260$ for example.
$8,260 \mathrm{kpm}=1,210,65$ counts $(1,210)$ and the $\mathrm{log}_{10} 1,210$. 3.0828. 16,520 Rpm $=605 . \log _{10} 605=2.7818$.
$3.0828-2.7818=0.1010$ the
Drift becomes relativoly unfmportant.
 voleage controlied onalilator (y)
 brated to produce a frequency of $2,000 \mathrm{~Hz}$ at the $2 / 1$ roller-cone poision. one VCO eycle vould be timed. at $2,000 \mathrm{~Hz}$ the pulie width would cause 5,000 counte to accumiate. This vould be
converted to $\log _{10}$ of $5,000=3.6990$ and would be subtracted from a memory fixed of 4,000 . ($\log _{10}$ of 10,000 counts) 4.000 - 3.6990 - 0.3010.

The $2 / 1$ roller-cone ratio computed above in $\log _{10}$ form of 0.3010 1s abtrected from TSR - 0.3010 and the resulte $=0.0000$. the antilog of $0.000-1.000$ or $1 / 1=n 0$ allpl

Undar the above asoumptions it may be sean that if the roller apead vai 3,000 Rpm but the cone apeed of 10,000 Rpm was not present because of 3% alip + (a cone apeed of 10,500 would exint) the cone count vould equal 952.38 (952). The $\log _{10} 952=2.9786$:
$3.3010: 2.9786-0.3224$ at the $\log _{20}$ of roller-cone ratio. 'This ratio minue the predicted racio by TSR of 0.3010 equal: $0.3224-0.3010=0.0214$. The antilog of $0.0214=1.05$ or 3% more speed than there should be.

This philosophy can be extended throughout the syateri and need not be duplicated in this precentation. Due to the control complexity and the amount of multiplication and diviaion data, $\log _{10}$ converifion bifore YPU processing is dictated. The appropriate sytes of 10 R RON is preferred but may be achieved

A logrithaic amplified could convert analog inpute bafore che analog to digital converilon. In which caso the frequency converstion would ined to be made or priferably ust amall voltage generatore. But alace $\log _{10} 1,111: 0.0457, \log _{10}$ $11.11-1.0457, \log _{10}$ of $111.1-2.0457$ and $\log _{10}$ of 1,111-9.0457, aranging unit can be used to aseign the characteriesic while digit decoding may be used to addreat the los 10 of four ($1^{\prime} 1$). This cuts memory capacity requirements

To ainfalze mechanical fabrication raquiramenti for extrame tollerance between open and cloged duty cycle (See figure 40. page 106, the XPU Is edge exiggered and begine counting the clock with positive or negative transition of the incoming simal. It continues to count until the next "like", ribing or falling aignal is recalved. It counte from leading edge to leading edge or tralling edge co tralilng edge. This disuinates cutter ifee to dipc clrcuaference relationishp probleme other. whe requited to keep the duty cycie balanced. in the preceding example only the aperature wat conaldered and that alio ell. minates duty cycle balance but if the RPU is to valt for an

The output oped of the planetary is a fixed relacfonship to the sun gear speed (TSI) and ring gear speed (TSO): Where:

```
WS - Sun Rpm - TSI
KR \(=\) RIng R \(\psi\) m \(=\) TSO
WC = Carther kpu = Output = VSO
Sx = Sun redius
Rx = Ring vadius
Cr - Carrier radius = center of planet geare to atm
                    gear center.
    \(X=\) Constant taking tire size, rear axie ratio,
                etc. Into account for conversion into Moh
            \(\mathrm{H}_{\mathrm{C}}=\frac{\mathrm{WSSr}-\mathrm{WRRI}}{2 \mathrm{CT}}\)
```

Cone gear coupling ratio $=\langle\mathrm{Cgr}\rangle$
$v S O=K\left(\frac{\operatorname{TSI}(S r) \cdot T S O(C g r)(R r)}{2(C r}\right)$

Since these signals are avallable the additional conven-

: ISC is further modified to take into account the current operating conditions of the motor. in other vords, a large differential between VSD and VSO would generally mean rapid shift of TSC to incresse VSO, such that vehicle acceleration corresporis to driver demand, But ISC is offact if the engine is belng overloaded (Rpm below optymum for demand) and a decielon to downehift ISC and increase throttle could reault. decision the final vehicle reaponse le stili heavy acceleration for large demand differential to current apeed.

If VSD-VSO is negative the reaults may be ignored and a coast down would occur. To beat imulate today driver feel the - renult can cause alou domithift of TSC or CREEP gignal, dupilcating normal vehlele cosst down with the driver' foot removed from the pedal.

APD becomes a modifier for Creep. Ae a larger BPD is detected creep is increased causing a more rapid downhfft of TSC resultisg in regenerative braking. SPD is det as "master" to that presiing toth pedels produces braking.

The combinstion of regenerative braking vith normal brakes providen most culcable arrangement in that under gentle Graking TSC is cauling recovery of energy. sut should more, rapid Sraking be dictated and slip itarts to override tSC then the increased gedal pretsure (which le normal driver respcnse even wheh power brakes) causes normal braking to become
 energy is belng lost but getting stopped sefely is more important than capturing energy at this poinc. This system not only provides smooth transition from TSC regenerative braking to normal braking but insurea maximum regeneration will be utilized and even with transmisaion fallure leaver the driver with ample normal brakes as a afety backup.

Having TSC shift tpeed tied to the magnitude of vSD-vio makes the response dupilicate conventional driving of torque demand with an acceleracor pedal.

Crulse may te accomplished in a conventional manner by storing VSO, at the moment cruise is set, into the werory for reference in lieu of VSD. VSD can override VSO memery for temporary increases in speed, larger value a demand result, by OR logic.
TSC - (VSO Memory or VSD) - VSO.

Notice that a TSC mean road speed ...th In the crulse mode TSC may respond to maintsin constant road country. to be in silight regenerative braking in hilly country. to be used to climb the next hill.
$3=x=-4 b=4$
BPD Will clear crulie as normal. it would add to the usual array of buttons an Increment (increase) and Decrement (decrease) memory butcon. This would proyide finite trimirg of crulse speed to suit speed ilmics, traffic or weather conditions.

Logic may be provided to preclude going into reverie
 with +850 computed and vice-versa. A gottom limit to this interiock hould be provided to permit rocking the vehicle sa a weans of removal from mud or snow, 1.e.. below 2-3 mph.

With the computer on board one added safety feature can be easlly accomplished.

By ponitoring VSO, and corparing it with frame accelero. meter, okidding may be precluded. The computer would know when tire eraction was beling lost and could override normal TSC Or BPD aignais. To take advantage of the posiciblility for antipkid circuitry the direct prefiure link between the pedal (APD) and the whelle would need to be broken to that a compoaite preaure algnal from the pedal and the computer activates cyllader presture.

This excluding any dealred atartup or shut down sequences, added safety, or auxlliary indicstor functions and fiyhheel monitorlng and clutch control, would conclude a controle package tor the CVT presented.

```
M,
The flywheel may engage only during braking until an operating speed range is achieved, at which time it remain engaged. The motor controls in conjunction with isc wint maintain operating speed on the flywheel at well as control vihicle speed. A sutdown sequence by removing the key could cause an output clutch to disengage and engage the motor, causing it to brake the flywheel by generating into. the batterles. (If the motor is designed to produce counter emf). " \(\because 2\) :
In the final analysis the control technology exists. The final design to be predicated by details of the application and desired fearures in performance, which must be weighed against size and cost of an MPU to achieve all the functions reliably in acceptable cime frames.
```


APPENDIX D

\vdots GEAR WINDAGE POWER LOSS
P.L. $\left[\frac{p^{\prime}}{\rho}\right]\left(N^{3}\right)\left(\mathbf{N}^{5}\right)\left(\ell^{7}\right) / 10^{17}$
$\left[\frac{\rho^{\prime}}{\rho}\right]=1.5$ FOR JET LUBRICATION NO ROTATING
PARTS SUBMERGED.

BEVEL PINION:

$$
\begin{aligned}
& \text { P.L. }=(1.5)(23479)^{3}(1.54)^{5}(.5) \cdot 7 / 10^{17} \\
& \text { P.L. }=.0001 \mathrm{HP}
\end{aligned}
$$

BEVEL GEAR:

$$
\text { P.L. }=(1.5)(16552)^{3}(2.1)^{5}(.5) \cdot 7 / 10^{17}
$$

$$
\text { P.L. - . } 00017 \text { нР }
$$

IOLER HELICAL:

P.L. $=(1.5)(16552)^{3}(1.54)^{5}(.5)^{.7} / 10^{17}$
P.L. - . 00004 HP

APPEMDIX E

BEARING LUBRICATION FACTOR(REF. 5)
BEARING $\quad m(\mu \propto)^{.7}(N) .7\left(\mathrm{PO}^{-.09} \mathrm{IF}^{-.09}\right.$

ROLLER CONE SUPPORT
$(6.5)\left(10^{4}\right)(5.5)\left(10^{-8}\right)(1146)(.59)(2.14)>3.0$

BALL, DUPLEX CONE SUPPORT
$(8)\left(10^{4}\right)(35)\left(10^{-8}\right)(1080)(.65)(30.9) \times 3.0$

APPENDIX F

TRANSMISSIOH RATIO ANALYSIS

$\mathrm{N}_{\mathrm{O}}=$ OUTPUT SHAFT SPEED, SUN DRIVING $=\left(\right.$ RPM $\left._{s}\right)\left(R_{P}\right)$

$$
R_{p}=\frac{N_{8}}{8_{s}+N_{r}}=\frac{40}{40+100}=.2857
$$

$R P M_{B}=$ SUN SREED $=$ Fiywheel RPM $_{n} / 2.9166$
$N_{0:}=.2857 \mathrm{RPM}_{3}$
$N_{o x}=$ OUTPUT SHAFT SPEED, RING DRIVING $=\left(\right.$ RPM $\left._{Y}\right)\left(R_{r}\right)$
$R_{r}=\frac{N_{r}}{R_{s}+R_{r}}=\frac{100}{40+100}=.7143$
$\mathrm{H}_{O T}=.714 \mathrm{IRPM}_{\mathrm{RP}}$
RPM $=\left(\right.$ RPM $\left._{3}\right) \frac{\text { ROLLER DIA }}{\text { COME DIK }}$ (BEVEL LDLER RATIO)
$=\left(R P M_{S}\right)\left(R_{C}\right)\left(R_{B}\right)$
$N_{0}=$ OUTPUT SHAFT SPEED
$=N_{O r} \mathrm{~N}_{\mathrm{O}}$
$N_{0}=\left(.7143 R_{C} R_{B} \cdot .2851\right) 8 P M_{S}$
$R_{B}=\frac{19}{27} \cdot \frac{21}{49}=.3016$
$\mathrm{N}_{0} *\left(.2154 \mathrm{R}_{\mathrm{c}} \cdot .2857\right) \mathrm{RPH}_{s}$

ilywhee1 RPM	RPM $_{s}$		R $_{c}$	RPM $_{\text {out }}$
14.000	4800	4.651 .75	S038	
21,000	7200	$4.65 / 1.426$	3500	
28.000	9600	$4.65 / 2.68$	843	

Table 101

Tcble 11:

APPENDIX H

INPUT PLANETARY SUN LOSS FACTOR

$$
\mathrm{H}_{\mathrm{T}}=.394
$$

$$
P_{L}=\frac{(50)(.03)\left(\cos ^{2} 30^{\circ}\right)}{\cos 19.7339}\left[\frac{.353^{2}+.394^{2}}{.353+.394}\right]
$$

$$
P_{L}=.448 \%
$$

$$
\begin{aligned}
& P_{L}=\frac{50 f \cos ^{2} Y}{\cos Y_{T}}\left[\frac{H_{I}^{2}+H_{S}^{2}}{H_{T}+H_{S}}\right] \\
& H_{S}=\left(\frac{M_{g}+1}{H_{g}}\right)\left[\sqrt{\left.\left(\frac{r_{0}}{r}\right)^{2}-\cos ^{2} Q_{N}-\sin \theta_{N}\right]}\right. \\
& -\left(\frac{41 / 19+1}{41719}\right)\left[\sqrt{\left(\frac{1.05}{.97}\right)^{2} \cdot \cos ^{2} 19.7339}-\sin 19.7339\right] \\
& H_{S}=.353 \\
& H_{T}=\left(M_{g}+1\right)\left[\sqrt{\left(\frac{R}{R}\right)^{2}-\cos ^{2} \theta_{N}}-\sin \theta_{N}\right] \\
& =(41 / 19+1)\left[\sqrt{\left(\frac{2.15}{2.05}\right)^{2}-\cos ^{2} 19.7339}-\sin 19.7339\right]
\end{aligned}
$$

APPENDIX I

INPUT PLANETARY RING GEAR LOSE FACTOR
$P_{L}=\frac{50 f \cos ^{2} \psi}{\operatorname{Cos}}\left[\begin{array}{c}\dot{H}_{T}{ }^{2}+H_{S}^{2} \\ \mathrm{H}_{\mathrm{T}}+\mathrm{H}_{S}\end{array}\right]$
$H_{S}=\frac{H_{8}-1}{r_{8}}\left[\sqrt{\left(\frac{r_{0}}{r}\right)^{2}-\cos ^{2} \theta_{N}}-\sin \theta_{N}\right]$
$=\frac{79 / 19}{79719}=1\left[\sqrt{\left(\frac{1.05}{.95}\right)^{2}-\cos ^{2} 19.7339}-\sin 19.7339\right]$
$H_{S}=.1835$
$H_{I}=\left(M_{g}-1\right)\left[\sqrt{\left.\left(\frac{R_{0}}{R}\right)^{2}-\cos ^{2} N_{N}-\sin \theta_{N}\right]}\right.$
$=(79119-1)\left[\sqrt{\left(\frac{3.95}{3.85}\right)^{2}-\cos ^{2} 19.7339}-\sin 10.7339\right]$

$$
\mathrm{H}_{\mathrm{T}}=.2228
$$

$P_{L}=\frac{\left(50(.03)\left(\cos ^{2} 30\right)\right.}{\cos 19.7339}\left[\frac{.1835^{2}+.2228^{2}}{.1835+.2228}\right]$
$P_{\mathrm{L}}=.245 \%$ (PER MESH)

Table 13:

APPENDIX L

OUTPUT PLANET SPEED DERIVATION

$$
\begin{aligned}
& R P M_{P L}\binom{N_{r}}{N_{P}} R P M_{Y}+\binom{N_{s}}{N_{P}} R P M_{s} \\
& R P M_{C}=\left(R P M_{s}\right)\left(R_{c}\right)\left(R_{R}\right) \\
&=\left(R P M_{s}\right)\left(R_{c}\right)(.3016) \\
& R P M_{P L}=\left[(.3016)\left(\frac{100}{40}\right) R_{c}+1\right] \mathrm{RPM}_{s} \\
&=\left(.754 R_{c}+1\right) \mathrm{RPM}_{s}
\end{aligned}
$$

${ }^{R P M_{P L}}$

Table 14 :

APPENDIX M

OUTRUT PLANETARY SUN-PLANET POWER LOSS FACTOR

$$
\begin{aligned}
& P_{L}=\frac{50 f \cos ^{2} Y}{\cos \boldsymbol{V}}\left[\begin{array}{l}
H_{S}^{2}+H_{T}^{2} \\
\mathrm{H}_{S}+\mathrm{H}_{T}
\end{array}\right] \\
& H_{T}=\frac{\mathrm{MB}_{3}+1}{\mathrm{H}_{g}}\left[\sqrt{\left(\frac{r_{0}}{\mathrm{r}}\right)^{2}-\cos ^{2}}-\operatorname{SIN}\right] \\
& -\frac{40 / 30+1}{40 / 30}\left[\sqrt{\left(\frac{1.6}{1.5}\right)^{2}-\cos ^{2} 20}-\sin 20\right] \\
& \mathrm{H}_{\mathrm{I}}=.2847 \\
& H_{S}=(40 / 30+1)\left[\sqrt{\left(\frac{2.1}{2 / 0}\right)^{2}-\cos ^{2} 20}-\sin 20\right] \\
& \mathrm{H}_{\mathrm{S}}=.2951 \\
& P_{L}=\frac{(50)(.03)\left(\cos ^{2} 30\right)}{\cos 20}\left[\frac{(.2847)^{2}+(.2951)^{2}}{.2847+.2951}\right] \\
& P_{L}=.347 \%
\end{aligned}
$$

APPENDIX N

 OUTPUT PLANETARY PLANET-RING POWER LOSS FACTOR$$
\begin{aligned}
& P_{L}=\frac{(50)(.03)\left(\cos \frac{1}{2} Y\right)}{\cos 20} \frac{H_{S}^{2}+H_{I}^{2}}{H_{S}+H_{T}} \\
& H_{T}=\frac{M_{g}-1}{M g} \quad\left[\sqrt{\left(\frac{x_{0}}{r_{1}}\right)^{2}-\cos ^{2} \theta}-\sin \theta\right] \\
& =\frac{100 / 30-1}{100 / 30}\left[\sqrt{\left(\frac{1.6}{1.5}\right)^{2}-\cos ^{2} 20}-\sin 20\right] \\
& \mathrm{H}_{\mathrm{T}}=.1139 \\
& \begin{array}{l}
T=.1139 \\
H_{S}=(100 / 30-1)\left[\sqrt{\left(\frac{5.1}{5.0}\right)^{2} \cdot \cos ^{2} 20}-\sin 20\right]
\end{array} \\
& \mathrm{H}_{\mathrm{S}}=.1276 \\
& P_{L}=\frac{(50)(.03)\left(\cos ^{2} 30\right)}{\cos 20}\left[\frac{(.1139)^{2}+(.1276)^{2}}{.1139+}\right] \\
& { }^{8} L=.145 \%
\end{aligned}
$$

APPENDIX 0
OUTPUT PLANETARY ASS POWER DERIVATION

$$
\begin{aligned}
& T_{0}=\frac{63000 ~ H P_{0}}{R P_{0}} \\
& T_{s}=\frac{T_{0}}{3.30}=.2857 T_{0} \\
& W_{T}=\frac{2}{} \frac{T s}{D s} \\
& T_{P L}=\left({ }_{T S}\right)\left(R_{P L}\right) \\
& =\frac{2 \mathrm{Ts}}{\mathrm{DS}}\left(\mathrm{R}_{\mathrm{PL}}\right) \\
& -\frac{2 \mathrm{~T}_{0}}{(3.5)^{\mathrm{DS}}}\left(\mathrm{R}_{\mathrm{PL}}\right) \\
& =\frac{63000 ~}{\left(3.5 P_{O}\right.}\left(R P M_{0}\right)\left(\frac{D P}{D S}\right) \\
& =\frac{13500 \mathrm{HP} \mathrm{o}_{\mathrm{O}}}{R 2 H_{0}} \\
& H P_{P L}=\frac{T_{P L}{ }^{\text {RPM }}{ }_{P L}}{(63000)(4)} \\
& =\frac{13500 \mathrm{HP}}{2 P \mathrm{H}_{\mathrm{O}}} \quad \frac{\mathrm{RPM}_{\mathrm{PL}}}{(63000)(4)} \\
& H P_{P L}=.0536\left(H P_{0}\right)\left(\begin{array}{c}
\mathrm{RPM}_{P L} \\
\left.\frac{R P H_{0}}{}\right)
\end{array}\right.
\end{aligned}
$$

APPENDIX P

OUTPUT PLANET POWER

$$
\mathrm{HP}_{\mathrm{PL}}=.0536 \mathrm{HP}_{\circ}\binom{\mathrm{KPH}_{\mathrm{PL}_{2}}}{\mathrm{RPH}_{\mathrm{O}}}
$$

7.5KH (10 HP)

15KW (20 HP)			
5000	7.87	6.84	5.81
4000	2.89	7.61	6.33
3000	10.61	8.90	7.18
1500	17.48	14.05	10.61
850	27.96	21.91	15.86
$30 \mathrm{KW}(40 \mathrm{HP})$			
5000	15.74	13.68	11.62
4000	17.78	15.23	12.65
3000	21.23	17.80	14.37
1500	34.95	28.09	21.23
850	55.93	43.82	31.73

APPENDIX P (continued)

32 KW (70 HP)

5000
4000
3000
1500
850

7516 (100 HP)
5000
4000.

3000
1500
850
000

27.54	23.94	20.34
31.12	26.64	22.14
37.15	31.15	25.14
61.16	49.16	37.15
$* 97.87$	$* 76.69$	± 55.52

39.34
34.20
29.05
38.06
31.63
44.49
35.92
*70.23
*53.07
*109. 56
*79. 32

*NOTE: The values shown do not reflect the limiting wheelslip torque of 330 FT. LBS.

Table 15: (Continugd)
125

APPENDIX R

SPIRAL BEVEL GEAR POWER LOSS FACTOR

$$
P_{L}=(50)(.03)(\cos 5.433+\cos 3.817)\left[\frac{.3629^{2}+.2955}{.3629+.2955}\right]
$$

$$
P_{L}=.807 \%
$$

$$
\begin{aligned}
& P_{L}=50 f(\cos \Gamma+\cos \gamma) \frac{\cos \psi^{2}}{\cos }\left[\begin{array}{l}
\mathrm{H}_{S}^{2}+\mathrm{H}_{T}{ }^{2} \\
\mathrm{H}_{S}+\mathrm{H}_{T}
\end{array}\right] \\
& \Gamma=5.433^{\circ} \\
& \gamma=3.817^{\circ} \\
& \gamma=30^{\circ} \\
& \phi=22.5^{\circ} \\
& f=.03 \\
& H_{T}=\frac{M_{g}+1}{M_{B}}\left[\sqrt{\left(\frac{r_{0}}{r}\right)^{2}-\cos ^{2} \theta_{N}}-\sin \theta\right] \\
& =\frac{27 / 19+1}{27 / 19}\left[\sqrt{\left(\frac{1.539}{1.400}\right)^{2}-\cos ^{2} 22.5}-\sin 22.5\right] \\
& \begin{array}{l}
H_{T}=.3629 \\
H_{S}=(\mathrm{Mg}+1)\left[\sqrt{\left(\frac{R_{0}}{R}\right)^{2}-\cos ^{2}-\sin }\right]
\end{array} \\
& H_{S}=(27 / 19+1)\left[\sqrt{\left(\frac{2: 095}{5.99}\right)^{2}-\cos ^{2} 22.5}-\sin 22.5\right] \\
& \mathrm{H}_{\mathrm{S}}=.2955
\end{aligned}
$$

APPENDIX S

HELICAL IDLER GEAR DATA

	PINION	GEAR
N	21	49
${ }^{\text {P }}$ I	14.894	
${ }^{1}$	21.789°	
Ψ	24.427°	
D_{P}	1.41	3.2899
D	1.544	3.4242
D_{R}	1.2\%2	3.1019
R_{E}	. 035	. 035
5	. 50	. 50
t	. 104	. 103
$P_{\text {N }}$	16.358	
${ }_{\mathrm{N}}$	20°	
c	2.350	

APPENDIX T

HELICAL IDLER POWER LOSS FACTOR

$$
\begin{aligned}
& \nabla_{c}=\frac{50 f \cos ^{2} \psi}{\cos }\left[\frac{\mathrm{H}_{S}{ }^{2}+\mathrm{H}_{\mathrm{T}}{ }^{2}}{\mathrm{H}_{S}+\mathrm{H}_{T}}\right] \\
& H_{S}=\frac{M_{g}+1}{M g}\left[\sqrt{\left(\frac{r_{0}}{r}\right)^{2}-\cos \theta^{2}}-\sin \theta\right] \\
& =\frac{49 / 21+1}{49 / 2 I^{-}}\left[\sqrt{\left(\frac{1.544}{1.4)^{\circ}-\cos ^{2} 20^{\circ}}\right.} \cdot \sin 20^{\circ}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left(49 / 21 \text { H) }\left[\sqrt[N]{\left(\frac{3.4242}{3.2899}\right)^{2}-\cos ^{2} 20}-\text { sIN } 20\right]\right. \\
& \mathrm{H}_{\mathrm{T}}=.3517 \\
& P_{I}=\frac{(50\rangle(.03)\left(\cos ^{2} 24.427\right)}{\cos 20}\left[\frac{(.3146)^{2}+(.3517)^{2}}{.3146+.3517}\right] \\
& P_{L}=.444 \%
\end{aligned}
$$

MEAN CONDION:

$$
\begin{aligned}
& \mathbf{R}_{1}=\text { RESULTANT LOAD }=29.35 \stackrel{\text { a }}{+}+345.6=345.8 \mathrm{LB} . \\
& H_{c r}=\left(R_{1}\right)(1)=(346.8)(.412)=163.8 \mathrm{tN} . \text { LB. } \\
& t=.049 D^{4}=(.049)(.67)^{4}=.0099 \mathrm{IN} .4 \\
& S_{\mathrm{g}}=\frac{\mathrm{Mc}_{\mathrm{c}}}{\mathrm{C}}=\frac{(163.8)(335)}{.0099}-\underline{3560} \mathrm{PSI}
\end{aligned}
$$

MAXIMUM CONDIGN:

$$
\begin{aligned}
& S_{B}-M_{i}^{c}=R_{1}^{\prime} \lambda \frac{c}{I}=\frac{(2350)(.412)(.339)}{.0099} \\
& S_{8} * 31,330 \mathrm{PSI} \\
& \star \xrightarrow{f}=\sqrt[2]{a^{2}+b^{2}}
\end{aligned}
$$

APPENDIX Y

CONE HORSEPOWER DERIVAIION

HP CORMULA:

$$
\begin{aligned}
T_{0} & =\frac{\left(H P_{0}\right)(6300)}{R F M_{0}} \\
T_{r} & =\left(T_{0}\right)\left(1-R_{P}\right) \\
H P_{c} & =\frac{\left(T_{c}\right)\left(R P H_{c}\right)}{(63000)(4)} \\
& =\frac{\left(T_{r}\right)\left(R_{0}\right)\left(R P M_{c}\right)}{(63000)(4)} \\
& =\frac{\left(H P_{0}\right)(63000)\left(R P M_{c}\right)\left(1-R_{R}\right)}{\left(R P H_{0}\right)}
\end{aligned}
$$

$H P_{c}=\frac{\left(H P_{0}\right)\left(R_{b}\right)\left(R P M_{c}\right)\left(1-R_{p}\right)}{(4)\left(.2154 R_{c}-.2857\right)\left(R P H_{B}\right)}$
$H P_{c}=\frac{(H P)(.3016)\left(R_{c}\right)(.7143)}{(4)\left(.2154 R_{c}-.2857\right)}$
$H P_{c}=\frac{(.0539)\left(H P_{0}\right)\left(R_{c}\right)}{\left(.2154 R_{c}-.2851\right)}$

APPENDIX H

$$
\begin{aligned}
& L=K_{4}\left(K_{2}\right) .9(Q)^{-3}(E)^{-6.3}(R)^{-.9} \\
& K_{4}=6.43 \times 10^{8} \\
& K_{2}=1.3 \times 10^{6} \\
& Q=498.5 \mathrm{LB} \\
& E=\frac{1}{2.325}+\frac{1}{5}+\frac{1}{.722}=2.015
\end{aligned}
$$

$L=\left(6.43 \times 10^{8}\right)\left(1.3 \times 10^{6}\right)^{.9}(498.5)^{-3}(2.015)^{-6.3}(.722)^{-.9}$
-2.68×10^{4} (MR)
$L_{10}=\frac{2.68 \times 10^{4} \mathrm{MR}}{(60)(23479)}=19,020$ HOURS (Single cone iffe)

APPENDIX X

```
TRACTION ROLLER LIFE AT YEAN CONDITION (REF. 3)
\[
L=K_{4}\left(K_{2}\right)^{.9}(Q)^{-3}(E)^{-6.3}(R)^{-.9}
\]
\[
x_{4}=6.43 \times 10^{8}
\]
\[
\mathrm{k}_{2}=1.3 \times 10^{6}
\]
\[
Q=498.5 \mathrm{LB} .
\]
\[
\text { E }-\frac{1}{2.325}+\frac{1}{5}+\frac{1}{.722}=2.015
\]
\[
L=\left(6.43 \times 10^{8}\right)\left(1.3 \times 10^{6}\right)^{.9}(498.5)^{-3}(2.015)^{-6.3}(2.325)^{-.9}
\]
\[
L=9.36 \times 10^{3} \mathrm{MR}
\]
\[
L_{10}=\frac{\left(9.16 \times 10^{3}\right)\left(10^{6}\right)}{(7200) \frac{(60)}{(4)}}=3420 \text { HOURS }
\]
```


APPENDIX Y

> TRACTION CONTACT COMPOSITE LIFE at mean condition

APPENDIX 2

Table 1al

* the numbers shown are theoretical only. the maxtmum hreel SLIP TORQUE OF 130 ft . LBS. LIMITS THE CONE TORQUE.

Table isi contin:ed

APPENDIX AA

SINGLE CONE HORSEPOWER (HP)
$H P=\frac{(.0539)(4 P 0)(20)}{(.2154)(R C) \cdot .2857}$

Table 191

ORGMAL PAGE IS OF FCOR QUALITY

APPENDIX AA (continued)

52KH (70 KP)	.		
5000	27.13	24.72	22.32
4000	29.53	26.52	23.52
3000	33.53	29.53	25.52
1500	49.33	41.33	33.53
850	74.10 (\$6.53)	39.94 (45.73)	45.76 (34.91:
75KW (100 HP)			
5000	38.73	35.39	31.89
4000	42.18	37.89	33.60
3000	47.90	42.18	36.46
1500	10.63(66.69)	39.32(\$5.91)	47.90 (45.15:
850	105.85(56.53)	85.63(45.73)	65.37 (34.91:

NOTE: THE MAXIMOM WHEEL SLIP TORQUE OF 330 FT. LBS. LIMITS the cone horseponer to the values in parenthesis.

Table 191 Continued

APPENDIX 88 (continued)			
52KW (70 HP)			
5000	108.5	98.88	89.28
4000	118.1	106.1	94.08
3000	134.1	118.1	102.1
1500	198.1	166.1	134.1
850	296.4(226.1)	239.8(182.9)	183(139.6)
75KW (100 HP)			
5000	155.0	141.6	127.6
4000	168.7	151.6	134.4
3000	191.6	168.7	145.8
1500	282.5(266.8)	237.3(223.6)	191.6(180.6)
850	423.4(226.1)	342.5(182.9)	261.5(139.6)

NOTE: THE MAXIMMM WHEEL SLIP TORQUE OF 330 IT. LBS. LIMITS the cone horsefoner to the values in parentheses ().

Table 201 Continised

APPENDIX CC
CONE NORMAL LOAD (LB.)

$$
W_{N}-\frac{2 T_{c}}{.07^{c} D_{\text {cone }}}
$$

7.5KW (10 HP)

$\quad R P M_{\mathrm{n}} \longrightarrow$	28.000	21,000	14,000
RPMO			
5000	136.20	189.82	256.95
4000	170.11	203.67	271.03
3000	193.09	226.81	294.03
1500	285.34	318.98	386.01
850	426.81	460.53	527.99
15kH (20 HP)			
5000	312.40	379.65	513.91
4000	340.21	407.34	542.06
3000	386.18	436.62	588.05
1500	370.61	631.96	172.02
850	853.62	921.06	1055.98
30 KH (40 HP)			
5000	624.80	739.30	1027.81
4000	680.42	814.68	1084.12
1000	172.37	801.23	1176.10
1500	1141.34	1275.92	1544.03
850	1707.24	1842.11	2111.96
\$2KH (70 HP)			
5000	1093.40	1328.71	1798.68
4000	1190.14	1423.69	1897.21
3000	1351.64	1581.66	2058.18
1900	1991.15	2234.86	2702.09
850	$\begin{aligned} & 2981.99 \\ & (229133) \end{aligned}$	$\begin{aligned} & 3224.04 \\ & (2452.93) \end{aligned}$	$\begin{gathered} 3696.33 \\ (2812.23) \end{gathered}$

Table $21:$

APPENDIX CC (continued)

$75 \mathrm{KW}(100 \mathrm{HP})$			
5000	1562.00	1898.24	2569.54
4000	1701.06	2036.70	2710.30
3000	1930.92	2268.08	2940.26
1500	2853.36	3189.79	3860.13
	(2685.66)	(3002.32)	(3633.26)
850	4268.10	4605.28	3279.90
	(2273.33)	(2452.93)	(2812.25)

NOTE: THE MAXIMMM WHEEL SLIP TORQUE OF 330 FT. LB. LImits the cone normat load to the values SHOWN IN PARENTHESES.

Table 21: Continued

Table 22: Continued

APPENDIX RE

SPIN VELOCITY DERIVATION

TANGENTIAL VELOCITY $=\frac{D_{\text {roll }}}{2} \cdot\left(\right.$ RPM $\left._{s}\right)$ $\mathrm{RPM}_{s}=$ Flywheel $_{\operatorname{RIP}}^{\mathrm{n}} / 2.9166, \nu=\left(\frac{2 \pi}{60}\right)\left(\frac{1}{2}\right)\left(\frac{4.65}{39.37}\right)\left(\mathrm{RPM}_{8}\right)$

$$
\nu=.00618\left(\mathrm{RPM}_{S}\right) \mathrm{H} / \mathrm{SEC}
$$

$$
W_{s}=\frac{\Delta V_{1}}{a}
$$

$\Delta V_{1}=W_{c}\left(R_{1}\right)-\left(W_{R}\right) R_{R o 11}$
$\begin{aligned} \Delta V 1 & =W_{c}\left(R_{\text {cone }}+a \operatorname{TAN} \propto\right)-\left(W_{R}\right) R_{\text {ROLl }} \\ \alpha & =(\text { CONE ANGLE }) / 2\end{aligned}$
$W_{s}=\frac{W_{c}\left(R_{\text {cone }}+a \text { TAN } \alpha\right)-\left(W_{R}\right) R_{\text {Roll }}}{a}$

$$
\frac{\infty}{4 W_{R}}+\underline{L}
$$

$$
\begin{aligned}
& W_{c}=R_{c}\left(W_{R}\right) \\
& R_{\text {cone }}=R_{\text {roll/ }} R_{c}
\end{aligned}
$$

21000
$W_{s}=R_{c}\left(H_{R}\right)$ TAN α $7200 \quad 4800$

754503
V (MSES) 59.3
44.53
29.69

Table 23:

APPENDIX IE

J. DIMENSIONLESS SPIN TORQUE FACTOR (REF.1)

APPENDIX GG

TRACTION LOAD DETERMINATION (CONTINUED)

$$
\begin{aligned}
& D_{c}=4.65 / R_{c}=4.65 / 2.866=1.622 \mathrm{In}, \\
& R P M_{c}=R_{c} R P M_{x}=2.806(4800)=13757 \mathrm{RPM} \\
& T_{\text {ring }}=T_{0}\left(1-R_{P}\right)=3960(1-.2857)=2829 \mathrm{IN} . \mathrm{LB} . \\
& T_{\text {cone }}=T_{\text {ring }} R_{B}=2829(.3016)=853 \mathrm{IN} . \mathrm{LB} .(4 \text { cones })
\end{aligned}
$$

PER CONE:

$$
\begin{aligned}
& T_{\text {cone }}=853 / 4=213 \mathrm{IN} . \text { LB. } \\
& W_{\mathrm{N}_{\text {cone }}}=\frac{W_{I}}{\mu}=\frac{T_{\text {cone }}}{\frac{D_{\mathrm{c}} \mu}{2}}=\frac{213}{1.622} \quad \frac{(2)}{(.07)}=3750 \mathrm{LB} .
\end{aligned}
$$

APFENDIX HH

TRACTION POWER LOSS (HP, FOR 4 CONTACTS) (REFERENCE 2)
POUER LOSS $=\frac{(.015)^{J} 7 J_{4}\left(\mathrm{HP}_{c}\right)}{\sqrt{K}}$
1.5 kW (10 HP)

	28,000	21.000	14,000
5000	.25	.23	.21
4000	.27	.25	.22
3000	.31	.27	.24
1500	.46	.38	.31
850	.69	.56	.42
$15 \mathrm{KW}(20 \mathrm{HP})$			
5000	.50	.46	.41
4000	.55	.49	.44
3000	.62	.55	.47
1500	.92	.77	.62
850	1.37	1.11	.85

30 KW (40 HP)

5000	1.00	.91	.83
4000	1.09	.98	.89
3000	1.24	1.10	.94
1500	1.83	1.54	1.24
850	2.74	2.22	1.70

$32 \mathrm{~kW}(70 \mathrm{HP})$

5000	1.75	1.60	1.45
4000	1.91	1.72	1.55
3000	2.17	1.92	1.65

$1500 \quad 3.21 \quad 2.69 \quad 2.17$
$850 \quad 4.80$ (3.69) $\quad 3.89$ (2.99) 2.97 (2.24)

15 KW (100 HP)

5000	2.50	2.80	2.07
4000	2.73	2.45	2.22

Table 25:

APPENDIX II

CONTACT ELLIPSE DIMENSIONS, a / b (IN.) (REF. 6)

Table 26:

APPENDIX 11

SONTACT ELLIPSE DIMENSIONS, a/b (IN.) (REF. 6) (CONTINUED)
75 KW (100 HP)

5000	$.0980 / .0216$	$.1060 / .0213$	$.1201 / .0205$
4000	$.0995 / .0236$	$.1075 / .0232$	$.1210 / .0226$
3000	$.1028 / .0262$	$.1096 / .0259$	$.1222 / .0254$
1500	$(.1145 / .0334$	$.1200 / .0334$	$.1295 / .0330$
	$(.121 / .0327)$	$(.1177 / .0327)$	$(.1269 / .0324)$
850	$(.1292 / .0405$	$.1332 / .0405$	$(.1412 / .0404$
	$(.1047 / .0329)$	$(.1079 / .0328)$	$(.1145 / .0328)$

NOTE: THE MAXIMAM WHEEL SLIP TORQUE OF 330 FT. LB LIMITS "b/a" TO THE VALUES SHOWN IN PARENTHESES.

Table 26; Continued

APPENDIX JJ

APPENDIX JJ
8(REF. 6) (CONTINUED)

3000	.469	.0477	.0490
1500	$.0569(.0557)$	$.0578(.0567)$	$.0591(.0579)$
850	$.0671(.0544)$	$.0679(.0550)$	$.0693(.0562)$

NOTE: THE MAXIMM WHEEL SLIP TORQUE OF 330 FT. LB. LIMITS " 8 " TO THE VALUES SHOWN IN PAPENTHESES.

Table 27 :

$$
\begin{aligned}
& \text { APPENDIX Kt } \\
& \text { ELASTOHYDRODYNAMIC } \\
& \text { (EHf) FILM THICKNESS AT } \\
& \text { tRACTION CONTACT (REF. } 12 \\
& h=2.04\left(1+\frac{2 R_{1}}{3 R_{2}}\right)\left(\frac{\mu_{0} \alpha\left(u_{1}+u_{2}\right)}{2}\right)^{74}\left(R_{1}\right)^{.407}\left(\frac{\xi}{\left(1-q^{2}\right) Q}\right)^{.074} \\
& \text { at mean condition: } \\
& R_{1}=\frac{1}{\frac{1}{2.325}+\frac{1}{.7 \sqrt{22}}}=.551 \\
& R_{2}=\frac{1}{\frac{1}{5.0}+\frac{1}{\infty 0}}=5.0 \\
& \mu_{0}=.87 \times 10^{-6} \text { AT } 176^{\circ} \mathrm{F} \\
& \alpha=1.5 \times 10^{-4} \\
& \frac{u_{1}+u_{2}}{2}=\pi(4.65)\left(\frac{7200}{60}=1753 \mathrm{IN} . / \mathrm{SEC} .\right. \\
& Q=498.5 \mathrm{LB} . \\
& \left.h=2.04\left(1+\frac{3(.551)}{2(5.0)}\right)^{-.74}\left(.87 \times 10^{-6} \times 1.5 \times 10^{-4} \times 1753\right)\right)^{.74} \\
& (.551)^{.407} \cdot\left({ }^{30 \times 10^{6}}(1-.32)(498.5)\right)^{.74}=39.6 \mu \mathrm{in} . \\
& h=39.6 \mu \mathrm{in} . \\
& \sigma=\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)^{.5}=\left(6^{2}+6^{2}\right)^{.5}=8.49 \\
& h / \sigma=39.6 / 8.49 \cdot 4.66
\end{aligned}
$$

APPENDIX XK

EHD FILH THICKNESS AT

TRACTIOI CONTACT (REF. 1)

(CONTINUED)

AT MAXIFAM CONDITION:

$$
\begin{gathered}
R_{1}=\frac{1}{\frac{1}{2.325}+\frac{1}{.822}}=.607 \mathrm{IN} . \\
R_{2}=5.0 \mathrm{IN} . \\
Q=3750 \mathrm{LB} . \\
\frac{u_{1}+u_{2}}{2}=\frac{7(4.65)(4800)}{60}=1169 \mathrm{IN} . / 5 \mathrm{EC} .
\end{gathered}
$$

$$
h=2.04\left(1+\frac{2(.607)}{3(5.0)}\right)^{-.74}\left(.87 \times 10^{-6} \times 1.5 \times 10^{-4} \times 1169\right)^{.74}
$$

$$
(.607)^{.407}\left(\left(\frac{30 x-10^{6}}{-.32)(3750}\right)^{.074}=27.8 \mu \mathrm{in} .\right.
$$

$h=27.8 \mu \mathrm{IN}$.
$h / \sigma=27.8 / 8.49=3.27$

APPENDIX LL

hertzian

 TRACTION CONTACT STRESS
MEAN CONDITION:

$$
\begin{aligned}
& P=498.5 \mathrm{LB} \text {. } \\
& \mathrm{R}_{\mathrm{Al}}=2.235 \mathrm{IN} \text {. } \\
& \mathrm{R}_{\mathrm{A} 2}=5.0 \mathrm{IN} . \\
& R_{B 1}=1.426 /\left(2 \cos 9.24^{\circ}\right)=.722 \text { IN. } \\
& R_{B 2}=\infty \\
& g=.00459\left(\frac{498.5}{\frac{1}{2.325}+\frac{1}{5}+\frac{1}{.722}}\right)^{1 / 3}=.0288 \\
& \cos i=\frac{\frac{1}{2.325}-\frac{1}{5.0}+\frac{1}{.722}}{\frac{1}{2.35}+\frac{1}{5.0}+\frac{1}{.722}}=.8015 \\
& \mu=2.300 \\
& \gamma=.543 \\
& b=\mu \mathrm{g}=(2.300)(.0287)=.0662 \\
& a=y g=(.543)(.0287)=.0156 \\
& \text { ASPECT RATIO }=.0662 / .0156=4.24 \\
& S_{\text {max }}=\left(\frac{3}{2 \pi}\right)\left(\frac{498.5}{(.0662)(.0156)}\right)=230.480 \text { PSI (MEAN) }
\end{aligned}
$$

MAXIMM CONDITION:

$$
P=W_{N}=3750 \mathrm{LB} .
$$

APPENDIX LL

$$
\begin{aligned}
& \text { TRACTION CONTACT STRESS (CONTINUED) } \\
& \text { (REF. 6) } \\
& R_{B-1}=1.622 /\left(2 \cos 9.24^{\circ}\right)=.822 \mathrm{IN} . \\
& g=(.00459)\left(\frac{3750}{\frac{1}{2.325}+\frac{1}{5}+\frac{1}{.822}}\right)^{1 / 3}=.0581 \\
& \cos 7=\frac{\frac{1}{2.325}-\frac{1}{5}+\frac{1}{.822}}{2.325+\frac{1}{5}+\frac{1}{.822}}=.783 \\
& \mu=2.208 \\
& \nu=.566 \\
& b=\mu 8=2.208(.0581)=.1283 \\
& \text { a }-\nu \mathrm{g}=0.556(.0581) \cdot .0323 \\
& \text { ASPECT RATLO - . 1283/.0323 - } 3.972 \\
& S_{\text {max }}=\frac{3}{2 \%} \frac{3750}{(.1283)(.0323)}=432,060 \text { PSI (MAX) }
\end{aligned}
$$

```
APPENDIX MM
    EXAMPLE: TRACTION LOSS CALCULATLON
    From Reference1, page 15.
```



```
    Power Loss = Loss factor (8) (power input)/3\pi\cdot\sqrt{}{k}(\frac{m}{\mu})
        Loss factor= = J//J4
        Power Loss = . 849(J7/J/) (power input)
        For four contacts, and assuming m/\mu =220
    Power loss = .015 (J,/J4) (power Input)
J,/J_4 =(J. (% J
J}=\frac{3\pi}{8}\cdot\frac{m}{4}\cdot\frac{\Deltau}{u}\cdot\sqrt{}{k}\quad\mathrm{ (SIIp ractor, Ref.1. page 9)
        Aseuming }\frac{\mp@subsup{\Delta}{u}{}}{U}=.01
J}=4.13\sqrt{}{k}=8.3
    k a appect ratto of Hertzian contact - 4.0
```



```
    For WE = 600 rad/sec. (Spin Velocity)
```


APPENDIX MM

EXAMPLE: TRACTION LOSS CALCULATION (CONTINUED)

ād $u=80 \mathrm{~m} / \mathrm{sec} \quad$ (Yelectity)
and zince $k=a / b$
$\mathrm{J}_{3}=2592 \mathrm{~b}$
Fer b $=.0013 \mathrm{~m}$
$J_{3}=3.31$
$J_{1} / J_{3}=8.30 / 3.37=2.46$
From Reference 1, page 30:
$J_{4}=1.0$
From Reference 1, page 33:
$J_{6}=.06$
$J_{7} / J_{4}=\frac{J_{6} \times J_{3}+J_{4} \times J_{1}}{J_{4}}$
$=\frac{.06 \times 3.31+1.0 \times 8.30}{1.0}$
$J_{7} / J_{4}=8.30$
Therefore,
Power Loise $=\frac{.015(8.50) \text { (pover input) }}{\sqrt{4}}$
Power 10st : . 064 (power Input)

Where power loss is per four contacts and power input is horsepower per contact.

APPENDIX NN

$$
\begin{gathered}
J_{7} / J_{4} \\
J_{7} / J_{4}=\frac{J_{6} \cdot J_{3}+J_{4} \cdot J_{1}}{J_{4}}
\end{gathered}
$$

APPENDIX PR

J_{3}
 DIMENSIONLESS SPIN EACTOR (REF. 1) (CONTINUED)

1500	3.13	2.07	1.20
850	3.00	1.88	1.02
$\mathbf{5 2 \mathrm { KW } (7 0 \mathrm { HP })}$			
5000	5.92	4.37	2.98
4000	5.23	3.81	2.53
3000	4.60	3.23	2.08
1500	3.78	2.49	1.45
850	$3.61(3.30)$	$2.26(2.06)$	$1.22(1.12)$
$75 \mathrm{KW}(100 \mathrm{HP})$			
5000	6.65	4.92	3.36
4000	5.88	4.28	2.85
3000	5.18	3.65	2.34
1500	$4.25(4.16)$	$2.80(2.75)$	$1.63(1.60)$
850	$4.07(3.30)$	$2.55(2.06)$	$1.38(1.12)$

() NOTE: Values at wheelslip torque limit values.

Table 301 (Continued)

APPENDIX QQ

(1)			
	28,000 21,000 14,000		
	. 00352	. 00336	. 00310
4000	. 00363	. 00349	. 00325
3000	. 00377	. 00363	. 00342
1500	. 00401	. 00393	. 00377
850	. 00414	. 00408	. 00398
$\mathrm{R}_{B} \cdot 1=\mathrm{D}_{C} /\left(2 \cos 9.24^{\circ}\right) \mathrm{in} . *$			
5000	. 629	. 318	. 382
4000	. 722	. 603	. 453
3000	. 849	. 722	. 537
1500	1.148	1.027	. 849
850	1.356	1.257	1.096

	\cos 个*		
5000	. 820	. 843	. 817
4000	. 801	. 825	. 859
3000	. 719	. 801	. 835
1500	. 734	. 751	. 719
850	. 707	. 719	. 741
	$\mu *$		
3000	2.402	2.549	2.832
4000	2.297	2.432	2.610
3000	2.191	2.297	2.494
1500	2.013	2.076	2.191
850	1.925	1.962	2.038

Table j1:

APPENDIX QQ

	1/3		
	$\nu=$		
RPM M_{0} RPV H_{n}	$\rightarrow 28,000$	21,000	14.000
5000	. 530	. 512	. 483
4000	. 544	. 526	. $499{ }^{\circ}$
3000	. 559	. 544	. 519
1500	. 587	. 577	. 559
850	. 604	. 597	. 583

Table 31:(ContInued)

APPEKDIX RR

$\mathrm{RPM}_{\mathrm{s}}=$ Flywheel $\mathrm{RPM}_{\mathrm{n}} / 2.9166$

Flywheel $\mathrm{RPM}_{\mathrm{n}} \longrightarrow \mathbf{2 8 , 0 0 0}$	21,000	14,000
RPM $_{s} \longrightarrow$	9,600	7,200

Table 321

APPENDIX SS

BEARING AND GEAR

COMPUER DATA.

\qquad

Sis an mak cemernc stals:

 | $7.1005 E-04$ | $3.7585 E-03$ |
| :--- | :--- | :--- |
| $1.6945-0.3$ | $1.2752 E-03$ |
| $2.540 E E-0.3$ | $1.9854 E-0 . J$ |

GEAM COMPRESSIVE STRESS

ETIN TO MAYBAUN SHEAR 10.0 c

