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PREFACE 

In 1972, NASA began research on laser power transmission in space. Several 
research centers were involved in aspects of the program such as electric discharge 
laser systems, nuclear-pumped lasers, space optics, quantum electronics, laser 
propulsion, and conversion of laser light to electricity. Organizational changes 
in the late 1970's led to a restructured program with less emphasis on electric- 
discharge lasers and nuclear-pumped lasers - a program which focussed rather on 
solar-pumped lasers and conversion of laser power to thrust and electrical power. 
Recent congressional and advisory committee interest in NASA high-power laser 
applications and technology necessitated reconsideration of the program scope and 
structure. Reevaluation of prior mission and system studies was a part of that 
reconsideration which was needed to assess the urgency of attention, if any, required 
by new or important applications of laser technology. This symposium provided that 
reevaluation. In addition, it informed new members of the program about accomplish- 
ments of the past decade and allowed them to discuss perceived needs. Although many 
concepts for further investigations were disclosed, a consensus developed that near- 
term studies should be evolutionary and that there were no applications requiring 
urgent attention. 

This publication is a synopsis o f the talks presented at the symposium. It is 
composed primarily of prints of the summary viewgraphs used. Some viewgraph prints 
are accompanied by additional comments as provided by the speaker (with editing in 
some cases); other prints do not require additional comments, or comments were not 
provided. 

M. D. Williams 
E. J. Conway 
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CURRENT NASA APPLICATIONS OF LASERS 

NASA has already made considerable use of lasers for both ground- 
based and aircraft-based remote sensing applications. From the ground, 
use of laser ranging techniques has produced several important results 
including determination of orbits of spacecraft with greater precision, 
measurement of inversion layer heights, and crustal motions of the Earth. 
As illustrated, lasers flown in aircraft have been used to understand 
the problems generated by pollution of the environment as well as to 
provide a method of monitoring the properties of the oceans. NASA has 
developed airborne systems to measure atmospheric pollutants such as 
carbon monoxide and nitrous oxide and soon will be able to include about 
12 additional pollutants of interest to environmentalists. Flight tests 
have been conducted on instruments that measure the properties of bodies 
of water such as the shallow water depths of lakes, rivers, and estu- 
aries, the presence of oil-spills, the concentrations of phytoplankton 
and chlorophyll, the extent of turbidity, and thermal profiles. In 
addition, laser systems have been adapted to improve aircraft perform- 
ance by measuring the velocity of gas flow in wind tunnels and aircraft 
turbines, by measuring the velocity of atmospheric winds, and by detec- 
ting the presence of clear air turbulence. 
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WHY CONSIDER HIGH-POWER LASERS IN SPACE? 

Large increases in space power are anticipated for both civilian 
and military use in the next two decades. In order to facilitate the 
development of near-earth space, lower-cost power will be needed. A 
central power station may offer economy of size for supplying power to 
multiple users. Lasers may provide advantages which could make the 
central power station concept a reality. Laser power transmission 
may also provide increased access to 'and capabilities in deep space. 

. LARGE INCREASES IN SPACE POWER AND ENERGY 
REQUIREMENTS PROJECTED. 

. LOWER COST POWER AND PROPULSION KEY TO 
DEVELOPMENT OF NEAR-EARTH SPACE. 

. LASER ENERGY TRANSMISSIONS WILL PROVIDE 
INCREASED ACCESS TO AND CAPABILITIES IN 
SPACE. 

. POTENTIAL ECONOMICS OF SIZE WITH MULTI-PURPOSE 
CENTRAL POWER SYSTEMS. 
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POTENTIAL APPLICATIONS OF HIGH POWER LASERS 

While no single application appears to offer tremendous payoffs, 
a rich variety of possibilities exist: a central power station operated 
on solar or nuclear energy, laser power orbit-transfer-vehicles, a 
laser powered aircraft, launch propulsion from earth to orbit, and a 
power relay system. 



RECENT ACTIVITIES IN SPACE LASERS 

Some recent activities in FY 1981 related to space lasers 
were: 

1. A Space Based Laser Report was requested and submitted 
to Congress. 

2. Initial Airborne Laser Laboratory experiments have taken 
place. 

3. Two High Energy Laser Review Group (HELRG) meetings were 
held. 

4. An AIAA sponsored Laser Systems and Technology Conference 
was held with participation from Congress, DOE, DOD, NASA, 
and industry. 

FY 1981 

APRIL - MAY SPACE-BASED LASER REPORT (CONGRESS) 

MAY - JUNE AIRBORNE LASER LABORATORY 

JUNE HELRG (HUNTSVILLE, ALA) 

JULY LASER SYSTEMS AND TECHNOLOGY CONFERENCE 
(WASHINGTON, DC AND BOSTON, MA) 

SEPTEMBER HELRG (LIVERMORE, CA) 



OUTLOOK FOR SPACE R&T 

The outlook for the Space-to-Space Laser Power Transmission Prcgram 
is one of cautious optimism. As a part of the Space R&T activities, 
_which support national needs, serve as the backbone of the Agency, 
fund university research, and provide a future talent pool, the laser 
program can provide the technology necessary for making a rational 
decision on future development of laser power transmission. Caution 
must be exercised in maintaining a balance between significant technical 
accomplishments and program justification based on potential applications. 

0 BACKBONE OF THE AGENCY 

0 SUPPORTS NATIONAL NEEDS (i.e., EARTH RESOURCE 
MONITORING, MILITARY, ETC.) 

0 FUNDS UNIVERSITY RESEARCH 

0 PROVIDES TALENT FOR THE FUTURE 



SOME GENERAL THOUGHTS FOR A SYMPOSIUM ON SPACE LASER POWER TRANSMISSION 
SYSTEM STUD1 ES 

INTRODUCTION 

PRESENTED TO 

SYMPOSIUM ON SPACE LASER POWER TRANSMISSION 
SYSTEM STUDIES 

LANGLEY RESEARCH CENTER 
HAMPTON, VIRGINIA 

OCTOBER 14-15, 1981 

Edmund J. Conway 
October 1981 
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HISTORICAL PERSPECTIVE 

NASA has used lasers in its research ever since they became available 
in the 1960’s. Early applications generally involved low-power lasers for 
optical alignment or basic laboratory research. More recently, the Agency 
has begun to employ lasers, gver a wide power range, in active environmen- 
tal monitors, for example. In 1972, OAST initiated research on high-power 
lasers for power transmission. Several Centers were involved, and the 
Headquarters focus of this program was the Research Division. The research 
program was quite broad, involving laser development, laser effects on 
materials, and quantum electronics. 

In the late 1970's, the program changed significantly with OAST's 
Research Division functions being absorbed into the Research and Technology 
Division. Within the past year, renewed and focused interest has developed 
in high-power space-based lasers, and an augmentation plan is being devel- 
oped. As part of this plan, an early system study is contemplated. 

0 HIGH-POWER LASER PROGRAM: 

0 INITIATED IN 1972--LERC. ARC. LARC. JPL. 

0 FUNDED BY RESEARCH DIVISION OF OAST. 

l f?ROAD CONTENT. 

0 PROGRAM UPHEAVAL: 

0 LERC -- 1977 -- MSCONTINUED PROGRAH. 

0 ARC -- 1978 -- DISCONTINUED PROGRAH. 

0 LARC -- 1980 -- REORIENTED PROGRAH. 

0 HIGH-POWER SPACE-BASED LASER (AUGMENTATION) PLAN -- 1981: 

EARLY SYSTEH STUDY PLANNED. 



GENESIS OF THIS MEETING 

The concept behind this meeting developed while discussing the contem- 
plated system study during a meeting on the augmentation plan. The concept 
is that we must educate ourselves to be smart buyers of a future study of 
laser power transmission, 
since 1972. 

because a range of studies has been performed 

discussion. 
In addition, the mechanics of structuring a new study requires 

l NEED TO BUILD ON. BUT NOT REPEAT. PREVIOUS SYSTEH STUDIES (BY EDUCATING 

OURSELVES NOW). 

l NEED TO DEFINE LASER POWER TRANSHISSION SYSTEH PARAHETERS OFFERING PAYOFF 
FOR NASA SPACE POWER AND PROPULSION REQIJIREHENTS. 



HOW WILL LASER POWER TRANSMISSION IN SPACE PAY OFF FOR NASA? 

The two most frequently proposed concepts for demonstrating NASA pay- 
off by laser power transmission are: (1) economy of scale; and (2) a new 
source of energy. Concepts based on a new source of energy depend upon 
technically revolutionary ideas. Chief among these are laser thermal pro- 
pulsion, and laser chemistry and plasma formation. 

Economy-of-scale suggests that big can be efficient. This idea is 
particularly applicable to laser-to-electric power conversion for electric 
propulsion or for spacecraft utility power. It is an attractive concept, 
similar to terrestrial electric utilities, because in situ power generation 
is replaced with central generation and distribution. However, the 
economy-of-scale argument is not straightforward, and deserves much care in 
development. 

l ECONOMY OF SCALE -- DEFINE PAYOFF PARAflETERS: 

0 LASER-TO-ELECTRIC POUER CONVERSION 

ELECTRIC PROPULSION 

SPACECRAFT ELECTRIC POWER 

l THERHAL POWER FOR SPACE PROCESSING 

l NEU SOURCE OF ENERGY -- DEFINE PAYOFF PARAMETERS: 

0 LASER THERMAL PROPULSION 

0 LASER CHEHISTRY. PLASHA FORMATION. . . . FOR UNIQUE APPLICATIONS. 

10 



AN ECONOMY OF SCALE: SYSTEMS MENSURATION OF LARGE SPACECRAFT 

A paper'was presented at the Large Space Systems Technology Conference 
in 1980 using an economy-of-scale argument. The stated purpose of the 
study was to find out if, by putting experiments from several small space- 
craft onto one large spacecraft, money could be saved since only one con- 
trol system, one power generation and distribution system, etc., would be 
required. 

From this study, we should learn something about developing a case 
based on economy of scale. 

/ 1 DeRyder, L. J.: An Economy of Scale: System's Mensuration of Large Space- 
craft. Large Space Systems Technology - 1980, Volume I - Systems Tech- 
nology, NASA CP- 2168, 1981, pp. 87-103. 

PURPOSE: To GAIN INSIGHT INTO THE SYSTEH/SUBSYSTEH TECHNOLOGY AND COST PARTICULARS 

OF USING HULTIPURPOSE SPACE PLATFORMS VERSUS SEVERAL SIZES OF BUS-TYPE 

FREE-FLYER SPACECRAFT TO ACCOHPLISH THE SAHE SPACE EXPERIHENT HISSIONS. 

APPROACH: A SET OF OSWOSTA EXPERIHENT HISSIONS COHPATIBLE WITH A ROCKYELL-DESIGNED 

SCIENCE AND APPLICATIONS PLATFORH WERE SELECTED TO SIZE SEVERAL SPACE- 

CRAFT BUS DESIGNS. COHPUTER HODELS OF THE SPACECRAFT BUS DESIGNS AND THE 

ROCKWELL P-2 PLATFORH WERE CREATED TO OBTAIN DATA RELATIVE TO SIZE. 
WEIGHT. POWER. PERFORtlANCE. AND COST. 

11 



ECONOMY OF SCALE SUMMARY 

The figure here is the summary slide from the presentation.2 It con- 
tains five points, but only the first three are germane: (1) large scale 
did produce economy; (2) DDT&E cost was the dominant factor; and (3) the 
large spacecraft requires less total mass in orbit. 

Although the study showed that economy of scale did pay off for the 
case developed, the cost advantage came primarily from reduced DDT&E for 
the single large spacecraft when compared to the set of small spacecraft. 
(This was not the concept originally thought likely to produce the saving 
and was found only because a complete analysis was performed.) A second 
payoff was in transportation cost because of the lower total weight of the 
platform. 

Based on this single example, it appears that intuition and incomplete 
analysis can be poor guides when considering economy of scale. 

2 See footnote on previous page. 

l LARGE SCALE DOES PRODUCE ECONOHY. 

l DDT C E COST IS THE DOHINANT FACTOR. 

l PLATFORM OFFERS A TRANSPORTATION COST ADVANTAGE DUE TO LESS TOTAL 

HASS TO ORBIT. 

. bl0 DATA EXIST ON THE COST OF TEST AND CHECK-OUT IN ORBIT. 

l PROGRAHHATIC EFFECT ON INDIVIDUAL EXPERIHENT COST SIGNIFICANT. 

12 



A FUTURE LASER POWER TRANSMISSION STUDY 

Any future laser power transmission study must show applications hav- 
ing NASA payoffs and define technology objectives to guide research. Also, 
it seems clear that the general philosophy of the study must be carefully 
coordinated with the approach in order to lead to believable conclusions. 

PUST: 

. SHOW APPLICATIONS WITH PAYOFFS TO NASA. 

l DEFINE HINIHUH PERFORHANCE LEVELS FOR COHPONENTS. AS TECHNOLOGY 

OBJECTIVES. 

13 





PRELIMINARY STUDY ON THE USE OF LASERS FOR THE TRANSMISSION OF POWER 

BALL AEROSPACE 
SYSTEMS DIVISION 

DECEMBER 1976 

PRESENTED TO 

SYMPOSIUM ON SPACE LASER POWER TRANSMISSION 
SYSTEM STUDIES 

LANGLEY RESEARCH CENTER 
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Expanded Abstract 

The Ball Aerospace Systems Division report entitled "Preliminary Study 
on the Use of Lasers for the Transmission of Power," by J. Frank Coneybear 
and Charles H. Chandler, dated December 1976, is a broad study of the use of 
lasers in space, describing possibilities and presenting ideas rather than 
specifying a system in detail. 

The authors feel that the economic payoff of lasers in space will be 
in supplying energy for the Earth. Using lasers for space-to-space energy 
transmission may have operational advantages and economies for the user, 
but probably will not be an economical means of generating power. However, 
the authors feel that a system to provide space-to-space energy transmis- 
sion should be built as the first step in the development of large space 
power stations to beam energy to the Earth. 

Much of the report was devoted to Earth-side use and to comparisons 
with microwave systems. However, there is quite a bit of information per- 
tinent to the subject of our meeting (i.e., space-to-space energy trans- 
mission using a laser). 

16 



Some Basic Considerations 

Laser transmission of power is attractive because laser beams are nar- 
row, "tight" beams with little divergence, so that spacecraft would require 
only small collectors to receive the energy. 

Such a narrow beam must be aimed precisely or it will completely miss 
a spacecraft receiver. Fortunately, the aiming precision required is with- 
in the goals NASA has set for itself in the Large Space Telescope Program. 

If solar energy is used to pump the laser, either directly or indi- 
rectly, some outages will occur when the system is in the shade. If 
nuclear-pumped lasers are used, there need not be any outages. 

0 BEAM DIVERGENCE 

l AIMING 

l OUTAGES 
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Beam Divergence 

The divergence of a laser beam can be estimated for long-distance 
transmission by the equation 

d= 0.9 X R/D 

where d is the diameter of a laser beam at some distance R from the 
laser, D is the aperture diameter of the laser, and X is the wavelength 
of the transmitted radiation. This intrinsic divergence is caused by the 
diffraction that all electromagnetic radiation exhibits upon emerging from 
an exit aperture, so that beam rays cannot be parallel. An important 
aspect of this relationship is that the size of the "spot" is inversely 
proportional to the size of the transmitting aperture. The "spot" size is 
directly proportional to the wavelength of the laser. 

Spacecraft operating in cislunar space could use receivers measured in 
10’s of meters, if the laser beam was in the visible range, and 100's of 
meters for infrared lasers. But even laser beams diverge too much to make 
transmission of power through interplanetary space practical. 

If several lasers are used at the power station, the divergence can be 
reduced by phase-locking the lasers. Then the effective size of the laser 
beam varies with the square root of the actual aperture areas. 

R,km 

35,800 (GEO-LEO) 

384,000 (Moon-LEO> 

78,000,OOO (GEO-Mars) 

628,000,OOO (GEO-Jupiter) 

D=3m 

d,m CA r.5pm) d,m (h=5prn) 

5.4 54 

57.6 576 

I 1,700 I I7.000 

94,200 942,000 
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Aiming 

State-of-the-art aiming capabilities are already approaching the pre- 
cision required for point-to-point transmission for ranges comparable to 
the Earth-Moon distance. For example, assume a laser spot of 60 meters and 
that jitter losses are equal to diffraction losses. In this case, a 
receiving aperture 100 meters in diameter will intercept 90 percent of the 
beam energy if the pointing accuracy is 0.1 microradians. 

l MOON-LEO (h= .5 flm,D=3m,d=57.6m> 

0 SKYLAB TELESCOPES 

0 LARGE SPACE TELESCOPE 

0 NASA 1985 GOAL 

0. I pad 

4.9 I,rrad 

0.05 prad 

0.0 I Drad 
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Laser Power Requirements 

The authors feel that the goal of a space laser power station program 
should be providing power to the Earth. For this to be practical, it must 
be done on a large scale. They suggest a l-gigawatt system would be 
needed. This is the size of a typical nuclear plant in this country. 

Providing power for rocket propulsion, which looks like a good candi- 
date for laser power transmission', would also require about a l-gigawatt 
system. 

A system to supply energy to spacecraft need only have about a lo- 
megawatt capacity. The authors feel such a system could provide many of 
the advantages of prototype operations, prior to the installation of 
systems for Earth-size power or rocket propulsion. 

USE POWER 

Earth-side power 

Rocket propulsion 

Spacecraft power 

I GW 

I GW 

IO MW 
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Spacecraft Power Requirements 

Spacecraft to date have required less than 100 kW. Assuming multiple 
users, it would seem that multiple beams with a total power on the order of 
megawatts to tens of megawatts might be needed around 1990. 

100 

10 

1 

.l 

.O' 

SKYLAB SPACE SHUTTLE 

I 

ATM 

GEMINI 
mAPOLL 

t t 
MARINt 
m#;;B”~;;,,,;;T : n WS!!?F!?T 

l TACSAT 

I 
n SKYNET I I 

IOSCS II . l MJS 
MERCURY MERCURY WNIb 

n n l 0 PIONEER 10,ll 

0 ALSEP 
q RELAY n syNCoM m IDCSP N1MBUS 

rIROS w 
_ n TELSTAR 

JI TRANSIT IVA 

1960 1965 1970 

n Non-nuclear l ljuclear 

1975 

YEAR 

1980 1985 I 9! JO 
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Power History of High-Power Lasers 

Although 1976 lasers were of low power compared to those needed in 
space, the authors expressed faith that the explosive trends in the laser 
field would continue and would make gigawatt lasers available by 1990. 

The authors made a selection of the most promising laser candidate-- 
choosing the CO supersonic gas flow electric discharge laser. There is 
only one point for such a laser on 'the power history graph, but they felt 
it was a point of departure for almost unlimited development. This laser 
lases at a wavelength of 5 pm. 

POWER, kW 

180 

160 

120 

80 

6( 

ACL = Avco Commercial Laser 
BDL 
MESA 

= baseline Demonstration Laser 

MK VB 
= Chemical Laser @ Edwards AFB 
= GDL Scaleup 0 Avco 

SCALEUP = Army Scaleup of AC1 
TSL = Tri-Service Laser 

I I I I I I 

1967 '68 '69 '70 '71 '72 '73 

YEAR 
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Redirection of Beam 

If a laser power station is to service many spacecraft, it will need 
devices, like mirrors,, to redirect the beam. 

The authors came to the conclusion that mirrors could not be made 
100 meters in diameter with the X/20 surface finish needed and that, there- 
fore, they were not adequate for redirecting the beam. 

The authors expressed faith that the newly devleoping technology of 
adaptive optics.could provide excellent redirective devices. In addition, 
such devices could improve beam quality by correcting the divergence and 
even correcting small aiming errors. 

The possibility was mentioned that the primary laser could be used to 
pump another laser at a redirection site. 

0 MIRRORS 

. ADAPTIVE OPTICS 

. SECONDARY LASERS 
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Other System Parameters 

The authors could not make a clear choice when they considered the 
other system parameters; the pumping source, the location of the power 
station, and the type of converter at the receiver. They stated that the 
choices depend somewhat on the use (i.e., Earth-side power, rocket propul- 
sion, spacecraft power). Because they were most interested in Earth-side 
power, they concentrated most of their discussions on such systems. 

Solar energy is free and clean, but requires large collectors, and 
there are outages to contend with. Since the electric discharge laser was 
favored by the authors, they considered conversion from solar energy to 
electricity. Thermodynamic conversion is cheaper and more efficient at the 
present, but gyroscopic effects are produced. Solar cells may be cheaper 
than thermodynamic converters in the future and would not produce gyro- 
scopic effects. Nuclear energy sources can be small and compact and pro- 
vide continuous power, but they are "dirty." 

A power station at GE0 would be close to Earth, which would hold down 
transportation costs, and it would be close to the users, which would 
reduce the size of the receivers needed. But a station at GE0 would not 
have the stability that one on the moon would have, and assembly costs 
would be less on the moon because of its gravity. A power station on the 
moon would spend long periods in the shade, suggesting that a nuclear pump- 
ing source should be used. With only small quakes, no wind, and no neigh- 
bors, safe operation of a nuclear plant on the moon may be easy to insure 
at a low cost. 

0 PUMPING SOURCE 

0 Nuclear 

l Solar 

9 Photovoltaic 

l Thermodynamic 

0 LASER LOCATION 

. GE0 

l Moon 

l Lagrange points 

0 CONVERSION AT RECEIVER 

(not considered for spacecraft) 
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Suggested Space-to-Space Power Transmission System 

The authors suggest that space-to-space transmission of power would 
best be accomplished by placing a lo-megawatt nuclear-pumped laser on the 
Moon. They suggest a thermodynamic plant be used to convert nuclear energy 
to electricity. Gyroscopic effects are not a concern on the lunar sur- 
f.ace. A CO supersonic gas flow electric discharge laser is suggested. 

These suggestions were made, however, without regard to the costs 
involved, and the cost of transporting a system to the Moon could be 
great. The auttiors explored some of the costs, weights, and efficiencies 
that could be expected, but left some areas unexplored and therefore could 
not estimate the total cost of a system or show whether a space power sys- 
tem would be cost effective. The authors felt an attempt to do so was not 
appropriate at the time. 

25 



Efficiency 

The efficiencies of the components (and hence, the overall 
were estimated for the most interesting system, i.e., an ind 
pumped CO electric discharge laser for supplying energy to the 
conversion from laser energy to electricity on the Earth, the a 
suggest a thermodynamic converter. 

efficiency) 
irect solar- 

Earth. For 
uthors would 

The authors neglected to study the spacecraft converter, a component 
important to our interest in space-to-space power transmission. In addi- 
tion, they neglected the efficiency of a nuclear-pumped laser. 

0 CONVERSION OF SOLAR ENERGY TO ELECTRICITY 

NOW FUTURE 

14% 26% 

50%* 50%* 

0 Photovoltaic 

0 Thermodynamic 

0 LASER 

0 CO/EDL,supersonic flow 

0 REDIRECTIVE DEVICE 

0 Adaptive optics 

50% 

90% 

* varies with cost 
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Efficiency of a Thermodynamic Converter 

The efficiency with which heat can be converted to electricity in a 
thermodynamic converter depends on the capital invested in the device. 
Efficiencies greater than 60 percent can be obtained, but overall costs for 
energy from thermodynamic systems on Earth are found to be minimized when a 
40-percent efficient converter is used. 
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Weight 

Weight is important because transportation costs depend directly on 
weight. The authors estimated the weight of the devices to convert solar 
energy to electricity for pumping the laser. 

0 CONVERSION DEVICE - SOLAR ENERGY TO ELECTRICITY 

0 Photovoltaic 

0 Thermodynamic 

NOW FUTURE 

I4 kg/kW I kg/kW 

6 kg/kW 6kg/kW 
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Transportation Costs 

Transportation costs using the Space Shuttle, a freighter suggested by 
Boeing, and a ram rocket of the future were estimated. Transportation to 
GE0 would require the use of a tug or a high-energy upper stage unless the 
power station used its own power to move itself from LEO to GEO. Transpor- 
tation to the Moon requires a high-energy upper stage. 

NOW FUTURE FAR FUTURE 

(space shuttle) (Boeing freighter) (ram rocket) 

LEO $550/kg $44/kg $33/kg 

GEO* $2200/kg (tug) $220/kg (super tug> $180/kg <HEUS) 

Moon SI8000/kg <HEUS> $2200/kg (HEUS) $I loo/kg (HEUS) 

* Perhaps moved from LEO to GE0 under own power 

HEUS means some high energy upper stage required 
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Fabrication Costs 

Some of the fabrication costs of a laser power system for Earth-side 
power have been estimated. The assembly costs in space were not estimated, 
although the relative expense of assembling a power station at GEO, on the 
Moon, and on Earth has been estimated. 

Again, some of the costs of a space-to-space transmission system, such 
as the receiver and converter on the spacecraft, have been neglected. 

. EARTH-SIDE PRODUCTION 

l Converter (solar to electricity) 

NOW FUTURE 

$175/W $ I/W 

$1/w* $1/w* 

$I-$10/w* 

small 

l Photovoltaic 

l Thermodynamic 

l Laser 

l Adaptive optics 

0 SPACE ERECTION COSTS 

l LEO or GE0 

l Moon 

8X 

4x 

+ varies with efficiency t varies with power X is cost to erect on Earth 
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Cost of Laser 

The cost of a laser depends on its power. The authors expressed faith 
that when lo-megawatt lasers are built, they will cost 12 to 30 million 
dollars, and that the gigawatt lasers needed for Earth-side power and 
rocket propulsion will cost less than 300 million dollars (and perhaps as 
little as 50 million dollars). 

COST, 

s/w 

I I I IllIll I I I111111 I I I IIII-T 
IO IO0 IO00 

POWER, MW 
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A STUDY TO SURVEY NASA LASER APPLICATIONS 
AND 

IDENTIFY SUITABLE LASERS FOR SPECIFIC NASA NEEDS 

W. J. SCHAFER ASSOCIATES, INC. 
FEBRUARY 1978 

PRESENTED TO 

SYMPOSIUM ON SPACE LASER POWER TRANSMISSION 
SYSTEM STUDIES 

LANGLEY RESEARCH CENTER 
HAMPTON, VIRGINIA 

OCTOBER 14-15, 1981 

REVIEWED BY: 
Russell J. De Young 
October 1981 
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Abstract 

This study, by W. J. Schafer Associates, Inc., was contracted by the 
Jet Propulsion Laboratory (NAS7-100). The primary goal of the study was to 
identify all potential applications of high-power lasers which might, in 
particular, use the JPL copper-halide laser under development. A wide 
range of applications were identified with strong emphasis on remote sens- 
ing applications. Power beaming and laser propulsion were also identified 
as major areas of interest to NASA. 

Purpose of Study: 

l Identify relations between clearly defined NASA applications and appropriate 

lasers in the basic research inventory. 

0 Justification for basic laser research. 

l Assess need for medium power (5 20 kW) lasers in visible spectrum. 
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Future near-Earth applications are outlined on the graph. Both elec- 
trical and propulsion users are shown. Hundreds of megawatts of power will 
be needed in the late 1990's to power all the missions indicated. 

ENERGY 
(POWER X MISSION DLRATION) 

W FOR 

-l-BASED Oh' GC3 PAYLOAD DELIVERIES OF 

FUTURE NEAR EARTti SPACE ENERGY NEEDS* 
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IDENTIFIED POTENTIAL APPLICATIONS OF HIGH-POWER LASERS 

-- LASER PROPULSION -- 

0 Laser heats gas to high temperatures (higher than chemical reactions); expelled 

from nozzle with high specific impulse (- 1300 set). 

a "No informed opinion questions that this method of propulsion is possible." 

0 A l-gigawatt Earth-based laser could propel 1 ton of payload into LEO every 

5 minutes. 

0 Near-term uses for laser: propulsion, attitude control, station-keeping, orbit 

changing, etc. 

0 "Our assessment is that laser propulsion will play such an important role in 

future space development and exploitation that it must be pushed ahead." 
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Laser power requirements for payload delivery from LEO to GE0 by laser 
propulsion are shown on the graph. The shuttle payload is 30 megagrams; 
thus 12.4 megagrams is approximately half a Shuttle payload. For a lo-day 
round trip OTV transit time, a 12.4-megagram payload can be delivered to 
GE0 using a laser power of 2 megawatts. 

L DRY MASS = 3. 

\ 1 SP = 750 sp 
DELIVER PAYLOA! 
VEHICLE EXPEND; 

AV = 5631 M/SEC EACtI WAY 

I 

0.1 1 10 
IRRADIATIOP1 TIKE (DAYS) 

LASER-ON T I HE 
c- -I 

LASER-ON OR TRAtiS1-C T!ME 

POWER REQUI REMENT FOR PAYLOAD ‘DELI VERY 
FROM LEO TO GE0 BY LASER PROPULSION, THREE 

MISSIONS mE 1 LLUSTRAJ~ED, 
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IDENTIFIED POTENTIAL APPLICATIONS OF HIGH-PPWER LASERS 

-- POWER BEAMING -- 

a Laser beam essentially like superconductor connecting transmitter and receiver. 

0 70 to 80 percent of the weight of present satellites is for power generation; 

laser power beaming reduces to 20 percent. 

a Laser SPS possibly more versatile than microwaves. 

0 Laser power beaming could produce storable fuels at receiver. 

0 Laser propulsion possible: 

0 Near-term experiment on Shuttle; 4.5 M diameter optics using copper halide laser 

(0.51 urn) at lo- to lOO-kW power levels for power beaming. 
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This slide shows the reduced antenna area needed for laser 
transmitter/receiver systems when compared to microwave systems. The 
difference is simply the result of the laser's shorter wavelength. 

l--T-- 

RANGE, R, KM 

TRANsb!IT?ER/RECE I?ER SIZES VS RANGE* 
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IDENTIFIED POTENTIAL APPLICATIONS OF HIGH-POWER LASERS 

-- REMOTE SENSING -- 

0 Primarily interested in JPL's copper-halide lasers. 

ing need for a better way to obtain timely world-w 

use for inputs to detailed computer models of the 

0 ‘I... Overwhelm 

information to 

climate." 

Other Remote Sensing Applications: 

0 LIDAR, high-resolution images of planetary surfaces and ranging. 

ide weather 

Earth's 

0 Stimul ated planetary surface fluorescence, information on minerals, soil condl- 

tions, type of vegetation, etc. 

0 Water 

tion. 

depth soundings, identify surface pollutants, ship and submarine detec- 

0 Range gating of laser beam in atmosphere, composition, pressure, temperature, 

wind velocity as a function of altitude. 

0 Atmospheric chemistry, monitoring ambient molecular species, changes in atmos- 

phere by solar wind, volcanoes, artificial pollutants. 
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IDENTIFIED POTENTIAL APPLICATIONS OF HIGH-POWER LASERS 

-- PHOTOCHEMISTRY AND ISOTOPE SEPARATION -- 

0 Possible economical production of H2 and O2 from water. 

l Total laser efficiency quite important. 

0 Copper-halide laser suitable except for wavelengths. 

l Green light laser, destructively stimulated algae for water purification or 

constructively for methane production. 

IDENTIFIED POTENTIAL APPLICATIONS OF HIGH-POWER LASERS 

-- MATERIALS PROCESSING AND MANUFACTURING -- 

e Localized heating of surface by laser permits pattern etching, hole boring, 

fusion of dissimilar metals, deep-clean welds at high speed. 

l Refuse ceramic castings that crack during curing. 

l Laser advantageous for large-scale manufacturing, but poor efficiency. 
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IDENTIFIED POTENTIAL APPLICATIONS OF HIGH-POWER LASERS 

-- OCEANIC APPLICATIONS -- 

0 LIOAR application; detect ocean bottom contours, texture, or presence of ships. 

a Spectrographic applications; transmisivity is used to diagnose ambient material 

or internal wave motions caused by natural perturbations. 

0 .Surface probing; reflection examined to determine character of wave patterns or 

natural currents. 

0 Unidirectional underwater communication. 

l Copper-halide laser mesh with these applications. 

IDENTIFIED POTENTIAL APPLICATIONS OF HIGH-POWER LASERS 

-- DISPLAY, ENTERTAINMENT, AND COMMUNICATIONS -- 

a "Very detailed, dramatic displays created by computer-controlled beams are very 

important.n 

0 Three-dimensional computer holographic presentation of air traffic radar 

information. 

0 Gigabit-per-second data rates over interplanetary distances by laser. 
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The graph shown is a map of identifiable potential high-power laser 
applications. The coordinates are labeled for pulsed (CW) lasers. The 
graph maps out power level regions for the applications discussed in the 
study. Power beaming requires less than 100 kilowatts where propulsion 
requires greater than 1 megawatt of power. 
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Conclusions 

We can state with confidence that the JPL work is very inportant and 
that it is presently the best option for the several applications that we 
have emphasized in this report. 

Basic research program at JPL on copper halide lasers terminated in 1980: 

--15 watts average at 10 kHz 

--l-percent "wall plug" efficiency 
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Abstract 

This study contract (NASW-3048) was one of the first system studies to 
investigate solar-pumped lasers in detail. A baseline CO electric dis- 
charge laser system was shown to be technically feasible. The most promis- 
ing direct solar-pumped laser was identified to be CFsI. Using the "STAG" 
solar laser concept and CFsI, it was found that such a system could be 
weight-competitive with the baseline CO laser system. 

Purpose of the study: 

l "Brainstorming" effort to find all promising solar laser candidates. 

l Review the literature for posslble solar laser candidates from optical 

pumping experiments. 

l Concentrate on a small number of identified possible candidate systems. 
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SOLAR LASER SYSTEM CHARACTERISTICS 

* Limitations 

we low specffic intensity (1400 W/m21 
me low ultravIolet radiation fntensitles of 6000'K blackbody. 

-- few simple materials of interest for lasers. 
-- waste heat disposed of .direct solar laser 

-- narrow band absorbers 

l Concept to Overcome Limitations 

-- design solar collector as enormous filter; focus useful radiator only. 
-- conceptual solar laser "Solar Tracking Adaptive Geometry ' (STAG) system 

a Pump Power at Focal Spot 

f 
f ,L 

# D 

-- for f/O.4 (smallest desirable). then Qf = 9.75 kW/cm' at the focal spot 
-- only limit to total energy is practical limits of concentrator diameter. 

lOO-MEGAWATT CO ELECTRIC DISCHARGE LASER BASELINE SOLAR LASER SYSTEM 

l Overall conversion efficiency of - 11 percent. 

l Complex: four separate closed-loop fluid cycles, pumps, ducting, fluid storage, 
generator, power conditioning equipment. 

0 Total weight of 131,000 kg (collector, radiator, etc.). 
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Shown below is a baseline, technically achievable solar-energized CO 
laser system. The solar collector collects 1 gigawatt of solar radiation 
and focuses it into a liquid metal chamber. The hot liquid metal gas goes 
through a conventional thermodynamic cycle, producing 154 megawatts of 
electricity. An E-beam with sustainer field is used to excite the CO which 
lases and produces 100 megawatts of optical power at 5 micrometers. A gas- 
dynamic cycle is needed to cool the CO gas for high efficiency lasing. 

RADIATOR 
(46 MW 
REJECTED) 

ASSUMPTIONS 

T = 65'K, p = 0.1 ATM. 

MACH 3.5 

10% co 90% At 

P/m - 75 KJ/LB 

'IL = 65% 'TOTAL = 16% 

95% DISCHARGE EFFICIENCY 

NORMAL SHOCK RECOVERY 

80% COMPRESSOR EFFICIENCY 

CAVITY FLOW AREA = 1.6M2 

BRAYTON CYCLE EFFICIENCY = 25% 

100 MW 5 MICRON 
LASER RADIATTON 

POWER 
CONDITIONING 

260 MW SHAFT POWER 

HEAT EXCHANGER 

SOLAR 
CONCENTRATOR 

(1 KM DIAMETER) 

RADIATOR 
(780 Mw 
REJECTED) 

100 Megawatt Supersonic Carbon Monoxide 
Electric Discharge Laser Powered by Solar Energy 
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IODINE LASER 

"A lengthy search of the literature in the Library of Congress for 

data on optically pumped lasers produces surprisingly little useful 
materlal." 

1. Data on wide band visible absorption in solids. 

2. Data on coincidences between emission lines of excited gases and upper state of laser 

gas. 

Best documented candidate: CF,I 

0 

0 

0 

0 

0 

XL = 1.315 urn 

DCF,-I = 2.5 eV 

AXR = .05 urn 

Magnetic dipole transition: 52p1,2 + 52p3,2 

llT = nf nL = 0.5 percent 

49 



"Solar Tracking Adaptive Geometry" (STAG) direct solar-pumped laser 
system is shown below. Unfiltered sunlight is collected and focused onto a 
(CFsI) gas laser. An adaptive reflector is used to focus the laser beam 
(diffraction limited transmission) to a distant user. 

STAG COtUCEPT 
ADAPTIVE REFLECTOR I INDIRECT PUMPED 

I DIRECT PUMPED mm- 
I 

-- LIGHT FROM SUN 

LIGHT COLLECTOR 
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Assuming a total system efficiency of 1 percent (10 percent laser and 
10 percent filter efficiency), then the total estimated weight of a STAG 
laser would be 1.4 x 10' kilograms. This corresponds to 4.6 space shuttle 
trips. It is interesting to note that the system component with the 
highest weight is the laser. 

STAG SYSTEM WEIGHT 

Key parameter in any space-based system is total weight W, 

laser 
adaptive heat 
projector concentrator radiator 

w, = 
'L + ($) '; + @AC + (!!)AR 

where 

W 
P 

= 104kg; Dp = 10 M 
pL = 100 megawatts 

WC 

T 
= 6 x 1O-3 kg/m2 

AC 
= 7.2 x lo6 m2 

wR = 1 kg/m2 a R 

laser efficiency = 10 oercept 
filter efficiency = 10 oerrept 
total efficiency = 1 percent 

Total weight of 

ws = - 7 x lo4 kg + 1.1 x lo3 kg + 4.3 x lo4 kg + 2.3 x lo4 kg 

= 1.4 x lo5 kg 4.6 space shuttle trips m 3. ooo 
, kg to 150 miles) 
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If we assume a CF,I STAG solar laser, then GLA = .81 for the small 
signal gain. A loo-megawatt CF3I system would have a total weight of 
180,000 kilograms. 

SOLAR LASER GAIN EXPRESsION 

IL = IO e GLA 

4 
1 AL ,% T1OsS .-. 

1 
> 

f2 
4 

# xP AXL T21 

For the CF31 system: 

xL = 1.315 pm AX 
P 

= 0.05 urn 

xP 
= 0.275 pm AXL = ???? 

flOSS 
= 1.3 x 1o-3 set T21 = 0.1 set 

Gives: 

= 0.81 for fb = 0.4 
- 

Total system weight = 180,000 kg (100 MWI for CF31 solar-pumped laser system. 
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This figure shows the relation between total system weight and collec- 
tor filter efficiency nF as well as laser cycle efficiency 73~ for a 
loo-megawatt direct solar laser system. The total system efficiency is 

The lower arrow corresponds to the lo-percent efficient 
$ Lle%ri?'discharge laser system, and the upper arrow the 0.5-percent 
efficient CFsI direct solar-pumped laser system. It should be noted from 
the figure that a direct solar laser, with a filter efficiency of 10 per- 
cent and a laser cycle efficiency of 20 percent (nT = 2 percent), can 
compete with the electric discharge CO laser system. 

DIRECT SOLAR LASER WEIGHT versus EFFICIENCY 

350000 

300000 

150000 

100000 , 
.Ol .l 1.0 

COLLECTOR FILTER EFFICIENCY 

Laser Efficiency nL 

Laser Power 
100 t44 
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OTHER DIRECTLY PUMPED LASER> 

l Dye Laser 

-- low efficiency 

-- need better data 

0 Liquid Inorganic Chlorides 

-- POCa3:ZrCa4:Nd+3 

-- POCa3:SnCa,:Nd+3 

-- higher heat capacity than solids 

SW broad absorption in visible 

HYBRID SCHEMES 

l Solar-driven MHD electric discharge laser. 

0 Xe partially ionized and heated by Sunlight expanded supersonically; 

"tickled" by high voltage produces flash of UV-rich light CF31. 
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CONCLUSIONS AND RECOMMENDATIONS 

l loo-megawatt laser can be energized by the Sun. 

a Weights of systems will lower with improved efficiency, 

a More research on laser candidates, adaptive projector, etc. 

0 System studies should include the user; strong impact on system characteristics. 

a Payoffs will have enormous consequences for future of the United States. 
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NASA HIGH-POWER LASER TECHNOLOGY WORKSHOP 

OAST WORKSHOP at GENERAL RESEARCH CORPORATION 
MARCH 1979 

PRESENTED TO 

SYMPOSIUM ON SPACE LASER POWER TRANSMISSION 
SYSTEM STUDIES 

LANGLEY RESEARCH CENTER 
HAMPTON, VIRGINIA 

OCTOBER 14-15, 1981 

REVIEWED BY: 
Richard B. Lancashire 
October 1981 
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NASA HIGH POWER LASER TECHNOLOGY WORKSHOP 

o SPONSORED BY OAST; HELD AT GUERAL RESEARCH CORPORATION, 
FEBRUARY 28 - MARCH 1, 1979 

e PURPOSE: TO PROVIDE NASA WITH RECOMMENDATIONS FOR RsT PROGRAMS LEADING TO 
THE APPLICATION OF H,P, LASERS IN FUTURE MISSIONS 

e STEERING COMMITTEE APPOINTED TO FORMULATE RECOMMENDED PROGRAM TO NASA 

- ED GERRY, CH,, SCHAFER ASSOCIATES 
- ABE HERTZBERG, UNIVERSITY OF WASHiNGTON 
- PETER GLASER, A, D, LITTLE, INC, 
- MAX HUNTER, LOCKHEED 
- CARL SCHWENK, NASA 

NASA HIGH POI\IER LASER TECHNOLOGY WORKSHOP 

o AGENDA INCLUDED DOD CONTRACTORS DESCRIBING DOD PROGRAMS IN 
LASER DEVICE AND TRANSMISSION TECHNOLOGY AS WELL AS BRIEFINGS 
BY LERC, LARC, MSFC, ARC, GSFC, JPL, AND WALLOPS ON VARIOUS 
NASA LASER PROGRAMS 

o DIFFERENCES IN DOD AND NASA PROGRAM OBJECTIVES WERE STRESSED: 
LENGTH OF OPERATING TIMES; BEAM PROPAGATION DISTANCES; 
COOPERATIVE "TARGETS" 

o GENERAL CONSENSUS WAS NASA CCllLD NOT DEPEND ON DOD EFFORT TO 
COMPLETELY SUPPLY POSSIBLE NEEDS OF H,P,L, TECHNOLOGY 
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NASA.HIGH POWER LASER TECHNOLOGY WORKSHOP 

SPECIFIC RECOMMENDATIONS AND GOALSFOR NASA RgT 

o LASER RaD 

1, Kk TO 50 Md 

*2, LONG DURATION, CLOSED-CYCLE OPERATION - NEEDS DEMONSTRATION 

3, LONG DURATION, OPEN-CYCLE OPERATION POSSIBLE FOR SOME GROUND BASED 
"MISSIONS" 

4, WAVELENGTHS NEEDED - UV TO IR 

5, SINGLE LINE OUTPUT NEEDED FOR MANY APPLICATIONS 

6, HIGH PUMP TO LASER MEDIUM CONVERSION EFFICIENCY 

7, MATERIALS - GlINDOWS; HARDWARE, ETC., FOR LONG DURATION OPERATION 

*8, SOLAR PUMPING - DIRECT AND INDIRECT 

9, NUCLEAR PUMPING - DIRECT AND INDIRECT 

o BEAM CONTROL (TRANSMISSION) 

DOD R&D BETTER MATCHED TO NASA REQUIREMENTS, NASA SHOULD FOLLOW CLOSELY AND 
PURSUE INDEPENDENTLY: 

1, PHASE-LOCKING OF LASER SYSTEMS 

2, LONG OPERATION OF LARGE, ADAPTIVE OPTICS 

*EARLY EMPHASIS REQUIRED 
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NASA HIGH POWER LASER TECHNOLOGY WORKSHOP 

a APPLICATIONS STUDIES 

'9, SPS - SYSTEM IN GE0 ONLY 
- SYSTEM IN SUN-SYNC, ONLY 
- SYSTEM IN COMBINATION SUN-SYNC,/GEO 

2, PROPULSION - ORBIT-TO-ORBIT TRANSFER 
- GROUND BASED LASER 
- LASER POWERED AIRCRAFT 
- LASER-ELECTRIC O,T,V, 

3, POWER BEAMING (OTHER THAN SPS) - GROUND TO SPACE 
- SPACE TO SPACE 
- GROUND TO GROUND 

4, CONVERSION - LASER TO ELECTRIC.(ALL FORMS) 
l - LASER TO ENTHALPY (HEAT ENGINES) 

- LASER TO CHEMICALsPROCESSING (PHOTOCHEMISTRY) 
- LASER TO MATERIALS PROCESSING 

a TECHNOLOGY DEMONSTRATIONS 

1, SOLAR PUMPING OF LASERS 

2, LASER TO ELECTRIC CONVERSION 

3, HIGH POWER LASER HEATED THRUSTER (100 KM) 

*EARLY EMPHASIS REQUIRED 



LASER SYSTEM STUDIES 

Closed Cycle Gas Dynamic Laser Design Investigation 
United Technologies Corporation (January 1977) 

Closed Cycle Electric Discharge Laser Design Investigation 
Hughes Aircraft Company (March 1978) 

CW Excimer Laser 
Hughes Research Laboratories (August 1976) 

PRESENTED TO 

SYMPOSIUM ON SPACE LASER POWER TRANSMISSION 
SYSTEM STUD1 ES 

LANGLEY RESEARCH CENTER 
HAMPTON, VIRGINIA 

OCTOBER 14-15, 1981 

REVIEWED BY: 
Richard B. Lancashire 
October 1981 
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P SYSTEM STUDItS 

@ PERFORM ANALYTICAL INVESTIGATION TO ASSESS SCALEUP AND 
DESIGN FEATURES FOR A Mlif CLOSEDXYCLE CW SYSTEM OPERATING 
IN SPACE OR AIRBORNE IN 1990, 

l PERFORM CONCEPTUAL DESIGN FOR COMPONENTS & SYSTEW 

0 ESTABLISH DESIGN OPTIMUM 
-WEIGHT, VOLUME, POWER 

@ IDENTIFY CRITICAL TECHNOLOGIES 

8 COMPARE WITH PREVIOUS DOD STUDIES 



CLOSED-CYCLE GAS DYNAMIC LASER DESIGN INVESTIGATION 

NASA CR135130 CONTRACT NO, NAS3-19705 JANUARY 1977 

UNITED TECHNOLOGIES CORPORATION 
PRATT & WHITNEY AIRCRAFT GROUP 

W, E, YOUNG AND Ga W, KELCH 

FOR 

NASA LERC 

R, B, LANCASHIRE, PROJECT MANAGER 
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CLOSED-CYCLE GDL STUDY 

GROUND RULES 

OPTIMIZE CLOSED CYCLES, CQ, GDL SYSTEM BASED-ON 
MINIMUM SHAFT POWER 

IGNORE PRIME POWER SOURCE AND RADIATOR (BOTH WERE 
EVENTUALLY CONSIDERED) 

OPTIMIZATION APPROACH ESTABLISHED FOR 1 MW SPACE- 
BASED SYSTEM, EXTEND TO.1 MW AIRBORNE SYSTEM AND 
5 AND 10 MW SPACE AND AIRBORNE SYSTEMS 

CLOSED CYCLE SCHEMATICS 
Nozzles 

Base Cycle 

--H- Power 
source 

. Heat Sink 

Compress0 

Recuperator Cycle 

Non les 
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‘r ,’ .i 

DESIGN TABLE SUtlHARY 

CAVITY SPECIFIC POWER, Ki/LB 

COMPRESSOR POWER. HP 

HEAT REJECTION REQUIREMENTS. BTU/SEC 

HEAT SOURCE REQUIREIIENT. BTU/SEC 

BASE CYCLE RECUPERATOR CYCLE 

10-q 10-q 

31.800 11.801 

22.500 13.657 

0 6.262 

CYCLE THERMAL EFFICIENCY. I 1.1 2.L1 

LASER/COMPRESSOR POWER EFFICIENCY. X 9.2 ll.lf 

LASER LOOP WEIGHT. LB ‘i9.600 107.000 

TOTAL SYSTEM LdEIGHT. LB 1.56 x 106 0.72 x 106 

CLOSED CYCLE Gill 
SPACE APPLICATION 

Low Prrwro GM Soura Tank 

f 
Output Barn Hlclt Sourer 

r 

Compreaor 

I- r High Pressurr r Gptial Cavity 

Aaodyrvmic Window 
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GDL SYSTEMS STUDY CONCLUSIONS 

0 COMPRESSOR POWER SOURCE AND SPACE RADIATOR DOMINATE LOOP 

WEIGHT AND VOLUME - LOOPdo% TOTAL WEIGHT 

0 RECUPERATOR CYCLE IS MOST ATTRACTIVE FOR BOTH SPACE AND 

AIRBORNE APPLICATIONS,%% EFFICIENCY, SMALLER COMPRESSOR, 

0 SPACE SYSTEM REQUIRES MULTIPLE SPACE SHUTTLE FLIGHTS AND 

ASSEMBLY IN SPACE - 1 MW LOOP REQUIRES 2 FLIGHTS 

0 AIRBORNE SYSTEM POWER LEVEL LIMITED TO 1-Z MW FOR CSA 
CARRIER. 
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CLOSED-CYCLE ELECTRIC DISCHARGE LASER DESIGN INVESTIGATION 

NASA CR135408 CONTRACT NO. NAS3-20100 MARCH 1978 

HUGHES AIRCRAFT COMPANY 

Pm K. BAILEY AND R, C, SMITH 

FOR 

NASA LERC 

J, 6. SLAEiY, PROJECT MANAGER 
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CLOSED-CYCLE EDL STUDY 

GROUND'RUCES 

o SAME AS FOR GDL STUDY EXCEPT OPTIMIZED FOR 
MINIMUM #EIGHT 

o- ADDED SCOPE OF 1 MW SPACED-BASED-CO SYSTEM 

CLOSED CYCLE GASEOUS ED1 SYSTM (CO2 OR co1 

TO RADIATOR 

ELECTRICAL POWER 



1 M WATT SPACE SYSTEMS 

Supersonic Subsonic Superson+ 
CO2 CDL CO2 EDL CO EDL 

System weight (Kg) 316,154 20.440 16,963 

Laser loop (Kg) 38,669 2,8?0 2,780 
Laser loop power 15. 1 22.7 
conversion (%) 

Solar-laser conversion (%) 2.5 3.8 
Collector area (M2) 29,500‘ 19,500 
Radiator area (M’) 2,800 2,600 

COOLING “NIT 

5 Mwatt CO2 laser - apace. 

COOLINO TURDlNL 
UNIT 

1 Mwott CO2 laser - space. 
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LASER SYSTEMS STUDIES 

CONCLUSIONS 

o MUST INCLUDE PRIME POWER SOURCE AND RADIATOR 
IN FUTURE STUDIES 

o 5 MW EDL REQUIRES ONE SHUTTLE FLIGHT; 1 MW GDL 
REQUIRES MULTIPLE SHUTTLE FLIGHTS 

a ELECTRICAL EXCITATION MORE VOLUME/WEIGHT EFFI- 
CIENT THAN THERMAL EXCITATION 

o FUTURE MULTI-MEGAWATT LASERS (10s OF MW> MOST 
LIKELY WILL BE MADE UP OF SMALLER C-5 MW) 
LASERS, PHASE LOCKING NECESSARY 

NEW LASING MEDIA 

OBJECTIVES 

WAVELENGTH IN VISIBLE OR NEAR INFRARED FOR 

o EFFICIENT ATMOSPHERIC PROPAGATION 

o SMALLER, MORE CONVENTIONAL OPTICS 

o SPECIFIC END USE REQUIREMENTS 

EFFICIENT ENERGY CONVERSION 

EXCITE SPECIFIC CHEMICAL REACTIONS 



MC IMER LASER 

HIGH POWER 

HIGH EFFICIENCY 

DESIRABLE WA’VELENGTHS 

ENERGY LEVEL DIAGRAM FOR MOLECULE AB SHOWING PROCESSES 
IMPORTANT IN CREATING PROSPECTIVE DISSOCIATION LASER 

BOUND ELECTRONIC 
MOLECULAR STATE 

EXCIMER DESTRUCTION 
A” t B 
I A 

INTERATOMIC RADIUS - 

PUMP 
(OPTICAL OR 
ELECTRONIC) 
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CW EXCIMER LASER 

CONTRACT NO, NAS3-19707 

HUGHES RESEARCH LABORATORIES 

A, J, PALMER, ET. AL, 

FOR 

NASA LERC 

DR. .I, DUNNING, PROJECT MANAGER 

AUGUST 1976 



CW EXCIMER LASER 

OBJECTIVE: OBTAIN DESIGN CHARACTERISTICS AND SCALING DATA ON 

CW EXCIMER LASERS 

0 DEMONSTRATE A SCALEABLE CW EXCIMER LASER 

USING Xe-F, Xe-K OR H$ 

a COMPLETE COMPUTER MODEL FOR EACH SYSTEM 

RESULTS 

o WRI-ITEN DDAILED COMPUTER CODE TO PREDICT PERFORMANCE 

o BUILT LABORATORY DEVICES FOR XeF AND K-XelK2 

o SEEN FLUORESCENCE IN XeF 



ANALYTIC BASIS FOR HIGH POWER FLOWING EXCIMER LASER 

104 10-6 

1, = 
d (x lo5 cm) 

10-2 

4 

3 

2 

1 

WV OUTPUT P0WER Z 10 MWlitef 
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CM EXCIMER LASER 

CONCLUSIONS 

o h/K2 SYSTEM HAD LOWEST THRESHOLD OF THOSE SYSTEMS STUDIED 

l NEED TO DEMONSTRATE LASING TO TOTALLY CONFIRM MODEL 

o TECHNOLOGY ISSUES OUTSTANDING 

- DISCHARGE STABILITY 
- POWER DENSITY 
- COOLING 

o CONSTRUCTION OF A TEST BED DEVICE WILL BE COSTLY 
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DESIGN INVESTIGATION OF SOLAR-POWERED LASERS FOR SPACE APPLICATIONS 

MATHEMATICAL SCIENCES NORTHWEST, INC. 
MAY 1979 

PRESENTED TO 

SYMPOSIUM ON SPACE LASER POWER TRANSMISSION 
SYSTEM STUDIES 

LANGLEY RESEARCH CENTER 
HAMPTON, VIRGINIA 

OCTOBER 14-15, 1981 

REVIEWED BY: 
Richard B. Lancashire 
October 1981 
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OBJECTIVE 

o TO INVESTIGATE FEASIBILITY OF USING SOLAR POWERED CW LASERS 
FOR SPACE POWER TRANSMISSION 

o TO SELECT BEST OF SEVERAL COMPETING CONCEPTS FOR A CONCEPTUAL 
DESIGN 

GROUND RULES 

l CW LASER POWER OF 1 MW 

o SYSTEM COMPONENTS OPTIMIZED FOR MINIMUM WEIGHT AND VOLUME FOR 
SHUTTLE TRANSPORT 

o DEVELOPMENT TECHNOLOGY BE AVAILABLE IN 1990 TIME FRAME 

DPTICAl PUMPED IASFR REVIFY 

’ BROADBAND OPTICAL PUMPING OF SOLID STATE, P_ULSED LASERS IS WELL ESTABLISHED, 
RUBY; ND : YAG 

0 OPTICALLY PUMPED GAS LASERS HAVE BEEN DEMONSTRATED BUT NOT EXTENSIVELY STUDIED 

' DIRECT SOLAR PUMPING OF BOUND-BOUND.TRANSITIONS IS INEFFICIENT EVEN IF 
QUANTUM EFFICIENCY IS HIGH; ABSORPTION BAND SMALL RELATIVE TO EFFECTIVE 
SOLAR BANDWIDTH 



SOIAR PUMPFD IASANT TYPES 

' DIRECT OR VISIBLE PUMPED: VISIBLE LASING 

' DIRECT OR VISIBLE PUMPED: INFRARED LASING 

' INFRARED PUMPED: INFRARED LASING 

JND I RECT SOI AR-PUMPEDLASERS 

' SOLAR RADIATION ABSORBED AND RERADIATED VIA INTERMEDIATE BLACK BODY 

' FOCUSSED SUNLIGHT WOULD HEAT B,B, TO 20000 K TO 30000 K 

. INTERMEDIATE B, B. WOULD SURROUND LASING MEDIUM 

l KEY TO PROCESS IS THAT RADIATION IS CONTINUOUSLY RE-EMITTED AT THE WAVELENGTH 
WHICH HAS BEEN DEPLETED BY SELECTIVE ABSORPTION OF LASANT GAS 

79 



BlACkBODY SPECTRAL DISTRIBUTION AT SELECTED TEUPERATURCi 

0 GREATER FRACTION OF IR AVAILABLE AT LOWER BmB, TEMPERATURES 

0 FOUR TIMES GREATER ABSORPTION EXPOSURE AREA POSSIBLE WITH INTERMEDIATE BIB, 

EFFICIENCY CONSIDERATIONS 

?! 
LASER POWER (PL) PL 

cm 
COLLECTOR AREA (A) . SOLAR FLUX 6) OR A= -i 7 

MUST HAXIMIZE~TO MINIMIZE COST 

c - COLLECTOR 
B - SPECTRUM UTIldZATION 
L - LASER 
s - SYSTEM COMPONENTS 

CO OR CO2 LASING IS DICTATED 
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STATIC INDIRECT OPTICALLY PUMPED GAS LASER 

Intermediate Black Body 
Cavity (Temperature T6) 

SOLAR PUMPED MIXING LASER 

rS 

Solar Power 
%EP 
t 

Surface 

STATE T 

:I 
350 
350 -I--- $1 
350 
500 

31 
535 
375 

6 340 

T 
350 

1900 7 1900 
950 
535 
375 
340 
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ARTIST'S SKETCH OF CO/CO2 FLOW-MIXED SOLAR-PUMPED LASER 
FOR SPACE APPLICATIONS 

r FOCUSSED SOLAR 
; RADIATION y 
1 

SOIAR 
BRAYTON CYCLE ‘\ 

BLACK BODY I’ 
CAVITY a 

r RETURN FLOW 

NOZZLES 

NGER 

UNITS 

c- -’ -. . ..J 
Artfst'sCmceptof1 MW Solar-PumpedLaser, 
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Solar laser Weight Comparison 
(1 MH Laser Output) 

Cmponefltr 

Laser Loop 

Ducts. Nozzle. Dlffriscr, 
Cavity. fllrrors. Ylndw 
Cool Ing Subsystn 

Radlrtor rnd Heat Lxch. 

Flw Loop Cmpressor 
trs Mate-up Purlflcatlon 

Recuperator 

Collector and Heat Exch. 

J cr E IX-LX, “” 1 .I OPLO 
Supcrsonlc CO 1 Subsonic CO2 1 Supeisonlc CO2 1 Direct CF,I 1 Indirect Strtfc Cbi 

1.574 1.662 6,292 600 6DD 

445 240 5,023 814 2,010 

250 275 1.216 
250 256 WA) 250 OvAi) 

(N/A) 
18.330 

I 

omi) (N/A) 
I I I 

(N/A) 
2.112 

Pwer Source: 

Turbtne/RecuperrLor/ 
Compressor 

Radiator and Heat Exch. 

Collector/Concentrator/ 
CJV I ty Absorber 

Power Conditioner 
6lrck Body Cxvlty 

Total Weight (kg) 

4.350 4.700 7,199 

WA) (N/A) 
4,163 4.500 8.565 1 I 

5.670 8,600 15.889 56,560 3.200 

260 205 (N/A) (N/A) (N/A,) 

(N/A) (WA) (N/A). (N/A) 2.4DO 

16.962 20.440 64,626 60.284 8.270 

*CDL l Electrk Discharge Laser 

CDL l bs Dynrmic laser 
OPL n O~tlcally Punped Laser 
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CRITICAL TECHNOIOGY AREAS 

' VERIFY INDIRECT PUMPING CONCEPT IN LAB 

' INTERMEDIATE BLACKBODY DESIGN FOR LOW HEAT LOSS AND HIGH TEMPERATURE 
OPERATION 

' INFRARED TRANSPARENT MATERIALS FOR LASING CAVITY 

l NEED REFINED METHODS OF GAS SEPARATION FOR MIXING GAS LASER; 
CRYOGENIC SYSTEM FOR CO LASER 

' ADVANCED HEAT EXCHANGERS AND SOLAR COLLECTOR/CONCENTRATOR 
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UTILITY OF AN-D TECHNOLOGY FOR A SPACE 
CENTPaL POWER STATION 

Paul F. Holloway and L. Bernard Garrett 
NASA Langley Research Center 

EXPANDED ABSTRACT 

The technological and economical impacts of a large central power station 
in Earth orbit on the performance and cost of future spacecraft and their 
orbital-transfer systems are examined. It is shown that beaming power to 
remote users cannot be cost-effective if the central power station uses the 
same power generation system that would be readily available for provision 
of on-board power. Similarly, microwave transmission and reception of power 
through space for use in space cannot be cost-competitive with on-board power 
or propulsion systems; the size of the receiver is simply prohibitive. Laser 
transmitters/receivers will be required to make central power stations feasible. 

Analysis of the cost-effectiveness of meeting Earth-orbiting spacecraft 
electrical demands from a central power station indicates that this application 
cannot justify the investment required for the central station. However, 
remote-power transmission for propulsion of orbital-transfer vehicles promises 
major cost benefits (within the bounds of the assumptions made herein) of a 
sufficient magnitude to fully justify the research and development activities 
necessary to enable the central power station. Direct nuclear-pumped or solar- 
pumped laser power station concepts are particularly attractive with the laser 
thermal propulsion system and/or the laser electric propulsion system. These 
systems are also competitive on a mass and cost basis with a photovoltaic 
power station. Based on these results, key technology needs which must be met 
to enable a viable central power station in the future are identified. 

INTRODUCTION 

It is anticipated that power demands in orbit will increase exponently 
over the next few decades as applications and industrialization activities 
expand. In fact, it is generally accepted that the rate of space industrial 
development will depend primarily on the cost of transportation to, through, 
and from space, and the cost of electrical power in space. 

The concept of a central power utility in space may provide an economical 
means of meeting the increased power demands. The purpose of this paper is 
to conduct a firstLcut evaluation of the utility of a central power station 
in Earth orbit. Two classes of users are considered: (1) Earth-orbiting 
satellites requiring electrical power for routine operations to meet mission 
goals, and (2) orbital-transfer vehicles (OTV) requiring power for propulsion. 
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Three concepts for central, space-based power stations are considered. The 
first is a photovoltaic array system representing normal state of the art for 
proven technology with the same assumptions for costs, weight, and efficiency 
used for the on-board baseline system. The second is a direct nuclear-pumped 
laser system based on a rapidly evolving technology. Finally, a direct 
solar-pumped laser system based on an exciting new technology that is just now 
emerging in the laboratory is evaluated. Both microwave and laser transmission 
of energy from the central power station to the users are considered. 

For comparison purposes, the baseline electrical power system is assumed 
to be photovoltaic power provided with conventional on-board systems at costs, 
weight, and efficiency projected to be attainable by the end of the century. 
The OTV remote energy application for laser thermal and laser electric propul- 
sion systems is compared against projected technological advances in conven- 
tional chemical and solar electric propulsion stages. 

The technologies required to enable the systems discussed are delineated. 
The authors hope that this paper will provide the stimulus for further analy- 
sis and discussion that will ultimately provide the necessary direction to 
effectively focus the near-term technology efforts and maximize the utilization 
of these technologies in the future. 

COMPARISON BASELINE SYSTEMS 

On-Board Photovoltaic Power 

Silicone solar cells have been used extensively for on-board power levels 
ranging from a few watts to a few kilowatts. Continued development of these 
systems can be expected, 
and reducing costs. 

aimed primarily at increasing the ratio of power to weight 
As power demands increase, other cell materials, such as 

gallium arsenide, 
Efficiencies (ref. 

offering higher efficiency will become increasingly attractive. 
1) of 18.6 percent have already been achieved with gallium arsen- 

ide (GaAs) solar cells in the laboratory as compared to the customary 12-15 percent 
for production silicon cells. (ref. 2) In addition, the higher operating temperature 
capability (ref. 3) of GaAs and its radiation resistance (ref. 4) and self-annealing 
characteristics (ref. 5) promise reduced size for a given power output and longer 
life with reduced maintenance. A weight penalty for the use of GaAs rather than 
silicon might be expected. However, if GaAs annealing is as effective as it 
currently appears, double-cover glass radiation shields will not be required. This 
factor, coupled with the potential for development of thin (approximately 10 pm) 
high-efficiency cells, 
silicon. 

would give GaAs a power-to-weight ratio advantage over 
Regardless of the final outcome, analyses conducted during this study 1 

have shown that total costs are insensitive to the weight differences associated 
with a very pessimistic GaAs weight projection. Hence, the on-board power systems 
of the future are assumed to be GaAs photovoltaic arrays with an efficiency of 
20 percent (ref. 6). 
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On-Board Propulsion 

Chemical Orbital-Transfer Vehicles. The baseline chemical OTV (fig. 1) 
uses spherical propellant tanks and a lightweight composite truss structure in 
a configuration developed for an earlier study (ref. 7). A hydrogen-oxygen 
rocket engine with a specific impulse of 476 seconds is assumed. The payload, 
propellant, and vehicle dry weights are 100,000 kg, 280,000 kg, and 20,000 kg, 
respectively. Seven-day round-trip times from low Earth orbit (LEO) to geo- 
synchronous Earth orbit (GEO), and return with a SO-flight lifetime are assumed 
for space-based operations. 

CHEMICAL ORBITAL TRANSFER VEHICLE (OTV) 

-ALUMINUM SUPPORT BEAM 

AVlONlCS 

MULTI-LAYER 
MYLAR/NYLON 
NET TYPE INSULATION 

GRAPHITE EPOXY 
TAPERED TUBES (12) 

FUEL CELLS, RCS PROPELLANTS, 
PRESSURIZATION AND FEED 

ADVANCED LOX/LH2 

ENGINES (8REQUIRED) 
I 
SP 

= 476 set 

Figure 1 (from ref. 7). 
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Solar electric propulsion system orbital-transfer vehicles.- Solar electric 
propulzon system (SEPS))cargd OTV's have been studied extensively. (See, for 
example, refs. 8 and 9.) A representative configuration (ref. 8) is shown in 
figure 2. Argon ion thrusters are assumed to provide an Is. of 6,000 seconds. The 
payload, propellant, and vehicle dry weights are 100,000 kg, 17,000 kg, and 24,000 kg, 
respectively. With an initial thrust-to-weight (T/W) ratio of 5 x 10-5 and 3.3 MWe 
power delivered to the thrusters, a round-trip time from LEO to GE0 and return 
of 173 days results. While the test results to date on the self-annealing character- 
istics of GaAs solar cells (ref. 5) are very.promising, the total radiation environ- 
ment has not yet been simulated. This, coupled with the lifetime required of the 
continuous-burn thrusters for the long trip durations, led the authors to assume 
a three-flight lifetime for this space-based OTV. 

The chemical and SEPS orbital-transfer performance characteristics are summar- 
ized in table Al of the Appendix. 

SOLAR ELECTRIC PROPULSION SYSTEM CONCEPT 

ELECTRIC THRUSTER 
MODULE 

POWER CONDITIONING 
EQUIPMENT 

60m /- LSOLAR ARRAY (Ga As) 

Figure 2 
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ADVANCED CONCEPTS 

Space-Based Central Power Stations 

Three central power staton concepts located in GE0 are considered: a solar- 
powered photovoltaic array, a direct nuclear-pumped laser and a direct solar-pumped 
laser power station. In all of these systems it is assumed that power is beamed 
to remote users via laser or microwave. For all three concepts, the major systems 

and subsystems are sized for a total of 100 MW of laser power radiated at the 
transmitter. 

Transmitter and receiver systems.- A selection of transmitters and receivers 
is required for the development of central power stations addressed in this study. 
Both microwave and laser energy transmission/reception are possible over the long 
distances in space that would be associated with a central power station. The 
sizes of the transmitter and receiver for such systems are functions of their 
operating wavelength and transmission distance or range, not necessarily power level. 
Transmitter and receiver size versus range is shown in figure 3 for diffraction- 
limited microwave and laser systems operating at the various wavelengths 1 applicable 
to each system. 

TRANSMilTER/RECEIVER SIZES VERSUS RANGE 

l& 

TRANSMHTER 
diam x 

RECEIVER 
diam 

KITDR), m 
2 lo2 

IO4 lo6 108 lo9 

RANGE. R, km 

Figure 3 

To transfer power over geosynchronous distances on the order of 40,000 km 
microwave transmitter and receiver diameters of 1 to 10 .km will be required, whereas 
laser systems because of their shorter wavelengths can operate with much smaller 
transmitter and receiver diameters, ranging from 5 to 30 m. 

Consider now the prospects of remote versus on-board power for these two types 
of transmission/receiver systems. For a microwave receiver (rectenna) of 2 km 
diameter, the equivalent area of on-board photovoltaic cells would produce almost 
1 GWe of power. 
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For a 20-m-diameter laser receiver, the equivalent area of on-board solar 
cells would produce approximately 100 KWe of power. Several users in the tens to 
hundreds of kWe power range are expected in future missions (ref. 10); however, no 
missions have been defined which would require the 1 GWe power commensurate with 
the microwave receiver size. Nonetheless, if power levels of that magnitude were 
required they could be provided by an on-board system at a lower cost than that 
required for the microwave transmitter and receiver systems. Thus, the remainder 
of this paper considers only laser transmitter and receiver systems. 

Two types of receivers are compatible with laser energy transmission-- 
photovoltaic arrays for direct conversion to electricity, and optical collectors 
that focus the concentrated laser energy on thermal conversion engi es. 

w 
A specially 

tuned laser transmitting near the visible wavelength (5000 to 9000 ) would increase 
photovoltaic conversion efficiencies to 40 to 50 percent (ref. 11). Laser thermal 
conversion system efficiencies could range between 50 to 75 percent. (See, for 
example, ref. 12.) 

Photovoltaic array.- GaAs solar cell arrays with 20 percent conversion effi- 
ciency and electric discharge laser systems with a 30-percent efficiency are assumed. 
A solar-powered photovoltaic central power station with laser energy transmission 
systems is shown in figure 4. Array dimensions of 1800 m by 600 m achieve 100 
MWL total power output at the transmitters. Two independent, high-energy electric 
discharge laser (EDL) systems, each about 15 m square and 40 m long (ref. 13), radi- 
ate power to 30-m-diameter laser transmitters. 

PHOTOVOLTAIC ARRAY CENTRAL POWER STATION CONCEPT 
100 MWL 

I-IFAT DIDF DAnlATnDC- 

SOLAR ARRAY 

/ 
ELECTRIC DISCHARGE 
LASER SYSTEM 

30 m DIAM. LASER 
TRANSMITTER 

Figure 4 
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A cycle schematic of this approach is shown in figure 5. Passive heat rejec- 
tion systems incorporated in the photovoltaic array radiate the unusable solar 
energy. 
70,000 m2 

Heat-pipe radiators arranged in a planar array with a total area of 
(based on an estimated specific area of 0.25 m2/kWT for 500 to 700 K 

rejection temperature) are extended radially from the laser system to reject the 
unusable thermal energy in the laser. 

Since 30 percent electrical-to-laser energy conversion efficiency is assumed 
the GaAs solar array is required to produce 330 MWe of electrical power to yield 
100 MWL laser power output. The low-voltage array output must be processed to 
provide the relatively high voltage (kV range) required to drive the EDL. The 
laser system consists of subsonic or supersonic diffusers, the laser cavity and 
beam optics, compressor, heat exchanger, and the lasant gas make-up system. CO 
and CO2 gases are the leading lasant candidates. Monson (ref. 14) estimated open- 
cycle efficiencies of 60 percent and 25 percent for CO and C02, respectively, 
resulting in closed-cycle efficiency estimates of 29 and 18 percent. One technique 
of achieving the higher 30-percent efficiency would utilize turbogenerator bottoming 
cycles (not shown in the cycle schematic) to recover waste heat from the laser. 

With a closed-cycle operation the lasant gas may be recycled. For the CO2 
system, a temperature of 700 K is anticipated at the laser gas output side. A 
heat exchanger and radiator system is required to dispose of waste heat. The CO 
system must operate at low temperature to achieve high efficiency, and a refrigera- 
tion cycle is required. While this cycle would also generate waste heat, it would 
lower the temperature of the gas output so that no further cooling would be required. 

The laser and gas loop of the system involves extending the application of 
existing technologies to the long-Jife closed-cycle operations required. Open- 
cycle EDL's have demonstrated efficiencies in the 30- to 40-percent range and out- 
put power at the multihundred kW levels for short periods of time (refs. 15 and 16). 
Thus, this is the most technologically mature of the the three control power station 
concepts considered in this analysis. 

CYCLE SCHEMATIC FOR SOLAR-ARRAY-POWERED 
ELECTRIC DISCHARGE LASER 

(1320 MWT 

RADIATED) 

- PHOTOVOLT 
- ARRAY 
- 

SOLAR 
POWER 

IN (LAS ING HEAT 
(1650 MWT) EXCHANGER 

LASANT 
MAKE-UP 

Figure 5 
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Direct nuclear-pumped laser.- The direct nuclear-pumped laser (DNPL) power 
station concept shown in figure 6 is built around a gas core reactor fueled with 
UF6 as proposed by Rodgers (ref. 17). The lasant is mixed with UF6 so that the 
laser generation system is integral with the reactor. Fission fragments from the 
nuclear reactions collide with the lasant gas constituents, exciting the gas levels 
sufficiently to produce lasing. One possible design of a nuclear-pumped laser taken 
from Rodgers (ref. 17) is shown in figure 7. The physical dimensions are for a 
total reactor power of 100 MW. If the nuclear-to-laser power conversion efficiency 
reaches the projected 10 percent (ref. 17), then this system would output 10 MWL 
of laser power. This is a power-intensive nuclear reactor system capable of operating 
between 2 MW and 2000 MW. Thus, the overall 5-m diameter and 6-m length should 
be representative of a 100~MWL laser output system. Multiple or ganged laser cavities 
are used to mitigate thermal effects associated with the high-power system. Heat- 
pipe thermal radiators of 400,000 m2 are required if all excess heat from the 
nuclear-to-laser energy conversion process is rejected to space. However, Rodgers 
suggests that a bottoming turbogenerator cycle can be used to recover 9 percent 
of the waste heat as electrical power for on-board use. 

CONCEPTUAL UF6 GASEOUS 

DIRECT NUCLEAR-PUMPED LASER POWER STATION NUCLEAR-PUMPED LASER REACTOR 
A IDDMWL 

HEAT PIPE 
RADIATOR ARRAY 

M-m-DIAMETER 
LASERTRANSMI'ITERS 

LNUCLEAR REACTOR AND 
LASER GENERATOR 

Figure 6 

OUTPUT 4 
BEAM g 

,-MULTI FACETED 

6m 

MIRROR 
UPPER/LOWER 
OPTICAL SUPPORT 

LASER 
CAVITY 
MATR I X 

1 /INNER 

MIRROR 

Figure 7 
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A schematic for long-term, closed-cycle operation of the direct nuclear- 
pumped laser power station (again based on the work of Rodgers (ref. 17)) is 
presented in figure 8. Subsystem power requirements based on projected effi- 
ciencies and representative operating temperatures are noted on the figure. 
A nuclear-to-laser power conversion efficiency of 10 percent is assumed result- 
ing in a 100~M&7b power output. Fuel and laser gas reprocessors and make-up 
systems are added for long-term, closed-cycle space operations. 

Since UFg would be depleted by the fission process in the reactor, the 
residual fission fragments must be removed and the depleted UF6 replaced. 
Some lasing gas may also have to be replaced. A fuel-lasant reprocessor would 
remove undesirable elements produced in the fission process. The transuranium 
elements could be injected back into the reactor core and transmuted into 
either stable forms or usable fuel. 

Boody et al. (ref. 18) note that experimentalnuclear pumping of a CO 
lasant has yielded 1 percent conversion efficiency and projects that a lo- 
percent efficiency is achievable in future systems. Rodgers (ref. 17) points 
out that theoretical maximum efficiencies of 7 and 13 percent have been esti- 
mated for XeF and I 
paper reports on a 3 

nuclear-pumped lasers. DeYoung (ref. 19) in a recent 
He-Ar nuclear-pumped laser that has yielded 1 kilowatt of 

power. This output power represents quantum leaps (ref. 2O).(six orders of 
magnitude) that have been achieved in output power in the last 5 years. 

CYCLE SCHEMATIC FOR DIRECT NUCLEAR-PUMPED LASER 

FUEL AND LASANT 

REPROCESSOR 

7 

COMPRESSOR (UF6 + LASING GAS1 
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I I k540 K - 

-,;;TfT COMPRESSOR 
EXCHAN 

LASER --- 
POWER 

(lOOMWLI 
GENERAiii fi pp/ Q RADIATED 1 

810MWT 
LQON-BOARD ) 

(90 MWJ 

Figure 8 
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Direct solar-pumped laser.- Direct solar-pumped laser (DSPL) power station 
concepts and future performance estimates have been projected by Monson (ref. 
14), Rather (ref. 21), and Taussig et al. (ref. 22). The technology for 
solar-pumped lasers is still in the earliest laboratory stages, and insufficient 
data are available to accurately quantify overall system performance. However, 
based on a survey of the literature and on-going experimental efforts, an over- 
all solar-to-laser energy conversion efficiency in the range of 1 to 20 percent 
is assumed. 

A conceptual design of a 100~MWL solar-pumped laser power station is shown 
in figure 9. For this study, efficiencies of 10 percent and 1 percent are 
assumed requiring collector diameters of 1000 and 3000 m, respectively, to 
concentrate the low-level solar radiation (1.4 kW/m2) on the transparent laser 
tubes. 

DIRECT SOLAR-PUMPED LASER POWER STATION CONCEPT 
100 MWL 

1000 m DIAMETER 
FOCUSEDSOLAR 

PIPERADIATORS 

Figure 9 
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The construction of a 100~Mwb laser will be limited by the optical 
elements such as mirrors and windows. Therefore, this analysis uses an array 
of 50 laser tubes (each 1 m in diameter and 50 m long) in a cylindrical pattern 
of 20 m diameter as shown in figure 10. Improvements during the next 20 years 
in areas such as transmission through optical elements should be significant, 
but may still be insufficient to permit construction of a 100~MWL laser in a 
single unit. 

Assuming that a solar-filtering reflector material can be developed to 
reflect only the portion of the solar spectrum usable for lasing (20 percent), 
and that 50 percent of this reflected solar energy goes into lasing energy 
(for a lo-percent overall solar-to-laser energy conversion), then approximately 
25,000 m2 of heat-pipe thermal radiators are needed for the laser. The use of 
high-emissivity materials on the back side of the solar concentrator could be 
used to passively radiate the unusable solar energy absorbed by the concen- 
trator. 

100 MEGAWATT SOLAR POWER LASER 
MULTILASER CONFIGURATION 

LASER BEAMS TO 
COLLECTION OPTICS I 

Figure 10 
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Solar energy, if sufficiently concentrated, can induce lasing in selected 
gases. Although this technology is in its infancy, the potential exists for 
relatively low overall cost due to simplicity of operation. Conversion 
efficiency of 0.1 percent solar-to-laser energy was recently achieved at 
Langley Research Center (ref. 23). The cycle schematic for a direct solar- 
pumped laser (DSPL) is shown in figure 11. Subsystem power requirements and 
representative operating temperatures are noted on the schematic for the 
lo-percent solar-to-laser energy conversion efficiency. As mentionedpreviously, 
the lo-percent overall conversion efficiency assumes a 50-percent filtered 
solar-to-laser radiation conversion efficiency, an efficiency approached by a 
NOCl lasant absorbing in the far ultraviolet to 6500 A. Other lasants such as 
IBr or C3F71 will not achieve a 50-percent solar-to-laser conversion efficiency 
and a system having 5 percent efficiency (worst case) representing a l-percent 
overall conversion efficiency is included in the subsequent mass and cost 
analyses. A gas temperature of no more than 700 K is anticipated because 
higher temperatures are detrimental to known lasing gas inversion processes. 
Several laser systems under consideration employ molecules which dissociate 
prior to lasing and do not regenerate themselves. Consequently, an on-board 
gas reprocessor may be required to reproduce the lasant gas by other means 
(chemical, etc.). 

Of the three systems studied, the DSPL potentially presents the least 
challenge to achieving the long-life space power station operations required 
which makes it an attractive candidate even at 1 percent overall efficiency. 
Laboratory efforts are under way to characterize candidate lasant gases and 
expand the bandwidth of usable solar energy. The large, lightweight solar 
concentrator presents technological challenges in the design, on-orbit 
assembly, and operational control of the spacecraft. 
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Remotely Powered Propulsion Systems 

If a space-based central power station is available, new options are 
possible for orbital-transfer vehicles. For this study, two OTV concepts 
tailored to capitalize on the central power station are compared with the more 
conventional chemical and SEP OTV's. 

Laser thermal propulsion.- The laser thermal propulsion system (LTPS) 
shown in figure 12 is similar to that previously presented in reference 24. 
The hydrogen propellant is heated by the laser beam from the central power 
station. The laser thermal engine has a thrust.of 10,000 N and an Isp 
of 1,500 seconds resulting in an exhaust power of 70 MW and a startburn thrust- 
to-weight ratio of 0.03. To reduce gravity losses resulting from the low T/W 
and the duration of the individual engine burns, the LEO-to-GE0 transfer 
trajectory uses 10 perigee burns of about 15 minutes each and a 1.5-hour 
circularization burn. The payload, propellant, and vehicle dry masses are 
20,000 kg, 9,900 kg, and 2,200 kg, respectively. Fourteen-day round-trip 
times are assumed to allow for cargo unloading and OTV maintenance. A 
50-flight lifetime is assumed for a total thruster operation time of about 
400 hours. 

LASER THERMAL PROPULSION SYSTEM 

DIRECTINGOPTICS 

Figure 12 
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Laser electric propulsion.- The laser electric propulsion system (LEPS) 
shown in figure 13 is similar in most respects to the baseline SEPS OTV. The 
principal differences are the size and makeup of the solar cell array. The array 
is much smaller (20 m diameter) and is assembled to be more efficient (50 percent 
laser-to-electrical power conversion) because the laser beam is more concentrated 
than sunlight and has a narrow band which, with enabling technology developments 
and infrared-to-visible wavelength frequency conversion, can be made to match the 
absorption characteristics of the solar cells. For this OTV, the payload, propell- 
ant, and vehicle dry mass are100,OOO kg, 14',000 kg, and 11,000 kg, respectively. 
Round-trip time from LEO to GE0 of 158 days is required. The three-flight life- 
time assumed for the SEPS OTV is also used for the LEPS for a total thruster 
operation time of about 11,000 hours. 

The LTPS and LEPS orbital-transfer performance characteristics are also summar- 
ized in table Al of the Appendix. 
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Central Power Station Mass and Cost Estimates 

Comparative mass and cost estimates for the major components of the candi- 
date advanced systems are based on a 100~MWb power output at the transmitter. 
The assumptions made here are the basis for the performance characteristics 
and the development of the cost-estimating relationships presented in 
reference 25. Summaries of these mass and cost estimates for each of the 
central power station concepts are presented in figures 14 and 15, respectively. 
Details of these estimates are discussed on subsequent pages. 
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Photovoltaic Power Station 

Mass estimate.- The mass of the GaAs array is calculated assuming 1.5 kg/ 
kW, at the array busbarbased on reference 26. The mass of the spacecraft 
systems (array supporting structure, stability, and control) is assumed to be 
in the range of 10 to 12 percent of that for the array. Previous work has 
estimated the specific mass of the electric discharge laser to range from 
0.5 kg/kWL (ref. 19) to 1.4 kg/kWL (ref. 10). For this analysis, a 30-percent 
efficiency and a specific mass of 0.6 kg/kWL is assumed. The heat-pipe ther- 
mal radiator systems for laser waste heat rejection at 700 to 800 K are esti- 
mated to have a mass of 0.23 kg/kWT of heat radiated. (See, for example, 
ref. 22.) The 30-m-diameter laser transmitter systems are projected to 
weigh 3 x 104 kg each (ref. 21). Hence, the approximate masses for the result- 
ing systems of the power staion are: 

System Mass, kg 

GaAs Array (330 MWe) 495,000 

S/C Systems (structure, controls) 60,000 

EDL (100~MW laser) 60,000 

Thermal Radiator (for 230 MWT) 55,000 

One Laser Transmitter (30-m diam.) 30,000 

Total Spacecraft Mass, kg 'L700,000 

101 



Cost estimate.- Projected cost estimates for photovoltaic arrays and 
electric discharge lasers vary bv several orders of magnitude. Conway (ref. 
6) projects costs of 1 to 3 X 10 5 $/kW, output at the array busbar for advanced 
GaAs systems. Conversely, a Solar Power Satellite (SPS) analysis (ref. 26) 
projects costs in the range of 300 to 5000 $/kW, for mass-produced arrays. 
Coneybear (ref. 16) has observed that a similar disparity exists in the cost 
estimates for the high-power EDL. He projects decreasing costs per kWL 
output with increasing'power levels.. At 100 kWL, his estimates range from 
300 to 800 $/kWL output. Similarly, Jones (ref. 13) estimates $48,000 
per kWL output for a single 910-kWL laser and $300 per kWL for multiple buys 
of a 910~MWL output laser system. 

A cost of $25,000 per KW, is assumed herein for the 20-percent-efficient 
GaAs array. EDL systems are estimated at $104 per kWL output. Power station 
launch and orbital-transfer (from LEO to GEO) costs are estimated at $l,OOO/ 
kg and $50&g, respectively. The orbital transfer costs are derived from 
tables Al and A2 and assume the use of reusable ion thruster systems. Power 
for the thrusters is assumed to be produced by the first unit power station 
itself. Seven ion thruster systems, each producing orbital transfer for lo5 
kg at a cost of $30M each, are utilized for the 700,000-kg power station 
transfer. Upon completion of the transfer, these thruster systems are 
returned to LEO for integration with cargo-carrying OTV's. Prorated costs 
for the one-way power station orbital-transfer trip are thus $35M. Research 
and development (R&D) and design, development, test, and evaluation (DDT&E) 
are assumed to total $lB (i.e., $500 M each). 

Hence, the approximate costs for the 100~MWL photovoltaic array/EDL 
power station are: 

Cost Element 

First Unit 

Array (330 MW, @ $25,00O/kW,) 

EDL (100 MWL @ $lO,OOO/kW,) 

Transmitter (30 m diam.) 

Launch (700,000 kg @ $l,OOO/kg) 

Orbital Transfer (700,000 kg ? $50/kg) 

R&D 

DDT&E 

Total 

Cost, $M 

8,200 

1,000 

100 ea 

700 

35 

500 

500 

%$ll,OOO M 
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Direct Nuclear-Pumped Laser Power Station 

Mass estimates.- Rodgers' (ref. 17) estimate of 140,000 kg has been assumed 
for the gas-core reactor laser system, The fuel reprocessing and waste-heat 
disposal system specific masses of 0.04 and 0.02 kg/kW nuclear power, respec- 
tively, were taken from Williams and Clements (ref. 27). The mass of the 
turbogenerator/compressor is based on 0.27 kg/kW, generator power (ref. 21), 
and the radiator mass assumes 0.23 kg/kWT.of waste heat (ref. 22). Williams 
and Clements have also estimated that 2250 kg/m2 of nuclear shielding 
(shadow shield) are required for a 23,000-MW nuclear power system. Scaling 
this to 100 MW nuclear power yields 100 kg/m2 of shielding to enclose the 
5-m-diameter 6-m-long nuclear reactor and the fuel reprocessing and waste 
disposal systems. The volume of the latter two systems is assumed to be three 
times that of the reactor itself. The resulting system masses of the utility 
are: 

System 

Reactor/Laser (1000 MW, nuclear, 
10O-Mw~ laser) 

Fuel Reprocessing 

Waste Disposal 

Turbogenerator/Compressor (90 MW,) 

Thermal Radiator (810 WT) 

Nuclear Shielding 

One Laser Transmitter (30 m diam.) 

Total Spacecraft Mass, kg 

Mass, kg 

140,000 

40,000 

20,000 

25,000 

185,000 

60,000 

30,000 

'L500,000 
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Cost estimate.- Terrestrial-based solid-fueled nuclear plants operating 
at 20 to 30 percent efficiency cost about $3OO/kW, in 1973 (ref. 28) and less 
than $lOOO/kW, in 1976 (ref. 26). A space-based, power-intensive gas-core 
reactor with its much smaller size and higher temperature capability operating 
at a 30-percent efficiency should not exceed the $lOOO/kW, cost of the terres- 
trial system. Thus, for the space-based system operating at a lo-percent 
overall efficiency for nuclear-to-laser energy conversion, a cost of $3000/ 
kWL output power is assumed. The fuel reprocessor, waste heat disposal and 
turbogenerator systems are estimated to add another $lOOO/kWL to the costs, 
resulting in a total of $4OOO/kWL output power for the direct nuclear-pumped 
power station. The nuclear reactor or the Brayton cycle turbogenerators can 
provide adequate on-board power for the orbital-transfer ion thrusters. 

Extensive R&D costs would be required to develop this system. The 
analysis assumes costs of $1500~ and $50014 for the gas-core reactor and laser 
R&D costs, respectively. DDT&E costs for a small-scale version of the lOO- 
MWL flight unit are estimated to be the same as the first space-based opera- 
tional unit costs. 

Hence, the approximate costs for the DNPL power station are: 

Cost Element 

First Unit 

Cost, $M 

DNPL (100 MWL @ $4OOO/kW,) 

Transmitter (30 m diam.) 

Launch (500,000 kg @ $l,OOO/kg) 

Orbital Transfer (500,000 kg @ $50/kg) 

R&D 

400 

100 ea 

500 

25 

Nuclear Reactor 

Laser 

DDT&E 

Total 

1,500 

500 

400 

%$3,500 M 
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Direct Solar-Pumped Laser Power Station 

Mass estimate.- System masses were computed with the Large Advanced Space 
Systems (LASS) computer-aided design and analysis program developed by Leondis 
(ref. 29). Calculations were made for both a lo-percent efficiency with a 
solar collector of 1000 m diameter and a l-percent efficiency with a 3000-m- 
diameter collector. The solar collector is a parabolic reflector which con- 
sists of a 0.5-mil aluminized Kapton reflective surface and a high-emissivity 
chromium-back surface to passively radiate the unusable solar energy to space. 
The supporting collector structure is a graphite composite truss system 
designed as shown in figure 16. Graphite composite elements also support the 
50 quartz laser tubes shown in figure 10. Each tube is 1 m in diameter, 50 m 
long and 0.3 cm thick. The resulting system masses are: 

System 

Solar Collector 

Reflective Membrane 

Supporting Structure 

Laser (100 MWL output) 

Laser Tubes 

Supporting Structure 

Thermal Radiator 

Attitude Control System 

Laser Transmitter (30 m diam.) 

Total Spacecraft Mass, kg 

Mass, kg 

l-l = 10% 7-l = 1% 

25,000 260,000 

35,000 230,000 

90,000 90,000 

60,000 60,000 

25,000 440,000 
(for 100 mT) (for 1900 MWT) 

5,000 30,000 

30,000 30,000 

270,000 1,150,000 
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STRUCTURE CONCEPT FOR DIRECT SOLAR-PUMPED 
POWER STATION 

LASER SUPPORT RADIATOR SUPPORT 
STRUCTURE7 

1OOOm 

Figure 16 
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Cost estimate.- First unit and DDT&E costs for the major structural 
components and control systems costs were calculated with the LASS program 
(ref. 29) from the cost-estimating relationships developed specifically for 
large advanced spacecraft. The computed costs are 12,000 and 34,000 $/kWL 
output power for the lo- and l-percent solar-to-laser power systems, respect- 
ively. The solar-pumped-laser DDT&E costs were calculated at 2.5 and 1.6 times 
the first unit costs for the lo- and l-percent systems, respectively. The 
bulk of the cost is associated not with the laser system but with the large 
spacecraft (structure and control system) DDT&E effort required to develop 
flight-qualified units of a size that is unprecendented in space or on Earth. 
Laser system R&D costs of $50OM are assumed for both DSPL power stations. 

The DSPL may not be capable of providing power to reusable thruster sys- 
tems for orbital transfer of the first unit from LEO to GEO. Use of chemical 
OTV's would cost approximately $90M and $360M for the lo-percent and l-percent 
efficient DSPL's, respectively, including propellant launch costs. Hence, the - _ 
approximate costs for the DSPL power station are: 

Cost Element Cost, $M 

10% Solar-to-Laser DSPL 

DSPL (100 MWL @ $12,000/kWL) 

Transmitter (30 m diam.) 

Launch (270,000 kg @ $l,OOO/kg) 

Orbital Transfer (chemical OTV) 

R&D 

DDT&E 

Total cost for lO%-Efficient DSPL 

1,200 

100 

270 

.go 

500 

3,000 

Q$5,000 M 

Cost Element Cost, M 

1% Solar-to-Laser DSPL 

DSPL (100 MWL @ $34,00O/kW,) 

Transmitter (30 m diam.) 

Launch (1,150,OOO kg @ $l,OOO/kg) 

Orbital Transfer (chemical OTV) 

R&D 

DDTdE 

3,400 

100 ea 

1,150 

360 

500 

5,400 

%$10,900 M Total cost for 1%-Efficient DSPL 
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Comparative Analysis 

Mass estimates for the candidate central power stations are shown in 
figure 14. On a comparative mass basis, the lo-percent-efficient, direct 
solar-pumped laser power station is most attractive. However, the authors 
estimate that the uncertainties in system and subsystem masses could result 
in an error band for the overall power station masses on the order of 0.5 
to 2. With this level of uncertainty, if the DSPL efficiency is much less 
than 10 percent then all of the central power station concepts would be com- 
petitive on a mass basis. 

On a relative mass basis, certain systems will consistently show mass 
advantages over other systems for the various power stations. For example, 
the DSPL reflector/concentrator will consistently-have a lower mass per unit 
area than the photovoltaic array (0.03 vs 0.4 kg/m2, respectively, assumed in 
this analysis). To a first-order approximation, supporting structural and 
control system masses per unit area for the solar concentrator or solar array 
should be about the same. Rigid body control system masses would be somewhat 
higher for the photovoltaic array. However, there are offsetting surface 
figure control actuator masses required by the DSPL concentrator for focusing 
the solar radiation on the laser tubes. Active surface controls should not 
be required for the photovoltaic array, since local excursions from solar nor- 
mal (within +5 percent) would have negligible influence on performance. 

Relative changes in the efficiencies of the DSPL power station system 
(even for the same overall efficiency) would significantly modify the systems 
masses. For example, in the case of the l-percent DSPL, if only 10 percent 
of the solar spectrum is usable for lasing (rather than the assumed 20 percent) 
and the laser is 10 percent efficient (rather than the assumed 5 percent), 
the solar collector mass would be double that shown in figure 14, and the 
thermal radiator mass would decrease by a factor of two. The net effect on 
the total power station mass would be negligible in this instance. 

A relatively heavy waste-heat rejection system is required for the DNPL 
power station because of the low operating temperatures. Future research 
efforts may produce lasant gases which lase at higher temperatures. If so, 
the overall nuclear-pumped laser cycle could be operated at higher tempera- 
tures than those shown in figure 8. This would improve the efficiency of the 
bottoming Brayton cycle, reduce the amount of waste heat to be rejected, and 
raise the heat rejection temperature. This combination of changes would 
lead to a reduced radiator mass requirement and result in a DNPL power station 
that is equally competitive on a mass basis with the lo-percent DSPL power 
station. 

Summary cost comparisons for each of the major systems, including 
launch costs of $l,OOO/kg of power station mass, are shown in figure 15. cost 
of the DNPL power station is projected to be about a factor of three less .than 
the probable costs of the lower efficiency DSPL and the photovoltaic array/ 
EDL power stations. The photovoltaic array power station costs are dominated 
by the cost of the photovoltaic array itself, whereas the DSPL and DNPL 
costs are associated principally with the smaller scale laboratory research 
and development and the spacecraft prototype DDT&E costs--not the first opera- 
tional unit. Even with the low photovoltaic array cost estimates used in this 
analysis ($25,000 per kW,), the direct-pumped laser power stations are clearly 
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candidates for future space-to-space power systems. Failure to reduce the 
array costs to this level would give an even more overwhelming advantage to the 
direct-pumped laser systems over the current state-of-the-art photovoltaic 
array/EDL approach. 

USER BENEFITS 

Potential benefits of space-based central power stations are examined 
for two classes of future users: (1) Earth-orbiting satellites requiring 
electrical power, and (2) orbital-transfer vehicles requiring power for 
propulsion. 

Earth-Orbiting Satellites 

Cost-estimating relationships are developed in ref. 25 for both on-board 
and remotely powered satellites. It is shown in that paper that the beaming 
of continuous power to electrical users is never cost-effective when the same 
fundamental power generation system that is used on the central power station 
is readily available as an on-board system. Thus, the photovoltaic array 
central power station can never compete with on-board photovoltaic arrays. 
This is due simply to the additional inefficiencies introduced in the energy 
conversion, transmission, and reconversion systems which are not required for 
on-board, self-powered systems. At projected system efficiencies, the cost 
and size of the photovoltaic array on the central power station would be at 
least seven times greater than the corresponding total cost and size of arrays 
for self-powered satellites. 

On-board and remote electrical power cost ranges for user satellites are 
shown in figures 17 and 18 for the DNPL and the DSPL power stations, respec- 
tively. The estimated cost per KW, to the user is plotted versus the average 
power required by each user. The figures indicate that remotely powered 
satellites would be marginally competitive at best, with $100,000 to $300,000 
per KW, solar arrays and then only in the 10 to 100 megawatt average power 
level ranges. Mass-produced solar array costs could possibly decline to the 
solar power satellite analysis estimates (ref. 26) of $300 to $5000 per KW,. 
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At these optimistically low costs remotely powered satellites would not be 
cost-competitive at any power level with on-board self-powered satellites. 

Although no orbiting satellite users identified in the NASA mission model 
(ref. 10) require power above the hundreds of kilowatts levels, it may be 
speculated that in the distant future space industrialization activities will 
expand to large-scale manufacturing plants requiring megawatts of power. Thus, 
on the surface (should solar-array costs remain sufficiently high to provide 
a cost advantage to remotely powered systems in the 10 to 100 MWe ranges) 
the question of development of a space-based power station to remotely power 
a number of lO+ MW, satellites appears to be one of timing (perhaps by the 
middle of the next century). However, a more logical question would be to ask 
if there is a less costly alternative to the photovoltaic array on-board power 
system for very large power needs. For example, a power-intensive nuclear 
system at $1,000 to $10,000 per installed KW, could be installed on-board 
at significantly lower cost to the user than that for purchase of power from 
a central power station. 

Thus, it is concluded that the implementation of a central space-based 
power station for the sole purpose of remotely powering Earth-orbiting satel- 
lites cannot be justified economically. However, if other applications lead 
to the development of such a system, orbiting satellites could use available 
excess power in a cost-effective manner. The orbital-transfer application 
discussed in the following section may provide this economic justification. 

Remotely Powered Propulsion Systems 

The results presented here are an expansion of an earlier study reported 
by Garrett and Hook (ref. 30). The comparison of on-board propulsion with 
remotely powered propulsion is based on the delivery of cargo from LEO to GE0 
and return. All OTV's are assumed to be space based. An advanced chemical 
system is compared with a remotely powered laser thermal propulsion system 
(LTPS), and a solar electric propulsion system (SEPS) is compared with a 
remotely powered laser electric propulsion system (LEPS). The OTV performance 
characteristics have already been discussed and are summarized in table Al. 
Overall cost estimate data used in this analysis of competing transportation 
vehicles are given in table AZ. 

Rather than use a specific mission need projection for a specific time 
period, the scenario considered (fig. 19) assumes delivery of 106 kg mass 
from LEO to GE0 in the first year of operation of the central power station. 
The mass delivery demand increases at a rate of 10 percent annually thereafter. 
Thus, in 20 years the payload to GE0 demand has increased by a factor of six. 
The chemical, SEP, and LEP systems deliver the payload in increments of 
lo5 kg per trip. Thermal constraints (caused by focusing multimegawatts of 
power on small area windows and cavities) are assumed to limit the LTPS 
to 2 X 104 kg of cargo per trip which is consistent with the delivery of 
70 MW of thruster power. Initially, one advanced, single-stage, chemical OTV 
or three laser-powered LTPS OTV's are required. Alternatively, five SEPS or 
LEPS would be required because of the long trip times (approximately 180 days 
per round trip) associated with these systems. The number of operational 
vehicles required is shown for each propulsive system based on the 50-trip 
lifetime assumed for chemical and LTPS OTV's and the three-trip lifetime 
assumed for SEPS and LEPS. Also noted in parentheses is the cumulative 
number of vehicles retired from service. 
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The total power requirements for the SEPS/LEPS and for the LTPS OTV are 
noted on the ordinate of figure 19. Each LEPS OTV requires continuous power, 
whereas since the LTPS requires power only during brief perigee and orbital 
circularization phases, power from the central power station can be cycled 
between the multiple LTPS OTV's, and only one transmitter is required. 
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Cumulative cost components for the total OTV system and all launch costs 
required including those for the cargo are shown in figures 20 and 21 for 
the competitive OTV systems. The costs for chemical systems, because of the 
massive propellant requirements, are dominated by the launch costs. costs 
for the SEPS are almost equally divided between the launch and photovoltaic 
array costs. 
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CUMULATlVE COST COMPARISONS FOR SEPS AND 
REMOTELY-POWERED LEPS OTV’s 
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Figure 21 

Estimated cumulative cost advantages of remotely powered LTPS over the 
chemical OTV and remotely powered LEPS over SEPS are shown in figure 22. 
The remotely powered systems costs include amortization of a space-based DSPL 
central power station (s200 MWL output) which has been sized to meet the 
cumulative power requirements of the OTV's on the 20th year. Cumulative 
costs savings in a 30-year period for remotely powered over conventional 
OTV's are projected to be $270B for LTPS over chemical and $60B for LEPS over 
SEPS. The use of the alternative DNPL power station would show similar 
cost advantages for the remotely powered systems. The photovoltaic array cen- 
tral power station when used for LEPS remote power would be only marginally 
competitive with SEPS because of the inefficiencies of the laser power energy 
conversion, transmission, and reconversion processes. However, a photovoltaic 
array central power station providing remote power to a LTPS would show a cost 
savings on the order of $200B, even if GaAs costs reach the upper estimate of 
$300,000 per kW,. The conclusion that the remotelypowered orbital-transfer 
systems (LTPS/LEPS) are more cost-effective than conventional systems (chemi- 
cal/SEPS) would not change unless the central power station costs increase 
by at least an order of magnitude higher than assumed in this analysis or 
unless launch costs decrease by more than an order of magnitude. Studies 
of heavy-lift launch vehicles which might be developed for launching solar- 
power satellites (see, for example, ref. 31) have projected launch costs in the 
$50/kg range, as compared with the $lOOO/kg assumed in this analysis. If 
future payloads could be launched at $50/kg, then the remotely powered LTPS 
(including amortization of the central power station) and the chemical OTV's 
would result in about the same costs. The LEPS-over-SEPS costs advantage 
over a 30-year period would remain at about $50 to $60 billion because of the 
differehce in solar array costs of the two systems if launch costs were 
reduced to $50/kg. 
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Consequently, even if the more optimistic cost projections for on-board 
solar arrays and launch come to fruition, central power station concepts 
for remotely powering orbital-transfer vehicles show sufficient relative eco- 
nomic advantages over advanced conventional OTV's to justify pursuit of lab- 
oratory experiments and technology developments along several fronts. 

CUMULATIVE CO&T SAVINGS 
OF REMOTELY POWERED OVER SELF-POWERED OTV’S 

303- 30 YEAR RUN-OUT 
COST SAVINGS 

250 - 

2w - 

c~su~~~Ess. 150 - 
BILLIONS 

OF loo - 
DOLLARS 

COST ADVANTAGE LTPS 
OVER CHEMICAL OTV 

’ , COST ADVANTAGE 
LEps OVER SEPS 

-50 I I I 
1 10 100 lOOIl 

ACCUMULATED CARGO MASS, Kg x lo6 

Figure 22 

Other Applications 

Given the apparent economic justification for a space-based central 
power station for remotely powered orbital transfer, the application of this 
capability to other users may be considered. Within the time frame of a cen- 
tral power station, for example, laser-powered aircraft may be feasible (ref. 
32). Similarly, remotely powering spacecraft beyond Earth orbit could be 
easily accomplished from a central power station designed to support remotely 
powered propulsion OTV's. 

Further downstream, a central power station could be a major step in er, - 
abling mining of the moon and asteroids to replace depleted Earth resources. 
This capability might even make feasible the recovery of asteroids. 

The ultimate applications of a central power station in space are left to 
the imagination of the reader and of future generations. Nonetheless, it is fair 
to say that if a system such as the central power station can.be justified for a 
single use, such as remotely powered propulsion, the spinoff applications will be 
numerous and diverse. 
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FUTURE WORK 

As stated in the introduction, the authors hope this paper will stimulate 
further analysis that will serve to provide near-term direction to development 
of the technology required in the long term to fully reap the benefits avail- 
able from exploitation of space. Although the three space-based central power 
stations considered in this paper are among the leading contenders for future 
space power generation, they are by no means an exhaustive set. An indirectly 
pumped solar laser, for example, would have basically the same characteristics 
of the DSPL system except that the laser cell would be surrounded by a black- 
body cavity which would be heated by solar radiation. This concept allows 
the peak of the solar spectrum to be shifted to match the peak absorption wave- 
length of the lasing gas. Overall solar-to-laser energy converison may be im- 
proved over DSPL systems. However, the development of high-temperature long- 
life materials for the laser windows will be required. 

Another promising approach would use a high-efficiency gas-core reactor 
operating at high temperatures to create electricity via turbogenerators and 
possibly magneto-hydrodynamic (MHD) systems to drive relatively high-efficiency 
CO EDL's. This might result in improved efficiencies over direct nuclear- 
pumped projections and reduce the thermal radiator sizes at least an order 
of magnitude because of less waste heat and higher rejection temperatures. 
However, this system requires the development of ultra-high-temperature materi- 
als and, in some cases, materials resistant to corrosive chemical processes 
prior to commitment to space operations. Williams and Clement (ref. 26) 
provide performance, mass, and costs estimates for the gas-core reactor/MHD 
system. 

The general area of converters for laser light deserves special attention. 
While the conversion systems treated in the present paper have efficiencies 
in the range of 50 percent, the theoretical possibility of significantly 
higher conversion efficiencies should be recognized. Because of its nearly 
monochromatic, coherent nature, laser light is essentially a zero-entropy 
medium. Hence, most of the energy in laser light is potentially available for 
conversion rather than being in a disordered, unavailable form. Creative new 
approaches to converter design, capitalizing on this potential, would signifi- 
cantly enhance the central power station benefits discussed in this paper. 

The analysis presented herein, while only a first-cut approximation at 
best, identifies potential cost savings and increased mission flexibility of 
sufficient magnitude to readily justify more refined and detailed studies. The 
space-based central power plant may well be a suitable focus for the next quan- 
tum step toward a true "space age." 

TECHNOLOGY NEED IMPLICATIONS 

A cost savings potential has been established for advanced, space-based 
central power stations for remotely powered propulsion applications. With 
this economic justification, a central power station may also be cost-effective 
in providing electrical power needs for Earth-orbiting satellites or in enab- 
ling a variety of other space mission 2 which are beyond the realm of possi- 
bility today. 
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The technology feasibility is quite another situation. The body of the 
paper identifies many of the technologies that must be developed in order to 
make a central power station a reality. The most pressing need is for experi- 
mental and theoretical research to address on a small scale those fundamental 
technologies that are critical to future central power stations. The primary 
critical technology needs for the central power stations relate to the effi- 
ciency of the power conversion. Mass and cost sensitivities are appropriate 
figures of merit to consider in the assessment of technology needs at the 
systems level. A dramatic variation in total mass and cost is shown in figures 
14 and 15 in the comparison of the lo-percent- and l-percent-efficient DSPL 
power stations. The cost and mass increases of the l-percent-efficient system 
(relative to the lo-percent efficiency) are driven primarily by the necessary 
increase in solar collector and thermal radiator sizes, not by changes in the 
laser system. Similar relationships exist for the other central power station 
concepts. 

A listing of first-order research and technology needs which are critical 
to enabling the laser systems and their attendant large spacecraft is presented 
in table 1. For any of the laser systems possible, long-life, closed-cycle 
operation and low maintenance are mandatory. 

TABLE l.- KEY RESEARCH AND TECHNOLOGY NEEDS 

SOLAR-PUMPED LASER 

o More efficient lasing system (> 1%) 
0 Long-life, closed-cycle operation 
o High-temperature lasing media 
0 Chemically stable lasing gas 
o High-power optics 

NUCLEAR-PUMPED LASER 

o High-power gaseous core laser reactor (>l MW) 
0 Long-life, closed-cycle operation 
0 Fission fragmentllasing gas interactions physics 
o Higher temperature lasing gases (>700 K) 
0 High-power optics 

SPACECRAFT AND OTV 

o Large highly accurate adaptive optical collectors and transmitters 
0 Laser to electrical power converters 
o Large high-temperature thermal radiators 
o High-accuracy distributed control systems 
o High-temperature materials 
o Long-life high-reflective materials 
o On-orbit assembly 
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Availability of power-intensive systems will be a controlling factor 
governing the rate of space utilization and industrialization over the next 
century. Unfortunately, the funding support for research and technology 
development work in this field is small even though the funding needed for 
advanced power systems is very modest relative to the potential benefits. For 
example, the nuclear power program for space applications has suffered fitful 
starts and terminations over the last two decades and is almost nonexistent 
today. Solar-pumped lasers are in the early laboratory stage and even after 
the technology is developed will require at least a decade to achieve space- 
flight readiness. 

A forecast for generic space power systems development is shown in 
figure 23. This scenario projects incremental increases in installed photo- 
voltaic array power up to 1 MW for orbiting satellite needs. Above 1 MWe the 
photovoltaic array sizes become so large that spacecraft control considerations 
will dictate the development of more compact power-intensive systems such as 
nuclear reactors. These power-intensive systems could be available after the 
turn of the century to support applications requiring on-board power above the 
l-MW, level. With time, incremental improvements in power-intensive systems 
and direct-pumped laser system should increase the output capabilities and the 
minimum power threshold could be lowered to make these systems economically 
competitive with advanced photovoltaic arrays. Perhaps by the end of the year 
2020, space transportation traffic volume (propulsion) coupled with other power 
demands could lead to the implementation of a central power station with an 
output level of 10 to 100 MW. 

Even in that distant time, 40 years in the future, the scope of feasible 
space activity will be heavily reliant on the success achieved in our research 
laboratories during the next two decades. Further analysis is critical to, 
solidifying the need and providing direction for advanced energy generation 
research. 

SPACE POWER DEVELOPMENT FORECAST 
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Figure 23 
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CONCLUSIONS 

The need for a central power station in the future will depend on many 
factors. Beaming power to remote users cannot be cost-effective if the 
central power station uses the same power generation system that would be 
readily available for provision of on-board power. Similarly, microwave 
transmission and reception of power through space for use in space cannot be 
cost-competitive with on-board power or propulsion systems; the size of the 
receiver is simply prohibitive. Laser transmitters/receivers will be required 
to make central power stations feasible. 

Analysis of the cost-effectiveness of meeting Earth-orbiting spacecraft 
electrical demands from a central power station indicates that this application 
cannot justify the investment required for a central power station. Conversely, 
remote-power transmission for propulsion of orbital-transfer vehicles promises 
major cost benefits (within the bounds of the assumptions made herein) of a 
sufficient magnitude to fully justify the research and development activities 
necessary to enable the central power station. Either of the direct-pumped 
laser power station concepts is particularly attractive with the laser thermal 
propulsion system and/or the laser electric propulsion system. These systems 
are also competitive on a mass and cost basis with a photovoltaic power 
station. 

The most critical assumption that leads to the above conclusions is 
that the launch costs from Earth to LEO will remain in the range of 1,000 $/kg 
currently quoted for the Space Transportation System. However, if Earth-to- 
orbit launch costs were to be reduced significantly (at least an order of 
magnitude), the remotely powered laser thermal propulsion system would be 
comparable in cost to the chemical OTV. In this event, a single use (propulsion 
of OTV's) would not be sufficient to justify a central power station; however, 
multipurpose uses might still provide a convincing justification. Enabling 
technology and engineering development needs for implementation of the future 
space-to-space power systems are summarized in figure 24. 
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CONCLUDING REMARKS : TECHNOLOGY AND ENGINEERING DEVELOPMENT NEEDS 

SYSTEMS ANALYSIS 

o ACCELERATING SYSTEMS: GE!LY CASE FOR SPACE-TO-SPACE POWER 

o CrlULD BE USED TO AUGMENT ELECTRICAL-USING ORBITING SATELLITES POWER NEEDS 

o NEED !NTEGP!TED TRANSPORTATION SYSTEM STUDY FOR FUTURE SYSTEMS 

o LOS:S/PERFORMANCE ESTIMATE UNCERTAINTIES 

o DESIGN AND ANALYSIS CAPABILITIES REQUIRED FOR UNTESTABLE (ON THE EARTH) 

LARGE STRUCTURES, 

POWER 

o ELECTRIC DISCHARGE LASER: CLOSED CYCLE - LONG LIFE - HIGH PO'iiER - CONTINUOUS 

CPERATICN 

G NJLEAR POVER: GAS-CORE REACTOR/DIRECT-PUMPED LASER EMBRYONIC d 

o SjLAK-PUMPED LASER EMBRYONIC 

o SJLAR ARRAYS: HIGH EFFICIENCY - LOIdER COST - RADIATION RESISTANCE - 

CONTRGL'LAELE OH ORBIT 

c HiGh POSER OUTPUT REQUIRED FOR ALL UTILITY CONCEPTS (100 M!e/+) 

o Ei-FICIENT LASER FREQUENCY CONVERTERS 

o EFFICIENT LASER-TO-ELECTRICAL POWER CONVERTERS 

STRUCTURES -.- 

o LARGE STRUCTURES - SOME i!ITH IARGE IlASS CONCENTRATION 

o FIGWE CONTROL MIRROR ARRAYS 

o THERMAL RADIATOR DESIGNS 

MATERIALS -~- 
o MCIATION RESISTANT STRUCTURAL f:ATERIALS 

o tlIGtl TEMPERATtiRE MATERIALS FOR LASERS AND LASER RECEIVING SYSTEMS 

COIITROL~ --II 

o POINTII\IG AND FIGURE CONTROL: LASER TRANSMITTER/RECEIVER 

c POWER AI!D ENERGY REGULATION/MANAGEMENT 

o R:GIDD/FLE):IBLE BODY CONTROL SYSTEMS 

ASSE~BLY/OPCRATIONS 

o ON-ORBIT ASSEMBLY REQUIRED FOR MA?!Y SYSTEMS/SOME ARE DEPLOYABLE 

c ON-ORBIT MAINTENANCE/RESUPPLY 

o AtJiiMATED OPERATION OF UTILITY/OTV's 

o POTENTIALLY OPERATIO?iALLY COMPLEX FOR MANY USERS/LARGE SYSTEMS 

Figure 24 
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APPENDIX 

COST DATA FOR CONVENTIONAL AND REMOTELY PWERED ORBITAL-TRANSFER VEHICLES 

Four orbital-transfer vehicles (OTV's) are considered in the comparison 
of conventional and remotely powered transportation of cargo from low Earth 
to geosynchronous Earth orbits. An advanced chemical system is compared with 
a remotely powered laser thermal propulsion system (LTPS) and a solar electric 
propulsion system (SEPS) is compared with a remotely powered laser electric 
propulsion system (LEPS). Data on the assumed characteristics and performance 
of the competing transportation vehicles are given in table Al. Overall cost 
data estimates are given in table A2. OTV performance and cost data were 
obtained from references 7 to 9 and 24 and from in-house vehicle analysis 
programs and data bases. 

CHARACTERISTICS 

Propellant 
Specific Impulse, set 
Round Trip Time, days 
Lifetime, number of round trips 
Cargo Delivered/Trip, kg 
Power Requirements, KWe 
Collector/Receiver System 

- Sfficiency 
- Size, m2 

Mass Fractions, percent 
- Dry 
- Propellant 
- Cargo 

Round Trip Fuel Requirements, kg 

-r 
CHEM 

.OX/LH2 
476 

7 

::5 

N;A 
__ 
N/A 

I 
G 

OTV SYSTEM 

SEPS 1 LEPS 
I 

Argon Argon 
6,000 6,000 

173 158 

Ii5 Ii5 
3,300 3,000 

aAs Array GaAs Array 
20% 50% 

12,500 314 (20-meter diameter) 

18 9 
12 11 

18i~OO ,4:,000 

LTPS 

LH2 
1,500 

14 
50 

2 x 104 
70,000 

Laser Concentrator 
60% 
314 

:9 
64 

3,900 (for 2 x 104 k$ 
cargo/trip) 

Table Al. Transportation Vehicle Performance Characteristics 

TRANSPORTATION VEHICLE COSTS 
UNIT/SUBSYSTEM SYSTEM 

Shuttle Transportation System Launch $1 ,OO'J/kg 
Chemical OTV (LOX/LH2) $ 40 x 106 each 
SEPS OTV (3.5 MWe) $ 146 x 106 each 

- Solar Array and OTV Subsystems $116 x 106 per OTV 
- Ion Thrusters $ 30 x 106 per OTV 

LEPS OTV (3.0 MWe) $ 33 x 106 each 
- Laser Receiver and OTV Subsystems $3.3 x 106 per OTV 
- Ion Thrusters $30 x 106 per OTV 

LTPS OTV (70 MWe) 
Propellant: 

- Argon 
- LOX/LH2 
- LH2 

$0.40 per kg 
$0.47 per kg 
$2.20 per kg 

$ 40 x 106 each 

Table A2. Transportation Vehicle Cost Estimates 
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LASER ROCKET SYSTEMS ANALYSIS 

OBJECTIVE - TO IDENTIPI MISSIONS, DESIGN REQUIREMENTS, AND 
CRITICAL TECHNOLOGY AREAS; ANtl TO COMPARE TO CONVENTIONAL 

SYSTEMS. 

VARIABLES_- 

LASER POWER 

WAVE LENGTH 

NUMBER OF LASERS 

NUMBER OF TRANSMlll-ING 
STATIONS 

TRANSMITTER DEPLOYMENT 

TRANSMITTER/ RECEIVER OPTICS 

THRUST 

‘SP 

54000MW 

0.55-10.6 /J M 
I OR MULTIPLE (PHASE LOCKED) 

I OR MULTIPLE 

GROUND, AIR, SPACELEO, 
MEO, GE01 

3-30METERS 

IW-30,OOOPOUNDS 

lCX)O-2ooO SECONDS 

CONCEPT: a TRANSMISSION OF POWER FROM REPX)TE IASER STATION 

APPLICATIONS: l ORBITAL TRANSFER 

0 INTERPLANETARY INJECTION 

0 ORBIT DRAG MAKE-UP 

0 VEHICLE LAUNCH 

TRANSMITTER: o 
0 
0 

ADVANTAGES: o 
0 
0 

GROUND 
AIRCRAFT 
SPACE STATION 
INDEPENDENT CONTROL OF THRUST, Is&ND PROPELLANT 
ENERGY REMOTE TO VEHICLE 
HIGHER Isp THAN CHEMICAL SYSTEtlS 

LASER PROPULSION 

TO ROCKET VEHICLE; USE OF LASER RADIATION TO HEAT 
PROPELLANT 
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REPRESENTATIVE INTERIM UPPER STAGE (IUS) Ml SSION MODEL 

AV - rpr I IO-’ 
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MISSION MODEL - 1995-2005 

NOMINAL STEADY ACTIVITY LEVEL 
NUMBER ACTIWTY MULTIPLIERS 

dVELOClTY PAYLOAD WEIGHT PER PER 
YEAR 

CASE CASE CASE CASE 
h/s) Wd Odb) IO YR 3 6 8 II 

GEOCENTRIC MISSIONS 

CUtRENT PROJECTED 

HI. ELLIP., HI. INC. 2,743 9.W 1,361/3,Oco 5 50 20 I3 

GEOSYNCHRONOUS 4,298 14,lcxl 2,26@/5,O@l RT IS 150 IO I 0.5 

ADVANCED ll.340/25.C00 R 

GEOSYNCHRONOUS SPACE STATION 4,298 14, loo 24,949/55,CCO D IO 100 05 0 0 

GEOSYNCHRONOUS SPS 4,298 14,lc?3 148,CC0/326,OW 400 4.m 01 I2 

EXTREME LAT. COVERAGE 6,095 2O,ooa/YX 2,26&‘5,OW 10 100 I 0 0 I 

ORBIT MAINT. OF LG. STRLKTlRES (LEO) 91 300 45,00@9,ooO TO IO la3 10 2 I 
34o,cm/7yJ,Om 

INTERPLANETARY MISSIONS 

CURRENT PROJECTED 

MERCURY ORBITER 5,182 17.m 4,173/9,200 4 IO 12 

PIONEER SATURN/URANUS/TITAN PROBE 12,192 40,COO 499/l, 100 2 I 0 0 2 

ADVANCED 

NEPTUNE JUPITER FLYBY 12,192 40,cm 3,l75/7,ca 2 I 0 2 0 

URANUS ORBITER -3.5-YR TRIP TIME 20,117 60,CCO 907/2, IX0 2 IO I I 

NUCLEAR WASTE DISPOSAL 9,lU 30,wo 4,53&‘lO,CCKlTO 30 300 0 0.05 0.25 0 
13,&9/30,000 

NOTE: RT - ROUND TRIP PAYLOAD WEIGHT 
D - DELIVERED PAYLOAD WEIGHT 
R - RETURNED PAYLOAD WEIGHT 
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SYSTEM SPECIFICATIONS 

LASER TRANSMITTER UNIT 

LASER DEVICE TYPE 

LASER POWER (MW) 
TRANSMITTING APERTURE DIAMETER (M/FT) 
OBSCURATION (ID/OD) 
NUMBER OF GIMBALS 
ELECTRICAL POWER SUPPLY (MW) 
ORBIT 
ALTITUDE (KM/NM11 
INCLINATION (DEG> 
UNIT WEIGHT KG/LBM 

SMALL 
(2,268 KG) 

PAYLOAD 

CLOSED CYCLE 
EXCIMER 

16 
30/98,4 
on2 
2 

131 
CIRCULAR 
500/270 

28.5 
685X103 

/ 1511x103 

SYSTEM SPECIFICATIONS 

PROPULSION UNIT 

PAYLOAD (KG/LBM) 

REQUIRED INPUT POWER (MW> 

RECEIVING APERTURE DIAMETER (M/FT> 

OBSCURATION (ID/OD) 

NUMBER OF GIMBALS 

VELOCITY INCREMENT (M/S/FT/S) 

THRUST (N/LBF> 

UNIT WEIGHT (KG/IBM) 

SMALL PAYLOAD LARGE PAYLOAD 

2,268/5,000 148,000/326,000 

1384 418 

4,25/13,94 4,5/14,76 

0 0 

1 1 

10,500/34,450 10,000/32,810 

1,000/225 31,100/7,000 

5291/11,665 115X103/253X103 

LARGE 
(148,000 KG) 

PAYLOAD 

CLOSED CYCLE 
EXCIMER 

490 
30/98,4 

on2 
2 

4,00 
CIRCULAR 
500/270 

28,5 
12x106 

/ 26X106 
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SYSTEM SPECIFICATIONS 

SMALL PAYLOAD 
ENERGY RELAY UNIT 

LARGE PAYLOAD 

RECEIVER APERTURE DIAMETER WFT) 

OBSCURATION (ID/OD) 

NUMBER OF GIMBALS 

TRANSMITTER APERTURE DIAMETER WFT) 

OBSCURATION (ID/OD) 

NUMBER OF GIMBALS 

INTEGRAL PROPULSION 

V CAPABILITY WS/FT/S) 

UrJIT WEIGHT (KG/LBM) 

8/26,25 

0 

2 

3/9,84 

0,2 

2 

'YES 

5,250/17,225 

8,465/18,662 

8/26,25 

0 

2 

3/9,84 

0,2 

2 

YES 

5,250/17,225 

68x103/151x103 
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LCC COST COMPARISON CASE 3 (SPACE ) 

Mission Composition: 

Number of OTV’s = 

450 5,000 lb P/Ls 
10 5,000 lb Expendable P/Ls 

Laser Cry0 
16 22 

LCC Costs (In Millions of Dollars) 

Cryogenic 
System Category 

Space-Based 
Laser Rocket 

System 

473.00 
694.43 

0.0 
759.16 
254.21 

12,611.36 

14,792.16 

5.821.70 

DDT&E 1,377.Eio 
Investment and Spares 442.99 
Laser System Deployment 482.00 
OTV Deployment and OPS 295.77 
Refurbs. 302.54 
Fuel Resupply 1,627.02 

Total Consant 4,528.12 
Year LCC Costs (FY ‘77 $M) 
Total ICC Costs Discounted 2,456.40 
to (1984) 
Discounted Cost Ratio (Chem/Laser) 2.37 
Discounted Cost Ratio w/o DDT&E 4.08 
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LCC COST COMPARISON CASE 6 (SPACE ) 

Mission Composition: 

Number of OTVQ = 

4,500 326,000 lb P/Ls 
14 326,000 Ib Expendable P/Ls 

Laser cry0 
87 160 

LCC Costs (In Millions of Dollars) 

Cryogenic 
system Category 

Space-Based 
Laser Rocket 

System 

992.0 
7,787.86 

0.0 
6,544.79 
3,401.46 

203,685.22 

222,501.33 

70,568.306 

DDT&E 
Investmelit and Spares 
Ldscr System Deployment 
OTV Deployment and OPS 
Refurbs. 
Fuel Resupply 

Total Constant 
Year LCC (FY ‘77 $M) 
Total LCC Discounted to (1987) 
Discounted Cost Ratio 
Discounted Cost Ratio w/o DDT&E 

4,204.90 
3,736.53 

981.50 
1,304.22 
2,015.38 

18,678.93 

30,921.46 

11,954.83 
5.90 
8.02 
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SETV COMPARISON GROUND RULES 

SSETV 

ROUND-TRIP TIME (DAYS) 220 

MAXIMUM NUMBER OF MISSIONS/VEHICLE IN 16 
TEN (10) YEARS OF OPERATIONS 

ION THRUSTER MODULE REPLACEMENT FREQUENCY 4 
(NUMBER OF MISSIONS) 

VEHICLE REFURBISHMENT FREQUENCY 8 
(NUMBER OF MISSIONS) 

AVERAGE NUMBER OF MISSIONS PERFORMED PER 2 
VEHICLE PRIOR TO EXPENDABLE MISSION 

VEHICLE DEPLOYMENT FLIGHTS 2 SHUTTLES 

ON-ORBIT ASSEMBLY REQUIRED YES 

LAUNCH VEHICLE COST/FLIGHT 813,5 M 

FUEL RESUPPLY AND REFURBISHMENT FLIGHTS YES 
ON FLIGHT SHARING BASIS 

LSETV 

161 

22 

5 

10 

2 

1,2 HLLVs 

YES 

$6,5 M 

YES 
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LCC COST COMPARISON 3 - SETV VERSUS LASER SYSTEM 

MISSlOt COtiPOSITION: 450 5,000 LB P/L's 
10 5,000 LB EXPENDABLE P/L's 

S.SETV CATEGORY 

375.87 DOT&E 

1104.81 INVESTMENT & SPARES 

0.0 LASER SYSTEM DEPLOYMENT 

1350.15 OTV DEPLOYMENT & OPS. 

423.79 REFURBS 

718.03 FUEL RESUPPLY 

3972.65 

.2048.49 

NUMBER OF OTV'S = 
LASER SETV 

16 SMALL 37 

LCC COSTS (IN MILLIONS OF 1977 DOLLARS) 

TOTAL PRESENT 
VALUE COST (1984) 

SPACE-BASED 
LASER ROCKET 

SYSTEM 

1377.80 

442.99 

482.00 

295.77 

302.54 

1627.02 

4528.12 

2456.40 
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LCC COST COMPARISON 6 - SETV VERSUS LASER SYSTEM 

L.SETV CATEGORY 

660.31 DOT&E 

11407.21 INVESTMENT & SPARES 

0.0 LASER SYSTEM DEPLOYMENT 

4225.23 OTV DEPLOYMENT & OPS. 

8298.64 REFURBS 

8689.45 FUEL RESUPPLY 

33280.84 

14590.93 

MISSXOti CO!4POSITION: 4,500 326,OQO LB P/L's 
14 326,ooO LB EXPENDABLE P/L's 

NUMBER OF OTV'S = 
LASER SETV 

a7 LARGE 217 

LCC COSTS (IN MILLIONS OF 1977 DOLLARS) 

TOTAL REAL 
YEAR LCC 

TOTAL PRESENT 
VALUE COST (1984) 

SPACE-BASED 
LASER ROCKET 

SYSTEM 

4204.90 

3736.53 

981.50 

1304.22 

2015.38 

18678.93 

30921.46 

11954.83 
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PROPULSION SYSTEfl COST COMPARISON 

NUMBER OF I’QSIONS CHEMICAL/LASER ELECiR I C/LASER 
IN 10 YEAR PERIOD COST RATIO W/DDrSE COST RATI 0 W/DDTsE 
- PAYLOAD, LB (W/O DDTaE) 

115 1 

4co - 5000 2.4 
(4J 

4514 - 326000 5,9 
(8.0) 

STUDY RESULTS 

,83 

1.22 

l USER ROCKET SYSTEMS POTENTIALLY OFFER A SIGNIFICANT SAVINGS IN NATIONAL 

BUDGET ALLOCATED TO SPACE TRANSPORTATION 

0 ORBITAL TRANSPORTAllON OF CURRENT TYPE PAYLOADS REQUIRES 16MW LASER POWER 

SPACED BASED OR 37.~MW GROUND BASED 

- TMNSPORTATION COSTS ARE REDUCED BY FACTOR OF 2.4 

l SPS ORBITAL TRANSPORTATION REQUIRES 4po-MW IASER POWER SPACE BASED OR lC0O-MW 

GROUND BASED 

- TRANSPORTATION COSTS ARE REDUCED 8Y FACTORS UP TO 7 

0 TECHNOLOGY ADVANCEMENT REQUIRED FOR 

- LASER 

- THRUSTER 

- LARGE, LIGHTWEIGHT, ADAPTIM MIRROR 

- POINTING AND TRACKING 
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ABSTRACTS OF STUDIES ON LASER-THERMAL PROPULSION 

Radiant Energy Absorption Studies for Laser Propulsion 
Physical Sciences, Inc. 

Laser-Heated Rocket Studies 
Physical Sciences, Inc. 

Analytical Study of Laser-Supported Waves in Hydrogen 
Physical Sciences, Inc. 

Laser-Heated Rocket Thruster 
Rocketdyne Division of Rockwell International 

Laser Propulsion Support Program 
The BDM Corporation 

PRESENTED TO 

SYMPOSIUM ON SPACE LASER POWER TRANSMISSION 
SYSTEM STUDIES 

LANGLEY RESEARCH CENTER 
HAMPTON, VIRGINIA 

OCTOBER 14-15, 1981 

REVIEWED BY: 
Lee W. Jones 
October 1981 

135 



RADIANT ENERGY ABSORPTION STUDIES FOR LASER PROPULSION 

G. E. CALEDONIA, P. K. S. Vu, AND A. N. PIRRI 

PHYSICAL SCIENCES, INC. (CONTRACT NAS3-18528) 

EXPANDED ABSTRACT 

A study of the energy absorption mechanisms and fluid dynamic 

considerations for efficient conversion of high power laser radiation 

into a high velocity flow is presented. Although the contents of 

this study are applicable to the laser propulsion concept, they are 

not unique to this application and are useful for analysis of any 

system which requires the efficient conversion of laser energy to 

kinetic energy. The objectives are to (1) determine the most efficient 

absorption mechanisms for converting laser radiation into translational 

energy, and (2) examine the requirements for transfer of the absorbed 

energy into a steady flow which is stable to disturbances in the 

absorption zone. The first part of the study consists of a review of 

inverse Bremsstrahlung, molecular and particulate absorption mechanisms. 

The second part of the study consists of steady flow and stability 

considerations for conversion of the laser power to a high velocity 

flow in a nozzle configuration. The quasi-one-dimensional flow through 

a nozzle is formulated under the assumptions of perfect gas, instantaneous 

conversion of absorbed laser energy to temperature (equilibrium flow), 

and an absorption coefficient proportional to density and temperature 

raised to arbitrary powers. For a specified nozzle configuration, 

predictions of Mach number, temperature, density, and exhaust velocity 

are presented as a function of optical depth and the ratio of the laser power 

to inlet flow power. A "local" stability analysis is performed and a 

typical stability map of disturbance wavenumber versus nozzle position 

is presented. Neutral stability contours provide an indicator for 

proper design of nozzles with stable absorption zones. 
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LASER-HEATED ROCKET STUDIES 

N. H. Kemp, R. G. Root, P. K. S. Wu, G. E. Caledonia, and A. N. Pirri 

Physical Sciences, Inc. (Contract NAS3-19695) 

EXPANDED ABSTRACT 

This report describes studies of CW laser-heated rocket propulsion, in 

both the flowing-core and stationary-core configurations, with most atten- 

tion focused on the former. (It is the second such study performed by 

PSI.) In the present work, the laser radiation considered was 10.6 pm, and 

the working gas was unseeded hydrogen. The areas investigated included 

initiation of a hydrogen plasma capable of absorbing laser radiation, the 

radiation emission properties of hot, ionized hydrogen, the flow of hot 

hydrogen while absorbing and radiating, the heat losses from the gas, and 

the rocket performance. The stationary-core configuration was investigated 

qualitatively and semi-quantitatively. 

It was found that the flowing-core rockets can have specific impulses 

(Isp) between 1500 and 3300 sec. They are small devices, whose heating 

zone is only millimeters to a few centimeters long, and millimeters to 

centimeters in radius, for laser power levels varying from 10 to 5000 kW, 

and pressure levels of 3 to 10 atm. Heat protection of the walls is a 

vital necessity, though the fraction of laser power lost to the walls can 

be as low as 10 percent for larger powers, making the rockets thermally 

efficient. 

A number of major areas of uncertainty have been identified for fur- 

ther exploration. Chief among these are the properties of laser-supported 

combustion (LSC) waves in hydrogen. Others are an efficient method of heat 

protection, the effect of radial temperature profiles on radiation loss, 

and the effect of wider variation of operating parameters. For the 

stationary-core concept, absorption lengths of hot hydrogen radiation in 

cold hydrogen are needed, and a study of entrainment of the core gas by the 

flowing propellant gas should be made. 
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ANALYTICAL STUDY OF LASER-SUPPORTED WAVES IN HYDROGEN 

N. H. Kemp and R. G. Root 

Physical Sciences, Inc. (Contract NAS3-20381) 

EXPANDED ABSTRACT 

An earlier report by PSI describes a study of a CW laser-heated hydro- 
gen rocket using 10.6 urn radiation. It was found that the properties of 
laser-supported combustion (LSC) waves in hydrogen were an important ingre- 
dient in modeling this rocket. They determine the temperature level 
reached by the gas, and the mass flux through the rocket. No theoretical 
or experimental studies of LSC waves in hydrogen are available. Therefore, 
a theoretical study of such waves has been made. A one-dimensional energy 
equation, with constant pressure and area, was used to model the LSC wave. 
This equation balances convection, conduction, laser energy absorption, 
radiation energy loss, and radiation energy transport. The latter is shown 
to be approximated well by a radiation conduction model. Solutions of this 
energy equation were obtained to give profiles of temperature and other 
properties, as well as the relation between laser intensity and mass flux 
through the wave. The calculations cover the range of pressures of 1, 3, 
10, and 30 atm; 10.6 urn laser intensities from lo4 W/cm2 to lo6 W/cm'; and 
power levels of 10 kW and 5 MW. The physics of these waves leads to high 
peak temperatures (of order 20,000 K) because the absorption mechanism is 
inverse Bremsstrahlung, which requires a significant degree of ionization, 
and this occurs in hydrogen only above about 10,000 K. The high tempera- 
tures also lead to considerable radiation losses. 

The flow through the LSC wave was then conducted through a variable- 
pressure, variable-area streamtube to accelerate it to high speed, with the 
propulsion application in mind. A numerical method for coupling the LSC 
wave model to the streamtube flow was developed, and a sample calculation 
was performed. The result shows that 42 percent of the laser power has 
been lost by the time the gas reaches the throat. This is in contrast with 
results for a similar case, where the LSC wave properties were only esti- 
mated, not calculated. There, only 5 percent of the power was found to be 
lost. The present, more realistic, calculations show the large losses 
incurred by the necessity of operating at high temperatures in hydrogen. 
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Several two-dimensional effects were estimated. Radial 

losses due to heat conduction and black radiation from the edge of the 

hot gas were found important at the 10 kW power level. They cause the 

intensity threshold for existence of the LSC wave to rise to values 

considerably higher than that which prevails if these losses are 

ignored. Beam convergence effects were also estimated by including 

beam area change in the laser absorption term. A calculation showed 

the mass flux required in a converging beam to be larger than in a 

parallel beam of the same initial intensity. Converging beams provide 

static stability for the wave position. Transverse velocity was also 

considered. It was concluded that in the radially confined flows of 

interest for propulsion applications, transverse velocities would 

be less important than in the unconfined flows where air experiments 

have been conducted. 

It would be advantageous to produce LSC waves at lower temperatures 

to reduce the large radiation losses. This can be accomplished by 

introducing easily ionized seed into the hydrogen to allow laser 

absorption at lower temperatures. The amount of seed must be small 

enough so that the specific impulse is not adversely affected by its 

weight, It is recommended that studies of LSC waves in seeded hydrogen 

be conducted. 
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LASER-HEATED ROCKET THRUSTER 
James M. Shoji 

Rocketdyne Division of Rockwell International 
(NASA Contract NASH-17928) 

EXPANDED ABSTRACT 

In this study, Rocketdyne and Physical Sciences, Inc. (PSI) teamed for 
the purpose of performing an analysis and design of a 10 kW and a 5MW laser 
rocket thruster, followed by the fabrication of water-cooled and uncooled 
experimental thrusters, to be tested at 10 kW laser power level. 

The specific objectives of the study were to: 

(7) perform analysis and design of a 5 MW laser rocket thruster; 

(2) design a 10 kW configuration through scaling and design analysis; and 

(3) fabricate and deliver 10 kW experimental hardware, including the thrust 
stand and plasma initiation system. 

The propellant togbe u ed was hydrogen. Chamber pressure for the 10 kW 
thruster was 3.45 X 10 V/M 3 (50 psia). A detailed design of a 10 kW optical 
train was performed. 
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The attractive features of the laser-heated rocket thruster are: 

1. Energy transfers from a ground or space-based laser energy gene- 
rating system where weight constraints are not limiting to a weight- 
critical space vehicle. 

2. Potential of 1000 to 2500-set specific impulse with increase in 
vehicle payloads. 

The calculated Isp values for the point designs were 1232.5 set at 
10 kW laser input power, and 1363.3 set at 5 MW power (with carbon seeding 
to cool the walls). It can be seen in figure 1 that 2000 set (theoretical) 
is attained at a gas temperature of = 5000°K; gas temperatures of twice 
that magnitude are required for a significant increase in 1,p. The 
absorption mechanism was assumed to be inverse Bremsstrahlung. 

3504 

PURE HYDROGEN 

PC - 3.45 X IO5 N/H* (50 PSIA) 

EQUlLlBRlUll 

Q - 4g:1 

-, 

5000 10,000 15,000 20.000 25.000 
TEHPERATURE. R 

4000 6000 8000 10,000 12.000 14,000 

TEMPERATURE, K 

Flgure 1. Theoretical Equllibriun Vacuum Specific Impulse Variation 
with Chamber Temperature for Pure H2 (6 - 4O:l) 
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LASER PROPULSION SUPPORT PROGRAM 
John D. G. Rather and Peter Borgo 

The BDM Corporation (NASA Contract NAS8-33973) 

EXPANDED ABSTRACT 

The overall objective of the study was to provide a substantial rationale 
for NASA's participation in an expanded effort to develop and exploit high 
energy laser technology, especially in laser propulsion. It is important to 
realize that the technical bases are complex, requiring attention to several 
different but interlocking factors, and it is not, therefore, sufficient to 
try to evaluate the worth of laser propulsion and power beaming by looking 
at individual pieces of the puzzle. Joint considerations of efficiency, cost, 
synergistic potential, time of achievement, and overall national objectives 
must be made. The best approach to be pursued depends upon the goal which 
is set. 

The study was governed by this philosophy. It is an effort to (1) assess 
current and projected high energy laser technology programs of the DOD and 
(2) determine potential transfer of these technologies to NASA applications 
in laser propulsion and power beaming. 

The state of current laser technology suggests that NASA should initially 
focus on ground-based, continuous wave laser systems, and should rely on 
de,/elopment of large orbiting optical systems to deliver the laser energy 
via the "relay" concept. Pointing and tracking requirements are reduced in 
that cooperative, large-diameter optics are placed in precisely known orbits 
which minimize demands on the ground-based laser transmitting optics. Short 
wavelength lasers (2 ,um) will minimize aperture sizes and take advantage of 
atmospheric propagation "windows". 

The recent successful demonstration of a direct solar-pumped gas 
laser by NASA-Langley opens the possibility of developing simple and cost 
effective lasers for space deployment. Either these or long-running electric 
lasers (EDL's, Excimers, Free Electron Lasers) should exploit the full 
benefits of the space environment. The rotating-bed reactor should be 
assessed as a power source for electric lasers. Applicable system cost 
models must be developed for all these systems so that an accurate comparison 
of cost effectiveness of the potential candidate systems can be made. 
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SUMMARV OF HIGH ENERGV 
LASER JECHNOLOGV 

ASSESSMENT 
(NASA THRUSTS) 

NASA PROGRAMS SHOULD: 
0 EXPLOIT THE POSSIBILITIES OF HIGH POWER, GROUND-BASED CW SYSTEMS 

USING RELAY OPTICS IN SPACE TO: 
- ELIMINATE WEIGHT AND VOLUME CONSTRAINTS ON LONG RUN-TIME LASERS; 
- DEVELOP LARGE (5-60 METER DIAMETER) ADAPTIVE OPTICS DEPLOYABLE 

WITH SPACE SHUTTLE AND HAVING LESS STRINGENT POINTING AND 
TRACKING REQUIREMENTS THAN DOD. 

0 EMPHASIZE SHORT WAVELENGTH LASERS (FEL, XG2.2 MICRONS)TO ACHIEVE: 
- VERY LONG RUN-TIME FOR .EXTENDED MISSIONS: 
- COMPLEMENTARY R&D PROGRAM WITH DOD TO REDUCE DEVELOPMENT 

TIME AND MINIMIZE COST. 

0 AGGRESSIVELY DEVELOP DIRECT-PUMPED SOLAR LASERS FOR SPACE 
DEPLOYMENT 

. EXPLOIT EMERGING ROTATING BED REACTOR TECHNOLOGY FOR SPACE- 
BASED HEL AND OTHER APPLICATIONS. 

0 DEVELOP APPLICABLE COST PROJECTION MODELS FOR ALL OF THE ABOVE 
SYSTEMS. 
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LASER PROPULSION SUPPORT PROGRAM 

Study of the DOD programs and NASA programs and potential missions 
leads one to conclude that a high degree of synergism can exist with care- 
ful planning. The figure below is the result .of detailed analysis of the 
relevant technologies. The basic question addressed is, "If a system can 
be built to do just one thing, what else might it also be capable of 
doing?" The primarily civilian applications are shaded in the left-hand 
column. They all require a capability for long laser running times. From 
observation of the matrix, it is obvious that either longer-running mili- 
tary laser systems or more precise C31 (command, control, communications, 
and intelligence) for civilian laser systems increase the potential that a 
single generic system could perform all the space laser applications con- 
sidered in this study. 

SYNERGDSMSAMONG SPACE 

LASER APPLICATIONS 

:PROPULSION;/ 
(‘//l//l 

/ 
/ 

ANTI- 
SATELLITE 

SATELLITE 
DEFENSE 

DESTROY 
BALLISTIC BOOSTER! 
AND AIRBORNE TOT! 

DESTROY SURFACE 
TARQETS 

X INITIAL TECHNOLOGY 

@ INTERMEDIATE TECH 

6 ADVANCED TECH. 

P&T TECHNOLOGY 
NOT SUFFICIENT 

RUN TIME 
NOT SUFFICIENT 
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LASER POWER CONVERSION SYSTEM ANALYSIS 

LOCKHEED MISSILES AND SPACE COMPANY 
SEPTEMBER 1978 

PRESENTED TO 

SYMPOSIUM ON SPACE LASER POWER TRANSMISSION 
SYSTEM STUDIES 

LANGLEY RESEARCH CENTER 
HAMPTON, VIRGINIA 

OCTOBER 14-15, 1981 

REVIEWED BY: 
Richard B. Lancashire 
October 1981 
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OBJECTIVES 

l ORBIT-TO-O’RBIT LASER POWER CONVERSION SYSTEM 

- IDENTIFY POTENTIAL MISSIONS 
- IDENTIFY EFFICIENT SYSTEM CONCEPTS 
- GENERATE CONCEPT DESIGNS 
- COMPARE COST AND PERFORMANCE WITH CONVENTIONAL SYSTEMS 
- EVALUATE TECHNOLOGY REQUIREMENTS AND DEVELOPMENT RISKS 

o ORBIT-TO-GROUND LASER POWER CONVERSION SYSTEM (LSPS) 

- DEVELOP SPACE LASER POWER SYSTEM TO CONVERT SOLAR TO 
LASER ENERGY 

- EVALUATE LASER TRANSMISSION TO GROUND SITES FOR CONVERSION 
TO ELECTRICAL ENERGY 

- COMPARE COST EFFECTIVENESS OF LSPS TO SPS 

GROUND RULES 

o ORBIT-TO-ORBIT POWER TRANSFER 

- TRANSFER 1 TO 300 K\iE FROM REMOTE LASER TO SPACECRAFT 

o ORBIT-TO-GROUND POWER TRANSFER 

- TRANSFER 100 TO 10000 MW, FROM ORBITING LASER(S) TO 
GROUND SITES 

- CONSIDER PROOF-OF-CONCEPT EXPERIMENT 

146 



LASER POWER CONVERSION MI SS ION MODEL (1995-2005) 

ACrNlw LEVEL 
NO. OFERAflONAl MullIcLIIRS 

MISSIONS 
SFKEKE”fT 

. ORIll AT ANY llME LW KmER E XNCTED 

(Lo) 
DLRW~t~“. VALUE CASE 1 

(NOM.) (“I& (L&w) 

GEOSYNCHRONOVS (MlLIl~Y INCLUDED) 

SYN. EQUATORIAL 

l ORDITAL ANTENNA FARMS (UP TO 8- woo PPW, 0.. PO’E, 
COMWNICATI~NS SATELLITES PER FMM) 1ww. low I5 Z&50 m 1 2 I 

0 PIRSONNEL COMMUNKAlIONS 7,300 9vw 2 21 I I I 
l N BROADCAST 4,sm 15 a Io5W 2 I50 I J 2 
l DiROMATK HOT LINE IJP 90.W. O=. 9O’E. 5 I I I I 

I&J-W, 1oo*w 

l EARTH OISERVATIObVWEAIHER I,#x)-lO,Qoo ;;;W$ <boppWE, 10 i I 0 I 
-0 l 

. ELKIRONIC MAIL 9.m 85.. lo.vW 2 I5 I 4 0 

. COASTAL ANlKOLLISION FASSIVE RADM 90,ooo 75.W. IlOw 2 300 I 2 0 

. ASTRONOMY 4,m 155. 2 S-20 (II) I 0 I 
9 ENERGY MONITOR 9vw I 23 I 0 0 

LOW EARlH ORRIT (MILIIARY INCLUDED) 

IOO-MXI NMI 
. SPACL PROCtSSING 300 NM, 283 INCL. I 3-w 0% 1 2 I 
. AlMOSPHERIC TEMP. PROFILE SOUNDER 1,100 600 NMI POLM 4 4 I 0 0 
. SOLAR 06StRVATORY WEATHER MODIF. & 

ExPERIMEN~ATIC+~ 300 NM, 55. 2 1~1000 W) 1 2 0 
0 EARTH ORSfRVAllON SATELLITES I,5WSO,ooO 200 NMI-POlAR : YW wo) I 2 I 

500 NMI, 99.0. 
. OCEAN CONDIllON 6 WEATHER SAtELLllE 1,50&50,ooO SW NMI, 98.0’ 4 s 1 2 I 

bQ) NMI 
l lbNSPORlATION SERVICES/NAVIGATION 8,ooO NMI POLAR 2040 6 I 0 I 
l WEATHER 700 NMI, 99.9. Cl0 2 I 2 0 

ECULIAR MllllMY ORRITS CLASSIFIED l,OOO-20,ooO ELIPTICAL IS 50-200 (7) I 2 I 
287-24.500 NMI 
63.5. 

l LCmER WEIGHIS REFRESENT CURRENT OR NEAR TERM SATELLIlL DESIGNS 
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GE0 SATELLITE DEPLOYMENT 

NE 

NO. FW 
-- 
a 24.0 
1 0.9 
2 1.8 

CANDIDATESUBSYSTEMS 

I4I 
14.9 

24.0 
20.7 

0.9 
I.1 

22.7 

Y.0 
0.9 
I.8 

14.E 
14.9 

295.4 

24.0 
0.9 
I.1 

15.0 
54.0 

0.9 
1.1 

SUBSYSTEM&UNCTION CANDIDATES 
TYPICAL 

EFFICIENCY 
(%I 

- 

REMARKS 

~ ELECTRICAL POWER 
GENERATION 
IN SPACE 

ERAYTON CYCLE <4Q LOW EFFICIENCY 

ENERGY EXCHANGER 58+ MAXIMUM EFFICIENCY 
WITH TURBINE POTENTIAL blIlT 

ACIMVER 

I ENERGY EXCHANGER 
I 

73 
WITH BINARY CYCLE I MAXIMUM EFFICIENCY 

LASER SUBSYSTEM 
FOR POWER 
TRANSMISSION 

CO2 EDL 20.2 

CO EDL 24.8 

EXCELLENT 
TECHNOLOGY BASE 

GOOD 
TECHNOLOGY BASE 

SOLAR RlMPED (19.9) LIMITED DATA 
F 

CONVERSION OF 
LASER POWER 
TO ELECTRICAL 
POWER 

PHOTOVOLTAIC 40 LOW EFFICIENCY 

THERMAL ELECTRONIC 
I I 

45 LOW EFFICIENCY 
(TELEC) I 
BRAYTON CYCLE <40 LOW EFFICIENCY 

I ENERGY EXCHANGER 
I 

73 
I 

HIGHEST EFFICIENCY 
WITH BINARY CYCLE I 
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TYPICAL MISSIONS 

AVL 8ASE- 4-M LASER ORRlf (6,396 km) 

ALT INC CIiG CYCLE LASER SWR ON BAlf 
(‘In) (*I 

(c; E’ii~r 
(HR) WIN MTR (kW) ‘2 t: REC (ItW, CAP ~bW@ll 

-LI SPACE FRIOCESSING 555 28.5 5 34.2 5,900 100 25 50 IO 5 0.0534 0.267 0.107 0.053 0.027 2.67 12,795 3,164 6.476 1,216 565 12,523 l.l.132 13,357 13,638 I3,Z’4 10,749 12,283 11,623 12,363 12, II6 v.954 2,461 5,030 440 946 2w 235 2m 2% 250 

ATMOSPHERIC 90 4 1,110 4.0 2,4W 5 0.648 3.24 66 1,580 1,547 51 30 

IO 0.324 142 1,777 I.663 III 33 
25 0.130 370 1,896 I.733 288 36 
50 0.065 749 1,935 I.757 583 3b 

100 0.032 1,532 1,955 1.769 I.192 37 

Sow &ERVA~ION 55 2 555 40.16 11,900 5 0.534 2.67 ml l5,Im 15,340 625 Ip7 
10 0.267 1,728 17,796 16,510 I,!45 334 

11 100 25 50 Jl.107 0.053 0.027 18, 4,496 9,203 I82 19,381 18.981 19,573 17,562 17,211 I7.440 14,145 3,iPR 7,159 
x.5 
367 164 

EARTH ORSERV 4 (LGI 370 90 48.0 22,300 5 0.494 2.47 Em 14,694 14,250 627 276 
10 0.247 1,736 .16,531 15.337 1,350 310 
25 0.099 4,514 17.631 15,989 3,512 331 
so 0.0(9 9,246 18,w3 16.209 7.193 338 

100 0.025 18,241 18,181 16,314 14, I90 Ml 

EARTH OSERV (SW 99 4 1,110 1.7 1,450 5 0.640 3.24 28 671 666 22 I3 
IO 0.324 60 755 716 47 I4 

25 0.130 157 006 746 I22 I5 
50 0.065 318 822 736 249 I5 

loo 0.032 651 831 761 507 te 

‘*IL WEIGHTJ IN POUNDS 

POWER REQUIREMENTS: MISSIONS UNDER 50 kWe 

(Total Satellite Power = 1,383 kWe) 
__ ~~ ~_ .---.--.. .~~~ 

Power Required (kw) 
Number .~....- ~~ 

of Space Ground 
Lasers 

Laser Electrical Laser Electrical 

1 14,686 73,430 42,477 212,383 
2 7,282 72,820 21,062 210,620 
4 3.579 71,580 10,352 207,040 

10 1,363 68,150 3,942 199.100 
20 620 62,000 1,795 179,500 

149 



CONCLUSIONS 

o LASER ENERGY POWER CONVERSION SYSTEM FOR SATELLITES 
ONLY WILL PROBABLY NOT BE COMPETITIVE WITH CURRENT 
SATELLITE ELECTRICAL POWER SYSTEMS 

l LASER ENERGY POWER CONVERSION SYSTEM FOR SATELLITES 
IN CONJUNCTION WITH A LASER ROCKET PROPULSION OR 
OTHER LARGE LASER SYSTEM MAY BE COMPETITIVE 

ADDITIONAL GROUND RULES FOR LSPS 

o EMPHASIS ON SUBSYSTEM INTERACTIONS 

- PARTICULARLY POWER CONVERSION FOR BOTH SPACE 
VEHICLE AND GROUND SITE 

o USE OPTICAL AND P&T SUBSYSTEMS DEVELOPED UNDER LASER 
ROCKET STUDY 

o CONCEPTUAL DESIGN OF 500 KW SYSTEM 
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SYSTEM OVERVIEW 

SYNCHRONOUS RELAYS 

OCCULTED 
I.--l 

POWER 
SATELLITES 1 dower 

SATELLITE 
ORBIT 
(SUN-SYNCHRONOUS) 

LEO RELAY ORBIT 

‘-> SUN 

SUBSYSTEM/FUNCTION CANDIDATES 
TYPICAL 

EFFtF;EINCY 00 

REMARKS 

ELECTRICAL POWER 
GENERATION 
IN SPACE 

SILICON SOLAR CELLS 10.4 (7.3) DEGRADATION IN LEO 

GALLIUM ARSENIDE CELLS 22 (12.5) DEGRADATION IN LEO 
I 

BRAYTON CYCLE <40 I 

I ENERGY EXCHANGER WITH sa+ 
TURBINE 

ENERGY EXCHANGER WITH 73 MAXIMUM EFFICIENCY 
BINARY CYCLE 

I 
LASER SUBSYSTEM CO2EDL . 20.2 EXCELLENT DATA BASE 
FOR POWER ~ 

CO EDL TRANSMISSION _- 24.8 GOOD DATA BASE 
SOLAR PUMPED (10.9) LIMITED L’ATA BASE -- 

CONVERSION OF PHOTOVOLTAIC <. 40 
LASER POWER TO 
ELECTRICAL POWER THERMAL ELECTRONIC 45 r 

ON THE GROUND 
(TELEC) 

A0 

ENERGY EXCHANGER WITH 73 HIGHEST EFFICIENCY 

L BINARY CYCLE 
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SYSTEMS CONCEPTS EVALUATED 

SYSTEM 
SOLAR ENERGY ELECTRICAL 

COLLECTOR POWER CONVERSION 
LASER 

SUBSYSTEM 

GROUND 
POWER 

CONVERSION 

ENERGY 
EXCHANGER 
AND 
BINARY 
CYCLE 

I REFLECTOR/CAVITY ENERGY EXCHANGER 
AND BINARY CYCLE 

CO2 EDL 

II REFLECTOR/CAVITY ENERGY EXCHANGER CO EDL 
AND BINARY CYCLE 

III REFLECTOR/CAVITY ENERGY EXCHANGER SOLAR PUMPED 
AND BINARY CYCLE LASER 

REFLECTOVSOLAR 
LASER CAVITY 

IV 
I 

REFLECTOVSOLAR 
I 

SOLAR CELLS 
CELL ARRAY I CO2 EDL 

I 

V 
I 

REFLECTORdOLiR 
I 

SOLAR CELLS 
CELL ARRAY I CO EDL 

I 1 

ORBITAL SYSTEM EFFICIENCIES 

I - 
f 

f 
E.EXCH. 

a 
BINARY 
CYCLE 

I%) 

SOLAR 
REFLECTOR 
(OR &WI 

SOUR 
USER 
CAVITY 

1%) 

SOUR 
CAWTY 

(%I 

POWER LASER OPTICAL SPACE 
COND. s/J TRAIN APERTURE SPACE 

w (%) 1%) !%I OVERALL 

95 20.2 99.7 Pp.7 9.42 

I 

POWER 
GEN. 
w 

98 

JYS. 
NO 

TYrE 

C% EDL/ 
E.E. BINARY 

85 83 73 

II CO EDl,/ 
E.E. BINARY 

a3 

:O EDL/ 
iOLM CELLS 
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SPACE/GROUND SYSTEM EFFICIENCIES 

SYS. 
NO. 

I 

E.EXCH 
& GROUND 

TYPE SPACE ATM GROUND 
G&z%f 

BINARY POWER SYSTEM 
RELAY TRANS. RECEIVER CYCLE GEN. GROUND OVERALL 

CO2 EDL/ 90 85 96 98 73 98 51.5 4.96 
E.E. BINARY 

II CO EDL/ 90 78 96 98 73 98 47.2 5.58 
E. E. BINARY 

Ill 

IV 

SOLAR 90 85 96 98 73 98 51.5 6.32 
PUMPED 
CO2 

CO2 EDL/ 90 85 96 98 73 98 51.5 1.04 
SOLAR CELLS 

V CO2 EDL/ 90 78 96 98 73 98 47.2 1.17 

4 SOLAR CELLS I J 

PRELIMINARY SYSTEM ANALYSIS RESULTS 
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TRANSPORTATION COSTS 

SPS WT - 2OO,ooO,OOO LB SLPSWT = 314,000,000 LB 

MICROWAVE TO 2B.S” LEO AT S14/LB 

LASER TO 97O LEO AT $2l/LB 

LEO TO GE0 AT S59h.B 

SPS SLPS 

MILLS/K W-HR COST COMPAR I SON (77 $1 

S2.0B 

f6.!7B 

$11 .BB $0.01 B 

$14.68 b6.5BB 

c 

. INVESTMENT 8 OPERATIONS COSTS 
l 30-YEAR PERIOD 

I - . 90% AVAILABILITY 
. DISCOUNTED AT 7.5% 

4 

\- I- / BOEING IO GW 

. 

I - 

, - ROCKWELL 5 GW / 

/ - 

Ly 

I I I I I I I I 
10 20 30 40 50 60 70 80 90 100 

POWER AT BUSBAR (GW) 
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$/Kit’ COST COMPARISON (779) 

l INVESTMEN COSTS 
. 90% LEARNING CURVE 
. lA,VP CnNCTDI l,-Tlt,N DATE 

. ..I. ..~-..~ln”-.IVa. -,I. 

FIRST UNIT COST 

I 
BOEING IO GW 

-- - -pv 
LOCKHEED 0.5 GW 

(13.05 B) 

-. 
-- -- -- ROCKWELL 5 GW 

---- ($19 B) 

POWER AT BUSBAR (GW) 

CONCLUSIONS 

GENERAL: 

l EFFICIENCIES GREATER THAN 5% ARE ASSURED 

. ALL THREE LASER TYPES PRODUCE SIMILAR SYSTEM WEIGHTS 

Co, EDL 

. MORE AVAILABLE PERFORMANCE AND DESIGN DATA 

l LOWEST ATMOSPHERIC TRANSMISSION LOSSES 

. SPECTRA BEST SUITED FOR PHASED ARRAY 

CO ED1 

. LESS AVAILABLE PERFORMANCE AND DESIGN DATA 

. HIGHER TRANSMISSION LOSSES THAN CO2 

. SMALLER APERTURES 

. MULTIPLE LINES WILL PRODUCE PHASED ARRAY DIFFICULTIES 

SOUR PUMPED Co;! 

l MEAGER PERFORMANCE AND DESIGN DATA 

l HIGHEST OVERALL EFFICIENCY BASED ON PERFORMANCE 

EXTRAPOIATI ONS 

RECOMMENDED FOR PRELIMINARY DESIGN: CO2 EDL 
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SLPS PILOT PROGRAM ASSUMPTICitiS 

. SUBSCALE 500-kW PILOT DEMONSTRATION 

. SUBSCALE POWER AND RELAY SATELLITES 

. SUBSCALE GROUND STATION 

. SHUTTLE LAUNCH VEHICLE - TWO LAUNCHES 

l 185 x 2000 km 28.5O INCLINATION ORBIT 

. ON-ORBIT CONSTRUCTION BASE NOT REQUIRED 

. TECHNOLOGY DEVELOPMENT COSTS NOT INCLUDED 

. COSTS IN 1977 $ 

LASER SPS PILOT PROGRAM OVERVIEW 

LASER TRANSMITTER 

REtAY SATELLITE 

/ 

185 x 2000 km x 28.5. ORBIT 
(18,140 kg SHUTTLE CAPABILITY) 
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PILOT PROGRAM SPECIFICATIONS 

IASER TRANS hAlTTER SATELLITE 

ELECTRICAL POWER (kW) 

LASER POWER (kW) 

TRANSMITTER APERTURE DIAMETER (m) 

RELAY UNIT 

TRANSMITTER APERTURE DIAMETER (m) 

RECEIVER APERTURE DIAMETER (m) 

GROUND STATION 

RECEIVER APERTURE DIAMETER (m) 

ELECTRICAL POWER AT BUSBAR (kW) 

SLPS PILOT PROGRAM COSTS tf7$M) 

3,958 

910 

4.7 

4.7 

4.7 

18.75 

500 

OPTICS AND SENSORS 

POWER GENERATION 

SPACECRAFT AND STRUCTURES 

SUBTOTAL 

FACILITIES AND GROUND EQUIPMENT 

SYSTEM ENG., INTGR. AND TEST 

SHUTTLE INTGR. AND FLIGHT TEST 

PROGRAM MANAGEMENT AND DATA 

PILOT PROGRAM TOTAL 

POWER SAT 

$100 

250 

25 

$375 M 

RELAY SAT GRD. STATION TOTAL 

$ 94 584 $278 M 

5 255 

19 s 

$113 M $89 M $577 M 

38 

110 

73 

59 

$857 M 
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POTENTIAL OF LASERS FOR SPS POWER TRANSMISSION 

PRC ENERGY ANALYSIS COMPANY 
SEPTEMBER 1978 

PRESENTED TO 

SYMPOSIUM ON SPACE LASER POWER TRANSMISSION 
SYSTEM STUDIES 

LANGLEY RESEARCH CENTER 
HAMPTON, VIRGINIA 

OCTOBER 14-15, 1981 

REVIEWED BY: 
Richard B. Lancashire 
October 1981 
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OBJECTIVE 

EVALUATE POTENTIAL OF LASER FOR TRANSMITTING POWER FROM SPACE POWER 
SATELLITE (SPS) TO EARTH 

o DETERMINE LASER TECHNOLOGY STATE-OF-THE-ART 

o COMPARE LASER POWER TRANSMISSION TO MICROWAVE 
TRANSMISSION FOR SPS 

Major Elements of a Satellite Power System (SPS) 
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GROUND RULES 

COMPARE LASER POWER TRANSMISSION TO MICROWAVE FOR SPACE POWER SATELLITE 
(SPS) APPLICATION 

o USE NASA BASELINE SYSTEM SPS CONCEPT AS A REFERENCE 
- PHOTOVOLTAIC CONVERSION OF SOLAR POWER 
- MICROWAVE POWER TRANSMISSION SYSTEM (MPTS) 
- GEOSTATIONARY ORBIT 
- EARTH RECEIVER STATION BUSBAR POWER 10 GW 

o SAFETY/RELIABILITY/MAINTAINABILITY OF LASER SYSTEM MUST BE 
EQUIVALENT TO BASELINE 

o COMPARE POWER TRANSMISSION SYSTEM PERFORMANCE, CHARACTERISTICS 

l SIX CASES ARE CONSIDERED 

CASES 1-3 
SPS MICROWAVE POWER TRANSMISSION SYSTEM (MPTS) REPLACED 
BY CQ EDL-BASED LASER POWER TRANSMISSION SYSTEM (LPTS) 

CASE 4 
SPS -- MPTS REPLACED BY IDEAL, COMPETITIVE LPTS 

CASES 5A- 5B 

SPS PHOTOVOLTAIC ARRAY AND MPTS REPLACED BY DIRECT SOLAR 
PUMPED LASER AND LPTS 
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wls JSC 0.151 0.80 0.80 0.86 0.86 0.071 

1 

#l 0.151 0.80 

I 

0.23 0.80 0.45 0.0100 

#2 0.151 0.80 0.235 0.88 0.45 0.012 

LPTS #3 0.151 0.80 0.25 0.88 0.75 0.020 

#4 0.151 0.80 0 0.03 0.95 076 0.071 
R 

3: 
l’hrs~ CO2 ED1 rffidmdu,m from 10 to 35 psrcent hiphw than ruggutad hy ram, In rhr Wd. 

0 R This rdur Is rrquird for thr owrdl cffidcny of thr LPTS #4, pumped with chr photordtaic array, to rqud 
UIC JSC ratimatad dfkiw~y fw thr MPTS. Than lua ken no indication that this l ffidrnsy an br rodiud. 

Comptxison of Efficiencies of MPTS and LPTS Concepts 
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“UpFront” Cower&n 

#5C 0.10. b90 0.90 0.75 0.054 
LPTS 

#5b 0.20. 0.90 0.90 0.55 0.092 

MPTS JSC 0.12- 0.90 a95 a95 o.on 

5olar pumped lcscn. 

Wbotovdtdc crriyMyrtron 

Comparison of Efficiencies of Solar-Pumped Laser LPTS Concepts and the MPTS 
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CONCLUSIONS 

o EARTH STATION RECEIVER FOR LPTS REQUIRES LESS LAND AREA 
27M VS, 7700M 

o LPTS HAS ADVANTAGE OF SMALL SCALE PROOF-OF-CONCEPT 

. LPTS CANNOT COMPETE WITH MICROWAVE WHEN SOLAR ENERGY IS 
CONVERTED FIRST TO ELECTRICITY, BEFORE TRANSMISSION 

o LPTS CAN COMPETE IF SOLAR PUMPING AT lo-20% EFFICIENCY 
CAN BE OBTAINED 

RECOMMENDATIONS AND IMPACT ON FUTURE NASA HPL PROGRAM 

e FORGET ABOUT LASER POWER TRANSMISSION FOR PHOTOVOLTAIC SPS 

o PURSUE SOLAR PUMPED LASERS AS SPS ALTERNATIVE 

- IMPROVED EFFICIENCY 
- HIGH POWER OPERATION 

- RELIABILITY 
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SPACE LASER POWER TRANSMISSION 

MATHEMATICAL SCIENCES NORTHWEST 
LATE 1981 

PRESENTED TO 

SYMPOSIUM ON SPACE LASER POWER TRANSMISSION 
SYSTEM STUDIES 

LANGLEY RESEARCH CENTER 
HAMPTON, VIRGINIA 

OCTOBER 14-15, 1981 

REVIEWED BY: 
Richard B. Lancashire 
October 1981 
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OBJECTIVE 

a ASSESS ADVANTAGES FOR SPACE MISSIONS USING LASER POWER 
TRANSMISSION CONCEPTS COMPARED TO ON-BOARD POWER GENERA- 
TION CONCEPTS 

o FORMULATE RECOMMENDATIONS FOR FUTURE NASA LASER POWER 
TRANSMISSION PROGRAM, IDENTIFY CRITICAL TECHNOLOGIES, 
RESEARCH PRIORITIES 

APPROACH 

o REVIEW PROPOSED LASER POWER TRANSMISSION APPLICATIONS 

- COMPARE ADVANTAGES WITH ON-BOARD POIiER GENERATION COST, 
TRANSPORTATION ENERGY, MISSION FLEXIBILITY, ETC, 

- IDENTIFY MISSIONS WHERE LASERS HAVE A DECIDED ADVANTAGE 

o ASSESS TECHNOLOGIES ESSENTIAL FOR LASER POWER TRANSMISSION 

- EFFICIENCES, LEVELS OF DEVELOPMENT, COMPONENT MASSES, 
CONSTRAINTS, ETC, 

- IDENTIFY TECHNOLOGIES WHERE ONE COULD ENHANCE POTENTIAL 
OR ENABLE NEW MISSIONS 

- EVALUATE OVERALL SYSTEM PERFORMANCES 
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STUDY GROUND RULES 

0 CONSIDER BOTH GROUND-BASED AND ORBITING LASER POWER STATIONS 

0 POSSIBLE MISSION CATEGORIES INCLUDE: 
Orbital (LEO,GEO) Deep Space 
Planetary (Orbiter, Surface) Near Sun 
Lunar Orbital Transfer 

0 RELEVANT TECHNICAL ASPECTS INCLUDE: 

Mass In Orbit Envlrcnmental Interactions 
Mission Flexibility Laser Designs 
Power Level Optics and Receivers 
Reliability Efficiencies 
Economics Development Risk 

0 CONSIDER COMPETING LASER TYPES AND ENABLING TECHNOLOGIES 
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Feasible Laser - Wission Combinations 

Laeer6yatemKaquiremonta Feasible Lssar Systaaa Outet4ndinq Rcqulrcmtntm 

Earth Orbital 

LEO 

CEO 

Short Range 

Medium Range 

Excimar,NuclearPumped,Iodino Low mass for Cu3: ground-based 

PEL, CO and CO2 laser option4 solar with storaye 
or nuclear. 

Planetary 

Orbital 

Surface 

Hedium Range 

Hedium Range 

All type.9 of lightweight 
solar driven lasers 

Orbital mass is critical8 con- 
tinuous solar exposure possibler 
nuclear laser feasible. 

Lunar Surface 

Dttp spact 
Cuter Planeta 

Nedium Range 

Distant 

Outside Solar Syetem Dietant 

Hrcimer 
Iodine 
t-EL 

Short wavelength necdedr 
vczy laryc aperture trans- 
mitters (VLW r continuous 

Near Sun IPng Range Optically pumped (iodine, 
co, CO21 

solar cxposurc possible. 

Iliyh solar intensity available 
for solar pumping. 

Propulsion 

LEO-CEO Orbital 
Transfer 

Station Keeping 

ShorttoHediumRange Excimer, Iodine, FEL, CO, Scaling to very high powtrsr 
Atm-Cd (option) and Co2 low orbital mass desired; 

Short or Hedium,Range ground-based laser optlon. 

Atm-Gd (option) 

Short Range - lo'-10' km 
MediuuRange - lo'-10' km 
Ir~lvl lLll\.l1' - 10’ km (-1 AU) 
Dl,.l.rl\L - >4uau 
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SUMMARY OF COMPONENTS BY WAVELENGTH 

Wavelength 
Range (urn) 

0.1 to 0.35 

Laser Type 

Exclmers 

FEL 

FEL 

0.35 to 0.5 Excimers 

Lasant 
0-w) 

KrF (0.248) 

X&l (0.308) 

I2 (0.342) 

--(Tunable) 

XeF c.351, .353) 

HgBr (0.5) 

---(Tunable) 

Transmitter and 
Receiver Optics 

Dima Reflectivityb 
(m) (Materials) 

3.8 

4.2 
I 

4.5 >93% 

2.4-4.5 (Al) 

4.5 

5.4 

4.5-5.4 
I 

Receivers and 
Efficiency Range 

I 
Photovoltaic Cells 

17 = 20 to 45% 

0.5 to 1.0 

l!J to 4!.l 

FEL ---(Tunable) 
-.~-_-.-- 

Glass NdYAG (1.06) 

Atomic Iodine CF31 (1.319) 

FEL ---(Tunable) 

5.4-7.6 93 to 99.5% (Cu) 

7.9 
" I 

8.8 99.5 to 99.8% (0.1) Heat Engines 

5.4-15.3 and 

Microrectenna 

4lI to 1olJ EDL, Solar or co C-5) 

Nuclear Pumped co2 (9.3) 

FEL --(Tunable) 

a For 38,000 km range. 

b Reflectivity for polished metal with coatings. 

17.1 n = 35 to 75% 

24.3 99.8% (Cu) 

15.3-24.1 
I 
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SUMNARY OF FEASIBLE SPACE-TO-SPACE LASER POWER TRANSMISSION SYSTEMS 

-_.. .--._~--_ -. -.. 

Excimer Laser (0.1 to .35u) 
e-beam 
discharge 

FEL (.35u to l!J) 

14-50% 70% 5-8% 93% 60% 93% 1.2% 
14-50% 90% 2-3% 0.6% 

14-50% 75-90% 15-5O%d 9E5% 
I 

45% 11% 
_.- I---- 

Iodine Lasers (1.3u) 5%b 14-50%b l-23% 98.5% 90% 98.5% 0.5% 
-- 

Nuclear Pumped (Helium-Noble Gas) -----e e ----- 0.1-1% 0.7% 
(1.8-3.5u) 

FEL (1u to 5u) 

CO EDL (5~) 

CO Nuclear Pumped (5~) 

14-50% 75-90% 15-50%d 

1 

99.5% 97% 99.5% 16.7% 

14-50% 90% 20-30% 35% 10.0% 

e e to ---_- ----- 3-S% 
75% 

3.7% 
___- 

FEL (5~ to 10~) 

CO2 EDL 9.3u 

co2 IOPL 9.3u 

14-50% 75-90% 

14-50% 90% 99.8% 98.6% 99.8% 

92%b 14-50%b 
1 

16.8% 

6.7% 

10.3% 

a Assumed to be solar with a range in efficiency from 14% (present photovoltaic cells) to 50% (advanced solar thermal 
systems). 

b In the case of direct and indirect pumped solar lasers, 'IS and nc are combined in column 1 for the input to the lasant; 
colurm 2 then refers only to the source and conversion efficiency for generating compressor power in the system. 

' Assumed to have 7 reflecting surfaces: nR = (qto) 7 

d The FEL extraction efficiency and RF conversion efficiency (coluw 2) may combine in a complex way to form oL. 

e Nuclear pumped source and conversion efficiencies are contained in the overall laser efficiency, nL. 

f Neglects the relay-transfer efficiency; equal to the product of the highest component efficiency in each category. 
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1oc 

B( 

61 

(000 kg) 

41 

21 

1-S 

I- 

3- 

O- 

O- 

IL 

I 

T - Trcmrmi ttctr olll:lCS 
S - Separator 

TM = Tuning Magnets 
PS = Power Supply, electricity 

C = ComImcssor power supply 
D = Duct and laser cavity 
R e Radiator-laser loop 
K = Klystron and RF cavity 
B - Blackbody cavity 
N = Nuclear reactor 

CL 3 Collector 
PC = Power Conditioning 

M - Miscellaneous 

10.6 

F 9:i 

T 

PS 
- 

T 

PS 

C02(BDL) C02(IOPL) IODIHE EXCIMKR FEL NPL 
(XeF) 

(atL,scale) 

r 0.6 

Yi 
T 

m-e 

S 

z 

CL 

C 

PS 
10.611 

CO(EDL) 

COMPARISON OF SPACE LASER TRANSMITTER MASSES FOR 1 MW AND 100 KW OUTPUT POWER 
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SYSTEM CONCLUSlONS 

0 Laser technology is developable for around- or space-based power transmission, 

0 EDLs best developed; FELs show greatest promise; solar Pumped lasers are serious 
contenders, 

0 Good atmospheric transmission from elevated sites for 

CO and CO2 at select infrared lines 

Excimers and FELs in the visible 

0 Space power transmission UP to 1GO AU may be possible, 

8 Overall power transmission efficiency in space of 11 to 17% appears feasible for 
the wavelength range 0.25 to 10 pm, 

8 Relay satellite power transfer efficiencies are critical, 

0 Receiver converter technology under-developed; further analysis, design, and proof 
experiments required, 

MISSION ANALYSIS SCENARIO 

o ORBIT RAISING 

o POWER SUPPLY 

o BOTH ANALYZED WITH: 

- CHEMICAL 
- SOLAR 
- NUCLEAR 

- SPACE-BASED LASER 
- GROUND-BASED LASER 

l RESULTS PLOTTED TRANSPORTATION ENERGY COSTS VS, 
NUNBER OF SATELLITES 
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MISSION CONCLUSIONS 

# Laser Power to a large number of users In space can 
Eliminate on-board energy storage 
Load-share amongst users 
Eliminate on-board peaking Power capacity 

0 A Limited Mission Analysis Shows: 
On-board Power requires less energy to orbit than 

the corresponding laser power systems 

Laser Power systems appear less expensive than 
on-board poirler at high activity, Payload 
levels 

0 tlany mission possibilities remain to be evaluated 

CRlTlCAL TECHNOLOGlES 

Laser Transmitters 
Gas Clean-up 
High Voltage, Pulsed Power Systems 
Lifetime and Reflectivity of Optical 

Surf aces 
Waste Heat Radiators 
New Laser Concepts (e.g., dielectric 

lasers) 

Laser Receivers 
High Efficiency Photovoltalc Cells 

(A SllJ) 

Solid State Receivers for Longer 
Wavelengths: 

o IR Detector Technology 
o Microrectenna 

New Receiver Concepts (e.g., Reverse FEL) 
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SUMMARY OF R & D RECOMMENDATIONS 

Technolosv 
o Demonstrate high efficiency receiver concepts 
o Develop gas purity/clean-up resulrements for space lasers 
o Determine technology goals for Pulsed power systems for space lasers 
o Carry out initial design/evaluation studies of new lasers and receivers 
o Test new concepts 

Systems Analysis 
o Determine the most attractive laser transmission systems 
o Develop system Performance goals for major components 
e Determine the optimum number and size of relay satellites 

Mission Analysis 
o Evaluate a wider range of possible mission parameters to determine 

trade-offs between system conf!guration and mission requirements 
o Conduct cost sensitivity analysis 
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SYMPOSIUM ON SPACE LASER POWER TRANSMISSION 
SYSTEM STUDIES 

LANGLEY RESEARCH CENTER 
HAMPTON, VIRGINIA 

OCTOBER 14-15, 1981 

REVIEWED BY: 
Richard B. Lancashire 
October 1981 

175 



TELEC 

OBJECTIVE 

EVALUATE FEASIBILITY OF TELEC AS A POTENTIALLY EFFICIENCY AND LIGHTWEIGHT 

METHOD FOR LASER-TO-ELECTRIC POWER CONVERSION IN A SPACE LASER POidER 
TRANSMISSION SYSTEM 

GROUND RULES 

o PERFORM FEASIBILITY STUDY AND CONCEPTUAL DESIGN OF A 1 MW TELEC SYSTEM 

a FABRICATE AND TEST SMALL SCALE TELEC CELL TO ABSORB 20% OF A 10 KW 

C$ BEAM 

THERMOELECTRONIC LASER ENERGY CONVERTER (TELEC) 

l A CONCEPT - SUGGESTED BY DR, NED 

o POTENTIAL CONVERSION EFFICIENCY: 

RASOR 

50% 

(CESIUM VAPOR) 
(wulo xl 
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FEASIBILITY OF 1 MEGAWATT TELEC 

THREE UNIT, SERIES CONNECTED TELEC DESIGNED TO ABSORB 95% 
OF THE INCIDENT CW, 1 MEGAWATT BEAM 

FOUR LONGITUDINAL EMITTER BLADES PLACED SYMMETRICALLY IN 
SLOTS OF THE CYLINDRICAL COLLECTOR 

CESIUM VAPOR WORKING FLUID AT 40-800 TON PRESSURE 

25-100 METERS IN LENGTH (COULD BE FOLDED PATH) 

PREDICTED CONVERSION EFFICIENCY TO 48% 

1 MW TELEC 

SER 

r CONCENTRATING 

K \\\’ 1. \BEAM 

-\ 

\ 

i COLLIMATING 
MIRROR 

177 



TELEC PROOF-OF-CONCEPT EXPERIMENT 

CONTACT OF WATER COOLED COLLECTOR (SEGMENT OF HEMISPHERE) 
AND POINTED EMITTER WITH A LASER SUPPORTED PLASMA BALL IN 
ARGON AT ~840 TORR 

COLLECTOR/EMITTER AREA RATIO ABOUT 40 

INEFFICIENT CONVERSION SINCE COLLECTOR ENCLOSED ONLY SMALL 
FRACTION OF THE PLASMA 

MEASURED SHORT CIRCUIT CURRENT OF 067 AMPS AND OPEN CIRCUIT 
POTENTIAL OF 1.5 VOLTS 

ARGON "TELEC" TEST 

STAINLESS I- O 6 mr 
STEEL TUBING 7, I- 

I. / ,111 
n- 1 /APPROXIMATE BEAM 

I WIDM BETWEEN 

I38 LITERS/min\\\\y 

F ATFR 

'REMITTER SLIPPED 
FORWARD APPROX 
2 mm DURING 
8TH RUN 

19 mm DIAM CO1 
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SMALL SCALE TELEC EXPERIMENT 

o DESIGNED, BUILT AND TESTED TELEC WITH 30 CM LONG ELECTRODES 
OF A GEOMETRY SIMILAR TO THE 1 MEGAWATT CONCEPT 

o TELEC OPERATION DEMONSTRATED WITH SEVERAL AMPERES OUTPUT AT 
1 VOLT 

o AVAILABLE LASER BEAM POWER ONLY SUFFICIENT FOR THRESHOLD 
OPERATION OF TELEC, INSUFFICIENT TO EVALUATE ANTICIPATED 
HIGH POWER CAPABILITY OF TELEC 

o SUCCESSFUL DEMONSTRATION OF CESIUM VAPOR ISOLATION FROM THE 
OPTICAL PORTION OF TELEC BY A CESIUM-XENON INTERFACE (IMPOR- 
TANT FOR SCALE UP TO LARGE TELEC SYSTEM WITH FOLDED BEAM 
CAPABILITY AND OPTICS ISOLATION FROM CESIUM VAPOR) 
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TELEC 
EXPERIMENT 

IEAT PIPE YICI REGIOI(S I -7 
I - 

TELEC 

ACCOMPLISHMENTS 

o FEASIBILITY STUDY AND CONCEPTUAL DESIGN OF A 1 MEGAWATT TELEC 

o SUCCESSFUL TELEC PROOF-OF-CONCEPT EXPERIMENT (LASER FOCUS COVER, 
DECEMBER 1977) 

o FABRICATED AND TESTED THE SMALL SCALE TELEC AND SUCCESSFULLY 
DEMONSTRATED CESIUM VAPOR ISOLATION, AS A WORKING MEDIUM OF THE 
TELEC, FROM THE OPTICAL SECTION BY A CESIUM VAPOR-XENON GAS 
INTERFACE 
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LASER TRANSMITTERS 

Feasibility of a 30-Meter Space-Based Laser Transmitter 
Itek Corporation (October 1975) 

Analysis and Desi.gn of a High-Power Laser Adaptive-Phased Array Transmitter 
Rockwell International (December 1977) 

High-Power Phase-Locked Laser Oscillators 
Rockwell International (May 1979) 

PRESENTED TO 

SYMPOSIUM ON SPACE LASER POWER TRANSMISSION 
SYSTEM STUDIES 

LANGLEY RESEARCH CENTER 
HAMPTON, VIRGINIA 

OCTOBER 14-15, 1981 

REVIEWED BY: 
Richard B. Lancashire 
October 1981 
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FEASIBILITY OF A 30-METER SPACE- BASED LASER TRANSMITTER 

CR134903 CONTRACT NAS3-19400 OCTOBER 1975 

ITEK CORPORATION 

RI R. BERGGREN AND 6, El LENERTZ 

FOR 

NASA LERC 

DRa RI STUBBS, PROJECT MANAGER 
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OBJECTIVE 

STUDY THE FEASIBILITY OF DEPLOYING LARGE, DIFFRACTION LIMITED, 

HIGH POWER LASER TRANSMITTER MIRROR IN SPACE FOR SUCH APPLICA- 

TIONS AS PROPULSION AND POWER TRANSMISSION 

GROUND RULES 

BEAM WAVELENGTH 

MIRROR HEAT FLUX 

MIRROR ACCURACY 

MIRROR REFLECTIVITY 

POINTING STABILITY 

MIRROR DIAMETER 

STOWED LENGTH (MAXIMUM) 

STOWED DIAMETER (MAXIMUM) 

STOWED WEIGHT (MAXIMUM) 

10,6X10-l6 M (CO21 

100 KW/M* (UNIFORM DISTRIBUTION ASSUMED) 

DIFFRACTION LIMITED PERFORMANCE, x/20 SURFACE 

a99 

2X1O-7 RADIANS 

30 METERS 

18,3 METERS 

406 METERS SPACE SHUTTLE LIMITATIONS 

28,123 KG (62,000 LB,) 
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LASER TRANSMITTER-RECEIVER SIZES 

1000 r: 

RANGE: SYNG, ORBIT TO EARTH (36,000 RANGE: SYNG, ORBIT TO EARTH (36,000 KM) 
DIFFRACTION LIMITED, UNIFORMLY ILLUMI DIFFRACTION LIMITED, UNIFORMLY ILLUMINATED, 
CIRCULAR TRANSMITTER MIRRORS CIRCULAR TRANSMITTER MIRRORS 

KM) 
NATED, 

1 10 100 1000 

D (M) 

TRANSM&R DIAMETER 

ELEMENTS OF SPACE LASER TRANSMITTER INVESTIGATION 

STRUCTURAL CONCEPTS 

,h!ATERIALS SELECTION 

THERMAL EFFECTS 

VIBRATIONAL ANALYSIS 

SPACE EFFECTS 

ACTIVE CONTROL CONCEPTS 

METHODS OF STOWING 

METHODS OF DEPLOYMENT 

FAILURE MODE ANALYSIS 
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LARGE SPACE LASER TRANSMITTER 

PR INC I PAL CONCLUS IONS: 

o FEASIBILITY OF A 3D hlRER, DIFFRACTION LIMITED LASER 

TRANSMITTER DEPLOYED IN ORBIT HAS BEEN ESTABLISHED 

l THREE CONCEPTS STUDIED -MOST PRACTICAL IS THE SEGMENTED 

MIRROR CONFIGURATION PARTIALLY ASSEMBLED IN SPACE 

l ACTIVE MIRROR SURFACE CONTROL IS NECESSARY. ACTUATOR, 

SENSOR AND CONTROL LOGIC REQUIREMENK CAN BE MEl WITHOUT 

NEW TECHNOLOGY DEVELOPMENT 

o MATERIALS OF LOW THERMAL COEFFICIENT SELECTED TO MINIMIZE 

COMPLDtITY OF ACTIVE FIGURE CONTROL SYSTEM ULE GLASS 

FACEPLATE, GRAPHITE - EPOXY SUPPORT STRUCTURE 
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f 
EASE STRUCTURE 

CONCEPT FOR LARGE 

SPACE-BASED LASER 

TRANSMlnER MlRROR 

30m 

RECOMMENDAT IONS 

o NASA MONITOR DOD EFFORTS 

o DOD HAS PICKED UP CONCEPT; 
CONSIDERING OTHER TYPES 
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CR134952 

ANALYSIS AND DESIGN OF A HIGH-POWER LASER 
ADAPTIVE-PHASED ARRAY TRANSMITTER 

CONTRACT NO, NAS3-18937 

ROCKWELL INTERNATIONAL 

ELECTRONIC DEVICE DIVISION 

G, E, MEVERS, ET, AL, 

FOR 

NASA LERC 

DR, R, STUBBS, PROJECT MANAGER 

DECEMBER 1977 
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OBJECTIVE 

o INVESTIGATE FEASIBILIN OF USING GROUND-BASED HIGH ENERGY LASER 

COUPLED TO AN ADAPTIVE ANTENNA TO DELIVER POWER TO A LOW EARTH 

ORBIT SATELLITE 

GROUND RULES 

o LASER TRANSMITTER LOCATED AT SEA LEVEL AND AT 3,5 KM (11,500 FT) 
ELEVATION 

a POWER LEVELS UP TO 5 Mw 

l SATELLITE RECEIVER WITH 2 METER APERTURE IN 185 KM, CIRCULAR 
ORBIT (LEO> 

o INVESTIGATE WAVELENGTHS OF 10.6 PM, 9,l I’M, 5 UM AND 3,8 PM 

SATELLITE ORB lTAL GEOMETRY 



ELEMENTS OF STUDY 

ATMOSPHERIC EFFECTS - ABSORPTION 
- TURBULENCE 
- THERMAL BLOOMING 

ADAPTIVE COMPENSATION FOR TURBULENCE AND THERMAL BLOOMING 

TRACKING REQUIREMENTS 

CONCEPTUAL DESIGN OF OPTIMUM SYSTEM 

ATMOSPHERIC EFFECTS 

ABSORPTION 

, 

I 
THERMAL BLOOMING 

TURBULENCE 
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ADAPTIVE OPTICS FOR ATMOSPHERIC PROPAGATION 

1 
1-- -- --I-- d 

WAVEFRONT DISTORTION 
WITHOUT ADAPTION 

SEVEN-ELEMENT ARRAY ADAPTION 
FOR PHASE CORRECTION 
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RESULTS AND CONCLUSIONS 

o HPL TRANSMITTER SYSTEMS CAN BE DEVELOPED TO 
TO SATELLITES WITH REASONABLE EFFICIENCY 

DELIVER MW POWERS 

o MOUNTAIN TOP LOCATION (3500 Ml REDUCES ABSORPTION LOSSES (< 5%) 
FOR MOST A's 

o TURBULENCE EFFECTS CAN BE SIGNIFICANTLY REDUCED BY ADAPTIVE 
SYSTEM, E,G, FOR CO*, 87% TRANS, VS 40% 

o THERMAL BLOOMING EFFECTS CAN BE ALMOST ELIMINATED BY ADAPTIVE 
SYSTEMS 

o 9,l L’M FROM MOUNTAIN HAS OVERALL EFF, OF 53%; (72% DIFF,; 95% 
TURBO,; 100% THERM, BLJ SIMILAR OVERALL EFF, FOR 3,8r-rM 
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CONCEPTUALPHASELOCKEDI.ASERARRAYlMSTALfATiOM (5MWl 

CONCLLlSION 

o ADAPTIVE OPTICS, ALTHOUGH INITIATED TO CORRECT ATMOSPHERIC 
EFFECTS, ALLOW THE CORRECTION AND IMPROVED TRANSMISSION OF 
ANY IVUN-IDEAL WAVEFRONT 

I ANY NUMBER OF LASERS ARRAYED TO PRODUCE ANY DESIRED POWER 
LEVEL, NOT LIMITED BY SOURCE TECHNOLOGY 

o EACH LASER CAN BE OPTIMALLY DESIGNED FOR MAXIMUM EFFICIENCY 
AND BEAM QUALITY 

a REDUNDANT CHANNELS POSSIBLE 
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CR134903 

HIGH POWER PHASE-LOCKED LASER OSCILLATORS 

CONTRACT NO, NAS3-20376 MAY 1979 

ROCKWELL INTERNATIONAL 
ELECTRONICS DEVICE DIVISION 

C, La HAYES, ET, AL, 

FOR 

NASA LERC 

DR, R, STUBBS, PROJECT MANAGER 
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OBJECTIVE 

EXPERIMENTALLY INVESTIGATE THE FEASIBILITY OF MECHANIZING AN 

ADAPTIVE ARRAY OF INDEPENDENT LASER OSCILLATORS FOR GENERATION 

OF A HIGH POWER COHERENT OUTPUT 

ELEMENTS OF INVESTIGATION 

o ADDRESS CONTROL ISSUES OF PHASE LOCKING UNSTABLE RESONATORS 
AT LOW POWER LEVELS 

a DEMONSTRATE PHASE LOCK (LOW POWER UNSTABLE RESONATORS) 

o CHARACTERIZE OPERATIONAL LIMITS OF HIGH POWER CO2 LASER 

ASSESS FREQUENCY STABILITY 
NOISE SOURCES 
OPTICAL PROPERTIES 

o DEMONSTRATE HIGH POWER PHASE LOCK 
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UNLOCKED LASERS 

I I I 

LASER 3 I I I- I I INTENSITY 
I ‘11 il I I I I AT 

TARGET 

OPERATE AT DIFFERENT FREQUENCIES, OUT OF PHASE, RESULTING IN A BROAD 

PATTERN OF LOWER IMENSITY 

PHASE LOCKED LASERS 

x 

I IASER 2 I I 1 I I 

I 

INTENSITY 
LASER 3 AT 

TARGEl’ E 

PHASE LOCKING PRODUCES COHERENCE AMONG THE INDEPENDEM LASER 

OSCILIATORS RESULTING IN A TIGHT, HIGH INTENSITY BEAM AT RECEIVER 
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RESULTS AND CONCLUSIONS 

o PHASE LOCK OPERATION BY CAVITY LENGTH CONTROL HAS BEEN DEMONSTRATED 
FOR FIRST TIME WITH KILOWATT LEVEL UNSTABLE RESONATORS 

o ADDITIONAL DATA WERE COLLECTED TO CHARACTERIZE THE OPERATIONAL 
LIMITATIONS IMPOSED BY HIGH POWER CO2 SYSTEMS 

o CONTINUED EFFORTS SHOULD BE DIRECTED TOWARDS DESIGN OF PROOF-OF- 
CONCEPT DEMOSTRATION AT HIGH POWERS - UNIQUE NASA APPLICATION 
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LASER AIRCRAFT PROPULSION 

UNIVERSITY OF WASHINGTON 
AUGUST 1977 

PRESENTED TO 

SYMPOSIUM ON SPACE LASER POWER TRANSMISSION 
SYSTEM STUDIES 

LANGLEY RESEARCH CENTER 
HAMPTON, VIRGINIA 

OCTOBER 14-15, 1981 

REVIEWED BY: 
Richard B. Lancashire 
October 1981 
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OBJECTIVE 

TO EXAMINE THE CONCEPT AND FEASIBILITY OF POWERING 

A COMMERCIAL AIRCRAFT DURING CRUISE OPERATION WITH 

A HIGH POWER CW LASER BEAM FROM A SOLAR POWERED 

SATELLITE IN GEOSYNCHRONOUS ORBIT 

LASER AIRCRAFT PROPULSION SYSTEM 

a MODIFIED LASER POWERED AIRCRAFT 

o SATELLITE POWER STATION (SPS) 
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MODIFIED LASER POWERED AIRCRAFT 

l MODIFIED BOEING FUEL CONSERVATIVE AIRCRAFT DESIGN 

o LASER RECEIVER 

a LASER TURBOFAN ENGINE WITH HEAT EXCHANGER FOR CRUISE 
FLIGHT 

o JP-4 POWERED TURBOFAN ENGINES FOR TAKE-OFF, CLIMB, 
DESCENT AND LANDING 

SATELLITE POWER STATION (SPS) 

o SOLAR ENERGY COLLECTION SYSTEM WITH CONCAVE MIRRORS, 
PHOTOVOLTAIC CELLS, STRUCTURE AND ELECTRONICS - 15 GWE 

o LASER SYSTEMS (CO$ 

o RADIATOR SYSTEM 

o ADAPTIVE OPTICAL SYSTEM 

l LASER BEAM TRACKING 
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8olat powered 
laser satellite in 
geo-synchronous orbit 

photovoltrric power 

adaptive optics 

convention81 crmrporc 

altitude 40.000 ft. 
flight amch number 0.8 
payload 40,000 lba. 

lartr povcred 
curhnfrne - --_ ----. 

LASER POWERED AIRCRAPT TRANSPORTATIOH SYSTEM 

l ircraf t 

Laser-powered afrplona flight profile. 
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AIRPLANE DATA 

~ TACK JWIB LASER STAND. IAsmsrREKn IAsmJuw AIRPLANE TYPE lx!fE 
NO. OF JP4 'IUREOFANS 4 
NO. OF IASER TURBOFANS 0 
IASER POWER ml) 
NO. OF PASSEXERS 19: 

HASSDISl-RIEUI'ION (kg) 

WING GROUP 13749 
VERTICALTAIL 807 
FKRIZOtEAL TAIL 1383 
8DDY GROUP 16670 
LANDING GEAR 5779 
FIXED EQlJIWENl' 16670 
STRD OPER ITIXS 4940 
MISCELLANEOUS 975 

KEROSENE ‘llJIWf’ 6378 
L4SERlUFBOFANS 0 

ovmALL EQllmlmr WT. 67351 
PAYUADWI'. 18140 
NELwr. 29809 

TAKE OFF GROSS WT. ll5300 

WIN2 AREA h2) 
WING ImDIffi (kg-d, 

198.6 
580.4 

CRUISE Km-DRAG PATIO 17.5 
AIPmFWXE CO%' (SM) 11.2 
PRGPULSIOX COST (b+f) 
TurAL ATRCR4Fr COST ($M) 1::: 

4 

ii 
350 

25298 13749 13749 25298 
1484 1614 1614 2968 
2544 1383 1383 2544 

30054 16670 20079 30054 
9824 5779 5779 9824 

28339 16670 20170 28339 
a398 4940 4940 a398 
1658 975 97s 1658 

10332 
0 

6378 6378 10332 
a725 8725 17450 

74968 83792 132675 
la140 22200 32400 

8022 9298 14145 

103045 us289 la3410 

198.6 198.6 365.4 
518.9 501.9 580.5 
18.2 17.5 la.3 
11.4 12.7 20.1 

175:: 1::: 10.2 30.3 
21707 20511 37221 

117931 
32400 
51336 

201667 

365.4 
551.9 
17.8 
19.8 
3.8 

23.6 
0 

4 4 4 . 

4i.c (loo)* ,$A (150)" 
230 

( I*- LSPS POWER REQUIREMENTS 
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MISSION MODEL 

MISSION MODEL CONSTANTS 

TIME PERIOD 30 YEARS 

RANGE 5556 km 

FLIGHTS/DAY/AIRPLANE 3 

TOTAL PAYLOAD DELIVERED 178.8~10~ kg 

AIRPLANE TYPE 

PAYLOAD MASS/AIRPLANE (kg) 

TAC/E 
TAC/E JUMBO 

18140 32400 

AIRPLANE FLEET SIZE 300 168 

SATELLITE FLEET SIZE 0 0 

AIRPLANE COST (EACH) 13.5 $M 23.6 $M 

SATELLITE COST (EACH) 0 0 

AIRPLANE CREW PAY/FLIGHT $2077 $2077 

AIRPLANE MAINT. COST/FLIGHT $2523 $4417 

AIRPLANE FUEL WT./FLIGHT (kg) 29809 51336 

LASER LASER LASER 
STANDARD STRETCH JUMBO 

18140 22200 32400 

300 246 168 

150 123 84 

17.0 $M 18.3 $M 30.3 $M 

650.4 $M 711.0 $M 1007.6 SM 

$2077 $2077 $2077 

$2808 $3139 $4970 

8022 9298 14145 

PERTINENT RESULTS 

o LASER POWERED AIRPLANE FLIGHT SYSTEM PAYOFF TIME 
- ASSUMING SYN, KEROSENE COST OF $l,O/GALLON 
- PAYOFF TIME = INCREASED SYS, COST/FUEL COST SAVED/YEAR 

1, 35 YEARS WITH LASER STRETCH AIRPLANE 
2, 40 YEARS WITH LASER JUMBO AIRPLANE 
3, 45 YEARS WITH LASER STANDARD AIRPLANE 

o ENERGY PAYBACK 

1, 289 YEARS FOR LASER STANDARD AIRPLANE 
2, 2.59 YEARS FOR LASER STRETCH AIRPLANE 
3, 2,65 YEARS FOR LASER JUMBO AIRPLANE 
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CONCLUSIONS 

o A LSPS USING THE CO2 LASER CAN BE CONSTRUCTED IN SPACE AT A 
REASONABLE COST WITH EXISTING AND PROJECTED TECHNOLOGY 

o REQUIRED LASER POINTING AND TRACKING ACCURACIES ARE TECHNICALLY 
FEASIBLE 

o WITHIN THE ACCURACIES OF THE ANALYSIS THE COST OF THE LASER 
AIRPLANE SYSTEM IS ECONOMICALLY COMPETITIVE WITH AN ADVANCED 
KEROSENE AIRPLANE SYSTGI 

o DOMINANT COST OF THE LASER-POWERED FLIGHT TRANSPORTATION SYSTEM 
IS THE LSPS 

o THE LASER FLIGHT SYSTEM HAS AN ENERGY PAYBACK OF LESS THAN 
THREE (3) YEARS 

RECOMMENDATIONS 

DETAILED OPTIMIZATION STUDIES SHOULD BE PERFORMED FOCUSING 
ON DESIGNING THE MOST SUITABLE LASER FLIGHT TRANSPORTATION 
SYSTEM (CONTRACTOR RECOMMENDATION) 

LERC MISSION ANALYSIS COULD NOT DISMISS CONCEPT BUT QUES- 
TIONED PRACTICALITY 

THIS CONCEPT AND STUDY RESULTS SHOULD BE MAINTAINED FOR 
FUTURE CONSIDERATION 
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