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CON'fROL TECHNOLOGY DEVELOPMENT OBJECTIVES

The main objectives of the control technology development task are given

in the slide below. The first objective is to develop control design

techniques based on flexible structural models, rather than simple rigid-body

models. Since large space structures are distributed parameter systems, a new

degree of freedom, that of sensor/actuator placement, may be exercised for improving

control system performance. Another characteristic of large space structures is

numerous oscillatory modes within the control bandwidth. Reduced-order controller

design models must be developed which produce stable closed-loop systems when com-

bined with the full-order system. Since the date of an actual large-space-structure

flight is rapidly approaching, it is vitally important that theoretical developments

are tested in actual hardware. Experimental verification is a vital counterpart

of all current theoretical developments.

• TO DEVELOP DYNAMIC AND SHAPE CONTROL DESIGN APPROACHES
BASED ON FLEXIBLE MODELS

• TO MAXIMIZE CONTROLLERPERFORMANCE BY JUDICIOUS SENSOR/

ACTUATOR PLACEMENT

• TO DEVELOP GENERALIZED MODEL REDUCTION TECHNIQUES

• TO DEMONSTRATE CONTROLTECHNOLOGY DEVELOPMENTSUSING
HARDWARE TEST FACILITY
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MAJOR ACHIEVEMENTS

The chart below serves as an outline for the remainder of this presentation

and lists the major achievements of the past year's work. Control-system design

approaches based on distributed parameter (partial differential equation) systems

have been developed. These control-system design approaches reduce control spill-

over. Analogous techniques have been applied to the figure-control problem, with

shape control of a large flexible reflector yielding excellent results from a

computer simulation. Stanford University developed control system designs for

the case sensors and actuators are separated by a flexible member, an inherently

difficult-to-control configuration. Purdue University has fully exploited the

possibility of optimizing sensor and actuator locations in terms of overall system

performance. A detailed finite-element model of our hardware verification facility

was developed, and detailed calibrations of the associated instrumentation were

made. Multivariable frequency domain control design approaches were developed

primarily for the large-space-platform application.

• DEVELOPEDDISTRIBUTED CONTROL-SYSTEM DESIGN APPROACHES FOR
CONTROL SPILLOVER REDUCTION

• SIMULATED A FULL-UP SHAPE ESTIMATION AND SHAPE CONTROL SYSTEM

• DEVELOPEDNON-COLOCATED SENSOR/ACTUATOR CONTROL-SYSTEM DESIGN
TECHNIQUES

• OPTIMIZED SENSOR/ACTUATOR PLACEMENT FOR IMPROVED PERFORMANCE

• DEVELOPEDA DETAILED EXPERIMENTAL FACILITY MODEL, INTERACTIVE
CONTROL SOFTWARE, AND INITIATED A TESTING PROGRAM

• DEVELOPEDMULTIVARIABLE FREQUENCY DOMAIN CONTROL DESIGN
TECHNIQUES FOR BASE MOTION COMPENSATION
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LARGESTRUCTURECONTROLCONCEPT

Drawings of several spacecraft are shownbelow. Typical control objectives
unique to large space structures are pointed out for someof these spacecraft.
Although the control objectives of pointing control, attitude control, etc. may
not at first seemto be unique to large space structures, the fact that these
objectives are highly coupled with the structural vibrations resolves this discre-
pancy.

• SHAPE

• NON-COLOCATION • POINTING

• BASE MOTION COMPENSATION • ATTITUDE

• POINTING • STATION KEEPING

• ATTITUDE • NON--COLOCATION • DISTRIBUTED CONTROL

LSST PLATFORM CONFIGURATION

GALILEO

AIS-6

LAND MOBILE SATELLITE
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THEDISTRIBUTED-SYSTEMCONTROLPROBLEM

There are distinct and major differences between past, lumped-parameter systems
and future distributed systems. A lumped system whether it consists of a single
rigid body, or even a rigid body with a finite numberof spring hinged appendages_
possesses a finite number of structural modes. A continuously distributed parameter

system made up of beams, membranes, tethers, etc. possesses an infinite number of

modes. The control problem emerges as a result of the on-board controller ability

to handle a finite-order model. Yet with the infinite-order systems, sensors
still measure the unmodeled modes and actuators still affect the unmodeled modes.

This can lead to instabilities when the control loop is closed.

LUMPED SYSTEM

FINITE-ORDER MODELS

SIC
WITH APPENDAGE

DI STRI BUTED SY STEM

INFINITE-ORDER MODELS

MEMBRANE

MA SS BEAM

• EXISTING CONTROL-SYSTEM DESIGN PROCEDURES, WHEN APPLIED TO TRUNCATED
DISTRIBUTED SYSTEMS MAY RESULT IN CLOSED-LOOP INSTABILITIES
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THE SHAPE CONTROL PROBLEM

The shape control problem results from trying to estimate and control a

continuous shape from a discrete set of sensors and actuators. The control process

begins with the definition of a desired continuous shape. Discrete sensor measure-

ments of the actual shape are combined with the structural model to yield a "best"

estimated continuous shape. Subsequently, a set of controls are applied to return

the shape as close as possible to the desired shape.

• CONTINUOUS STRUCTURE AND DESIRED CONTINUOUS SHAPE

• ONLY DISCRETE SENSOR OUTPUTS ARE AVAILABLE FOR
RECONSTRUCTING ESTIMATED SHAPE

• ONLY DISCRETE ACTUATORS ARE AVAILABLE FOR CORRECTING
THE SHAPE

DESIRED

SHAPE

I

SENSOR ESTIMATED

OUTPUTS SHAPE

I
I
I
I
J

I

/
• I
•/'I i

CORRECTED

SHAPE
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SCHEMATIC OF THE FLEXIBLE BEAM

Hardware verification of selected control concepts is performed in the JPL

flexible-beam experimental facility. A schematic of this facility is shown below.

It consists of a support tower, a pinned-free flexible beam hanging from the tower,

and position sensors and force actuators located along the length of the beam.

For evaluation of the distributed control system, an impulse is applied at the

free end of the beam, and the resulting deflections at that point are observed.

These results are shown on the following page.
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FLEXIBLE BEAM CONTROL

Control-system design approaches based on partial-differential-equation

models have been verified on JPL's flexible-beam experimental facility (see

previous page). The response of the free end of the flexible beam to an impulse

applied at the free end is shown below. The first case is open loop. The damping

is primarily due to the atmosphere. The second case shows the closed-loop response

using a Kalman Filter controller based on the first three flexible modes. The

rather persistent ringing occurs at the frequency of the first unmodeled mode, a

classic case of spillover. The final chart shows the much improved response of the

control system based on the partial-differential-equation model. The conclusion is

that retaining the complete model throughout the control-system design process can

greatly improve closed-loop performance.

NO CONTROL

-,-IF,,-I sec

-IMPU G DUE

DISTURBANCE TO AIR

KA LMAN CONTROL BASED

FILTER ON PDE MODEL

CONTROL SPI LLOVER

• CONTROLLER BASED ON PDE MODEL GREATLY REDUCES SPILLOVER
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SHAPE CONTROL RESULTS

The figures below show the results of a shape estimation and control computer

simulation. A known perturbation is first impressed upon the parabolic dish. This

perturbation is a linear combination of the mode shapes for convenience. Eighteen

sensor measurements are assumed along the periphery of the dish. From these

discrete measurements, and a structural model, an estimated shape is computed. Note

that it very closely matches the actual shape. Using nine actuators located at the

hub of the dish, control forces are applied to return the dish as close as possible

to the desired parabolic shape. The overall process yields excellent results.

ACTUAL SHAPE U°+ 10_Pl + 10 _o4+ 5_P8 + 5 _o10 ESTIMATED SHAPE CORRECTED SHAPE
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CONTRACT ACTIVITIES

Stanford University has been studying control-system design techniques to

overcome the destabilizing effects of sensor/actuator non-colocation. This problem

is further complicated by uncertain knowledge of the flexibility separating the

sensor and actuator. Adaptive control approaches using a phase-locked loop to

track unknown or varying oscillation frequencies have been shown to be quite

successful.

Purdue University is exploiting to full advantage the possibility of optimi-

zing the sensor and actuator placement to achieve improved control performance.

Purdue is also studying methods of reducing controller sensitivity to model errors.

One very promising approach uses equivalent cost realizations to select good reduced-

order controllers.

STANFORD UNIVERSITY

• SENSOR/ACTUATOR NON-COLOCATION

• ADAPTIVE CONTROL USING PLL

PURDUE UNIVERSITY

• OPTIMAL SENSOR/ACTUATOR PLACEMENT

• MODEL ERROR SENSITIVITY REDUCTION

• EQUIVALENT COST REALIZATIONS
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HARDWARE VERIFICATION

A vitally important part of any theoretical control development for eventual

spaceflight is hardware verification. Toward this end JPL has constructed a

flexible-beam test facility for verifying many aspects of the control of large

space structures. The facility has been augmented with a detailed finite-element

model of the flexible beam, accurate calibrations of the sensors and actuators,

a highly interactive software package for implementing various control systems,

and a laser system for vivid visualization of the control-system objectives and

performance. A movie demonstrating active shape control and active vibration

suppression has been made which documents the excellent experimental results thus

far obtained in these areas.

SUPPORT
TOWER

FLEXIBLE_ I

LASER BEAM

i

LECTORS

• SHAPE CONTROL

• DYNAMIC CONTROL
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SUMMARY

The past year's work in the control of distributed parameter systems resulted

in significant accomplishments. Prior to this year, all the results in this area

had been based on partial-differential-equation models. These results have now

been generalized to arbitrary finite-element models, with nice, closed-form analy-

tical solutions resulting. It was also found that decentralized (or local) con-

trollers are optimal in high-gain applications, i.e. in situations where the closed-

loop dynamics are dominated by the feedback. The most impressive result in this

area was the major reduction in control spillover obtained as a result of performing

the design using a full-order model.

Shape estimation and control has been simuiated on the computer using a finite

element model of a large antenna. Excellent results were obtained. It was found

that figure control performance is more often limited by the geometry of the sensor/

actuator configuration than it was by the resolution of the sensor or the power

of the actuator. In the laboratory, the continuous _S shape error has been reduced

to the theoretical limit, as governed by sensor/actuator geometry. It was also

found that for economical design, there should be a specific balance between the

number of shape sensors and the number of shape actuators.

CONTROL OF DI STRI BUTED SYSTEMS

• GENERALIZED PDE MODEL RESULTS TO FE MODELS

• OBTAINED CLOSED-FORM ANALYTICAL RESULTS

• DECENTRALIZED CONTROLLERS ARE OPTIMAL IN HIGH-GAIN APPLICATIONS

• OPERATOR TRUNCATION ALLEVIATES THE DESTABILIZING EFFECT OF

MODEL TRUNCATION

SHAPE CONTROL

• SIMULATED STATIC SHAPE CONTROL OF A LARGE ANTENNA

• PERFORMANCE NOT ALWAYS CONTROL LIMITED, SOMETIMES GEOMETRY LIMITED

• RMS SHAPE ERROR REDUCED TO THEORETICAL LIMIT

• BALANCE MUST EXIST BETWEEN NUMBER OF SENSORS/ACTUATORS
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SUMMARY(continued)

In the experimental validation area, a detailed facility model was made.
This includes a finite element model of the beamin tension and an accurate
calibration of the sensor/actuator scale factors. Interactive software has been
developed for very fast implementation of a variety of control laws. Laser hard-
ware, with beam-mountedretroreflectors, was installed for a vivid display of
the beam's motion. Finally, as could only be found with actual hardware, nonlin-
earities, static friction, hysteresis, and unmodeledmodesseverely altered the
control-system design process.

The area of platform control is discussed at length in a separate section.

Contractors have provided us with new insights into the control of systems
where the sensor and actuator are separated by a flexible element. Phase-locked
loops are employed to track changing or uncertain frequencies. Sensor and actuator
placement is a new degree of freedom to be examined in the control-system design
of distributed systems. Optimizing their location for improved control-system
performance has been achieved under contract.

EXPERIMENTAL VALI DATION

• DEVELOPEDA DETAILED FACILITY MODEL

• PRODUCED INTERACTIVE CONTROL-SYSTEM SOFTWARE

• SENSOR/ACTUATOR NONLINEARITIES, STATIC FRICTION,
AND HYSTERESIS, NOT MODELED IN ADVANCE,
SEVERELYALTERED CONTROLDESIGN

PLATFORM CONTROL

• MULTIVARIABLE FREQUENCYDOMAIN DESIGN APPROACHES
DEVELOPED

CONTRA CT

• DEVELOPEDNON-COLOCATEDSENSOR/ACTUATOR DESIGN
APPROACH

• OPTIMIZED SENSOR/ACTUATOR LOCATIONS FOR IMPROVED
PERFORMANCE
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FUTURE WORK

Further advances in control technology are required for successful applica-

tion to large-space-structure control. A major thrust of future work will be to

develop design techniques which can either adapt to changing or uncertain models

or be insensitive to the model errors. In the past years, static shape control

and vibration control have been independently demonstrated. Future work will be

aimed at combining these distinct modes of operation. Control of distributed

parameter systems based on continuum models will be investigated further to allow

for generalized sensors (rate, acceleration, angular, strain etc.) and possibly

generalized actuators. Shape control will be performed on more complex, multi-

dimensional structures such as plate-like structures.

, IMPLEMENT MODEL ADAPTIVE AND INSENSITIVE

CONTROL APPROACHES IN HARDWARE (FY 82)

• COMBINE STATIC SHAPE CONTROL WITH DYNAMIC

CONTROL (FY 82)

• FORMULATE DISTRIBUTED CONTROL FOR GENERAL
SENSOR/ACTUATOR TYPES (FY 82)

• SHAPE CONTROL FOR MULTIDIMENSIONAL
CONFIGURATIONS (FY 83)
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