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Preface

This material is designed for students interested in the area of space flight
planning, who after training, may serve as flight planring aildes. Flight plan-
ning aides are individuals who will assist engineers and scientists in the plan-
ning ¢ orbital spacs missions. With the development of the NASA space shut-
tle anu its earlier successful missions, the time will come shortly when orbital
flight missions will become a routine and nearly continuous activity. Space
station construction Is likely to be the first significant activity of the shuttle,
along with the deployment of strategic and scientific experiments. Extensive
commercial use of orbital flight is expected to foliow.

With orbital flight becoming much more common, the need tor routine flight
planning activities increases. There are significant tasks in the planning of
flights that can be performed by individuals with less than ar engineer's
background. Those tasks will be performed by the flight planning aide.

The objective in the training procedure for a flight planning aide Is tc provide
an output, in a short period of time, that is capable of performing eng neering-
type calculations and analyses. To perform useful and significan! calcula-
tions, it is not necessary that one know the details and backgrcund of all
operations. That Is true for tasks other than calculations. While it is hoped
that calculators and computers do not retard us in ability to add, multiply and
reason, they do eilow many of us who bore to error with the task of addition to
bacome painlessly highly accurate. Some of us are curious about process and
insist upon a thorough understanding. The flight planning aide student will be
capable of performing certain operations without understanding their bases,
and hopefully have a curiosity that will be required for learning extension. i is
on that basis that this training material has been put together in a directed
le7-ning approach.
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For this material, a calculator is necessary, Calculators and computers,
along with the pencil, will certainly be the professional tools of the flight plan-
ning aide. Use of the caiculator, common now in the genera! population, is em-
phasized first In the workbook In order to procesd quickly toward programming
and eventual use of the computer. A strong objection might be made on the
emphasis put in handling a particular calculator, the Hewlett-Packard 67. That
we have done. Any progtammabls calculator with a good guide to its uss,
however, will be appropriate for the glven exercises. Texas Instruments has
such a calculator, though it uses aigebraic logic, and thers are others.
Although we have described the HP keyboard and made specific reference to
the HP handbook, any calcu!ator may be used with the understanding that its
operations must be thoroughly understood, through use of its calculator guide
or owner's handbook, The first requirement for the flight planning aide stu-
dent, tiverefore, is to be able to learn ths use of the calculator. A strong
mathernatical inclination is also thought necessary.

But we have attempted to integrate learning activities. Flight planning
vocabulary and orbital flight relations are introduced in the beginning and are
used while tacility with problem solving and the first major objective, use of the
calculator, is learnsd. To do this as we have, primary calculator instruction
must come from the manufacturer or elsewhere, The learning tasks proceed
through the solving of problams, as relatively more complex problems are
quickly introduced into the calcuiatci and prograrnming exercises.

Teaching beginning students through such a problem sequence has long
been a fascination of mine, but difficult to effect in traditional college sequen-
tial course curriculum. An information scattering technique Is used, ine | use
in lecture and believe to be quite useful in inputing data to the learner that is
not to be immediately used. But too much non-useful written information can
be inhibitive. This written material contains only purposeful information with
the hope that curlosities will be aroused to the point of asking questions and
seeking further knowledge. The teaching-learning philosophy of Mr. Davis, in
teaching such a course in flight planning, has been quite similar to my own.

H.E. Blackwsll, Ph.D.
June 30, 1981
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A. HAND CALCULATOR USE AND
INTRODUCTION TO PROBLEM ANALYSIS

A.0. INTRODUCTION

The flight planning alde is expected to solve many problems intioiving
numerical calculations. Some problems m. ght be done easily using paper ar.d
pencil algorithms and simple basic computations. Other problems will be
mure difficult to analyze and calculate, and may be handied most sfficlently
through use uf a calculator. Since high accuracy will be necessary, calculator
use allows lengthy, cumbersome calculations to be handied with speed and
accuracy. Take full advantage of the power of the calculator.

A.1. CALCULATOR LOGIC AND SIMPLE OPERATIONS

Three types of logic are used on calculatc. s: Reverse Polish Notation (RPN),
Aigebraic Logic (alg) and Arithmetic Logic (Arith). Those calculators using
RPN are characterized by a key marked[ Enter |or[ Save | The algebraic and
arithmetic calcuiators are distinguished by the order in which some operations
are done. The key sequences below show how each type of calculator would
be used in a simple operation such as: (4 + 5) x 3.

RPN g Arith.

4 4 4
enter | + +

5 5 5

+ = x

3 X 3

X 3 =
ANS 27 = ANS

ANS

These notes are written for a Programmable Calculator which uses RPN.
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The Hewlett Packard HP-67 has been chosen. Note two conventions we will
follow: operations will be written in calculator language, not in algebraic
language, with the ianguage written in a cciumn, top to bottom. These conven-
tions are motivated by practical considerations: the calculator language gives
preparation for later programming activities, and the column representation
enables you to write mnemonic notes on the same line to the right of each
operation. The RPN calculator was chosen in order to de-emphasize the
algebraic manipulations and to emphasize the calculator language.

Your initial task will be learning the use of various functions and
operators on the calculator. Read the material from pages 15-24 in the
HP67 Owners Handbook and Programming Guide to get a “jeel” for the
calcutator. Do the suggested exercises. These will provide some sense of
the power of the calculator in performing simple calculations as well as
some idea of what is involved in writing and running a prograrm. Read the
materials from Part 1, section 1, pp. 27-38. Note the information concern-
ing the keyboard un page 27. Note further that each key on the keyboard
can perform four different functions. One function is indicated on the flal
plane of the key *:~e; another is printed in black on the slanted Vace of the
key; a third and fourth function is indicated by printed symbols in gold and
biue beiow the key. There are three prefix keys, a gold ona, a biue one,
and a black ons. By pressing one of the prefix keys bsfore pressing a
function key, you select the function printed on the slanted key face or
one of the functions in goid or blue below the function key. As you read
the material in section one, work through the exercises. If the need for ad-
ditional problems is felt, do the following:

(14-3) + (8 x 5 + 4] ANS: 21

L‘E.*#‘.@J ANS: -2
1

VB -2+ 5 +8 + V6 - 5 + (@ x 20) ANS: 14

In evaluating an expression with pencil and paper involving several opera-
tions, 'the foliowing procedure is conventionally followed:

(1) Perform the operations within each grouping symbol, if
any, beginning with the innermost grouping symbol and
working out to the entire expression.

(2) Perform multiplications and divisions in order from left
to right.

(3) Perform additions and subtractions in order from left to
right.



In using tne calculator, a decision must be made on where to begin before
the first key is pressed. The above procedure wiil help you. Please noie
that in general, only one operaticn is performed at a time.

Now proceed tc read and work through section 2 on Display Contrel (pp.
41-51). This section explains the methods for displaying numbers in certain for-
mats, including scientific notation, fixed point display, and engineering nota-
tion display, Work through these exercisses also, Read t“e information on
automatic switching between fixed and sclentific notation if the answer Is too
large. Do the related exercises. Note the information in this section relating to
“Keying in Exponents of Ten,” “Calculator Overflow,” “Error Display,” and
“Low Power Display.” Remembsring where certain types of information may
be found in the handbook will facilitate its use as a quick reference.

A.2. USE OF THE AUTOMATIC MEMORY STACK

Th's section of the HP67 handbook deals with the four register
autornatic memory stack and the LAST X register of the HP-67 Calculator.
Thers are four registers in the calculator that are positioned to form the
automatic memory stack. These registers are labeled X, Y, 2, and T. They
are “stacked™ one on top of the other with the displayed X-register on the
bottom. When the calculator is switched on, these four ragisters are
cleared to zero, and the display shows 0.00 in RUN rnode. This represenis
the contents of the X-register. Certain keys on the calculator enable the
stack contents to be reviewed or to shift data within the stack for com-
putation at any time,

When the h function key (black) and the| R4 lkey {roll down) are pressed,
the stack contents shift down one register. If the h function key and the
(roH up) key are pressed, the stack contents roll up instead of down.

Pressing the h function key and the ; ": Z ’(x exchange y) key causes the

contents of the x and y-registers to intérchange without affecting the Z
XYy
Y« X
time In succession will restore the numbers in the X and Y register to their
original position,

The g function key (blue) and the r_S‘I_'l(_ key will allow the entire stack

and T registers. Pressing the h function key and the

key a second
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contents to be reviewed at any time. This is particularly usaful in checking
to be wure that the proper numbers have been entersd into the register.
Whan operating the g key manuaily, you can slow down or speed up
the review of the stack contents by pressing or any other key on the
keyboard while the calculator is exscuting a g [STK] review.

The [:C:fX:] (clear X, kay) Is usad to clear the x-register to zero, No other
register is affected when you press clear X. When you are entering several
numbers, the | ENTERT’] key on the calculator is used to separate the
digits of one number from another,

in addition to the four steck registers, there is a last X register,
used with the h function key. This key is used to preserve the value that
was in the displayed X register before the performance of a function. The
key makes it easy to recover from keyboard mistakes such as
pressing the wrong function key or keying In the wrong number, The last X
ILST X| key is also useful in calculations where a number occurs more
than once.

In the past few paragraphs, we have reviewed very briefly material covered in
pages 3369 of the Owners Handbook. Read these pages with calculator in
hand and do tha suggested exercises while reading.

A.3. EVALUATING FORMULAS

A forinula Is a statement in mathematical language of a general rule or
principle. It tells how the value of one unknown may be found by perform-
ing certain operations upon the varlables whose values are known. The
unknown will generaily be placed to the left of the equality sign such that
it 's evaluated by performing the operations on the right.

unknown = [variable expression]

A calculation to determine a numerical value for the unknown thus in-
volves (a) replacing the variables with their numerical values, and (b) per-
forming the indicated operations of addition, division, etc,, to arrive at

unknown = number

In the calculator exercises which follow, formulae used in astro- and aero-
dynamic calculations will be presented in that {ormet, unknown on the
left. Variables will be defined. Whiie a clear understanding cf the formula
and its basis is not necessary at this time, some understanding of the
many terms and relationships will foliow through a careful reading and
performance of the exercises.
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In addition, constants used in the actual plannir,g of missions will be
used for the exercises in order to facilitate use of accurate and consistent
numerical valuee. For your conv¢:lsrce, data from the Astrodynamical
Constants Handbook, JSC-14264, is repiixiucerd as Appendix A. The con
stants are written in powers of 10 nwiation, For example, the value of the
enrth's aquatorial radius is presented as

1 Ev. = .2082572178477600 + 008 + .16404 + 002 int. K.

The +008 means that the 16-digit number is muitiplied by 10 to the 8th
power (10" The + .16404 + 002 provides the accuracy of the given
number, Written without power of 10 notation, the above constant would
be

1 Er. = 20, 925,721,78477680 + 16.404 int, ft,

Plus or minus 16 ft in a measure of 21 million ft is not bad accuracy,
Strictly speaking, because 16,404 is the possible error, it is impractical to
maintain more than three decimal places iere in the measurement. Note
that the units of measure are given and check the Appendix tv see that the
radius is givan in several other units of measurs. It is important that ap-
propriate amn' consistent units are used. We will discuss units and their
convarsion ixusr,  To input powers of 10 to the calculator see pages 4851
of the Owness Handbook.

As a first example, consider the following information. The acceleration
of gravity at the earth’s surface is given by the formula

d

T R
where

u s the gravitational constant, in
units of international feet per
second (int. f/sec’) »quared

Re Is the earth's equatorial radius, in int, ft,

Taking g as the unknown, your exercise is to calculate its numerical value.
The calculator steps or program sequence is as follows.



Ry 0.208257721785 E 08 Int, ft,

These are the cal~ulator steps for evaluation of the variable expression on
the right side in the given formula. To carry it through, numerical values of
u and R, must be obtained. They may be obtained, in appropriate uiits,
from Appendix A. While you may enter the numbers directly into the
calculator, it will be helpful to first /ist those numbers with their units to
the right of the variable in the given sequence. We have provided R,
Compare your answer with that of g as given in Appendix A.

A.4. IJSE OF ASTRODYNAMICAL CONSTANTS

For evaluation of any given formula, dimensions or units used in the for-
mula must be consistent. If two of the variables are length, for example,
one cannot use nautical miles (n. mi) for one and internationai feet for the
other. A decision must be made as to which of the unity is to be used. If
we have a numerical value in one set of units only, it may be converted to
other units by use of a conversion factor. While conversions will be
discussed later, it is generally simpler to use a multiplicative factor. For
example, multiplying n. mi by a constant factor equal to 6076,1155 con-
verts the number to int.t. To convert !nt.fl. to n.mi we mulitiply by the
reciprocal of that number.

Exercise A.4.1. Convert the earth’'s equatorial radius (R,) in
nautical miles (n.mi) to the radius in international feet (int.ft).

Re n. mi

!

Conv 6076.1155 int. ft.
n.mi
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A given exercise or problem consists of a set of words from which you
must extract the set of “given” information (input) which relates to for-
mulae to be used, and determine what you are asked to “find” or calculate
(output), Relate quickly the given information to formula variables and
check the units for consisiency. Caliculator steps are provided in the in-

itial exercises.
[ ]

The altitude of a satellite is the height above the earth's equatorial
radius. For a gatellite in a circular orbit, the altitude is the same
everywhere in the orbit, by definition (see Figure 1A), The actual height
varies since the earth is not truly a sphere, but we will discuss this later.
The formula for finding the semimajor axis (equivalent to radius here) for a
satellite in circular orbit is

a = H + Ry (circular orbit)
where
a is the semimajor axis, in units identical to units of H and R,
H s the altitude, in units identical to R,
Rs Is the earth’s radius, in units of nautical miles (n.mi)

Exercise A.4.2. If the shuttle orbiter is in a circular orbit of 160 n.mi
altitude, find the semimajor axis.

H 160 n.mi
t

Req n.mi
+

Find the semimajor axis in int.ft.
[ ]
The velocity of a satellite in a circular orbit is everywhere the same, and
is given by



v satellite

0/)
N

circular orbit

Figure 1A. Satellite in Circular Earth Orbit. R, is the equatorial earth
radius, H the height of the satellite above the earth surface, and a is the
radius of the circular orbit. Its velocity, which is horizontal or paralle! to
the earth surface, is labeled v.



where
a Is the semimajor axis,

K s the gravitational constant,

Exercise A.4.3. Find the velogity of the orbiter In ft./sec. when it is in a
circular orbit of 160 n. mi.

H 160 n. mi

!

Ry n. mi

Conv 80761155 int.ft,
n.mi

EEX

4

X

" int. fi.3
sec?

g Xuy

f v x

ANS

Note that at one point in the above calculations, the semimajor
axis in International feet is displayed. Does this value agree with
your answer in the previous example?

The time required tc travel between points is given by

t =

<la



f where
t is the time lapse, in 3ecs.

d is the distance in int.ft

! v Is the veiacity in int.ft per sec,

Exercise A.4.4. The distarice between a tracking site near Los
i Angeles and a point near Baytown, Texas is 1210.83 nautical miles.
' How long will it take $he orbiter to traverse an equivalent distance

if it Is in a circular orbit of 160 n.mi altitude? (see exercise A.4.2.)

d 1210.83 n.mi
}
Conv 0.60761155 int.ft
n.mi
; EEX
4
|
X
v from previous exercise int.ft
‘ sec
+

Using the calculator function, express this answer in hours,
minutes, and seconds.

[ ]
The total distance around a circular orbit is equivalent to the cir-
cumference of a circle of radius a.

d=2na
where
d s the distance

a s the semimajor axis

Exercise A.4.5. If the orbiter is in a circular orbit of 160 n. mi. altitude,
how long does it take to compiete one revolution in this orbit?
(Remember that T = d/v.)

10
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A.S. THE “EXPONENTIATION"OPERATOR

The operation fy" has many uses; it can be used to find squares, cubes,
square roots, cube roots, and so on. It Is also used to raise a number in the y
register to a fractional power.

The period of a satellite in an earth orbit is the time required to make
one complete revolution in the orbit. The period is given by the formula
(the orbit need not be circular)

p=2ra”
v
where
P is the period, in seconds
# is the gravitational constant, in consistent units

a is the semimajor axis, in consistent units.

Exerclge A.5.1. What is the Perlod of the orbiter when in a circular orbit
of 160 n.mi. altitude?

a 160 n.mi

t
Req n.mi

11
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n.mi®
sec?

f v x

-+

ANS
Compare this answer with the one you found in exercise A.4.4.
Exercise A.5.2. Suppose a communications satellite is in a circular

orbit with an altitude of 18322.91 n. mi. What Is the period in hours,
minutes, secs.?

H 19322.91 n.mi
!
Roq n.mi

+

1.5

ty

12



u n.mi*
sec?

VX

+

Conv 3600 sec./hr.

-+
f fix 4

f—H.MS
ANS

It this satellite is directly over the equator south of Houston at mid-
nite, where will it be approximately one hour later?

The time required for a rotating body to rotate through a given angle is
given by the formula

=g
where
t s the time lapsed, in seconds
0 s the total angle traversed, in degrees or radians

w is the angular velocity, in degrees per sec or radians per
sec.

Exercise A.5.3. The angular velocity of the earth relative to a
precessing equinox given in Appendix A is

Wp = .720211585 E - 04 radians per sec

13



Use the Appendix to tind this value. Find the time, in hours,
minutes, seconds, required for the earth to rotate 2 n radians
{equivaient to 3809,

gn
!

p rad/sec

Conv - hrisec

Compare this answer with the period of the communications
satellite.

A.6. “READING” EQUATIONS AND PROBLEMS

We will have a distinct advantage when we are able to "read" an equation
and translate it into calculator language with the same ease that we read
alphabetic symbols and translate those into English. Some simple rules are
helpful: try to do terms within multipie parentheses “inside out" taking advan-
tage of the temporary storage features of the shift registers. In very long com-
plex expressions, it may be neccessary to store intermediate resuilts in one of
the working storage registers provided by the caiculator.

Exercise A.6.1. Practice order of computation using the following.

14



X = (14 + 19671) (%)

x = (128" + (1289)" - 5
1+36+27+13(M))

[}
4

b3
"

But a major objective for us is to be able to solve problems related to flight
planning. So dsfinitions, concepts, principles, and ideas presented here will
relate directly to actual problems that are encountered in flight planning. To
assist in problem “reading," consider four phases that are involved in problem
solving. First is an understanding of the verbal statemunt of the problem.
Understanding the problem involves being able to answer these questions:
What data is given? What are the unknowns? What conditions are given? For
many this can be difficult.

The second phase in problem solving involves seeing how the various items
are connected, how the unknown is linked to the given information in order to
obtain the idea of a solution. This involves making a plan. You have a plan
wheh you are able to determine the appropriate equations or relations and
outline the calculations, computations, or constructions that will have to be
made In order to arrive at a solution, Here, your plan will invoiva primarily the
identification of the appropriate formula(s) relating the unknowns io the given
data and determining the calculator process (step-by-step) necessary for
evaluation of the unknown through use of the formuia. Developing the plan is
the main part in the solution of the problem,

The third phase involves carrying out the plan, that is to say, performing the
calculations. Since the calculator will do the work, this is the simplest part.
The last step is to look at the compieted solution ard see If it is reasonable.
Dous it satisty the conditions of the problem?

Consider now the set of formula given below. They are used in determining
performance characteristics of a rocket engine,

) e = FW,
(i F = Wy,
(i) W, = Fli,,
(iv) ly = Clg
) c =gl

16
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F is the rocket thrust in pounds (Ibs);
W, s the fuel burned per .aec, Ibs/sec;

¢ s the exhaust velocity of the gases issuing from the rocket
nozzle, in ft./sec;

I, is the thrust developed for each Ib. of fuel burned in one se-
cond, |, Is called “the specific impulse” and is a property of
the fuel used,

g s the acceleration of gravity, in ft/sec?,

Exercise A.6.2. Each S R B at orbiter launch burns fuel at the rate of
9,330 Ibs/sec. The |, of the rocket fuel used is 260 secs.

a) What is the thrust of an SRB?
b) What is the exhaust velocity of the burning gases?

The nain engine (SSME's) each burn a Hydrogen-LOX fuel at the rate
of 1020 Ibs. per second. Each develops a thrust of 470,000 ibs.

c) What is the |, of the Hydrogen-LOX fuel?

d) What is the effective exhaust velocity of the burning
Hydrogen-LOX fuel?

Give the dimensions for each answer. There are 2 SRB's and 3 SSME's.
The total weight of the SRB's, orbiter, and external tank at launch is
4.461485 EO06 ibs.

e) What is the total thrust at launch?
f)  Will the system get off the pad?

Let us review the exercise just completed. The first two statements provided
you the following:
W, = 9,330 Ib/sec
ly, = 260 sec
You related the words “burns fuel at the rate of” with the definition of W, given.
To answer the first question, you looked at the symbol for thrust given in the
definitions and determined immediately tnat formula (ii) was to be used. From

the formuia
F = Wb tso

16
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a simple muitiplication determines the answer.

W, 9,300 Ib/sec
!

b 260 sec
X

ANS 2,418,000 Ib

For question (b), formula (v) was determined appropriate and ceiculation pro-
ceeded similarly. To answer question (f), it was necessary to coriclude that the
total thrust must be greater than the total weight for lift off, a reasonable con-
clusion one might reach without an undurstanding of Newton's laws of
physics.

Note that in the set of five formula, there are but two primary relations. The
other three are simply equivalent forms that we have providad you in order that
the unknown variable be positioned on the left. For example, the first was

|, = £
sp wb

Multiplying both sides of the equation by W, ylelds

lspwb = ’%/W:

Cancelling W, on the right side isolates F:
W, = F

This is the same equction, given in what is calied an equivalent form. Now if
we divide both sides of the equation by |,

JeW, = F
Js lw

or

Wb--'E‘

lop
The variable W, is isolated giving another equivalent form ¢f the equation. We
use this relation when W, is the unknown variable to be calcuiated. To simplify
your work in many cases, we will provide both the basic equation or formula
and the useful equivalent forms,

17
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A.7. DIMENSIONS AND THEIR CONVERSION

Numbers obtained from most physical measurements are of two types: pure
numbers, and numbers with dimensions of mass, weight, and time, Pure
numbers are nearly always formed as ratios of dimensional numbers, so that
dimensions cancel out in the resuit. Mechanical measurements yield numbers
with named dimensions or units that are combinations of the basic dimen-
sions or units or mass, length, and time. For example, the unit for force is the
pound, but the basic are mass X length/time2, When evaluating a formula, we
should perform a dimensional analysis if the final units are in question, For ex-
ample, in the last exercise, dimensional analysis of the formula F = Wi,

would yield
W.,(_'B_S_) X\, (e0) = F (lbs)

A conversion constant Fas a ratio of dimensions associated with it, Obtain-
ing a conversion constant is the first step in converting dimensions. Let us
take time as an example. There are, of course, sixty seconds in one minute, or
we raay say that 60 seconds is equivalent to 1 minute.

60 secs = 1 min.
Dividing both sides by 1 min, we obtain
60 secs _ 1.mir

1min =~ 1min
or
60secs _
min

Note that on the ~ight is the pure number 1, and on the left we have obtained a
conversion constant. Since multiplication by 1 does not change a number, we
may use the conversion constant as a multiplicative factor. Note also that had
we divided by 60 secs, we would have obtained

= 1 min
60 sec

the reciprocal of the above factor. To convert seconds to minutes, wa multiply
using this factor. 7o convert minutes to seconds, we use the othei.

18
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As an example, we are asked to convert to minutes t = 14.85 seconds. The
object is to use the conversion constant with seconds in the denominator so
that it will cancel the saconds in time t.

= 14.86 1 min ’
{ = 1480 3¢ x % ‘sec - 0.27% min

Or, suppose we s to convert to ft/min the velocity v = 14.85 ft/sec. We do the
following:

= g Mt se¢ _ A
V = 1485 X 60 235 = 89100

We have used a conversion constant in previous exercises, to convert nautical
milas to international feet. From the data (in the saction Equatorial Earth
Radius) in Appendix A, we had obtained

1 E.R. = .2092572178477690 + 008 int.ft. = ,3443930885519158 + 004 n.mi

-2092572178477690E 08  int. tt _
.3443030885519158E 04  n.m|

607611549€ 04 NIt _ 4
n.mt

Or, there are 8076.1155 internatioiial ;eet in one nautical mile. Check also in
Appendix A the section on “Equivalents and Conversion Factors.”

Control of dimensions will be made easier If we multiply when converting
and check to make certain that the dimension to be converted from always
cancels out in the multiplication.

The earth's rotational velocity Is

w, = ,720211585E - 04 rad/sec

There are 2 n radians in one revolution. There are 86,400 seconds in one day.

Exercise A.7.1. Find the anguiar velocity of the earth in revolutions per
day.

0.7292585€ - 04 Yad x 1 rev x 86,400 ®sg_
Beq 27 vad 1 day

= 1.002737¢ reviday
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How many days per revolution? If there are 24 clock hours per day,

how many hours per revolution?
[ ]

The angular velocity and per‘lod of rotation of a satsllite (the period is the
time required to compléte one revolution or 2 n radians; are related by the for-
mulas

= 2n,
Wwp = P
2

Wo

where

P is tha period of the earth’s rotation, in dimensions of time;
w, Is the angular velocity oi the earth to a precessing equinox,
obtained from the Appendix.

Exercise A.7.2. Find the period of the earth’s rotation (a) in seconds, (b)
in hours and decimai fractions of hours, (c) in hours, minutes, and
seconds. Compare with answers obtained in previous exercises.

Astronomers call the average angular velocity of a satellite in orbit the mean
motion. The formulas relating the period and the mean motion are

2n
n= 2Lt

P
- 2m
P"n

where

n is the mean motion in radians per second, or degrees per
minute, or similar dimensions of angie per unit time;

P Is the period in units of time.

Exercise A.7.3.
a) Find the mean motion of the orbiter when it is in a circular
orbit of 160 n.mi altitude, in units of degrees per minute (see
exercise A5.1),

b) Find the mean motion of the communication satellite of ex-
ercise A52,
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The average angular position in the orbit is calied the mean anomaly by
astronomers. it is found from the time znd the mean motion by means of the
formula

M=n(t-t)+ M,
Here
M is the mean anomaly, in degrees,
n is the mean motion, in degrees per unit time,
t is the current time, in consistent units,
t, Is the reference time, called the epoch,

M, s the mean anomaly at epoch.

Exerclse A.7.4. Suppose epoch is at midnight on July 18, 1881, and the
mean anomaly at epoch is 40°, Find the mean anomally one hour and
15 minutes after midnight for the orbiter when it is in a circular orbit of
160 n.mi altitute.

A.8. MISCELLANEOQUS PRACTICE EXERCISES

Here are a set of practice exercises for which the formula to be uged
may not immediately preceed the exercise. Where not given, you ars to
tind from previous pages the appropriate formula. Follow carefully the
last two calculator exercises.

Exercise A.8.1. The orbital elements of the sun (pretenc that the
sun is in orbit ahyout the earth) in the plane of its motion about the
oarth are:

a = 1.00000023 A.U. (Astronomical Units),
€ : 0.01671821 (this i3 eccentricity).
(a) Find the semimajor axis of the sun's orbit in n.mi.

(b) Find the period of the sun (see u sun in Appendix;,
(c) Find the mean motion of the sun in degrees per day.

Exercise A.8.2. lonized Hydrogen has a I, of about 6000 secs. Find
the value of the exhaust velocity in ft./sec. If an ionized hydrogen
rocket motor developes 100 ibs of thrust, what is the rate of use of
hydrogen, in Ibs/sec.?
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Exercise A.8.3. Steam (H,0) has an |4, of €00 to 1000 secs, depend-
ing upon the temperature. If steam at 750 °R develops an |, of 800
secs, how many Ibs of water is used per siecond by a rocket motor
developing 100 Ibs thrust? What is the effective exhaust velocity?

Exercise A.8.4. The F y" function can be used to tind the natural
number @ (this is not eccentricity) defined by

e=(+ —l—)" when x Is very large

Use this to find the limiting value of e, using x = 100, X = 1000, x
= 10,000, x = 100,000. Compare the answers for each value of x.

Exercise A.8.5. The square root of a number can be found by a cut -
and - try method by means of the formula

X+ N

xn +1 = 2X

where
N is the number,

X, |s the current trial value,

X, ., isthe new trial value.

Find the square root ¢ 196. Suppose the first guess is 8.
8

STO 1

ty
196

RCL 1
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If this guess differs from the previous guess, use it to repeat the
process.

Exerclse A.8.6. Write the calculator program for the cubse root of
81, if the formula is

2x) + N
X,y = a

and the symbols have the same meaning as given in the previous
exercise.

A9. CALCULATOR FUNCTIONS

For our purposes now, a function is a rule for converting one number (the
number in the x-register, for example) to another number (which then appears
in the x-register). Read Section 5 in the Owner's Handbook, pages 85-107. A
function may simply be considered a “more complicated” operator. The squar-
ing operator Is a function, since it is a rule for converting a number for another
(for exampile, it is the rule for converting 3 to 9, 4 to 16, and so on). While we
shall assume that the rule is programmed into the calculator, and that it is ex-
ercised by pushing the right buttons, we need to worry about two things:

1. Does the number in the x-register have tha right units (e.g.,
radians or degrees)?

2. Does the rule “work” for the number in the x-register or
y-register, in the case of two number functions)?

Both concerns require that we think about the problem while performing the
calculations. A good rule is to decide, before starting a calculation, on the
dimensions to be used, then convert all numbers during calculations. If there
is a problem with this now, make all conversions before and write down the list
of new numbers with their units.

The calculator has 5 “named” functions. These are
log, In, sin, cos, tan.

The log and In functions require that the nurnber in the x-register be a pure
number (the numbar can be units of radians, but not degrees, and it can be in
no combination of length, time, and/or mass.) This should cause no trouble,
since we assume that the formulae have been stated correctly. The number
appearing in the x-register cannot be negative or zero. As examples, use the
calculator to find values for:
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log 1,100 0, log - 1, log - 8
in1,1n0,In-1,1n - 8.

Note that whe 1 the rule does not “work"”, the calculator will announce your
mistake. Other.obvious examples of “illegal” numbers are: division when the
divisor is zero, taking f V"X when the x-register is negative, and so on. They are
“illegal” because the function is “not defined” in the mathematical sense for
real numbers.

The function “In" is called the “natural logarithm". it has as its base the
natural number e (Exercise A.8.4.). Use of calculators and computers makes the
logarithm to the base 10, “log,” far less useful than before.

The sin, cos, and tan functions require that the number in the x-register be in
units of degrees or radians. The calculator has a mode button h | DEG [ orh
which telis it what to expect (see page 93 of the Owner's Handbook).
To convert X degrees to radians, multiply the degree measure by 7/180. To con-
vert radians to degrees, multiply the radian measure by 180 . To convert an
angle specified in degrees to radians on the calculator, kgy in the angle and
press g . To convert an angle specified in radians to decimal degrees,

key in the angle and press f .

Exercise A.9.1.
a) Find the angle in degrees, minutes, and secs corresponding
to 1 radian.

b) Find the number of radians in 91° 40' 25"

c) Convert the following angles to degrees, minutes, and
seconds:

32.5042 degrees

57.2175 degrees

.01745329 radians
1/9 radian

Exercise A.9.2. Construct a table giving values of sin, cos, and tan for:
0° 15°, 30°, 60°, 75°, 90°, 105°, 120°, 150°, 180°,
-0°, -15°, -30°, -60°, -75°, -90°, ~105°, -120°, -150°, -180°
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The radial distance of a satsllite from the center of the earth is given by the
formula

[ = a(l-e?)
" 1 4+ecos®
where
r Is the distance from the center of the earth, in units of
length,
a |Is the semimajor axis of the orbit, in units of length,
e Is the eccentricity of the orbit (dimensionless),
© is the true anomaly, the angle in the orbit between the
satellite and the point of closest approach to the earth
(perigee).
Note that the altitude is given by
H=1r-R,
where

H s the altitude,

R. s the equatorial radius.

Exercise A.9.3. If an upper stage is in an elliptical orbit with a semima-
jor axis of 13,185.39 n.mi and an eccentricity of 0.7267, what is the
altitude of the satellite when 6 = 0°, 15°,90°, 180°, 270°, 360°?

Exercise A.9.4. The point of closest approach in an elliptical orbit is
called “perigee,” and the farthest point is called the “apogee.” Clearly,
the denominator (1 + e cos @ ) must be the maximum, to make r
smallest (at perigee), and smallest, to make r largest (apogee). At what
value of ® does perigee and apogee occur? Note that (1 + e cos ©)
is maximum at the maximum value of cos @ .

The velocity of a satellite is given by the formula
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where
r is the radial distance from the center of the earth, units of
length;

a Is the semimajor axis in units of length;

u is the gravitational constant, in units consistant with r, a,
and the time.

Exercise A.9.5. Find the velocity for the upper stage in the previous two
exercises for valuesof @ = 0°,15°,90°, 180°, 270°, 360°. What is the
velocity at perigreg? At apogee? Give dimensions of your answer,

A.10. INVERSE FUNCTIONS

A function is a rule for converting one number to another. The /inverse func-
tion is the rule for converting the second number back to the first. Another
way of thinking: a function “does” and the inverse ‘“‘undoes.” The function ap-
pears in gold on your calculator. When it has an inverse, the inverse appears
directly to the right of it in blue lettering.

Most functions have inverses. A few do not. Examples of cases when the in-
verse fails are:

(@) division is the inverse of multiplication, except when the
number is zero;

(b) the f VX is the inverse of g x?, except when the number is
negative. On the other hand g x* is a/ways the inverse of f
Yx. (Can you determine why?)

The inverse of the In function is e*. As examples of its use do the following.

3 5 7
tf In fiIn fin
ge' ge’ ge

ANS
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3 5 1

X X X

ge ge ge
fin fin fin

ANS

For a horizontal burn (that is, gravity acts at right angle (80°) to or perpen-
dicular to the direction of thrust), the weight of fuel burned in increasing the
‘ speed of a rocket is given by the formula

%l/
Wi = We (e -1

Wz Is the total weight of fuel burned, in Ibs;

W: s the final weight of rocket and payload, after fuei has been
burned, in Ibs.;

Av s the Increas¢ in velocity, In feet per second. Av is the greek
symbol pronounced “deita” and usually means ‘‘change in”
or “difference ;”

¢ is the effective exhaust veiocity of the burning fuel, feet per
sacond.

Exarcise A.10.1. The orbiter has about 45 minutes to get far enough
away from an upper stage so that the exhaust particles from the burn-
ing rocket will not damage windows or tiles. To move 30 nautical miles
away in 45 minutas requiras that the orbiter increase its speed relative
to the upper stage by 70 feet per second. If the |y, of the OMS fuel
(Hydrazine) is 260 secs, and the orbiter weighs 200,000 Ibs after the
OMS burn, how much hydrazine is required, in Ibs?

ANS: 1680.8 Ibs

Exercise A.10.2. The OMS engines and the RCS thrusters both use
Hydrazine, which has an |, of 260 secs. The OMS engines develop
12,000 Ibs thrust total, and the RCS jets deveiop about 900 Ibs. thrust
per jet. Two jets can be used to separate from the Upper Stage. Which
saves the most fuel, the OMS or the RCS, for a Av of 70 ft/sec& (ANS:
Both exactly the same. Explain.)
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Exercigse A.10.3 How many Ibs. of OMS fuel Is burned for each ft/ sec of
Av acquired, when the orbiter weighs 200,000 Ibs? When the orbiter
weighs 180,000 Ibs?

The amount of fuel required to perform a maneuver is important, since this
fuel must ba loaded before launch, and there is a limit to how much can be
loaded. The flight planners must determine if enough fuel is aboard to perform
the given mansuvers.

The inverse problem is to find the Av when the weight of fuel burned s
known. This Is given by the formula

W
v=+4+chh(l + —2
A + ( WF)

where the symbols have the same meaning as before.

Exercise A.10.4. Find the Av when 1200 Ibs of Hydrazine is burned dur-
ing a separation maneuver, when the orbiter weighs 200,000 ibs. Note
that in all of the above exercises, the burns were made in a horizontal
direction. If the thrust acts against (or with) the pull of gravity, the for-
mulas for Av do not apply.

The av required to change from one circular orbit to another close by is given
by

Vao = VI a,on B2

where
a, Is the semimajor axis of the first circular orbit,

a, Is the semimajor axis of the second circular orbit,
K |s the gravitationai constant, in consistent units.

This formula applies when (a, - a,) is less than 100 n.mi.

Exercise A.10.5. The orbitar is in a 160 n.mi. orbit and a payload is in a
separate circular orbit. The orbiter is 10 n.mi. below the payload, that is,

(a; -~ a) = 10 n.mi.
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a) How murh Av is required to transfer the orbiter into the
same orbit as the payload?

b) How many Ibs of Hydrazine is required?

¢) Suppose the orbiter is in the higher orbit, how does this
change the answers?

Exercise A.10.8. If the orbiter is in the same circular orbit as a payload,
but several milss behind, what maneuvers would the orbiter make to
catch up?

A.11. THE TRIGONOMETRIC FUNCTIONS AND THEIR INVERSES

The sin, cos, tan functions appear in gold letters and their inverses sin”,
cos™, tan™! appear in blue letters to the right. As examples, run the foliowing h
DEG mode:

15 30 60
f sin f cos ftan
gsin ! gcos ™ gtan ™

ANS

The distance between two points on the surface of the earth is given by the
formuia (See page 97 of the Owner's Handbook)

= 60 cos™ (cos (lat,) cos (lat,) cos (long, - long,)
+ sin (lat,) sin (iat,))

where

D is the distance, in nautical miles;
lat,, 1at, are the latitudes of the first and second points respec-
tively, with southern latitudes entered as negative
numbers;
long,, long, are the longitudes of the first and second points respec-
tively, with eastern longitudes entered as negative
numbers.
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Exerclse A.11.1. Two tracking stations, one near Los Angeles and the
other near Baytown, Texas have the locations;

Los Angeles  34° 20' 42" N lat
118° 42' 05" W long

Baytown 30° 41 05" N lat
95° 06' 32" W long

What is the distance between the tracking stations?

in solving for the Incation of an object in orbit, Kepler introduced an Angle E,
called the eccentric anomaly. The formulas relating the eccentric anomaly to

the true anomaly are

= -1 1-¢ o
E = 2tan i3 tan >

0 =2 tan"( _11__:06% tan E/2

Y

Exercise A.11.2. For the orbit in exercise A.10.5., find values of E
for each value of E. How much do E and @ differ at perigee? At

apogee? At ® = 90°?

A.12. QUADRANT CHECKS

If the circie is divided into four equiangular pans

Part 1 0°80°
Part Il 90°-180°
Part 1l 180°-270°

Part IV 270°-360°

each part is called a quadrant. Quadrants are r.umbejed counterclockwise

from | to IV.

Exercise A.12.1. With the above system of numbering quadrants, what
is the logically consistent way to iabel the direction of increasing

angies? Decreasing angles?



One problem with trigonometric functions is the inability to find the angle us-
ing the inverse function when the angle lies in the second or third quadrant.
Examples are h Deg  .iode:

45° 135° 135 ° 225°
sin sin cos cos
sin*! sin-! cos-! cos-!

ANS ANS| |ans|  [ANS]

The situation is that the inverse function always yields an angle called the prin-
cipal value.

Inverse Function Principal Value
sin-t -80° to +80°
cos! O0to +180
tan-' -90 to +90°

If we have only the value of the sum of the angle, or if we have only the value of
the cosine of the angle, we are stuck with the principal vaiue.

Exercise A.12.2. Using the tables constructed in Exercise A.9.2., find
corresponding inverses and compare with the original angles.

If we have both the sine value and the cosine value of the angle, we can find
the value of the angle in the interval 0 to 360° by using the inverse tangent
function anc the truth table.

Given: sin ¢, cos ¢

Find: 6 = tan— SIN6_
cos 8

‘ne + -
COS

+ 0° ]+360°

= [+180° [+ 180°
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The truth table is used as follows,
1. Itsin ¢ Is positive, and cos ¢ s positive do nothing to ¢ .
2. If sin g ‘is positive, and cos ¢ is negative, add 180° to 6 .
3. Itsin 9 is negative, and cos 6 Is positive, add 360° to 6 .
4, Ifsin 6 is nogative, and cus 6 is negative, add 180° to 6 .

Exercise A.12.3. Using tables constructed in Exercise A.9.2., use the
truth table to find the angles from the Inverse tangent.

Another problem with trigonometric inverses is that we can never discover if
the origlnal angle 'was outside the internal C to 360°, As examples, show that
the truth tables yield the same result for the following ang!es

6 135, 495°, 855 °,
6 = -225, -585°,

That is, taken sin © , cos 8, and find @ = tan' sin @ and apply truth table.
cos ©
There Is apparently nothing we can do about this, so we adapt to it

A.13. EVALUATION
A.13.1. Lezmiing Objectives

The principal objectives of Section A were threefold: tirst, to teach basic
computional skills through use ot the calculator; second, to explore calculator
capability and limitations In examining formulas and functions used in flight
planning; and thirdly, to tgach the basics of problem analysis, relating word
sets to formulas to calculator fogic.

Having completed this section and related references, you should have an
understanding of:

¢ the logic and capability of the calculator in solving simple
problems involving basic mathematical functions

¢ the basic components of formulas and the rules for problem
solving
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the calculator functions which simplify problem solving
basic mathematical and space flight related terminology.

A.13.2. Outcome Measures

You should now be able to;

1.

Write the calculator code or key steps in evaluation of a for-
mula;

Read a simple problem statement and select given variables
and those to be calculated;

Evaluate formulas with the calculator containing powers,
roots, logarithms, exponentials, trignometric functions, or in-
verse functions, or all;

Make use of calculator conversions, such as radians to de-
grees, fractions of degrees to minutes, etc.;

Make conversions of units of measure from one set of mea-
surements through use of equivalent relations;

Cemonstrate a passing acquaintance (they will become
clearer as we proceed) with the foliowing terms.

radius altitude axis
velocity force mass
angle radian rotation
degree period epoch
revolution satellite orbit
rocket thrust launch
conversion dimension function
formula equation impulse
mean motion transfer payload

mean anomaly true anomaly perigee

elliptical orbit
astronomical units
nautical miles
specific impuise

eccentricity
semimajor axis
angular velocity
gravitational constant

eccentric anomaly
international feet
exhaust velocity
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B. PROGRAMMING THE CALCUI.ATOR

8.0. INTRODUCTION

You have been solving problems manually on the calculator using a step-by-
step process. In this section you will begin to write programs for the calculator
that will enable you to press a single key on the calculator, commanding it to
execute all the steps necessary for the solution of a problem. It is not quite
that simple, however.

But for you now a program will consist simply of a serles of calculator
kevstrokes pressed to solve a problem manually. The calculator will remember
these keystrokes when keyed in, then execute them in given order at the press
of a single key. We introduced use of the storage key in Exercise A.8.5. Pro-
grams are extremely useful when solving problems involving use of the same
process (or formulas) but containing different values for the variables.

You must learn how to construct programs, load them, run them on the
calculator, and record them for future use. Some programs are simiple to write,
others are not. Understanding your calculator will also serve to provide the
foundation for future work in programming larger computers.

B.1. PROGRAMMING PROCEDURE: THE JULIAN DAY NUMBER

Review the material on pages 17-23 in the HP-67 Owner's Handbook and Pro-
gramming Guide, and do the suggested exercise. This material provides an in-
trodustion to running a prerecorded program, creating, loading, and running a
program, and recording of the program. Now turn to Section 6, pages 123-145,
entitled Simple Programming, and do the suggested activities. Spend some
time learning the calculator code, pages 129-130.

A stored program is relatively simple. It consists of code

g LBL f (i) or f LBL (L),
set of instructions,
h RTN.

The first entry is a LABEL designation, and the last entry is a RETURN (RTN).
The first identifies the beginning of program or first step of program memory
through the label L (one of letter keys A through E) or label | (one ¢’ letter keys
a through e), and the first RTN identifies the end of that program. These are re-
quired by the calculator control logic, otherwise the calculator could not begin
or terminate.
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To illustrate programming construction, we will write a program for com-
puting Juiian Day Numbers from the Caiendar Date. Note that wriiing a stored
program is a form of problem-solving since we must prepare:

(1) a list of data that will be contained in the answer, tcgether
with dimensions,;

(2) a list of input, or “givens,” together with dimensions, from
which the answer must be constructed;

(3) a list of formulas connecting the given data and the
answers, or output,

The plan of a solution, in programming construction, Is called a “flow
diagram” or flow chart. Such diagrams are useful in solving programming
problems, but their use is not restricted to this area. It is preferable to some to
work out the calculation process, constructing a flow diagram as they go, and
then write the program. Others draw a flow diagram after the program s com-
pleted for reference purposes. The most important standard symbols used are:

for input and output
or
general operaticns

for decisions

These symbols are joined by lines, with logical flow normally from top to bot-
tom uniess indicated otherwise by arrows. Flow diagrams are discussed on
pages 140-145 of the Owner's Handbook.

A ''subroutine’’ Is a section of a program that is performed as a separate en-
tity, and stored ready for use when needed in a master program. It is often con-
venient to write a very complicated program as a set of subroutines or sub-
programs. For our purposes a subroutine will be no more than evaluation of a
single formula.
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While a stored program is simple, the preparation for and documentation of
a program to be stored may not be simple. Unless certain rules are strictly fol-
lowed, chaos may result. The procedure is as follows:

1. Define: ¢ Input data
e Qutput data

2. Select dimensions for: ¢ input data
¢ Calculations
e Output data
3. Write down formulas.

4. Note logic tests required, branches, and subroutines re-
quired, if any.

5. Do flow diagram of calculations.

6. Test the code through: ¢ Editing
¢ Using known results from other
programs.
o Exercizing all paths

7. Document the progiam by: e Title

¢ Date written

¢ Brief description of what
program does

¢ Formulas used

¢ Operating limits and warnings

* Flow diagram

* Operating instructions

¢ Code and notations

For astronomical considerations time is an important factor. We can
describe the positions of celestial objects in terms of time; we can describe
ihe positions of earth orbiting bodies in terms of time. A system of Julian Day
Numbers was introduced to reduce computational labor in the comparison of
time spans made many years apart and to avoid time ambiguities. The Julian
Date, which we will use in other calculations, is given for every day of the year
in the American Ephemeris and Nautical Alamanac. Its calculation, however,
will be helpful. The Julian calendar epoch was choser to be January 1, 4713
BC, and it assumes the length of a year to be exactly 365.25 days. The Julian
Date may be calculated from the relation

JD = (365.25) y + (30.60) m + Day + 1720981.5,
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y = year -1, If month is less than or equal to 2 ( < 2),

y = ;'ear, if month is greater than 2 ( > 2),

m = month + 13, If month is,less than or equal to 2 ( < 2),
m = month + 1, if month is greater than 2 (>2),

This relation has conditional statements: depending on the month, the calcula-

tion may go one of two ways, with variables y and m given by

y = year -1
m = month + 13,
or
y = year,

m = month + 1.

in a flow diagram, this would be described by

day
month
year
decision month > 2 yes my ;
no

Y
y = year - 1
m = month + 13

ym

{

JD = JD (day, month, year)
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Let us now construct the program documentation. With a present calendar
date (day, month, year) as input and Julian Date as output, we start with the
preliminaries, program description and formula. Follow carefully this
documentation. Key in the program as coded.
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Program Documentation (1)
(Title, Date, Brief Description, Formulas, Limits)

Title: Julian Day Number from Calendar Date
Cate:
Name:

Program Description:
Program computes Juiian Day Number for 60 Hrs. 00 Min. 00 Sec for in-
put calendar date

Equations, Variables, etc:
Julian Day No. = (365.25) y + (30.6001)m + Day + 1720981.5

where
y = year - 1, if month less than or equal to 2 ( < 2),
y = year, If month greater than 2 ( > 2)
m = month, + 13, it month less than or equal to 2 ( < 2)
M = month + 1, if month greater than 2 ( > 2)

Operating Limits:
Valid for calendar dates March 1, 1900 to February 28, 2100
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Program Documeniation (2
(Flow Diagram)

Title: Julian Day Number from Calendar Date

month,
day, year,
input data

is

yes

month-2 > 0

M = month + 13
y = vyear-1

3
i

month + 1
year

Juiian Day Number = INT (365.25 y)
+ INT (30.6001 m) + day + 17209815

RTN




Program Documentation (3)
(Operating Instructions)

Title: Julian Day Number from Calendar Day

STEP|  INSTRUCTIONS | palrimiTs KEYS | pATAUNTS
1 | Key In program [___} L__]
2 |Key in month [___:] D
3 | Stcre in register 1 STO L—__D
4 |Key in day E___J [__:]
5 |Store in register 2 [ STO } [ 2 ]
6 | Key in year [ l [ ]
7 | Store in register 3 | STO ] [ 3 ]
8 |Key in 17208815 - L
9 | Store in register 4 L§IO_]
10 | Key in 365.25 ]
11 ] Store in régister 5 [:SE]
12 | Key in 30.6001 L]
13 Storé in register 6
14 | Start Program J.D.

For new date bypass

steps 8 thru 13

JULUULOUL e

IR EERCEERREEN
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Program Documentation (4)
(Code and Notations)

Title: Julian Day Number from Calendar Date

LBLO
RCL 1 mornth
2
X > 07 is month -2 >0
GTO 1
RCL 1 month
13
3
+
STO 1 rmonth + 13
RCL 3 year
1
STO 3 year - 1
GTO 2
LBL 1
RCL 1 month
1
+
STO 1 month + 1
LBL 2
RCL 5 365.25
RCL 3 year
X
f INT (365.25)y
STO 7
RCL 6 30.6001
RCL 1 month
X
fINT (30.6001)m
RCL 7
+
RCL 2 day
+
RCL 4 1720981.5
+
RTN
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Exercise B.1.1. Write and document below a subroutine for calculating
the altitude of a satellite from its orbital parameters and the true
anomaly (Exercise A.9.3). Use documentation sheets which follow.

Exercige B.1.2. Write and document subroutines for calculating:

a) the velocity of a satellite from its oibital parameters and the
true anomaly (Exercise A.9.5.),

b) the velocity at perigee and the velocity at apogee from orbital
parameters (Exercise A.9.4.),

c) the period of a satellite (Exercise A.5.1.),
d) the mean motion (Exercise A.8.1),

e) the mean anomaly from the mean motion (Exercise A.7.4.).
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Program Documentation (1)

Title: Altitude ot Satellite from Orbital Parameters
Date:

Name:

Program Description;

Equations, Variabies, etc:

Operating Limits:
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Program Documentation (2)

Title: Altitude of Satellite from Orbital Parameters

a e 0 ,R,

INPUT

\

r= a(1-e’) _

1 + ecos ©




Program Documentation (3)

Title: A!tltudaA of Satellite from Orbital Parameters

STEP thmucrnoNs HDA'T"A,P,YJWSV KEYS oggupmrs
L JL ]
L L]
1]
C 1]
L L
L L
L J L]
L]
C 10 ]
[ ]

JULIE

_

1l

L

|

IR AEnNNd
OO

{__l
L




Program Documentation (4)

Tiile: Altltudo of Satellite from Orbital Parameters

"KEY
ENTRY

CODE
SHOWN

COMMENTS

"KEY
ENTRY

CODE
SHOWN

" COMMENTS




B.2. POSITION IN PLANE OF ORBIT FOR NEARLY CIRCULAR ORBITS

For small eccentricities (e), the true anomaly maybe found from the formula,
©=M+208inM + 3 e sin 2M
e’
+ 9 (13 sin 3M - 3 sin M)

The position vector of a satellite can be found at any time t by the following
procedure.

Given: M,, t,, a, u, e and time t,

Compute: , .
P= 278 (cyercise AS5.1)
va
n = %;’L (Exercise A8.2)
M= n (t-t) + M, (Exercise A8.3)
, Test:

it e > 0.1 STOP with e in X-Reg.

e < 0.1 GTO next step.

Compute: © from e and M using formula above.

Compute:
r= A1-€) (Eyercise A9.3)

1 4+e6cosd

V= ,}p% - -;~ (Exercise A.9.5)

The output data: P, @, 1, V at time t.

Exercise B.2.1. Write and document a calculator stored program for ob-
taining © , 1, and V at time t. (Specify dimensions of output!)



- smm——

Mh'.ya!“ ,e,t

INPUT
e < 0.1? NO
YES
P = ?»__'Lﬁa_if — .
L
_2an —
"="p
1
M=n(E-t)+ M, ——
y
=M+ 2esinM + .. l———o
; a(l-e)
1+ ecos® “ o
‘h
- 2 _1
) —
Y
RTN
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aand H are input from input data
for calculation of P

calcuiated P is input for calculation of n

calculated n Is input for calculation of M
-t, t, and M, tfrom input data

calculated M is input for calculation of
0 - e from input data

calculated @ is input for calculation of r

calculated r is input for calculation of v



Exercise B.2.2. Modify the above program so that the output is the
Gltitude H, as weil as @, r and V at time t.

Measures of a distance r and an angle @ are called the “polar coordinates”
of a point. Topics involving motion abcut a point can better be investigated
with polar zoordinates rather than by rectangular coordinates (ordered pairs of
real numbers (x, y)). Graphs of polar coordinates are generally done on polar
graph paper, paper with angular and radial divisions. To make a graph we mark
the point for each order pair (r, ® ). For example, forr = 1 + cos @, a table
could be constructed from r.walues calculated by inputting different values of
9.

o[ 0°[a5°]90° | 120°[ 150° | 180°] 210° ! 240° | 270° [ 300° | 330°
r]20J1.7}10 {05 |01 |O 01 ]G5 |10 [15 |19

Using polar graph paper, find the point for each pair (r, ® ), see if a pattern
develops, and then join the plotted points with a smooth curve.

‘Exercise B.2.3. Using the calculator program from the previous exer-
cise, let

t, =0
M =0
Findrand © fort = 0. Input t in 15 minute intervals, draw up a table,
and plot the values of r vs © on polar graph paper for:
(a) the orbiter in a 160 n.mi. circular orbit (e = 0.0),

(b} the orbiter in an orbit with a = 3875.1944 n. mi. and e =
0.07,

(c) the orbiter in an orbit with a = 4004.3676 n.mi. and e = 0.1.

Plot all on the same graph paper. The graph will show a circular orbit
and two elliptical orbits with different eccentricities.

Exercise B.2.4. Find the velocity for each orbit above when all are coin-
cident (take program V output at © point seen in graph). The dif-
terence in velocity is the Av required to transfer from one orbit to the
other at the point of coincidence.



Exercise B.2.5. Write a program to calculate amount of fuel in pounds
when the I, Av, and orbiter weight are given. How many pounds of
hydrazine is required to transfer betwesn any two orbits above if the or-
biter weighs 200,000 Ibs? (See Exercises A.6.2. and A.10.1.)

8.3. ELLIPTICAL ORBITS

In Exercise B.2.3 a set of orbits was plotted. Tie first orbit was circular, but
the more general path followed by an orbiting body Is elliptical. By
mathematical definition an ellipse repregents the set of all points (x, y) in an x,
y plane, the sum of whose distances frorn two distinct fixed points (foci) is con-
stant. If we fasten the end of a fixed iine of stiring to thumb tacks and draw the
string taut with a pencil, then the traceable path of the pencil will be an ellipse.
The thumb tacks in this case would be the focal points (foci) of the ellipse.

In Figure 1B(a), C is the center of the ellipse and points A and B are the ver-
tices of the ellipse. The poinis P and Q are called the focus points, or the foci
of the ellipse. In every ellipse, the foci are located along the major axis be-
{iveen the vertices and the center.

The length of the semimajor axiz is generally denoted by the letter a as
shown in Figurs 1B(b). Thus the length of the entire m&jor axis is 2a. The
length of the semi -minor axis is generally denoted by the letter b. The length
of the segment from the center to one foci is generally denoted by the letter c;
thus the length of the segment from one foci through the center to the other
foci is 2c.

Since the foci are located along the major axis between the vertices and the
center, c Is greater than zero but less than a (0 < ¢ < a), and therefore as ¢
becomes small approaching zero, the foci approach the center and the ellipse
becomes more circular. As ¢ approaches a in length, the foci approach the ver-
tices and the ellipse flattens out. Thus, the shape of an ellipse can be de-
scribed in terms of the relative sizes of a and ¢. This common measure of the
shape of an ellipse is called its eccentricity, given by the ratio of ¢ to a.

Six orbital elements are used in describing a satellite’s path in space. Three
of them define the orientation of the orbit with respect to a set of axes, two of
them define the size and shape of the orbit, and the sixth, with the time,
defines the position of the body within the orbit at that time. For a satellite of
the earth traveling in an elliptic orbit, the fundamenta! reference plane is the
equator.
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Figure 1B. Properties of the Ellipse. In (a), C is the center of the ellipse, Ad the
major axi{s, AC and CB the semimajor axes, DF the minor axis, and P and Q are
foci of the ellipse. In (b), the distance between focl is 2c: with a as the
semimajor axis, the eccentricity is defined by e = c/a.
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The six elements defining the orbit and the position of the body in it are the
semi - major axis and eccentricity of the elliptic orbit, longitude of the ascend-
ing node (to be discussed in later sections), argument (angle) of periges, in-
clination of the orbital plane toward the equator, and the time of the passage
through perigee, or the mean anomaly at the initial moment of time. Perigee,
apogee, and true anomaly are described in Figure 2B; argument of periges and
angle of inclination are described in Figure 3B.

Figure 2B. An elliptical orbit. For a satellite at position S, r is the radius vector
from the center of ihe earth Q. P, the point of closest approach to earth, is
perigee. A is apogee. PA js the line of apsides. The angle @ , measured be-
tween QP and QS, is called the true anomaly.
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decending node
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equator ascending node

Figure 3B. Earth orbit. With P denoting perigee, g is the argument of perigee
for an orbit with angle of inclination |.

B.4. KEPLER'S EQUATION

Johannes Kepler (1571-1630) formulated three major laws of planetary mo-
tion. The first was that the orbit of each planet is an ellipse with the sun
always located at one focus. But a fundamental problem of motion for a
satellite in any elliptical orbit (earth about sun or object about earth) is to find

its position at any given time. Kepler worked on this problem for twenty years,
then gave up.



The solution that he found and thought unsatisfactory, however, has not
been improved upon in the more than 300 years since his death. It was derived
from his second law which indicates how the speed of a satellite changes in
its orbit. Kepler defined a new angle, the eccentric anomaly, by means of an
auxilliary circle of radius equal to the semimajor axis and a geometric con-
struction, as shown in Figure 4B.

Auxiliary Circle —

Figure 4B. Eccentric Anomaly. Constructing a circle about the eiliptical center

C as shown, the eccentric anomaly E can be defined through the true anomaly
O.
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The formula derived is

M=E-esinE

where
M is the mean anomaly,

E is the eccentric anomaly,

e Is the eccentricity.
If M is known, E may then be found by approximation methods. We will use
that which is called the Newton-Raphson method. We use the relation

M-E, + esinE,

E = E
nt "+ T e cos E,

V\:'I:\ere n is a number starting with zero representing the n" approximation. The
0" approximation for E is M for eccentricities smaller than 0.1. That is to say,
fore < 0.1,letE, = M.

The first approximation for E is

M-E + esinE,
1-ecos E,

E‘=Eo+

If the difference E, - E, Is large, we take the second approximation for E:

M-E, + esinE,
1-ecosE,

We then check the difference E, - E,. If that is large we continue with E,, etc,,
until the difference E, , , - E, is so small that further calculation is un-
necessary. A calculation such as this, while appearing complex and lengthy,
may easily be done by the calculator through programming. We will do this in
the next exercise.

Having obtained a value for E, the true anomaly  can be calculated from

- -1 J___t_e .._E_
e) 2 tan-' ( “_e tan 2)

with

and

M= 1 (t-t) + M,



Kepler's equation is solved from a given t, t,, M, and n . Programming for a
solution Is given in thn following exercise. Since it is a more complex exercise,
the steps will be provided. Study the flow diagram, and give attention to the
approximation or iteration procedure for determining E.

Exercise B.4.1. Write a program to solve Kepler's equation.

Inputs; t, t, minutes
M, degraes
a nmi

Constants: 4 (n.mi)¥sec?
60 sec/min

180 for deg to radian

Computations:

3
I

= V7 a ?(60) radimin

M-E, + esinE,

Eer =B+ 1-cosE,

® = 2tan ( li—f—f- tan E£/2) 180 4eg

Storage: M, e E,, ¢

Working storage required: 4 or more

Tests: test on difference E, , , - E, and stop if difference less than 10-
radians
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~rogram Documentation (1)
v (Title, Date, Brief De_sc,rlptlon, Formulas, Limits)
Title: Kepler's Equation
Date:
Name:

Program Desciiption: Program solves Keplers equation for M, eccentric
anomaly to obtain the true anomaly from given input data, t, t,, M,, & and X

Equations, Variebles, etc:

M E-esinE

M= n (t-t) + M,

- in E
EnH=En+(M E, + esin )
1-ecoskE,
© = 2tan" [T+etanE
1-e 2

Operating Limits and Wamings:

M-E, + esinE,

UseMforE inE,,, = E, + 1-6cos E,

Stop calculation for E, , ,when E,, , - E, < 10-°

n+1

M=nt
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Program Documentation (2)

(Title, Date, Brief Dascription, Foymulas, Limits)

Title: Kepler's Equation

a, e, it
INPUTS

M-~E, + esinE,

E =
ner = Bt 1-ecosE,

(En+|'En) NO

<10-87?

= 4 [1te E
e 2 tan e tan 2
v
RTN
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Program Documentatior: %)

Title:

Kepier's Equation

rer  INSTRUCTIONS  IpaTalniTs | KEYS oAl
1 Kay in program [j [::]
2 Inputs; a—=R,2 STO
3 o—>R2 sto] [ 2 |
4 u—sR.1 sto| [ 1 |
5 t ==R7
6 t,—>RB STO
7 M, —-R0 [sto] [0 |
| & 0.174532025 =6 Ist0| | 6
9  57.2057795199—=R4 [s10]
10 10-¢ —=R3 [3]
11 Find n: \ Hia® loBL] [ 0 | n
| [st0] [o]
12 FindM: 1 (t-t) + M, M in deg.
sto] | 1 ]
13 Convert M to radians [gBL] | 2 | Minrad
[sto| [ 1 |
14 Use M as E, for st iteration [sto] | 3 |
15 Find E, , , loBL] | 3 |
]
16 Use E, ., as E, for teration RCL| | 5§
sTO0| | 3
17 Repeat lterations until (E{, , - £,)>10¢|[RcL| [ 5 | E
[sto] [3 ]
18 Use Eto find ¢ I?;ﬁ] l——dv] 8 in rad.
[sto] [4]
19 Convert 4 to degrees [STO] [ 4 J ¢ in deg.
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Progrem Documentation @

Title: Képler"s Equation

Title: Julian Day Number from Calendar Date

LBLO ABS ,
RCL1) M 1 |BCL3 o ]
RCL2| a x>y
3 Glo4
y" . al RCL5S . En i n
+ STO3 En
Vx_ GTO 3
5T09 n gLBL4
LBL1 RCLS Eiq+o
RCL7 t STO 3 En
RCL8 t 1
- N RCL 2 e
RCLY n + 1+e
X 3 1
RCLO M, RCL2 e
+ - 1-e
STO1 M (in degrees) +
fgLBL2 Yx__
@RAD ] RCL3 En
RCL6 2
STO1 M (in Radians) f tan
STO3 Initialize En X
gLBL3 (g tan-
RCL3 En 2
f sin sin Eq X 6 (in Radlans)
RCL2 e RCL.4
X X
RCL3 En STO4 6 (in degrees)
- g RTN
RCLA1 M ]
+ M-En + esinE,
1
RCL3 En
f cos cos En
RCL2 e
X
RCL3 En
+.
STOS En 4+
RCL3 En
- En + 1~ En

61



Exercise B.4.2. Compare the values of 6 obtained from the program of
Exercise B.4.1. with values of ¢ obtained from tho program of Exercise
B8.2.3, for values of @ = 005, e = 0.1, = 02, = 05,

Exercise B.4.3. Using the calculator program of Exercise B.4.1, plot
values of r va @ on polar graph paper for the following orbits.

(a) A circular orbit of 160 n.mi altitude (e = O) with i, = O, M, =
0 for t at intervals of 15 min.

(b) An elliptical orbit, with a = 13185.3858 n.mi, e = 0.7266723
andt, = 0, M, = 0 at intervals of 30 n.mi

() A circular orbit, at an altitude of 1832291 nmi, andt, = 0, M, =
180° at intervals of 1 hour

B.5. EVALUATION

B.5.1. Leaming Objectives

The principal objective of Section B was to teach more complex problem soiv-
Ing based on task analysis which invoived examples of flight planning problems
with arbitrary and incremental variable input. The complexity of the task was
simplified through the use of the calculator programming capability.

Having completed study of this section and related references, you should
have an understanding of:

e the conceptual content of problems

¢ the types of data needed for problem evaluation
¢ the use of muitiple formula in problem evaluation
¢ the logic of flowcharting

* the methods of constructing a calculator program

2 AT

NSy SIS

P
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B.5.2. Qutcome Measures
You shculd now bo able to;

1, Identify input data and dimensions needed to solve prob-
lems,

Identify appropriate formulas for problem solution,
Flowchart a problem to solution,

Write a calculator program for problem solution,

o & 0N

Document and edit programs,
6. Demonstrate a familiarity with orbital terminology.
if not, GTO B.1.



C. POSITION AND VELOCITY
IN THE ORBITAL PLANE

C.0. INTRODUCTION

The purpose of the following is to Cevelop ways to calculate the position of a
satellite in tha plane of its orbit about the earth when the orbits are highly ec-
centric as well as circular. The given forms of input data will be typical of that
encountered for satellites or other orbiting vehicles in current mission plan-
ning. Because of the importance of upper stage delivery in orbiter flight pro-
grams, we will look at the details of orbit transfers in the plane.

C.1. LIST OF SYMBOLS AND DIMENSIONS

A listing now will be made of symbols used to denote all the variables to be
employed in our calculations. Many of them have been introduced before.
Here, diriensions will be given using the three basic units of mass (M), length
(L), and time (1).

v = yelocity, dimensions UT

r = distance from center of earth, L

a = semimajor axis, L

p = gravitational constant, L3/7¢

e = eccentricity, dimensionless

r, = perigee distance from center of earth, L
r, = apogee distance from center of earth, L
H = altitude above equatorial radius, L

= altitude at apogee, L

H
H, = altitude at perigee, L

P = period, T

v = velocity in orbit, L/T
Vo =  velocity in circular orbit, L/T
Ry = equatorial radius of earth, L



e
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T TRy

e

radial component of orbital velocity, L/T
horizontal component of velocity, L/T
parameter of the ellipse

mean mot'on, L/T

true anomaly

eccentric anomaly

mean anomaly

fiight path angle relative to local horizontal
specific impuise, T

rocket thrust, ML/T?

rate of fuel burned, ML/T?

total fuel burned, ML/T?

velocity change, L/T

effective exhaust velocity, L/T

C.2. BASIC FORMULAS FOR THE ELLIPTIC ORBIT

- Again, while a number of the basic formula have been introduced, a listing of
all formulae necessary for a description of an object in orbital flight is

presented below.

M

g = Tq#_z‘ (gravitational)

oq

The legal value of g is 32.1740486. (Note: the legal value of g is used to convert
weight in ibs to mass in slugs.)

@

&)

4

312

2mra
P =

VT
n = M

a”
n= 27

P
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Computation of Semimajor axis:

©)

(10)

)

(12)

(13)

(14)

(15)

(16)

(a7

¥

27
n

- R
H + R,

n t-t) + M,

2-v

PV7m ) 213
27




Computation of eccentricity:

(18)

(19)

(20)

@)

2

(3)

(29)

Computation of parameter p:

(25)

(26)

@7

(28)

(29)
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(30)

@1

32)

Computation of radial distance r:

@3

(34)

(35)

(36)

@7

(38)

(39)

(40)

rPV§ rivicos? vy
[T [T

a(l-e)
1+ ecos @

P
1+ ecoso®

2a
1+ av?
u

’ (1-¢)
aQi 1- cos?7>

a(l-e?*)tan v
e sin ©

a(l-ecosk)

YiaesinE

\

Vup Vy

Computation of radial distances at apogee and perigee:

41

r, =

a(l +e
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JURESO

(42)

43)

(49)

(45)

(46)

(@7

(48)

(49)

(50)

(1)

Computation of true anomaly:
(52)

(54)

(55)

69

-
L

flh =

..
(]

/
tan- {220 1 fan ¥
p-r
sin-! ( Al_Tw,e.z.M
1-ecos E
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(56)

67

Computation of eccentric anomai

(58)

(59)

(60)

©61)

62)

Computation of flight path angle:

(63)

(64)

(65)

66)

67

y.

70

cos-! (—?— (cos E - 8))

cos™' ( ;_)_é-?__r )

-1 rsin 6
sin-t — )
ave- 1
cos | L[ H—
av: + 1
m
1 (1-e)
S B -
cos [e + 1 cost T

sin-! (Yr—“)

cos™' (ﬁ)
v
(Vr)
VR
tan v,
tan! e_____s_ir;F )

cos™ (



e by

(68) Y

(69) v

Computation of velocity

(70) v
(M) Vero
(72) V=
73) Vv
(74) v

(75) v,
(76) Vi
(77) Vn =
(78) L

Escape velocity computation:

9) Vesc

71

tan-! [(1 - ")) tan 9]

'

+ ©C08 0

tan-' [ esine
1

]

a(l-ecoskE

\/ u(1 + ecosE)

\/""Tﬁ—
rCos ?
= {vg+ Vi

Computation of radial and horizontal velocities:

V cos

y

O S e s
IS ST e 3 — e S L



KRR

AT

(80) h = FIW,
(81) F= Wl
(82) W, = Fll,
83) e = clg
_Av

84) W= We(e ¢ -1)

= W
(85) Av = cin(l + W
(86) Aerc = v-“— a1.3f2 ( az ; a' )

Kepler's equation:

87) M= E-esinE
) Eoi= B4+ Moo teE
Series expansions for low eccentricities:
(89) o = M+<2e-%’+§-9%°+ % + ..)sinM
+ (5792 - —1—3’% + % -..)sin2M
+ (134 | e’ ysinam

12 192 512

+ (T8~ 480

72

103e* _ 451e° + ..)sind M
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+ (‘%%9' - 532;;' + .)8in5M

+ (1%%%"5; -.)8in6M

+ (%%—...)sin'fm

(90) E= M+@-2 +-2 -. & 4 HsinM

+ (%9-: - e 243 ~.)sin3 M

128 5120
& _ 4
+(3 15 + . )sind M
4 (208 _ 312567 | ) ginsM +

384 9216

e
(80 + ..) sin 6M

C.3. TRANSFER OF ORBIT

All space vehicle trajectories, at least during some phase of the vehicle's
mission, can be classified as transfer orbits. This general classification is
basic to most missions, because, in almost all instances after the space ve-
hicle has baen established in an initial orbit, a velocity impulse is given to the
vehicle which causes it to transfer to another desired orbit. Transfer orbits are
employed because a direct :aunch into the final orbit is almost always
physicaily Iimpossible and because an intermediate orbit can be more
desirable for initiating a precise transfer to a translunar or interpianetary orbit
than a direct transfer,
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In consideration of an orbital transfer it is necessary that the orbital
characteristics of both initial and final orbits be known, With that information
it can be determined whether a transfer orbit is necessary and the method by
which transfer is to be accomp!ished,

Exerciss C.3.1. Radar observations indicate that an orbiting satellite
has an alititude at apogee of 600 n,mi and a perigee altitude of 150 n.mi

a) Find the semimajor axis (Eq. (15))
b) Find the eccentricity Eq. (19) or (21))
c) Find the period (Eq. (2))

Exercise C.3.2. The orbiter is in an orbit with a semimajor axis of
4454.91 n.mi and eccentricity of 0.2,

a) What is the perigee altitude?
(Egs. (6) and (42))

b) What is the apogee altitude?
(Eqs. (6) and (41))

c) What is the radial velocity at perigee? at apogee?
(Egs. (70) and (76) )

d} What Is the horizontal velocity at perigee? at apogee?
(Eas. (70) and (75))

e) What is the radial distance when the eccentric anomaly is
90°? (Eq. (8))

f) What true anomaly coincides with this eccentric anomaly?

Transfers orbits may be classified in several ways. One of the methods of
classifying transfer orbits is by the type of thrust used to either initiate or ac-
complish the charge of trajectory. The transfer could be the result of a single
telocity impulse, a sequence of vilocity impuises, a low impulse thrust, a high
impuise thrust, or a continuous thrust along the transfer trajectory. Engines
may be fired toward the earth, adding to the velocity in a direction away from
the earth, they may be fired in the opposite direction, or in any direction in be-
tween.

Velocity is really a vector quantity. Some quantities, such as mass and time,
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can be represented by a single real number scaled to an appropriate unit of
measure. Such quantities are referred to as scalar quantities, and the real
number associated with each is a scalar. Some quantities can not be de-
scribed tully by a single real number because they have both magnitude and
direction. Force (thrust), and displacement are examples in addition to velo-
city. The mathematical object used to dascribe each vector quantity is called a
vector.

A vector is represented geometrically by an arrow. By definition, a vector is
a directed line segment, with a tail end (initial point) and a head end (terminal
point), and it is understood to be directed from tail to head. The length of a
vector represents its magnitude and the direction of the arrow represents the
direction in which the vector acts.

On the earth, or from the earth surface reference, we make use of the up-
down direction, which we designate as vertical. A direction at right angles to
the vertical, perpendicular to the vertical or parallel to the earth surface, is call-
ed horizontal. Often, a vector quantity is described in terms of vertical and
horizontal components as shown in Figure 1C,

If the earth surface is used as reference, a satellite in circular orbit would
have a velocity that was always horizontal, pernendicular to the vertical which
will be referred to as the radial direction. In an elliptical orbit, however, the
velocity is completely horizontal only at apogee and perigee. Throughout all
other points of the elliptical orbit the satellite has radial and horizontal com-
ponents as shown in Figure 2C.

Exercise C.3.3. The orbiter is launched on a trajectory such that at the
completion of the OMS 2 burn it is traveling horizontally with velocity of
25,495.83 feet/sec at an altitudr of 607,611.55 ft.

a) What is the semimajor axis?
b; What is the eccentricity?

c) What is the perigee distance?
Hint: The data given is V,, Vy anc H.

The data wanted is a, e, 1,

Use (74) to find V (Vg = 0 from above).
Use (7) to find r.

Use (16) to find a.
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Figure 1C. Vector components. (a) The vecior labeled V is described by its
magnitude, V, and direction, o , from the horizontal. (b) The vector V is
equivalently replaced by two vectors, a horizontal vector with magnitude V,
and a vertical vector of magnitude V, Magnitudes V,, = Vcos @ and Vg = V
sin a may be called respectively the horizontal and vertical components of the
vector V.
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flight path angle 7
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Figure 2C. An Orbital Transfer. For a satellite moving with velocity V in the
elliptical orbit at position (1), the velocity is paraliel to the orpoit at that point and
can be separated int: vertical (radial) and horizontal components. At position
(2), apogee, the vertical component of velocity is zero. If, at that point, an ap-
propriate horizontal impulse is provided, the satellite may be transferred to a
circular orbit with new velocity V' as shown in position (3). In this case the
magnitude of V! — V = AV is the change in veiocity. V,, = Vcos 7 and V, =
Vsin 7.

~
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Use (32) to find p.
Use (19) to find e.
Use (42) to find r,

Exercise C.3.4. Calculate the velocities at the points of coincidence for
each orbit in Exercise B.4.3. The difference in velucities is the Av ra-
quired for transfer from one orbit to the other when the burns are
horizontal.

tarcise €.3.5. At MECO, the orbiter has a velocity of 25,731.68 ft/sec,
an altitude of 55 n.mi and a flight path angle of 1.4° relative to the
horizon.
a) Find Vgzand V,,.
ANS: 628.68 ft/sec
25,724.0 ftisec
b) Find a, e.
ANS: 3498.96 n.mi
0244

¢) Find r,, velocity at apogee.
ANS: 3548.3346 n.mi
25,111.0847 ft/sec

The orbiter is to be put in a circular orbit with a semimajor axis equal to
r, by burning the OMS engines at apogee.

d) Find Av required.
ANS: 312.07 ft/sec

e) If the orbiter weighs 246,300 !bs, how much
Hydrazine wiil be used?

Exercise C.3.6. Suppose only the initial circular crbit and the final cir-
cuiar orbit are known. Explain how to calculate the semimajor axis
and eccentricity of the transfer orbit.

Hint: The perigee of the transfer orbit must be the same as the radial
distance of the lower orbit. Simi!arly, the apogee of the transfer orbit
must be the same as the radial distance of the upper orbit.
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C4. RADIAL BURN TRANSFER

Transfer from a circular orbit to an elliptical orbit or from one elliptical orbit
to another may be accomplished by & norizontal burn. The final orbit depends
on both the magnitude of the fina; velocity and the flight path angle at burn.

A radial burn from a circular orbit, one directed up or down, generally causes
a satellite to move ‘o an elliptical orbit. Results of a radial burn for upward
thrust is illustrated in Figure 3C. If another circular orbit is desired it couid be
accomplished from the elliptical orbit in the manner discussed earlier. The
elliptical orbit then would be referred to as the transfer orbit. Note the velocity
addition i:; Figure 3C. Note also the reversibility of the addition.

Had the satellite been in the eliiptical orbit initially with velocity V., at posi-
tion (2), firing the rockets upward to create a downward thrust, or Vy Gownward,
would have procuced the resultant velocity V, as shown in Figure 4C: The
resultant find orbit would have been the circular orbit shown.

Exercise C.4.1. The orbiter is in a circular orbit with an altitude of 160
n.mi. A radial velocity of 120 ft/sec upward is imparted by firing the
OMS engines directly toward the center of the earth.

a) Discuss the change in the orbit.

Hint: Note that the horizontal component of velocity is not affected by
a burn at right angles to it. The horizontai velocity is the same as the
circular orbit vislocity at 160 n. mi. altitude (Eq. (71)). The new total
velocity is found from (74). The new semimajo- axis is found from (16), p
In Townd from (32), the new value of e is found from (19}, and ¢ is found

fron: - 87).

ANS:

V,o = 2535394945
View = 26354.2334
AV = 0.28398 ft/sec
8, = 8y + 490.50
8,w = 0.004733

fae + *17.1385
fo = foe = 17.056495 n.mi

—
®
1

b) How much Hydrazine is burned, if the orbiter weighs 200,000
Ibs?
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Figure 3C. Radial Burn Transfer. A saieilite in circular orbit with velocity V,, is
shown In position (1). At position (2) engines fire creating a radia! thrust giving
the satellite a radial velocity V.. Since the velocity V is horizontal and unaf-
fected, the new velocity V., is the vector sum of V and V, with magnitude V,,,,
=VV§.N+ V&: Wts direction is the flight path angle 7 , at that point, for the new
elliptical orbit to which the satellite has been transterred. When the satellite is
in apogee position (3), an appropriate horizontal thrust could cause it to be
transferred from the elliptical orbit to a circular one of radius r.
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Figure 4C. Vector Addition. (a) parallelogram method. (b) graphic method in
which vectors o be summed are constructed taii to head with the resultant
vector drawn from the tail of the first vector to the head of the last. Note that
Vie = Vow COS Y, Vo =V Usin v, and V3, = V2 + Vi

new cire
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Exercise (3.4.2. Suppose the 120 ft/sec increase in speed is imparted by
a horizontal burn to the orbiter in a 160 n.mi circular orbit, instead of
the radial burn as In the previous exercise.

a) Discuss the change in the orbit,
Hint: Note that the radial component is zero before and after the b irn.

The new total velocity is

View = Vg + 120 ft/sec
AV = 120 ft/sec
a,, = 3, + 3452 n.mi.

.009444
. + 68.881 n.mi
rp = Toire = 956-836 ft

-
»
|

b) How much Hydrazine is burned, if the orbiter
weighs 200,000 Ibs?

Exercise C.4.3. Discuss the relative merit, in terms of fuel used and
total change in orbit. of the radial burn and a horizontal burn.

Exercise C.4.4. Suppose that the orbiter is in one circular orbit and
must bie transferred to another circular orbit at a new altitude. Is there
any way to do this with only one short burn of the OM3?

Exercise C.4.5. Calculate ihe radial velocity in an orbit with the
characteristics

a = 13,185.3858
e = 7267

at values of
©= 0°180°
o= 90°270°
o= 7°187°
0= 62° 242°
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Tabulate the velocities and compare for the cases where the true
anomaly differs by 180°,

Exercise C.4.6. Calculate the radial distance, flight path angle, and
radial velocity for the new orbit resulting from the radial burn in Exer-
cise C4.2

a) at the point of burn
b) 180° around the orbit

Exercise C.4.7. What is the total A v required for placing a sateilite in
the upper circular orbit of Exercise B.4.3. (see Exercise C.3.4) from a
1680 n.mi circular orbit? The first stage empty case and the second
stage and the payload weigh 7,436 Ibs. How many Ibs of a fuel with an
I, = 260 sacs is required in thy first stage? If the second stage empty
case and payload weigh 3800 ibs, is there enough fuel in ttie second
stage? What is the period of the transfer orbit in hrs, minutes,
seconds? (Note that aii three arbits are in the same plane. In the real
problem, we must change planes.)

Calculation of the time required for an orbiting body to go from one point in

its orbit to another is importart. Position énd time can be accurately related.
The direct time problem i¢ o find the time associatea with a given value of @,
where O is the true anomz!y. This is solved as follows. For a given a, e, and

© , we may find E by Eq. (58):

E=2tan'(  j1-0© A
1+e tan 2 )

The value of M then may be dete 'mined using Eq. (87),

M=E-esinE

Next, we find n from Eq (3),

_}M
ﬂ—a——w

Finally (t - t,) is obtained from the relation

M=Mo

t-t) = 7
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where {, is the epoch time and t the time when the boedy reaches the point in its
orbit defined by © . If the epoch is at perigee or apogee, M, = 0, otherwise, M,
must be calculated.

[

Exercise C.4.8. Find the time required to travel from perigee to a radial
distance,

r = 6800 n.mi,
for the transfer orbit of Exercise C.4.7.
Hirt: Find @ from Eq (57).
ANS: (t - t) = 1" 24" 44°

where epoch is time of perigee passage

Exercigse C.4.9. Check the answer in Exercise C.4.8. using the calculator
program of Exercise B.4.1.

Exercise C.4.10 Find the time required io travel fromr = 6800 n.mitor
= 18,300 n.mi in the transfer orbit of Lxercise C.4.7.

Hint: Using Exercise C.4.8., the epoch is 1" 24™ 44¢ and the mean

anomaly at Epoch is the mean anomaly calculated: M, = 48° 11’ 40".

Exercise C.4.11. The ignition time, direction of burn, and magnitude of
burn for the second stage is to be determined from radar tracking data
acquired during the first 1h 25m of travel after first stage ignition. Ap-
proximately three hours will be required to do calculations. Will there
be encugh time before r = 18,300 n.mi.?

~xercise C.4.12. A solid rocket, once ignited, cannot be throitied back
or shut down. Suppose you have to use a two stage solid rocket to
transfer a payload from the orbiier (160 n.mi circular) to another circular
orbit at 750 n.mi, and the first stage is much too powerful for the job.
Do you think you could design a trajectory that would “waste” the right
amount of fuel, so that delivery can be accomplished? {f not, continue.



C.5. ENERGY MANAGEMENT: DIRECTIONAL BURNS

Since fuel economy is a vital factor in many space miscions, a natural and
important phase of mission design is to investigate the conditions that will
lead to a minimum fue! or energy transfer between the initial and final orbits. A
transfer of orbit problem may be regarded as a change of energy problem.

First determinations of minimum energy transfer orbits and calculations of
mission times was done by a man named Walter Hohmann (in 1925!). Let us
consider two possibilities for transfer between circular orbits. The first, shown
in Figure 5C, is called a bi-elliptic transfer; three burns are required. The sec-
ond, a two-stage transfer shown in Figure 6C, has been reviewed in the exer-
cises and will be referred to as a Hohmann transfer. While the two-burn
Hohmann transfer will in most cases of interest require less energy, it can be
shown that the bi-elliptic transfer is most energy efficient for cases in which
the radius of the final circular orbit is more than sixteen times the radius of the
initial orbit. But in any case it is much more time consuming.

Suppose that the orbiter is in a 160 n.mi circular orbit, and an upper stage is
deployed for transfer into a geocentric orbit. The transfer is minimum energy
(Hohmann transfer) with the characteristics;

Basic 160 n.mi orbit:
3603.930885 n.mi
25353.9497 fps
1" 30" 27°

Transfer orbit:

= 13,185.3858
7266723
33,315.8263 fps
6,273.8074 fps
10" 32" 56°
Geosynchronous orbit:
22,766.84089 n.mi
10,087.4748 fps
23" 56" 04°
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Flgure 5C. Bi-elliptic Transfer. The first of thrae horizontal burne is made at (2)
resulting in velocity V,. The second burn is at apogee (4) of the elliptical orbit,
resulting in velocity V,. The third burn, at perigee (6) in the new elliptical orbit,
is made to give an opposing velocity in order to effect the final circular orbit.
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Figure 6C. Hohmann Transfer. This I3 a minimum energy transfer between two
circular orbits, accomplished by two horizontal burns. The firs’ burn occurs at
(2) imparting velocity AV,; the second burn occuis at (4), 180 ° away, imparting
velocity AV,. V,-V = AV, + AV, = AV.
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You may verify the paramaters for the transfer orbit using previous exercises,
and that the required AV for the two upper stages is given by

1st stage AV = 7961.88 fps
2nd stage 4 ' = 4813.67 fps

Suppose now that the upper stage has two motors, & solid rocket for the first
stage and a liquid fuel rocket for the second stage. The solid rocket cannot be
throttled, and has a fixed Av of 8,200 fps while the liquid stage can be throttled
to any desired AV. The prescribed Hohmann transfer orbit cannot be made
since the AV is too large. But riow consider the problem of choosing a direc-
tion of first stage burn such that excess Av in the first stage is wasted, and of
choosing a direction and value of the second stage burn to accomplish the
desired circularization at geosynchronous altituude, as illustrated in Figure 7C.

The procedure for solution is as follows. Choose the burn direction for the
first stage such that the horizontai component of velocity gained is the Av re-
quired to go from the circular orbit to the prescribed transfer orbit, as shown in
Figure 8C. Using the orbital characteristics aiid given information, we see that
in two triangles of Figure 8C,

253539497 ft/ser
7961.87686 ft/sec

Vo
AVpeg

Vae + AVgeo = 33,315.8263 ft/sec = V,,
1st stage AV = 8,200 ft/sec.
The angie 8 is given by

Av
— et (o OVaEQ
B = cos" ({5t stage av)

8 = cos” (29%2%‘16) = 138417°

From Figure 8C,
Vs = (I1st stage AV)sin (.

Vg = 8200 sin (13.8417°),
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Figure 7C. Orbital Transfer Away From Apogee. At (1) a satellite in circular or-
bit with velocity V.. At (2) engines are fired producing a velocity AV,. The new
i velocity V; is the vector sum of AV, and V.. At (3) engines are fired in a

predetermined direction producing a velocity AV,. The resultant velocity of
g the satellite will be the vector sum of AV, and V; at that point. If the sum is
i equal to Vg and directed horizontally, the satellite will be placed in the

geosynchronous orbit shown.
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Figure 8C. Velocity Addition for Directed Burn. First stage Av is ira vector
sum of Avpeo and Va. Angle g is the burn angle. The resultant velocity after
burn, V.., is the vector sum of the initital velocity in circular orbit, V¢, and the
first stage Av. 7 is. the flight path angle for the transfer orbit. The horizontal
! velocity after burn, V,, Is the sum of V, and AVgea.

V, = 1961.7648 ftfsec

As a check try

Ve =2\(1st stage AV ) - ( AVpe)?

Vs = \/(8200F - (7961877,
Vg = 1961.7648 ft/sec

The new orbital velocity is

Voew = YVE + V4

Vo = V(33,315.8263)2 + (1961.7648)2,

View = 33,373.53447 ft/sec.

CEER T




SO PRI

The fiight path angle for the first stage is found from Eq. (65).

Vi

= tan!
7 = tan v,

1961.7648 |

P -f ——— el
T =t (5158263

y = 3.36980°.

The new transfer orbit has a set of characteristics different from that given.
The parameter p Is obtained from Eq. (32),

IV
P= "5

( 3603,83088 P ( 33,315.8263 y
62750.2781 6076.1155 "’

p = 6222.8079 n.mi,

The new semimajor axis is given by Eq. (16).

a = 13480,6653 n.ml.

The new eccentricity is given by Eq. (19).

e = (f1- P
a
e = 0.73375074

The line of apsides of the new transfer orbit has been rotatad by the radgial
burn. The new true anomaly is given by EQ. (54).
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® = tan (_p_!iq_j_
P

-r

)

e = 7.9649°

We have now completed the calculation of
() the requirad burn direction,

(i) the characteristics of the new transfer orbit.

Thy; direction and magnitude of the 2nd stage burn is determined by the in-
tersection of the transfer orbit and ihe required geosynchronous orbit. To
determine where this intersection occurs (see Figure 7C) we determine the true
anomaly for r equal to the radius of the geosynchronous orbit. Using Eq. (57),

P P - Teeo
6’ = cos' (3O
s 8lgeo
6222.8079 - 22,766.8409

(0.73373) 22,766.8409 )

8’ = cos!(

0" = 172.0355°.

Note that the angle of intersection, ¢°, when added to the angle at burn, is
180°. Under the circumstances of burn we have chosen, orbital intersection will
occur at angles 6’ = 180° - 6 andat 9" = 180° + ¢ .

Assume that we have chosen for orbital change the second intersection
point, ° = 180° + 6 . The radial velocity at this point of intersection is given

by Eq. (77).

Vg = ‘/—S—esin(wo + @)
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where 6 is the true anomaly of the 18t burn. Inserting the data,
V, = 1861,7661 ft/sec,

Note that this differs froii1 the radial velocity of the firat burn by: (i) it is in op-
posite direction; (ii) it differs in magnitude by less than 0.002 ft/sac, which we
can safely attribute to rounding error in the computations. See Exercise C.4.5.
The orbital velocity is given by Eq, (70),

or,

V = 5,626.861 ft/sec.

The flight path angle is given by Eq. (63).

Y = sin" Va
\
yielding
Y = 20.4043°,
The horizontal velocity is given by
Vy = Vcos?T,

or
V,, = 5,273.507 ft/sec

As a check on the calculated horizontal velocity, use
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to obtain
V,, = 5,273,8068 ft/sec.

Knowing the velocity required to circularize at geosynchronous altitude
to be

Voo = 10,087.4748 ft/sec,
The AV requir.i is
Vaeo - Vi, = 4,813,668 ft/sec.

The second stage must be burned in a direction with a magnitude that (i)
cencels the radial component in the transfer orbit, and (ii) provides the A v
necessary in the horizontal direction, From Figure 9C, the magnitude of the
2nd stage Av required is

2nd Stage Av = \l( AViga) 2 + VR

= \/(4813.688F + (1951.7661)

2nd Stage Av = 5,198.069 ft/sec

The angie at which the 2nd stage must be burned is given by

Va

e et
B = 180 - (90 -7)) - cos (2nd stage av!

1961,7661
8 =90 +17] - cos” (5195 060

where we have used the facts that the sum of the angles in a triangie is 180°
and that the total on a straight line is 180°, Then
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Figure 8C. Second Stage Velocity Addition. The resuitant of V,,, and the 2nd
stage av is Vy,,, the final velocity for the desired circular orbit. This ve’city
must be horizontal and equal to Vaeo- The radial component of Av must be
identital to and cancel the radial component of V,,,,. The flight path angle 7 is
identical to the flight path angle caused by the first burn.



B = 425772°

and the burn direction has been found, completing the calculations. Note
again that in the real world, a change of plane, which we have ignorad, is also
necessary.

Rz

Exercise C.5.1. Since an intersection with the transfer orbit just deter-
mined occurs at a true anomaly of

180 -©
in the new transfer orbit, derive the magnitude and direction of the 2nd
stage burn required to circularize into a geosynchronous orbit at this

first intersection. © Is the true anomaly at 1st stage burn ( ®@ =
7.9649°).

Exercise C.5.2. Find the mean anomaly at epoch and the epoch after
time of perigee passage for the new transtfer orbit of the last exercise
at @ = 7.9649°,

t, = 0"01™ 31°

M, = 0.8333°

Verify these values with the calculator program of Exercise B.4.1.

Exercise €.5.3. Find the times required to intersect the geosyn-
chronous orbit altitude in the new transfer orbit, after the time of first
burn.

ANS:

1st opportunity M, = 145° 22' 19"
(t-t) = 4"21"11°

2nd opportunity M, = 214° 32' 31"
(t-t), = 6" 28" 34°

These times are lapsed times after the first stage burn.
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Exercise C.5.4. Calculate the Av required for escape from earth for a
160 n.mi altitude orbit (Eq. (79)). Compare this with the total Av re-
quired to place a payload in a geosynchronous orbit froni 160 n.mi.
Compare the two.

Exercige C.5.5. The orbiter is in an orbit with the characteristics

perigee altitude = 120 n.mi

apogee altitude = 260 n.mi

An upper stage is to be deployed from perigee for transfer into geosyn-
chronous orbit. The first stage is a solid rocket with a Av of 8,200
ft/sec. The second stage is a liquid fuel stage.

Design the uppar stage burn directions, magnitudss, and burn |oca-
tions. There are two opportunities for upper stage ignition during each
revolution in the transfer oioit. Fine the *imes of each opportunity

C.6. EVALUATION

C.6.1. Leamning Objectives

The principai objectives of Section C were fourfold. first, to show how sets of
parameters characterize an orbit and to develop methods for calculating the
position and velocity of a satellite in the plane of its orbit; second, to show how
particular orbits myay be attained through orbital transfers; thirdly, to show how
orbital maneuvers may be influenced by upper stage rocket characteristics and
fuel efficiency requirements; and lastly, to raise the level of analysis from
single to muitistage and multivariable.

Having completed your study of this section and related references, you
should have an understanding of

e the elements required for describing orbit characteristics

and satellite position in the plane
* the problems relating to transter orbits and fuel efficiency

e the use of burn directions, thrust magnitudes, and orbital
position in effecting orbital transfers
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C.6.2. Outcome Measures
You should now be abie to

1. Use the appropriate basic transfer equations in solving prob-
lems.

2. Use the appropriate formulas and specific date to calculate
() the position of an orbiter, (b) the valocity of an orbiter at a
particular point in its orbit, and (c) th.e time required for an or-
uiter to traval tr~m one point to another,

3. Describe orbital transfars.
4. Add and resolve vectars information components;

5. Design upper stage burn directions, magnitudes, and burn
locations for desigrated orbital transfers,

6. Detine fuel requirements for orbital maneuvers, given appro-
priate information,
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D. TIME AND RELATIVE ORBITAL POSITION

D.0. INTRODUCTION

We have discussed the position and velocity of a satellite, orbiter, or other
spacecraft relative to the apogee and perigee noints of its orbit, and orbital
transfers within the orbital plane: now we turn our attention to a more com-
plete description of the position of an orbiting object, one rslative to its base —
the earth -- and its energy source — the sun, The earth is a ball, not quite
spherical, traviling at high speed in its orbit about the sun and spinning like a
top about its axis. When we calculats the velocity of a satallite, it is usually the
velocity relative to &n earth yurface, and we want to be able to specify its posi-
tion relative to some position on that surface.

D.1. CELESTIAL COORDINATES

The position of stars and other ceiestial or space objects may be specified
In the samie way that a position is defined on ths earth’s surface. The locatior
of ary spot on earth i3 given by latitudinal and iongitudinai meridians. Latitude
is measured north or south of the equator, which Is assigned a value of 0°, as
shown in Figure 1D. The poles are 20° to the north and south, Longitude is
measured east or west of the Greenwich Meridian, which is the 0° reference.
One nautical mile at the equator was originally the equivalent of one minute of
arc,

To define a set of Celestial coordinates, we construct a Celestial Sphere
with the earth at center as shown in Figure 2D. The intersection of the jro-
jected plane of the earth's equator with the Ce.estial Sphere defines 'he
Celestial Equatcr, A line from the Celestia! North Pole to the Celestial South
Pole passing th,ough the point in the sky, the First Point of Aries or Vernal
Equinox, where the sun crosses the equator in the spring, provides the
longitude type reference for the sky. The symbol, v , sign of the Ram, is used
to denote the Vernal Equinox and may be recognized by those of you born
under it. Angles are measured to the east along the Celestial Equator from the
First Point of Aries.

Exerclse D.1.1. Using the value of 1 n.mii = 1 min of arc, calculate the
equatorial radius in nautical miles. Compare this with the value in Ap-
pendix A. (See, for example, wne entry nautical mile in Webster';
Unabridged Dictionary for an indication of the reasnn for the discrepar:-

cy.)
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Figure 2D. Celestial Coordinates. The line from the Celestial North Pole
through the First Point of Aries to the South Pole provides a Celestial
“longitude” reference. An object positioned as shown is located through the
angle RA, called the right ascension (defining “longitude”) and the angle |. the

declination (defining “latitude").
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Figure 1D. Earth Meridians. The Greenwich meridian at 0° is longitudinal
reference for the earth, The equator is the latitudinal reference at 0°. The
angle shown in the equatorial plane is called the Greenwich Hour Angle (GHA).
GHA = GHA_., + « , (! Is the rotation rate of the earth and t is the ellapsed
time from epoch.
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D2 TIME MEASUREMENT

The clock time interval between successhyu ii.aridian passages of the sun is
called a frue solar day. That is to say, if a tima check is made when the sun is
directiy overhead on one day and again when the sun is directly overhead the
following day, that time interval is the true solar day, as illustrated in Figure 3D,
The langth of the true solar day varies throughout the year, since it is depen-
dent upon the speed of the earth which varies (according to Kepler's second
law) in its orbit about the sun. The average cloch time length of the solar day
over the year is called the mean solar day, The :nean solar day is divided into
24 hours or 86,400 mean solar seconds,

We know the motion to be relative, It is accepted fact that the earth spins on
its axis and moves in orbit about a focal point at the center of the sun. But
such motion can be viewed from difterent perspectives (different coordinate or
reference systems). Choosing to regard the earth as stationary in its orbit we
obtain a ditferent view: the sun would appear to inove in orbit about the earth
with a period of one year. Choosing to ragard the earth as stationary in its rota-
tional motion, the si:ii wouid anpear t orbit about the earth with a period of
one day: this is o/r normal “illusion,”’ with the solar day defined in terms of
successive eanth ivwridian passages of the sun in its orbit, shown in Figure 40,
Woe use the view or system that is most convenient for our problem description.

The time divisions of the clock for a mean solar day define tive quantity
called Universal Time (UT). They are also the same for Greenwich Mean Time
(GMT), 12 hours GMT (noon) defined to be the instant of passage of the mean
sun over the Greenwich Meridian (0° longitude). The Local Mean Time (LMT) at
any longitude on earth can be calculatea by

LMT

it

GMT + (East longitude)/1&
or

LMT = GMT - (Wast longitude)/15

where the icongitude is given in dogrees and fractions of degrees.

The time interval between successive meridian passages of the vernali
equinox is called a sidereal day. It is roughly the time for one earth rotation, as
was shown in Figure 3D. But because of the “wobble” of the earth's poles,
called precession, the sidereal day varies slightly in length. As with the solar
day, we may define a mean sidereal day, Greenwich Mean Sidereal Time (GST),
and Local Sidereal Time (LST). A sidereal time interval is somewhat shorter
than a solar time interval:

sidereal time interval = 0,9972695664
(solar time interval)
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Figure 3D. The Solar and Sidereal Day. With the earth considered in its mo-
tions, the time T, at P is noon with the sun directly overhead in (a). When the
earth makes one complete rotation, the point P will be located as shown in (b).
Dus to the movement of the earth in its orbit, the sun is row directly overhcad
at the point P'. The time required for the earth to rotate from P (a) to P (b) is one
sidereal day. The time required for the earth to rotate from P (a) to P! (b} is one
solar day. If P is on the Greenwich Meridian, ‘he time at F (a) is 12" Greenwich
Mean Time (GMT).
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Figure AD. The Solar Day. From a point P on the surface of the earth it “ap-
pears” that the sun moves about the earth as shown. With the sun in position
(a) It is noon. Sunset occurs at (b), midnight at (), and sunrise at (d). The time
required o return to position (a) is one solar day.
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Exercise D.2.1. Find the length of a sidereal day in terms of the mean
solar day.

Exercise D.2.2. A point near Houston, Thexas, has the longitude 85° &
28"W. Find the Local Mean Time at 12" Greenwich Mean Time,

Exercliee D.2.3. Find the length of a mean solar day in sidereal time.

D.3. ANGULAR TIME MEASURE

The time, in angle measure, since the ast passage of the iirst point of Aries
over the Greenwict Meridian is called the Greenwich Hour Angle (GHA) (See
Figure 1D). The GHA expressed in time measure is identical to the Greenwich
Mean Sidereal Time (GST). Thus, conversion of time measure to angle
measure is based on exactly 15 seconds of arc per sidereal sucond, or

15.041069 sec of arc = 1 mean solar second

Exercise D.3.1. Using the number of revolution.s per day from Exercise
A.7.1., calculate the number of ssconds of arc rer mean solar day, and
compare your answer with the number above. Calculate the number of
degrees per solar hour.

The GHA of Aries can be computed at any time from the equation

- 15.041069 , _
GHA () = GHA (t) + 2Ed® (t- 1)

where time is in mean solar seconds and GHA (1) is in degrees and fractions of
degrees.

Exercige B.3.2. Compute the GHA of Aries at 17" GMT on July 2, 1979,
using the epoch value, GHA (t) = 278° 27’ 12", on July 1, 1979. Com-
pare your answer with the A.E. Nautical Almanac entry.

D4. TIME CORRECTIONS

Time is given in the American Ephemeris and Nautical Almanac in what is
called Ephemeris Time (ET). This is a uniform time measurement based in prin-
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cipal on observations of the planets and moon. There is no theoretical connec-
tion between Ephemeris time and Universal time, or GMT, which fluctuates as a
result of charging earth motion. The difference is observed over several years
and projected forward one year at a time. For example, the predicted difference
between GMT and Ephemeris time in 1979 is given as:

Jan, 1, 1979 + 499 seconds
Apr. 1, 1979 + 50.1 seconds
July 1, 1979 + 50.4 seconds
Oct. 1, 1979 + 50,7 seconds

The difference is quite small, but correction to Universal Time should be made if
high accuracy is required.

For example, the right ascension of the sun at 0", July 1, 1979, is given in the
Almanac as 6" 37" 23.45". The correction for GMT Is

s 248.26 o "
504" x ‘86400 X 150 = 2.16
Therefore, the corrected right ascension for 0" GMT on the glven date is 99° 20’
54.18".

Exercise D.4.1. Use the American Ephemeris and Nautical Almanac to
find the Universal Time of the meridian passage of the equinox at
Greenwich on July 1, 1979,

D.5. THE RIGHT ASCENSION AND LONGITUDE

The angle measured to the east along the Celestial Equator from the first
point of Aries to the celestial meridian of an object in the sky is called the right
ascension (RA) of the object. This has been illustrated in Figure 2D. It is the
difference between the Greenwich Hour Angle of Aries and the GHA of the ob-
ject.

The Local Hour Angle (LHA) is the time since the iocal meridian passage of
the first point of Aries. It is identical to the Local Siderea! Time when ex-
pressed in time measure.

+ East longitude ( A E)

LHA (T) = GHA (T)
- West Longitude ( A W)
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If the right ascension of a celestial object is equal to the Local Hour Angle, i.e.,
when RA = LHA (T)

the object is directly over the local meridian. Therefore, the earth fixed
longitude, \ , of a subsatellite point can be found if the right ascension of the
satellite can be found. The earth longitude Is given by

A = RA - GHA (T)

where measurement is in the eastern direction (see Figure 50D).

Exercise D.5.1. Using the Nautical Aimanac, find the right ascension of
the sun at 0" GMT on July 1, 1981.

Exercise D.5.2. At 0" GMT July 1, 1981, calculate where on earth it is
exactly noon. Note that it is the “subsatellite” longitude of the sun re-
quested. Compare your answer with the GHA (sun) from the Almanac
for that date.

D.6. THE RIGHT ASCENSION OF THE MEAN SUN

In our work a rapid means of calculating the right ascension of the mean
sun, RA (sun), is an advantage over the use of tables, for reasons of con-
venience and efficiency. The orbital elements of the sun are used; again, we
pretend that the sun is in orbit about the earth when doing these calculations.
The coordinate system used is the true equator and true equinox of date, as
shown in Figure 6D.

Consider the epoch 0" GMT, January 1, 1979 (JD 2443874.5). The orbital
elements of the sun will be

g = 2825711432° + (0.0000470684°) d,
M = 357.47863 + (0.985600267) d,

e = 0.015736825,

€ = 23.44207294°.

g is called the argument of perigee, the angle measured in the
plane of the ecliptic (sun's orbital plane illustrated in Figure
8D) from the true equinox of date (First Point of Aries) to the
perigee of the sun's orbit, in degrees.

107



earth longitude ) Greenwich
Meridian (0°)

T
First Point of Aries

Flgure 5D. Longitude of Subsatetlite:Point. (GHA (1) is the angle measured
from the Greenwich Meridian to a line pointing to the First Point of Aries or the
Vernal Equinox. RA is the right ascension of the satellite, measured in the
equatorial plane from the Vernal Equinox as shown. The satellite Is directly
over the point P which lies on the earth longitude A . With GHA (1) greater
than RA, the longitude is west with A, = GHA (T) - RA,
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Figure 6D). The Ecliptic. The yearly path that the sun appears to foliow among
the stars observed from earth is called the eliptic. It makes an angle ¢ = 23°
27" with the celestial equator. Point A is the Vernal Equinox or ‘First point of
Aries, the ascending node; with the sun in that position, on March 21, the
length of day and night are equal. Point C, the decending node, occurs on
September 21. The coordinate system is the True Equator and Equinox of
Epoch (TEE) reference axis system. The epoch is defined to be 0"0™0° GMT on
the user specified base date.
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Figure 7D. Location of Orbiting Body. A body in orbit is specified by its right
ascension, RA, and declination, measured in and from the equatorial plane.
The angle u is measured in the orbital plane.
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Figure 8D. Angles in the Plane of Motian. P refers to the orbit perigee and A to
apogee. The angle g is the argument of perigee, © is the true anomaly, and U,
measured from the ascending node to the object, is the argument of latitude.
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is the number of Jullan days elapsed after o' GMT, January
1, 1979, in days and decimal fractions of days. (Note: The
correction term added to g represents the perturbation of the
earth’s orbit by the moon and planets. It amounts to 0.1694
secs of arc per day rotation of the line of apsides of the
orbit.)

is the mean anomaly of the sun in its orbit. The term involv-
ing the number of Julian days since epoch reflects the
period of the sun in its orbit:

360 deg

P = 5985600287

deg/deg = 365.250641 days

is the sccentricity. It chanjes due to perturbations of the
muon and planets about 41,8 parts per million per century
(decreasing during our geological era). We will ignore this
change.

is the obliquity of the ecliptic (the inclination of the plane of
the sun's orbit) in degrees. The obliquity of the ecliptic is
also changing at the rate of 47 secs of arc per century, We
will ignore this change.

The procedure for calculating the right ascension is as follows.

(@)
(b)

(©
(d)

Find the Julian date of the new date.

Subtract the Julian date of spoch 0" GMT January 1, 1979
(JD 2443874.5) 1o find d,

d = JD - 2443874.5
Note that the Julian date may include a decimal fraction of a

day. For example, at 17" 32" 03.3° GMT on 3C June 1979, the
Julian date is

24440545 + ‘—7—-52—?“@ = 244405523

Find the new elements of the orbit at the new date.

Find the true anomaly (see programs written in Exercises
B.2.1 and B.4.1),
©=M+2esinM + %e’sanM

+ % (13 sin 3M - 3 sin M)
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(e) Find the argument of latitude, u, defined as the angle in the
plane of motion from the ascending node, i.e., the true
equinox of date to the position of the object),

u=g +0
() Calculate

X = COS U,

y = €08 € 8inu,
RA (Sun) = tan-" (-;(V—)

{(9) Do a quadrant check.

Exercise D.6.1. Repeat the calculation for the Julian date for 17" 32"
03.3° GMT on 30 June 1979. Rearrange the computations as necessary
to carry the number of decimal fractions of a day to 0.1 second of time.
How many decimal places must be retained?

Exercise D.6.2. Find the right ascension of the sun at 17" 32" 03.3°
GMT on June 30, 1979. In your solution you shouid find:

d = 180.73050 days,
g = 28257965°,
M = 175.60675,
u = 9818640 + 57.29578 %, (0.0025118),

w = 08.18640 + 0.143911,
x = -0.144880,
y = 0.807783,
RA(sun) = -80.93222° + 180°,
RA(suny = 89°04' 04"

Exercise D.6.3. Check the result of the last exercise against the tabular
entry in the American Ephemeris and Nautical Almanac. What is the ,
discrepancy?
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at 0"ET, RA = 6" 33" 14.84°, corresponding to 98.3125°
at + 17" 32" 03,3 ET, RA = 99° 04' 08"

(0.130580 x 248.51 = 181,5589 = 2723.385 sec arc =
0.756496 %)

ET to GMT correction, RA = 98° 04' 10.16"

(0.1 x 38%'4—% x 16 = 2.16 sec of arc)

Exercise D.6.4. (a) What clock error corresponds to 6.2 secs of arc error
in RA (Sun)?

ANS: 143.7 sec

(b) How many decimal places in the Julian Day number does this repre-
sent?

ANS: 1E - 08

Exercise D.8.5. What is the maximum error, 5 , In RA (Sun) for an
observer on the equator if he uses the tabular entry in the Aimanac?
See Figure 9D.

ANS: 9 secs of arc

Exarcise D.6.8. What is the maximum error in RA (Sun) for the orbiter in
a 160 n. mi orbit using the tabular entries in the Almanac?

Exercise D.6.7. For an observer at earth’s distance, what is the max-
imum error in RA (Sun) if one limb is observed (see a in Figure 9D) in-
stead of the center of the sun? Note that the sun has a diameter of
752,827.06 n.mi, and find its distance on June 30, 1979 from the
Almanac.

ANS: 15’ 45" arc

Exercise D.6.8. Check this last answer against the apparent semi-
diameter of the sun given in the Almanac for 0" ET June 30, 1979,
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Figure 9D. Horizontal Parallax. The angle & is defined through tan 5§ =
(Req/1 AU) and o through tana = (R,,/1/AU). Theangle 8 ,90° + ais
the maximum central angle of daylight.
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Exercise D.6.9. Write a calculator program for calculating the RA (Sun)
and GHA (Sun) given the time, GMT, and number of Jullan days
elapsed sinch epoch. Choose the epoch to be 0" GMT JSanuary 1, 1979,

D.7. THE DECLINATION CF THE SUN

The declination of a celestial object is the angle from the celestial equator to
the objeit, measured positive to the no: i, negative to the south. Check
Figures 2 and 8D. The declination of the sun is given by

e = sin"' (sin £ sin u),

where
e Is the declination,

€ Is the obliquity of the ecliptic,

u is the argument of latitude, calculated as in the previous
section,

Exercise D.7.1. Find the ceclination of the sun at i7" 32" 03.3' GMT on
June 30, 1979. Compare your answer with the Aimanac tabulated
value.

ANS: 23° 10' 49", 23° 10' 36" tabulated

Exercise D.7.2. Add the computation of the declination to the
calculator program of Exercise D.6.C.

D.8. SUNRISE AND SUNSET

Daylight and darkness onset times are calcuiated in terms of the maximum
central angle of daylight. This was shown in Figure 9D. # would be 90° if the
sun were a puint (infinitely far away), if the earth were a perfect sphere, and if
the atmosphere did not bend the rays of the sun. The correction for the fact
that the sun has an observabie diameter gives

a = 900 15! 45"

The longitudes of sunrise and sunset are found from
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\ sunrise 4 (Cos g -sin|sin LAT
sunset GHA (sun) + cos™!{ cos | cos LAT )
where
| Is the declination of the sun at date,

LAT s the given latitude,
§ is the central angle ( § = 90° 15' 45"),

GHA (sun) = GHA (1) - RA (sun)

gives the longitude on the earth where it is exactly noon.

Exercise D.8.1. Find the longitude of sunset at 17" 32" 03 GMT June
30, 1979 at latitude 40°N,

Let us look at the solution for the above exercise. From the Nautical
Almanac, the GHA (T ) at 0" GMT June 30, 1979 is 277° 28.0', At 17"3270.3."3,
GHA (7)) = 277.46667° + 15.041069 (17.53425),

GHA (T) = 181°.200534,
From Exercise D.6.2, RA (sun) = 99° 04' 04", Therefore,
GHA (sun) =~ 82° 07" 58",
From Exercise D.7.1, the declination is
| = 23°10' 49",
Using the given relation,

v — _ RN AT AN .1/ -.004408688 - .25301
A sunset = - 82°07' 58" + cos ( 0.704207 )

= -82°07'58" + 111°27' 26"

= 29°19' 27"

Exercise D.8.2. (a) Find the time of sunset for the previous exercise in
GMT.

ANS; 17" 32" 03.3°
(b) Find time of sunset in local time.
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Ws will note that the soliiion for (b) above Is

12" 4 2L - 19 267 50

That solution follows because
(a) the longitude of high noon corresponds to 12", and

(b) the longitude to the east converts to time at the rate of 15°
per hour, /ater,

Check the local time against the entry in the Nautical Almanac for the June 30
date,

When the second term in the equation for longitude of sunrise/sunset is
180° or undefined, the sun naver rises (or sats) at these latitudes. Thus, the
condi lon for a continuous daylight (or darkness) Is

cos f -sin |l sin LAT > 1
cos | cos LAT =

This occurs when the absolute value of the latitude !s greater than g minus
the absolute vaiue of the deciination,

-

Thus, for a declination of 23° 10' 49" (17" 32™ 03.3° GMT on June 30, 1979) con-
tinual daylight occurs above latitude 67° 04’ 56N and continual darkness
exists below 67° 04' 56"'S. These latitudes must be modified to account for the
oblate figure of the earth. Check this result (67° 04' 56") against the
Sunrise/Sunset table in the Nautical Almanac for this date.

ar

D.9. DAYLIGHT/DARKNESS FOR A SPACECRAFT

For a spacecraft above the earth, the central angle f must be modified as
shown in Figure 10D. The central angle is given by

B = cos—'(ﬁrﬂw 90° 15’ 45"

Exercise D.8.1. Find the central angle for the orbiter in a 160 n.mi cir-
cular orbit.

ANS: 107° 23 §7"

118



possible
sunset

un
Lo WP ot ®

possible
sunrise

sun
1o center of sun
sun
W
aet o®
ce®
\O
/ 2
LAT
\aun
S ]
/ equator

(b)

Figure 10D. (a) shows a view perpendicular to orbital plane. 8, is the central
angle for the spacecraft at a radial distance r,, with 3, equal to 90° 15’ 45", (b)
shows a view parallel to equatorial plane with orbital plane given parallel. 1, is
the declination of the orbiting spacecraft and 1,,, the declination of the sun. In

(@) iIs shown possible sunrise and

sunset points, but (b) shows that the

spacecraft is always in sunlight due to the declinations of sun and orbital
planes. Latitudes above LAT, on earth can be seen to be always in sunlight.
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The coordinates of the spacecraft and the sun are obtained by projections
against the celestial sphere, so that the equation for sunrise/sunset becomes

RA (s) = RA (sun) + cos-' (G0 8 ~sinl sinl,,
cos |, cos |,
where
luo I8 the declination of the sun, in degrees,
I, is the declination of the spacecraft, in degrees.

For the special case of a spacecraft in an equatoriel orbit, |, = 0°, the relation
reduces to

RA (s) = RA (sun) ¥ cos*'(_cosf)
cos |y,

Exercise D.9.2. For a geosynchronous satellite in a circular equatorial
orbit, find the amount of time it spends in darkness on July 1, 1979,

ANS:

B = 171°33 43"
RA (Sun) = 99° 20' 54"
o = 23° 09’ 40"

Inverse cosine undefined—

Spacecraft always in sunlight

Exercise D.9.3. Find the amount of time the geosynchronous satellite
spends Iin darkness on September 23, 1979.

For a solution to Exercise D.9.3, we use the program of Exercises D.6.9, and
D.72. On 0" GMT, September 23, 1979, RA (sun) is found to be given by

RA (Sun) = 179° 25' 40"

RA (Sun) = 40° 15' 01"
Then
RA (s) SUNMISe . 479° 25' 40" £ 171° 33' 86",
sunset
or
RA (s) = 350° 59' 36" Sunset

RA (s) = 7°51' 44" Sunrise
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it follows that

argle in Darkness

16° 52' 08" .

total period in hours = 23.93446

time in darkness 19:3%%99—': X 23.9344€374,

t = 1"o7"17°
The ratio of time spent can be found this way only because it is a circular orbit
and the motion is uniform throughout the orbit (i.e., constant velocity).

]

D.10. EARTH FIXED LONGITUDES

The earth fixed longitude is calculated by the equation given in D.5 (see
Figure 5D).

A ¢ = RA (object) - GHA (1)

Similarly, if the longitude of an observation and the time of an observation is
known,

RA (object) = A ¢ + GHA(T)

Exenclse D.10.1. A satellite passes diractly ovarhead at Houston (95° 28’
W) at 14" 23™ 16° GMT on July 2, 1979. Find the right ascension of the
satellite.

ANS: 40° 22' 45"

Exercise D.10.2. The orbiter is to deploy an upper stage in full sunlight
under the condition that the angle between the sun and the flight path
angle of the upper stage shall be at least 35° and no greater than 80°.
The deployment ls alsotobe over atracking site at 91°32' W. Launch s
to be between 10" GMT and 11" GMT on July 15, 1981. How long after
the launch will deployment be possible? We will assist in the solution
starting as you should, with a sketch.
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The RA (Sun) must be between the values

RA (Sun) = 91°22' 0" + 10° + GHA(T)
and

RA (Sun) = 91°32' 0" + 55° + GHA (T)
The required GHA (1) at deploy Is between

GHA (T) = RA(Sun) + 91°32' 0" - 10°
and

GHA (T) = RA (Sun) + 91°32' 0" - 55°
Use Programs of Exercise D.6.9.
* Find RA (Sun) at 10" GMT on July 15, 1981
* Find GHA (1) at 10" GMT on July 15, 1981

GHA (1) at 11" GMT on July 15, 1981

{Note RA (sun) does not change rapidly.)

122

\
10°

L

—& sun center limit



* Find differences between GHA (1) at 10" and 11" and re-

quired GHA (1)

e Convert to time

e Correct for change in RA (sun) at new times

ANS: o
L]

The deploy window opens at 14" 32" 0° GMT
Deploy window closes at 17" 32" 01°

For 10" GMT launch, ths times prior to deploy are 4" 32" ¢o°
and 7" 32" 01°

For 11" GMT launct: the times are reduced by 1 hour.
The above includes a correction of 0" 0™ 45° window opening.

0" 1™ 16" window z;loslng for change in RA (sun) between
above times and 10" GMT.

Doss not include a correction for the semi-diameter of the
sun.

Exercise D.10.3. For an orbiter in a 160 n.mi circular orbit, assuming no
latitude requirements for deploy (e.g., no equatorial crossing display re-
quirement), how many opportunities, at most, will the orbiter have to
deploy the payload in the above window?

ANS: 2 opportunities

Note: If an equatorial crossing deploy requirement exists (e.g., plane
change requirement), no opportunity may exist in this window for this

launch time.

Exercise D.10.4. In the above window, how much time will the crew
have to depioy the payload?

ANS: 0" 11" 18°
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Exercise D.10.5. Suppose something precludes the deployment. Where
ie the next window?

ANS: window opans on July 16, 1881 14" 32™ 05° GMT
closes 17" 32" 04°

Exercise D.10.8. Suppose the satellite in the praovious example is to be
placed in geosynchronous orbit by a direct Hohmann transter. 'What is
the Earth-fixed longitude of placement? (Assume it is deployed from a
160 n.mi circular orbit.)

ANS: 9° 08'E

Exerclise D.10.7. If a geosynchronous satellite is to remain over the
Houston, Texas, meridian (95° 28' W), and it has been placed in geosyn-
chronous orbit by a Hohmann transfer from a 160 n.mi orbit, what is the
Earth-fixed longitude of deployment? (This is the longitude of radar
placement if the satellite is to be tracked from the ground during
deployment.)

ANS: 163°51° 31" E

D.11. SUMMARY FOR EARTH-SUN CALCULATIONS
D.11.1. Symbols

LMT = Local Mean Time

GMT = Greenwich Mean Time
LST = Local Sidereal Time
GST = Greenwich Sidereal Time

GHA = Greenwich Hour Angle
RA = Right Ascension
= argument of perigee

= mean anomaly

9
M
e = eccentricity
€ = obliquity of plane of motion
e

= true anomaly
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argument of latitude

declination of object

Q
I

number of days since epoch

N = earth tixed longitude, positive east
re = earth fixed longitude east
Aw = earth fixed longitude west
LAT = earth fixed latitude
g = central angle
t = time
ts = time of epoch
JD = Julian Day number

D.11.2. Relations
LMT = GMT + )¢
LMT = GMT- )y
LST = GST + )¢
LST = GST- )y
GHA = GST
u
1

g+ 0
sin-' (sin £ sinu)

U

RA‘gun" = (8”" (1—)
X
X = cosu
y =<¢0s € sinu

Solar/Sidereal Conversion

solar time interval  _ 1.0027379093
sidereal time interval

sidereal time interval _ 5664
solar time interval 0.987269

Arc/Tima Conversion - earth rotation relative to stars

125



1 hour mean solar time = 15.014069 degrees of arc
Arc/Time Conversion - earth rotation relative to sun
1 hour mean solar time = 15,00 degrees of arc

Longitude of sunrigse/sunset on earth

\ sunrise _ GA (sun) + cos-' (CO8 A - sinl,, sin LAT,

e U

sunset cos i, cos LAT

GHA (sun) = GHA (T') - RA (sun)

Sunrise/sunset for spacecraft (s)

RA (s) sunrise = RA (sun) = cos-' (COS {3-8}"'5 Sin '
cos |, cos |,

sun )
sunset

Earth Fixed Longitude for subsatellite point
e = RA(s) - GHA (T)

D.12. EVALUATION
D.12.1. Leaming Objectives

The principal objectives of Section D were threefold: first, to introduce the
measurement of relative position and time; second, to increase your problem
solving capability in the conceptual range; and thirdly, to teach the methods for
evaluating time related problems, such as launch window determination

Having completed this section and related references, you should have an

undersianding of.

¢ the relationship between various time measurements

» the use of reference points, lines, and angles in the location
of objects in space

o the use of reference tables

e the importance of earth-sun relations
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D.12.2. Outcome Measures

You should now be able to:

Convert time from one measurement set to another by use
of formua or table.

Convert time measuremenis to angular measure.
Find the right ascensions, declinations, or olher parameters

of the sun and earth orbiters at specified times given appro-
priate information.

Find spacecraft longitude and longitudes of sunrise and
sunset for earth and spacecraft.

Calculate deploy windows.

Consider advancing to changes of orbital plane and pertur-
bations or going through Section D again, or asking lots of
questions.
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APPENDIX A

Selected data from
JSC-14262
SPACE SHUTTLE ASTRODYNAMICAL CCNSTANTS

By B. F. Cockrell and Bruce Williamson
Mathematical Physics Branch

1.0 SUMMARY

This document p;svides basic space Shuttle astrodynemic constants for use in
mission planning and construction of ground and onboard software input loads. The data
included here are provided to facilitate the use of consistent inumerical values throughout
the project. The document supersedes reference 1.

2.0 INTRODUCTION

The astrodynamic constants presented in this document are taken primarily from
reference 2, '‘Natural Environmental and Physical Standards for Apoilo and AAP". Those
data have been expanded, and other data have been included when there was an indica-
tion that additional information would be useful. The values of the constants in reference
3 have been informally adopted by the Interplanetary Trajectory Committee.

3.0 ASTRODYNAMIC CONSTANTS AND PARAMETERS !
3.1 Introduction

This section presents the values and associated uncertainties of the constants and
models used in trajectory prediction. A list of conversion factors and a description of the
gravitational potential equation are also included.

Uncertainties (10 ) are presented if available. For consistent conversion between units,
more decimal digits are given for some quantities than are justified by the uncertainties,
The values presented are in agreement with those adopted by NASA Headquaiters (ref. 2),

3.2 Constants And Parameters

3.2.1. Angular Velocity of ttie Earth's Rotation
With Respect to the Vernal Equinox

The Earth’s angular rotational velocity with respect to a precessing equinox ( wp) and
inertial equinox ( w ) for OFT (calendar year 1979) based on references 6 and 16 is
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wp = .7202115854918357 —~ 004 radians per second
w, = ,7202115146459210 - 004 radians per second
3.2.2. Speed of Sound Constant
This is a derived constant used in the calculation of the speed of sound. The speed of

sound is defined by:
. [
C. = b 2 Tm )/z
s M—o

where Y = 1.4 and is the ratio of the specific heat of air at constant pressure to that at a
constant volume (dimensimiers).

Because 7 , R*, and M, are constants, they are combined for computational ease and the
equation is written:

where K is the speed of sound constant
K = 65.77035 ft/sec/ YK*®

3.2.3. Gravitational Potential Function

The classical expression for the gravitational potential V exerted at a point in space
located at a distance r from the center of the attracting body of radius R. and gravita-
tional parameter u . Is given in equation as

HE (RE>“ o P, (sin $)C,, cos(mr) + S, sin(m )
m=0

¢ is latitude (geodetic)
A is longitude

where ¢, and S are the harmonic coefficients of the potential function and P (sin ¢)
represents the associated Legendre functions of the first kind, of degree n and order m.
Because sin ¢ = z/r = u, where u is a direction cosine, the associated Legendre func-
tions may be expressed as:
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TEXAS SOUTHERN UNIVERSITY
HOUSTON, TEXAS 77004

DEPARTMENT OF PHYSICS November 7, 1981

Mr. Robert Brown, Technical Monitor

Lyndon B. Johnson Space Center

National Aeronautics and Space Administration
Houston, Texas 77058

RE: NASA Grant NAG 9-6
Dear Myr. Browm:

Pleage find enclosed the communication prepared for
you dated August 31, 1981, my anticipated date for trans-
mittal of the final grant report. I did not tramsmit it
then and thought that my conversation with you and
Mr. Scarlett concerning the matter would suffice for the
delay., Having offered to send the report minus one por-
tion of typed material, you both thought that it should
be sent complete and that a delay was acceptable. But it
was an error on my part not to have had the fiscal report
sent, since it is normally sent separately and was probab-
ly of greater immediate significance.

The small delay stretched itself and we now believe
the report too long past due. In the enclosed material,
therefore, is one part in a more or less complete but un-
finished form. If it is acceptable to and agreeable with
you, finished copies will be mailed to you and to the
STIF as soon as I receive it in appropriate form (November
30 projected).

It has been a pleasure working with you, and I wish
to extend from Texas Southern University our hopes for
continued cooperative efforts.

H., E. Blackwell

AN EQUAL EDUCATIONAL OPPORTUNITY IHNEBTITUTION




TEXAS SOUTHERN UNIVERSITY

HOUSTON, TEXAS 77004

DIPARTMENT OF PHYBICS August 31, 1981

TO: Robert H. Brown, Technical Monitor
National Aeronautics and Space Administration
Lyndon B. Johnson Space Center

FROM: H. E. Blackwell
Texas Southern University

RE: NASA Grant NAG 9-6

National Aeronautics and Space Administration (NASA) grant NAG 9-6 was
awarded to Texas Southern'University for work related to Space Shuttle flight
and operation, The initial phase of the work was projected for one year be-
ginning January l, 1980. The project was divided into two areas: (l) a re-
view, criticism, testing and preparation of course materials for training of
space flight design paraprofessionals; and (2) analysis and development of
the kinematics and approximate flexibility models of the Remoute Manipulator
System (RMS) of the Space Shuttle.

Course development proceeded from initial materials provided by the
Johnson Space Center (JSC). This work utilized principally the teaching and
ccurse material development expertise of TSU faculty in the design and docu-
mentation of a systen for the training of individuals in the mechanics of
space flight design.

A program of research was planned to delve into the subtler aspects
of remote manipulator systems, systems similar to those that will be requir-
ed for future applications in space. The initial investigations used the
configuration planned for the Shuttle Transportation System. This approach
was used to allow Texas Southern to build upon the substantial work already
accomplished on this system, thereby gaining a significant jump toward ad-
dressing the problems of more sophisticated systems. A significent aspect
of this area of work was the transfer of computer programs used to investi-
gate remote manipulator systems from JSC to TSU. These programs pe.mit the
rapid display and study of the control and response characteristics of Sys-
tem manipulator and represent many years of analysis, coding, and testing.
NASA was to have provided engineering data, algorithms used in remote con-
trol, software documentation, and other information to aid TSU in building
a remote manipulatoxr capability.

The first phase or initial grant period was listed as January 1
through December 31, 1980, although the award was made several weeks after
that beginning date. Funds for equipment (computer) came later in the year
by way of a grant supplement. As a result of this and the incapacitation
of the project director during the latter part of the year, a no-cost ex-
tension of the grant period through June 1981 was obtained. Although sig-
nificantly new developments in the RMS were not expected as a product of

AN EQUAL EDUCATIONAL OPPORTUNITY INSTITUTION
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this initial phase, the extension allowed completion of computer program trans-
fer from JSC, along with other tasks, and was thought necessary to provide a
more complete preparation for the second phase of this work. In May 1981, we
were informed that funding and work force in this area at JSC had been reduced,
and that funds for continued research at TSU along the lines of the initial
grant could not be supported.

A large portion of the initial work was designed to provide project fac-
ulty with appropriate background, primarily the configuratior and basic opera-
tion of the Shuttle RMS along with the tools and skills necessary for a de-
scription of that system. The RMS is a rather complex system having at that
time a number of engineering problems remaining after years of work by a number
of engineering groups. Our initial work consisted of learning tasks, movirg
toward more specific problems of the RMS system and more creative approaches
in developing such general systems which were to be accomplished in the second
phase.

Because most of the RMS work consisted of investigative tasks that were
not new but oriented toward continuance, we will not detail that work. We
are including, however, a report describing the RMS computer simulation pro-
gram developed at JSC which we transferred to and worked with in our system:
this includes work by E. L. Copeland of the Lockheed Engineering and Manage-
ment Company whose assistance we acknowledgn. One new approach on which we
worked dealt with errors, in which a general analysis of error generation in
ni.e complete operation of the remote arm system was projected. Another con-
sidered the spati:. transformations necessary to describe end effector posi-
tion and orientation: this approach used the Alpine concept in a move toward
better control of time-response characteristics of the simulated system. Our
principal reference for RMS study was documentation by SPAR Aerospace Products
of Toronto, Canada. Study of Vought's Teleoperator Maneuvering System was an-
ticipated as general development proceeded.

Addressing the first area of the grant, course materials for training
of space flight design paraprofessionals, we have included material labeled
Introduction to Flight Planning (I).
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The constants are for real time operations are:

C,p = - 10827 x 10
C,, = 256 x 10 -*
C,, = 1.58 x 10

C,, = 1.57 x 10-*

S, = -.897 x 10~

22
all others are zero.

(Higher order models are sometimes used for analysis and postmission trajectory
reconstruction.)

3.2.3.1. Equatoriai Sarth Radius (Gravitational)

1 E.r. = .6378160000000000 + 007 :+ .50070 + 001 m (ref. 2).
1 E.r. = .2092572178477690 + 008 == .16404 + 002 int. ft.
1 E.r. = .3443930885519168 + 004 + .26998 - 002 n. mi.

1 E.r. = .9999992160754699 + 0CO + .78392 - 008 E.r. (MCC).
3.2.3.2. Gravitational Parampter (GM, = u , = u Earth)

u e = .39860,2000000000 + 015 + .40000 + 009 md/sec? (ref. 2).
i e = .1407646853278542 + 017 + .14126 + 001 (int. ft)3/sec?.
u e = .6275027808522208 + 005 + .62970 - 001 (n. mi.)¥/secz.
u e = .1990931661816326 + 002 = .19979 — 004 (E.r.)*/hrz (MCC).

3.2.3.3. Mass of the Earth

M, = .5973343323842350 + 025 KG
.1316896781981220 + 326 L.BM

Me
3.2.4. Lunar Constants
3.2.4.1. Earth-Moon Mass Ratio (ref. 2)
M/M_ = 81.3010 (£ 0.0010)
3.2.4.2. Mean L.unar Radius

]

R, = .1738090000000000 + 007 + .70000 + 002 m (ref. 2).
R, = .5702395013123360 + 007 = .22966 + 003 int. ft.
R, = .9384935205183585 + 003 x .37797 - 001 n. mi.
R, = .2725062772756741 + 000 + .10975 — 004 E.r. (MCC).

3.2.4.3. Principal Axes

a = .1738570000000000 + 007 + .70000 + 002 m (ref. 2).
a = .5703969816272966 + 007 + .22966 + 003 int. ft.

a = .9387526997840173 + 003 + .37797 - 001 n. mi.

a = .2725815340305558 + 000 + .10975 - 004 E.r. (MCC).

130



P o

R

S

—

SRR

RSAAT

Y

b = .1738210000000000 + 007 + .70000 + 002 m (ref. 2),
b = .5702788713910761 + 007 + .2208686 + 003 int, ft,

b = .9385583153347732 4+ 003 + 37797 -~ 001 n. mi,

b = ,2725250914643945 + 000 + 10975 -~ 004 E.r. (MCC).
¢ = ,1737480000000000 + 007 + .70000 + 002 m (ref. 2).
¢ = ,5700426509186352 + 007 + .22966 + 003 int, ft.

¢ = .9381895464362851 + 003 x ,37797 — 001 n. mi.

C

= ,2724122083320720 + 000 + .10975 — 004 E.r. (MCC).

where a is directed toward the center of the Earth, ¢ Is coinciderit with the Moon's rota-
tional axis, and b is perpendicular to a and c.

!

3.2.4.4. Gravitational parameter for the Moon (GM, = ¥ = u Moon)
4 Moon = .4902780000000000 + 013 + .80000 + 008 md/sec? (ref, 2),
u Moon = ,1731400417087798 + 015 + ,21189 + 010 (int. ft)¥/sec.
u Moon = .7718260968373028 + 003 + .94456 — 002 (n. mi.p¥/sec?,
u Moon = ,2448838571715250 + 000 + .29969 - 005 E.r.3/hr2 (MCC).

3.2.5. General Constants
3.2.5.1. Astronomical Unit

AU = .1495978930000000 + 012 = .50000 + 004 m (ref. 2),
AU = .4908067355643045 + 012 + ,16404 + 005 int. ft.
AU = .8077640010799136 + 08 + .26995 + 001 n, mi.
AU = .2345469159233102 + 005 + ,78793 - 003 E.r, (MCC),

3.2,5.2. Velocity of Light in a Vacuum

.2997925000000000 + 009 + .30000 + 003 m/sec (ref. 2).
.9835711942257218 + 009 + 98425 + 003 Int. ft/sec.
.1618750000700000 + 006 + .16199 + 000 n. mi./sec.
.1692105801590269 + 006 + .16933 + 000 E.r./hr (MCC).

3.2.56.3. Gravitational Parameters for the Sun

C
%]
]
C

» Sun = .1327124380000000 + 021 x .15000 + 014 m¥/sec? (ref. 2).
u Sun = .4686697671960388 + 022 + 52972 + 015 (int. ft)¥/sec?.
M Sun = .2089242635906454 + 011 + .23614 + 004 (n. mi.)¥/sec?,
u Sun = .6628718533157138 + 007 + 74922 + 000 E.r./hr2 (MCC).

3.3. EPHEMERIS TAPE SYSTEMS
3.3.1. DE19 Tape

The aphemeris tape system to be used for all missions is provided by JPL and is called
the JPL Development Ephemeris Number 19 (DE19). For additional information, see
references 7 and 8.
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3,3.2, Tape System Conversion Factors

The following values are to be used to convert DE19 units to kilomaters (rets. 7,8, and
11),

AU = 149 597 193 km (scale tactor for planetary ephemerides)
R,, = 6378.1492 km (scale factor for lunar ephemerides)

p -t = 81,301 (ratio of Earth mass to Moon mass)

GE = 398 601.2 kmd/sec? (gravitational parameter of the Earth)

(T

3.4. FISCHER EARTH MODEL

The following constants describe the Fischer Earth model (1980), which is used for the
location of radar stations and other Earth surface fteatures (ref, 2)

3.4.1. Equatorial Earth Radius

a = ,6378166000000000 + 007 m.

a = ,2092574146981627 + 008 int. ft.

a = .3443834125269978 + 004 n. mi.

a = ,1000000156784906 + 001 E.r. (MCC).

3.4.2. Flatiening

f = flattening = 1 — bja
f = 1/298.30 = 0.3352329869259135 x 10-?

3.4.3. Polar Earth Radius

b = .6356784283607107 + 007 m.

b = .2085559148165061 + 008 int. ft.

b = .3432388922034075 + 004 n. mi.

b = .9966478263900521 + 000 E.r. (MCC),

3.4.4. Eccentricity of Ellipsoid

e = .8181333401693114 — 001
e? 2t — f2
62 = ,6693421622965943 — 002

1t

4.0 EQUIVALENTS AND CONVERSION FACTORS

1int. ft = .3048000000000000 + 000 m (exact) (ref, 2)

1 n. mi. = ,1852000000000000 + 001 km (exact) (ref. 2)

1 Er. = 6378165000000000 = 004 km (exact for scaling) for MCC internal use
1 Ibm = .4535923700000000 + 000 kg (exact) (ref. 2)
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1 hr = 3600.000000000000 + 000 sec (exact)
1rad = 180/nr deg

1 deg = 3800 arc sec

1 km = ,5398588034557235 + 000 n. mi,

1 m = .3280839885013123 + 001 int. ft

1 n. mi. = 6076115:/85564304 + 004 int. ft.
1 rad = 5720577951308233 + 002 deg

1 deg = .1745329251994329 - (01 rad

1 kg = .2204622621848776 + 001 Ibm

1 int. stat. mi, = 5280 ft (exact)

1 Ibf = 32.174048556 (int. ft/sec) Ibm

n = ,3141592653589793 + 001 (ref, 2)
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