Lewis R. Smith and Pal R. Prozek
Burr-Arown Research Corportion
Tucson, Arizono

The 12 bif successive opproximation $A D$ converter offers moderofely hagh speed precision dato conversion of a reasonable level of cost and complexity. The ADC1OHT extends this copebility over a temperature range of -55 to $+200^{\circ} \mathrm{C}$. No missing-code performence is molistained over the entire temperature ronge. The converter is completely self-contoined with internal clock and +10 woir reference. Figure 1 shows a block diagram of the ADC1OHT.

Figure 1
The internal 12 bit D/A converter is a monolithic dielectricolly isoloted chip. ${ }^{2}$ The specessive opproximation register (SAR) is a commercially avoilable CMOS chip. The clock and the compa. ator were designed with a single UM119 dual comporator made with convimtional junction isolated bipolar technology. The clock also contoins an MOS capacitor chip and a nichrome thin film resistor network chip. These five chips make up the bosic A/D converter. The reference circuit consists of a dielectrically isolated op amp chip, zener diode ond nichrome thin film resistor network. ${ }^{3}$ The ADCIOHT can be used with on er.rmal +10V reference, If desi ed.

The SAR could have been either bipolar ITL. or CMOS since both technolagies exhibit altered but useful charocteristics at temperatures well above $200^{\circ} \mathrm{C}$. However, CMOS devices offer low power dissipation, so that the intermi temperature of the hybrid circuit does not rise as much from self-heating. Also, CMOS SAR's have better noise margins thon TTL devices at high temperatures.

A major problem at high temperature is that coused by pn junction leokoge er rents. The largest of these currents is the epi to substrate current in iu cetion isoleted circuits due to the very large size of the isoi.-Aion pn junction relative to the device junctions. In CMOS circuits, these leakoges ore returned to the stppolies, and therefore, do not degrade performance. Therafore, the logic keeps working at temperotures up to $250^{\circ} \mathrm{C}$. Above that temperature, a four loyer latch mechorism, inherent to junction isolated CMOS, limits the devices performance.

Since the infernal D/A converter is dtelectricolly isolated, there is no epi to substrate leakage component. Dy eliminating this error mechenism, the useful femperature range of the device is increosed. Dielectric isplation is olso used in the reference circuit operationol omplifier for similar reasons.

Although the dual comperetor is iunction isolated, the epi to substrote leakoge currents ore second stage effects and 4 furthermore, rend to concel out. Another potential difficulty in bipolar circuits is the poor performonse of ioteral pap tronsistors at high temperature. This particular comporator doss not contoin any laterol transistors. Insteod, resistors ore used for level shifting purposes.

The nichrome thin film resistor networks are stabilized of over $500^{\circ} \mathrm{C}$ ond, Herefore, are stoble ${ }^{5}$ of temperatures well obove $200^{\circ} \mathrm{C}$. The current densities have been reduced by a factor of three from those densities used in normal commercial proctice to prevent electromigrotion at high temperoture. 6

The obsolute value of resistors in the converter is not critical, but resistor trocking with time and temperature is very importont. For this reason, critical resistors of different values are comprised of equal resistance elements. Thus, even thoorgh the resistors moy shift due to the extreme ambient conditions, the linearity, gain and offset of the AD converter itself shou!d remain stoble

The converte- is pocikaged in a conventional 28 pin sidebrazed ceromic pockoge. Figure 2 shows the plocement of the vorious chips in this packoge. The eight chips are eutectically attoched to the substrate and ultrasonic wirebonded to a double loyer thick film substrate. The substrote is then ottoched to the heoder using a high tempcrature gold tin preform.

Figure 2
A platinum/palladium doped thick film gold ystem is used to minimize purple plague. Avarage wirebond pull strengths of three grom. after 1000 hours at $250^{\circ} \mathrm{C}$ have been obroined. A 1000 hour test at $250^{\circ} \mathrm{C}$ exhibited only an 80%
increase in band resistances.

Connection between this double loper substrate and the earemic side-brozed packoge is mode with gold wire. The converter is hermeticolly sealed using a gold germanium prefrom to eftoch the cercmic cop.

To ensure the relictility of the converter, all parts are burned-in ot $200^{\circ} \mathrm{C}$ and all parts are 100% sareened. Due to the limited life of the connectors, the temperoture testing and burn-in fixtures use prinies circuit boerds that pass through the oven doors, thus allowing board connection to be mode of room temperoture. The test sockets themselves ore zero insertion force types mode of Torlon with berrylitium/ nickel contocts. The boards are mode of Noplan-sopper ctuit polyimide with ricikel ploting. A high-femperoture solder with a $300^{\circ} \mathrm{C}$ melting point is used for the test boards.

Table I shows the important electrical specifications for the ADCIOHT. Figure 3 tho 3 lineority error vs. conversion speed and indicotes that 12 bit occurocy con be attained ot $25 \mu \mathrm{~s}$. The clock frequency can be adjusted externally.

TABLE I

Typice! Performonce

Resolution 12 bits

Accurocy of $25^{\circ} \mathrm{C}$
Goin error: $\pm 0.05 \%$ (odjustoble to zero)
Offset erro:: $\pm 0.05 \%$ (sdiustable to zero)
Linearity error: 10.005%
Drift $\left(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+200^{\circ} \mathrm{C}\right)$
Gain: $\pm 15 \mathrm{ppra}{ }^{\circ} \mathrm{C}$
Offset (unipolar): ± 1 ppm/ ${ }^{\circ} \mathrm{C}$
Linearity: $\pm 0.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Figurs 3
Shift in bipolor offset and gain vs. time during operation at $200^{\circ} \mathrm{C}$ are shown for three devices in Figures 4 and 5. Both parameters can be adjusted to zero initially by the use of external trim resistors. Offset in the unipolar mode is much less than the bipolar shift shown in Figure 4. Differential nonlinecrity shifts with time during operotion at $200^{\circ} \mathrm{C}$

Figure 4

Figure 5
are shown in Figure 6. Differential norlinearity is defined as the deviation from the ideal one LSB step size. Overall nonlinearity is not shown but has similer shift ws. time character-

Figure 6

Ittics to thet of differentiol nonlinecrity. Figure 7 shows differential nonlineerity vs. temperature. All parts are tested for no missing codes over the temperature range.

Figure 7

Future Direction

Although the present design was not intended for use above $2000^{\circ} \mathrm{C}$, it is believed that a successive approximation anolog-to-digital converter could be built for $300^{\circ} \mathrm{C}$ operation with 8 bit performance. Iower power circuitry will reduce peak iunction temperatures. The present circuit dissipetes most of its power in the digital-to-anolog ennverter chip and ifr the reference. Both circuits could be redesigned to operate at lower supply voltoge and hence lower power.

Although the zener diode usad in the reference exhibits a monlineor temperoture coefficient above $+125^{\circ} \mathrm{C}$, occeptable performamee was obtoined to $+200^{\circ} \mathrm{C}$. At much higher temperotures, o nonlinear zener tempurature coefficient compensotion method is likely ic be required.

Very careful attention must be paid to matching of the internal D to A converter's collector-base leakoge curtents if nonlinear transfer charosteristics are to be avoided at high temperotures. Although leokage currents can still couse goin and offset errors, these con be removed using digital techniques. ${ }^{7}$

The CMOS high temperoture latch cgndition can : $=$ eliminated by using dielectric isolation. 1^{2} L logic circuitry also has potential for use in the SAR.

Finally, o high temperoture matal system such os the P_{r}, T_{i} Au metallization reported on by Peck and Zlerdt ${ }^{8}$ is required if reasonable MTBF is to be obtained ot $300^{\circ} \mathrm{C}$.

REFERENCES

1. Poul R. Prozcik, "Hybrid deto converters like it ? wi $\left(200^{\circ} \mathrm{C}\right.$) and cold $\left(-55^{\circ} \mathrm{C}\right){ }^{\prime \prime}$, Electronic Design, November 8, 1980.
2. Robert W. Webb, ISSCC Digest of Technical Popers, 1978, p. 142.
3. Jerold.G. Groeme, Operctional Amplifiers, Design 8 Applizations, McGrow-Hill, 1971, Pp. 230, 231.
4. S. J. Gillespie, "Stability of Lateral pap Iransistors during Acceleroted Aging", IBM, J. Res. Develop., Vol. 23, No. 6, Nov. 1979.
5. J. L. Prince, E. A. Repp, J. W. Kronberg, and L. T. Fitch, "High Temperature Chorocteristics of Commerciol Integroted Cirevits", High Temperoture Electronics and Instrumentation Seminar Proceedings, Dec. 3-4, 1979, Sundia Loboratories.
6. J. R. Black, "Electromigration, a Brief Survey and Some Recent Results", IEEE Tronsoctiuns, E.D., Vol. ED-16 /4, Apr. 1969, pp. 338-347.
7. Poul Prazok and Andii Mrozowski, "Correcting errors digitally in dato ocequisition and control", Electronics, Nov. 22, 1979.
8. D. S. Peck and H. Zierdt, "The Reliability of Semiconductor Devices in the Bell System ", Proceedings of the IEEE, Vol. 62, No. 2, Feb. 74, pp. 185-211.
