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SUMMARY

The Optimal Control Model (OCM) of human response serves as a mechanis=

for generating sample time histories of human tracking error in different

anti-tank systems. The systems under study include TOW (Tube-Launched

Optically Guided System), DRAGON (Shoulder Mounted) and ITV (Improved TOW

Vehicle). The model-generated trajectories are compared with field-test

data across several dimensions including time-_omain (temporal) statistics,

frequency content and subjective comparisons on individual runs.

MODELING APPROACH

The objective of this work is to develop a computerized model for gen-

erating human tracking error time histories in several d_fferent anti-tank

systems. The systems include those in common use by the US Army such as

TOW, DRAGON and ITV. A fourth system - GLLD (Ground Launched Laser Designa-
tor) is similar to TOW and will not be discussed here. Of these systems,

TOW and DRAGON are basically command line-of-sight (LOS), whereas ITV is a

rate command system. The model that is developed must produce accurate fac-

similes of tracking error over a wide range of target trajectories, from

crossing (straight-line) motion to maneuvering motion. The model must be
causal in the sense that future target motions are unknown at the present
time.

For the systems and target passes considered here, target motion is
restricted to the azimuth axis, i.e. the gunner and target vehicle are both

at the same ground level. Tracking error in elevation arises solely from
the human's inherent motor and observation randomness. Although the model

that we have developed treats both axes, we discuss primarily the results

for the azimuth axis here. A more complete discussion and presentation of

the results may be found in Ref. [i].

The Optimal Cnntrol Model

i_ The Optimal Control Model of human response is used as the mechanism

for building the antl-tank tracking model. The OCM technology has beensuccessfully applied in numerous contexts including pilot control, antl-air-

craft artillery, etc. The mechanics of using the OCM to generate sample

path time-histories (as opposed to statistical measures) is described in

Ref. [2]. Our application follows this approach, with minor modiflcations

,_o account for the dual-axis nature of the tracking task. The pertinent
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equations for Monte-Carlo/Sample Path Simulation using the OCMmay be found

in Ref. [2].

Application of the OCM requires specification, for each given system-

display-manipulator dynamics, of i) the operator's task objectives in terms
of a set of cost functional weights, 2) the parameters that define the oper-

ator's inherent limitations, and 3) an "internal" model of the target dyna-
mics. With these items specified optima) control and estimation theory is

used to obtain the human's feedback strategy, and generate closzd-loop per-
formance results.

I. Task Objectives: For a basic tracking task, wherein the human attempts
to keep the error e(t) small, we use a cost functional

62
J(u) = E{e2(t) + Q_ &2(t) + Q6 (t)} (i)

The weighting Q& reflects a human's subjective weighting on error rate.
It is indicative of strategy, style or technique and could be associated

with the type of training on a given system. The weighting QO on error
rate induces a first-order lag that is associated with the neuro-motor

system dynamics. For each system we select Qn to yield Tn-neuro-motor

time-constant - .i sec. The value of Q& is t_ be determined for each
system, based on data comparisons.

2. Human OpePator Lixr_tationg: The primary human operator limitations

modeled in the OCM are those associated with perceiving displayed quan-

tities and executing intended control motions. The observational sub-

model in the OCM assumes that the human observes tracking error

Yl(t) - e(t) and tracking error rate y2(t) = _(t). However, the human
perceives a delayed and noisy replica of these signals via

Ypi(t) = Fi[Yi(t - T)] + Vyi(t - T) i = 1,2 (2)

The function F(.) represents a visual/indifference threshold of value

aI = 0,6 mr gain on error and a2 = .5aI on error rate. The
time-delay T = .15 sec. Each observation noise is white with covariance

Vyi(t) = Pyi E{y_(t)}/ ATTN (3)

Where 0,,i - .01_ (-20dB); the attention allocations are assumed split
0.8 forYazimuth vs 0.2 for elevation, t The nominal parameter values
associated with the observational submodel are assumed fixed for all

systems and target types considered.

The neuro-motor snbmodel for generating human correctlve inputs i_
given by

n 6(t) + u(t) = uc(t) + Vu(t)

tA more precise model would be to employ dynamic attention allocation.
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The quantity Uc(t) is the "commanded" control input that is generated
from the Kalman Filter/Predlctor/Gains cascade; Tn is the neuro-motor

time constant. The white motor-nolse Vu(t) consists of an additive plus
a ratloed component for each axis. The covariance of the motor-noise
for azimuth and elevation axes, respectively, is

o, VuA - VuA + 0AA E{u A(t)} + 0AE E{u E(t)} (4a)

= o + E{U_A(t)} + m{u_E(t )} (4b)VuE VuE PEA OEE

The crossfeeds 0AE and OEA model uncertainty/randomness in one axis
resulting from manipulator motion in the other axis. For the systems/

targets studied, elevation commands UcE are small relative to azimuth

commands UcA (recall target motion is in azimuth only) . Thus, 0EE and

DAE are not readily obtained fro_ the available data. Therefore, we
have assumed

PAA = 0EE = 0u and OAE = 0 (5)

The remaining quantities V_a, V_=, 0u, 0=A are system/manipulator depen-
dent. Their values must b_eli_ted from_model - data comparisons.

Finally, Eq(4) shows that the motor-noise scales with commanded control

input Uc(t). In some instances, e.g. command LOS systems, it is more
natural for motor-lnduced randomness to scale with commanded rate 6c(t).

3. 1_Pget Su_bmo_: In the present application of the OCM to track ground

targets, target velocity aT(t) and acceleration ST(t) are generally
small. Thus, we use a simple internal model for target motion

_(t) = wd(t) (6)

where x(t) is the human's internal representation of target velocity.

The "dr_ing noise" Wd(t) has covariance

coy [Wd(t)] = B _$(t) + _ 8_(t) (71

Note that the "truth" model is _(t) = _T(t). The values selected for
and B are

B = 102 , _ = .0152 (a)

These values are constant across all systems and targets studied.

Data-Model Comparison Procedures

The OCM can be used to generate, for a given system and target traJer-

• tory, an ensemble of tracking error time histories Em = {ej(t) ; J = l,...M}.
These model-generated runs may be compared against an ensemble of equivalent

data trials, Ed. Clearly, it is the statistics of these two ensembles that
•_ one would wish to compare via model-data validation tests. Several modes of

comparison are possible, discussed below. For consistency we have found

it useful to remove tl aporal mean _eJ from each run prior to analysis.
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Thus,
N

1 i_lej(ti) (9)ej(ti) - ej(t i) - Bej ; _eJ = N

where ti, i _ I,...N are the sampled values of ej(t). This procedure removes
random variations in signal mean, DC bias offsets in field recording equip-

ment, biases in human aiming point, etc.
i

i. Ensemble 4r_lysi8: The ensemble mean and standard deviation can be corn- i

puted in the usual manner, ! •
M

1 _.i (t) (10a)Pe(t) - Ensemble mean " _ ej

I 11/2Oe(t) - Ensemble SO " M--If :_ [ej(t) - Be(t)] 2 (lOb)J=l I

Since the sample runs have been rendered zero (temporal) mean we would

expect Be(t) = 0 if rhe ensemble was stationary.

2. Te_rpoPul A_lysis: If the ensemble E is stationary, Be(t) = 0 and

Oe(t) = constant so Chat the information content in the temporal ensem-
ble is reduced to a single number, i.e. RMS tracking error. A more

direct way to obtain average R_ tracking errvr is to compute the tem-

poral statistic
N 1/2

°ej" [N_ i_l _(ti)] (Ii)

for each run, and form the composite, M-run average, via

M
I

o - - _ (12)e M °eJ
J-i

However, urllke the ensemble analysis, oe is meaningful only in the
stationary case. Its computation in the non-stationary case is possible,

but of dubious interpretation. _

3. F_equen_ Domuin AnnZygis: The RMS temporal metrics give an indication

of total error power, they do not indicate how th_s power is distributed

over the frequency range, whether there exists resonances, etc. To
obtain these later indicators of system response we compute, from the

temporal ensemble E - {e4(t), J - I, } a frequency domain ensemble

of normalized erro_ PSD,JE * . {e_(_):';'_ 1,...,M} whereN

Normalization greatly reduces the sensitivity to motor-noise and inter-
subject variability since it considers only relative power distribution
over _. Note that the PSD computations are strictly valid for a sta-

1982005792-378



tionary ensemble; their computation is possible for any ensemble, of

course, but the interpretation in the non-stationary case is dubious.

The ensemble E* of normalized error PSD can be averaged (in the
same manner as E) via equations slmila_ to (lOa - lOb) to yield the

ensemble mean _e*_) and ensemble SD, Oe*(_). Comparison of model and
data PSD statistics is thus possible and provides another, interesting,
facet for model validation.

RESULTS

In this section model-data comparisons are given for the three anti-tank

systems considered. In each case it is necessary to provide a description of
the system-manipulator dynamics, and values for the motor-noise parameters

and error rate weighting Q_.

TON System

The TON system is a conmmnd LOS system consisting of a launch tube plus
sight mounted on a viscous (rate) damped turret. Thus the torque supplied by

the operator to point the sight varies with sight (i.e. control) rate. The
dynamical model used for the TOW syste_ is

1

T(s) = Ts+l ; T = 0.i sec. (14)

These dvnamlcs are chosen for convenience T, and are viewed as representative

of the manipulator (arm-v'.scous mount) characteristics.

In our data-model analysis of the TOW system we found Q_ --0 gave best
match. The motor-noise in the OCM is assumed to scale with commanded (i.e.

LOS) rate, and the pertinent noise parameters (obtained from matching RMS
scores) are

V°=u [.05, .01], pu " .OnS. PEA = .015 "

The temporal RMS statistics, computed via Eqs (II)-(12), f_r three dif-

ferent ensembles are given in Table I. The TF and TS ensembles correspond ""

to crossing targets at a range of 3Km with _T = 5.47 and 0T = .55 mr/set,
respectively. These ensembles are statlonar_. The TM ensemble corres[onds

to a set of 19 maneuvering trials. In these cases the target was approacJ_Ing

the gunner following a serpentine path with _T ~ 1 mr/set, OT _ .5 mr/sec L
peak values. Each target pass was somewhat different; this ensemble is not
stationary.

The model-data comparisons shown in Table I are excellent for both

azimuth and elevation axis tracking (The numbers in parentheses are the

computed standard deviations in the RMS tracking errors.) Only the eleva-
tion SD is not well-matched for the ,mneuverlng trlals. Ibis dt._rtepancy is
expected to be corrected by a dynamic attentional submodel. A comparison of

tat least flrst-order dynarics are required by the OCM.
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model-data normalized PSD ensemble statistics is sho_ in Figs. 1-2 for the
TF ensemble. The results are in excellent agreement. A t-test performed

pointwise was used to confirm the equality of the PSD means at the 95% con-
fidence level.

TABLE I - COMPARISON CF TEMPORAL TRACKING ERRORS, TOW SYSTEM

AzimuthSD Elevatio.SD
M

Data Model Data Model

TF 23 0.I06(0.017) 0.I19(0.018) 0.050(0.009) 0.052(0.009)

TS 19 0.057(0.005) 0.054(0.004) O.030(0.DO6) 0.03}(0.005)

TM i9 0.3 (0.10) 0.35(0.07) 0.14(O.OP.)0.05(0.01)

Individual runs produced by model and data can also be compared subjec-

tively. Fig 3 is a comparison of a model and a data run from the TF ensem-

ble. Fig 4 likewise is a comparison of model-vs-data trials r one of the _

maneuvering target paa_es. The "eyeball" slmilarity is quite impressive.

DRAGON System

The DRAGON is a shoulder-mounted system that consists of a launch tube

plus sight. The front of the tube is pivoted on a support; the rear part of
the tube rests on the operator's shoulder. Thus, as the operator (usually
in a seated position) tracks a crossing target he must continuously move his
shoulder by lea_lng his torso more and more to one side. There are no dyna-
mics associated with the system per-se. The only dynamics are those associ-
ated with the operator's torso--i.e, the control "manipulator". These dyna-
mics are approximated as

T(s) = s/_ +Is 2 s (15)

(K)+ )where ,; = 11 + 1 rad/sec, B - 3 + i and _ - .15 for ti£t in the azimuth axis.

The motor-noise for the DRAGONsystem is assumed to scale wl_h commanded
angle/body tilt as randomness increases greatly if one is required to track
while leaning to one side. The motor-noise parameters sre

V° = [8, .25], p = .OOO1, PEA = .0OOO15u U

The weighting on error rate Q_ = 0.

The tracking error data for DRAGON consisted of _ 40 passes of a crossing

target at Ikm with [0TI = I0 mr/see. In approximately 1/2 of the runs the
target moved from right to left (DR); in the other runs motion was from left

to right (DL). A comparison of _he t_poral RMS statistics of model-vs-data

is shorn in Table 2. The results are *xcellent, but this Is not a stationary
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ensemble as the motor-nolse covarlance increases during the course of a run!

Indeed, Figs 5-6 show the true nature of the tracking error ensemble for
model and data. This is a more meaningful comparison than is temporal RMS
error.

TABLE 2 - COMPARISON OF TEMPORAL TRACKING ERRORS, DRAGON SYSTEM
\

Azimuth SD Elevation SD
M

Data Model Data Model

DR 21 7.35(3.3) 6.82(0.9) 2.78(1.5) 2.73(0.35)

DL 22 7.2 (2.6) 6.82(0.9) 2.35(1.4) 2.73(0.35)

Comparisons of normalized error PS_ for model and data provides another

yardstick for judging the effectiveness of the OCM application. As noted

earlier, interpretation of these results must _e made cautiously as the en-

semble is non-stationary. Nevertheless, we can consider this as the "aver-

age frequency content" in the error waveforms. Figs 7-8 contain the model-
data frequency comparisons for the azimuth axes. The results are excellent.

A final model-data validation test is via the subjective comparison of indi-

vidual tracking error time histories. Fig 9 shows a typical data run vs. a

typical sample path from the OCM.

ITV System

In the ITV System a TOW mount is driven through rate command dynamics

by the human using a handlebar controller. The system dynamics can be ap-

proximated by the transfer function

K 1

T(s) s(Ts 4 i) T _ sec, K .i

Since the handlebar is sprlng-loaded we assume that the motor-noise scales

with commanded control input. The motor-noise parameters pertinent to ITV
are

o

V = [.04, .01], Pu .03, 0EA .012U

In addit_oL, it was found that a weighing Q_ = .5 resulted in a best match
between uodel and data PSD ensembles.

TABLE 3 - COMPARISON OF TEMPORAL TRACKING ERRORS, ITV SYSTEM

. Azimuth 5D Elevation SD
M ...............

Data Model Data Model
.........................................

IC 2£ O. ]12(0.035) 0.114(0.027) O. 092(0.023) 0.091(0.017)
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There was data from only one ensemble for ITV, corresponding to a cross-

_ng target at 2Km with 8T ~ i. Yhe target was moving towards the gunner on
a 40° angle. Table 3 gives the model-data comparisons for _MS tracking error

in this stationary ensemble. A subjective comparison of a typical model-vs-
data time history is given in Fig i0. The comparison of PSD ensemble sta-

tistic of model and data is provided in Figs 11-12. Again, we find excellent

agreement between OCM results and the field-test data. Note that this agree-

ment is excellent not only for the PSD mean statistics, but also for the 2nd-

order statistics that give an indication of the _un-to-run variability.

CONCLUSIONS

It has been demonstrated that the Optimal Control Model can be used to

generate accurate facsimiles of target tracking error in various different

anti-tank systems. While these results were not entirely unexpected, based

on previous applications of the OCM, they are quite interesting in that com-

parisons have been made across several dimensions. By using the mudei to

generate an ensemble, data and model ensembles can be stud_ed, averaged and

manipulated in similar manners, yielding similal results (at least to 2nd
order statistics).

The types of systems studied were quite varied, especially with regard

to their manipulator chararteristics. Thus, it was necessary to adjust the

motor-nolse paramccpr_ in the OCM among systems.

Further application of the OCM to antl-tank tracking systems is expected
to refine these results, focus on dynamic inter-axis attentional allocation,

and refine techniques for parameter value identification.
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