TECHNOLOGICAL NEEDS OF ADVANCED EARTH-OBSERVATION SPACECRAFT

A. L. Brook Martin Marietta Corporation Denver, Colorado

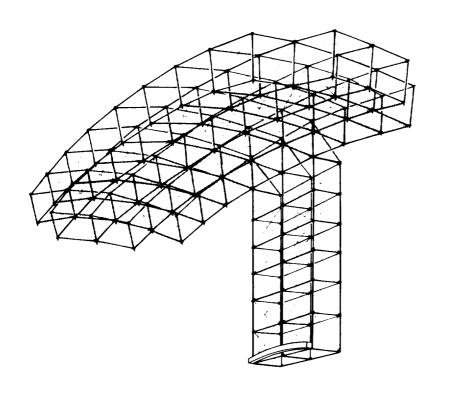
Large Space Systems Technology - 1981 Third Annual Technical Review November 16-19, 1981

Because this paper was not available at time of publication, only slides are presented.

Provide Design and Analysis Data on Microwave Radiometer Satellites, Augmented with Additional Earth Surface and Atmospheric Observation Sensors.

EOS Study Outline

- Analyze Mission Scenarios Develop Sensor Sets
- Develop Conceptual Spacecraft Designs Perform Spacecraft Analyses
- Evaluate and Rank EOS Concepts Identify Compropises/Advantages for Multidiscipline EOS
- Perform Parametric Subsystem Analyses Identify New Technology Requirements
- Expand LaRC Integrated Analysis Program


L

EOS — Systems to be Considered

- Microwave Radiometer Satellite (MRS)
 - 50 200 m Diameter
 - 700 km Altitude
- MRS Plus Supplementary Instruments for

- Earth Observations, or
- Ocean Observations, or
- Atmospheric Observations, or
- Combinations of the Above

120 Meter x 60 Meter Radiometer

120 Meter by 60 Meter Radiometer Design Parametric

<u>Size</u>

- 8 Bay by 4 Bay Reflector
- 8 Bay by 2 Bay Feed Mast
- 15 Meter Boxes

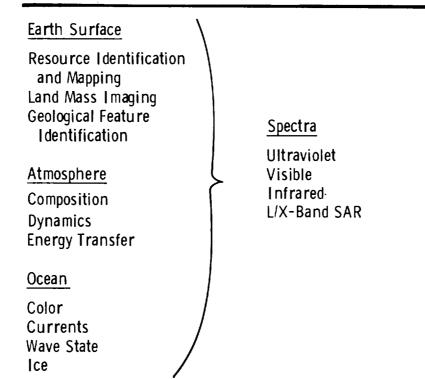
Member Sizes

- Surface 8.9 cm (3.5 in.) Diameter by 0.089 cm (0.035 in.)
- Verticals 6. 35 cm (2. 5 in.) Square by 0. 089 cm (0. 035 in.)

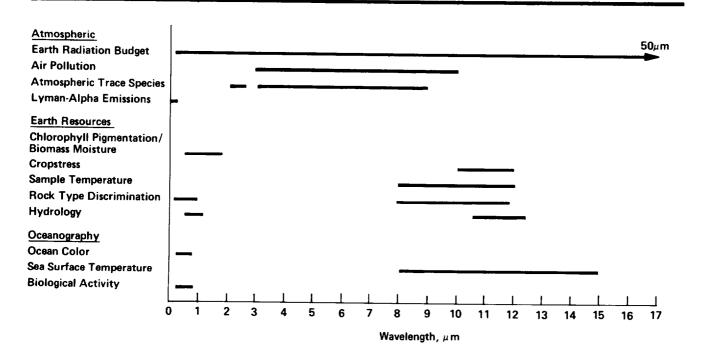
<u>Weight</u>

- (6900 lb) 3130 Kg Reflector, Feed, and Mesh
- (1000 lb) 454 Kg Feed Mass Allocation

Dynamics - First Five Fundamental Frequencies


- 1) 1.23 Hz
- 2) 1.46 Hz
- 3) 1.78 Hz
- 4) 4.21 Hz
- 5) 4.41 Hz

Typical Measurement Requirements for MRS


Measurand	Range	Resolution, km	Repeat, days	Observable at, GHz
Soil Moisture	5-40%, 10-25-cm Depth	1-10	1-3	1-10
Water Surface Temperature	270-310°K	1-10	1-3	1-8
Water Roughness (Wind)	0-60 m/s	1	3-7	1-37
Salinity	0-40 PPT	1-10	1-3	1-2
Water Pollution (Oil Slicks)	0-1-cm Thickness	1	1	1-10
Probable Operating	Frequency: 1-5 GHz	•	•	

1

Typical Supplementary Observations

Remote-Sensing Spectral Distribution

Typical Instrument Characteristics

Mass:	10-500 kg (2/3 in 50-250 kg Range)		
Altitude:	700 km Okay for Most, (SARs are Large at 700 km)		
Orbit Inclination:	60 deg Okay for Most, Some Require 98 deg		
Pointing Accuracy:	+0.1 deg for All		
Pointing Stability:	+30 arc-s for All		
Unobstructed LOS Access:	NADIR <u>+90</u> deg along and across Track		
Average Power:	500 w/Instrument Except for SAR (Several kW) LIDAR (2.6 kW), All 28 Vdc		
Data Rates:	1 kbps – 120 Mbps per Instrument Real Time, Near Real Time		