NASA-CR-167549 DEVELOPMENT OF STS/CENTAUR FAILURE PROBABILITIES

LIFTOFF TO CENTAUR SEPARATION

Technical Report No. 82-1404

Prepared for

National Aeronautics and Space Administration Johnson Space Center Houston, Texas

Contract No. NAS 9-16259

Prepared by

James M. Hudson(NASA-CR-167549)DEVELCEMENT OF STS/CENTAURN82-19255FAILURE PROBABILITIES LIFTOFF TO CENTAURSEPARATION Final heport (Niggins (J. H.)N82-19255SEPARATION Final heport (Niggins (J. H.)UuclasUuclasCo., Redondo Beach, Calif.)82 pUuclasHC A05/ME A01CSCL 22B G3/15 09220

J.H. Wiggins Company 1650 South Pacific Coast Highway Redondo Beach, California 90277

February 1982

and the second and the second seco

ABSTRACT

This report presents the results of an analysis to determine STS/Centaur catastrophic vehicle response probabilities for the phases of vehicle flight from STS Liftoff to Centaur separation from the Orbiter. The analysis considers only category one component failure modes as contributors to the vehicle response mode probabilities. The relevant component failure modes are grouped into one of fourteen categories of potential vehicle behavior. By assigning failure rates to each component, for each of its failure modes, the STS/Centaur vehicle response probabilities in each phase of flight can be calculated. The results of this study will be used in a DOE analysis to ascertain the hazard from carrying a nuclear payload on the STS.

11

GLOSSARY

APU	Auxiliary Power Unit
CISS	Centaur Integrated Support System
ET	External Tank
ETS	External Tank Separation
GSE	Ground Support Equipment
IUS	Inertial Upper Stage
ME	Main Engine
MECO	Main Engine Cutoff
MMH	Monomethyl Hydrazine
MPS	Main Propulsion System
OMS	Orbital Maneuvering System
ORB	Orbiter
PBK	Payload-Bay Kit
RCS	Reaction Control System
RSCD	Range Safety Command Destruct
STAGING	SRB Separation
SRB	Solid Rocket Booster
SSME	 Space Shuttle Hain Engines
STS	Space Transport System
TPS	Thermal Protection System
TVC	Thrust Vector Control

• • • • • • •

. . . .

111

中國自己會會

. .

TABLE OF CONTENTS

ABSTRACT		11
GLOSSARY		111
1.	INTRODUCTION	1-1
2.	ASSUMPTIONS AND LIMITS OF STUDY	2-1
3.	VEHICLE RESPONSE MODES	3-1
4.	DATA BASE AND ASSIGNMENT OF FAILURE RATES	4-1
5.	VEHICLE RESPONSE MODE FAILURE PROBABILITY CALCULATIONS	5-1
6.	RESULTS	6-1
	REFERENCES	R-1
• :•.••	APPENDIX A - CENTAUR FAILURE MODES	·• .
	APPENDIX B - STS FAILURE MUDES - (LIFTOFF TO MELU)	

APPENDIX C - STS FAILURE MODES - (MECO TO CENTAUR DEPLOYMENT)

we be the transfer

1. 1. 1. 1. 1.

LIST OF TABLES

Number		Page
3-1	Vehicle Response Modes and Centaur Failure Mode Contributors	3-2
3-2	STS Vehicle Response Modes - Liftoff to MECO	3-3
3-3	STS Vehicle Response Modes - MECO to Payload Deployment	3-5
3-4	Combined STS/Centaur Vehicle Response Modes	3-6
6-1	Response Mode Failure Rates - Including Impact Of Centaur (Liftoff To Payload Deployment - Present Study Only)	6-2
6-2	Response Mode Failure Rates - Excluding Impact of Centaur	6-3
6-3	Estimated 'Loss of Control and Tumble' (SRB Case/ Nozzle Failure) Failure Rates (From Reference 11)	6-4
6-4	Response Mode Failure Rates - Excluding Impact Of Centaur (MECO To Payload Deployment)	6-5
6-5	Combined STS/Centaur Response Mode Failure Rates (Liftoff To Payload Deployment)	6-6
6-6	Item Failure Modes Relevant to Each Vehicle Behavior Mode - Liftoff to Payload Separation	6-8
APPEND	IX .	
A-1	Centaur Failure Modes Contributing To STS/Centaur Behavior Modes - Case Nos. 6, 10 and 11(a) of Table 3-4	
A-2	Failure Modes Contributing To STS/Centaur Behavior Mode Category 11(b) of Table 3-4	
A-3	Failure Modes Contributing To STS/Centaur Behavior Mode - Category 14 of Table 3-4	

• .'

. .

۰.

•••

B-1 Criticality 1 Component Failure Mode by Vehicle Response Mode Category

a a second s

LIST OF TABLES (continued)

Number

- C-1 STS Failure Modes (MECO To Centaur Deployment) -Contributing To STS/Centaur Behavior Mode Category 6 (MECO To ET Separation)
- C-2 STS Failure Modes (MECO To Centaur Deployment) -Contributing To STS/Centaur Behavior Mode Category 6 (Orbiter/ET Separation)
- C-3 STS Failure Modes (MECO To Centaur Deployment) -Contributing To STS/Centaur Behavior Mode Categories (6) and (10)
- C-4 STS Failure Modes (MECO To Centaur Deployment) -Contributing To STS/Centaur Behavior Mode Categories (12) and (13)

WT AND AT MANY STATES

1. INTRODUCTION

The purpose of this study is to determine the catastrophic failure probabilities, for the Galileo mission, for each identified STS/Centaur response mode from liftoff through Centaur deployment.

Only failures leading to loss of vehicle and hence the payload are considered. The results of this study will be used as input to an analysis of the risk associated with carrying a nuclear payload on the STS. This nuclear payload risk study is being undertaken by the DOE for NASA. The study approach is outlined by the following tasks:

- Assess which failure modes (in addition to those developed under Contract NAS 10-9374 for the STS) require to be included in the analysis. List such additional failure modes with the item or items of Centaur hardware involved. Only category one failure modes will be included and this will require reference to General Dynamics documentation and other references as necessary.
- Group failure modes according to their affect on the combined STS/Centaur vehicle in each of the relevant STS/Centaur flight phases.
- 3. Assign failure rates to each hardware component contributing to catastrophic failure in each of the flight phases, for each vehicle response mode.
- 4. Compute failure probabilities for each combined STS/Centaur vehicle response mode (resulting from a category one failure) from liftoff to Centaur separation from the Orbiter.

Section 2 outlines the limits of this study and lists the assumptions made in the analysis. Certain failures were considered to be outside the scope of this analysis since they would not pose a problem to the nuclear payload. Note that some of these excluded failures could play a significant role in the likelihood that the STS will return to base safely after the payload has been deployed. The failure definition, i.e., that which results in loss of payload, constrained which STS failures were to be included in the analysis. Once the payload has successfully been deployed, a re-entry failure of the STS is of no consequence.

Loss of payload is directly relatable to failure of components and/or systems of the STS/Centaur. Failure of certain critical components and systems could lead directly to catastrophic failure of the combined vehicle. This is the approach taken in this study, where component failures are grouped according to expected vehicle response modes. These catastrophic vehicle response modes are listed in Section 3.

The Reactor Safety Study, WASH-1400 [Reference 1], data base was used as a starting point for the development of failure rates as outlined in Section 4. The WASH-1400 study collected data from numerous sources including NASA data. It is important to point out that the WASH-1400 data base was merely used to obtain an indication of suitable bounds for component failure rates. Many of the components used on the STS/Centaur compromise pumps, pipes, valves, pressure vessels, etc., whose failure rates are expected to fall within the ranges for similar components as presented in the WASH-1400 document.

Section 5 outlines the method of calculation of the failure probabilities for each relevant STS/Centaur response mode which could compromise the nuclear payload. The method of calculation used certain simplifying assumptions which, given the expected low probability of event occurrence, are not likely to significantly affect the final results. A

previously-developed computer program was used in this stage of the analysis.

Finally, Section 6 presents the results of this combined STS/Centaur analysis.

The Suckey of

2. ASSUMPTIONS AND LIMITS OF STUDY

This study was limited to calculating STS/Centaur failure response probabilities from liftoff to Centaur-STS separation.

The list of potentially hazardous failures for the STS was obtained from the Critical Items List (CIL) documentation and various interfacing systems documentation, etc. [References 2, 3, 4, 5, 6 and 7]. This list of STS failure modes was defined in previous J.H. Wiggins Company studies under contract NAS 10-9374. The list of Centaur failure modes was drawn up from Centaur technical description documentation [References 8 and 9] and through consultation with General Dynamics personnel.

The CIL documents for the Orbiter, External Tank and SRBs listed failures as criticality 1, 2, 3, 1R, 2R or 3 which are defined as follows [Reference 2]:

CATEGORY	POTENTIAL EFFECT OF FAILURE
1	Loss of life or vehicle
1R	Redundant hardware element, the failure of which could cause loss of life or vehicle
2	Loss of mission; for GSE, loss of vehicle system
2R	Redundant hardware element, the failure of which could cause loss of mission
3	All others

Only Category 1 failures as defined here were included in this study, which is consistent with the earlier JHW analyses. There is a critical time period prior to liftoff which has not been included, i.e., from To-45 minutes to To, where liftoff occurs at To. This time period was

excluded by NASA from initial JHW studies and has been excluded from this analysis.

For the purposes of this study, the following assumptions were made:

- 1. Criticality 1 failures will contribute almost entirely to catastrophic events.
- Failure probabilities per unit time of STS components are lognormally distributed.
- 3. The omission of presently unrecognized criticality 1 failure modes will not significantly affect the final results.
- Common cause failures (sometimes referred to as common mode failures) will not significantly contribute to the hazard potential.

The implications of Assumption 4 are explained in detail in Reference 10.

3. VEHICLE RESPONSE MODES

For this study Centaur failure modes are considered to contribute to four categories of expected STS/Centaur behavior from liftoff to Centaur separation. These four categories are the following:

- External Tank punctured
- Fire and explosion in payload bay and Orbiter tumbles to earth (pricr to orbit insertion)
- Fire and explosion in payload bay on orbit
- Centaur recontact with Orbiter at separation

Table 3-1 outlines the relevant Centaur failure modes which contribute to each of the above combined vehicle response modes. The expected response modes of the STS, excluding the effects of Centaur, are outlined in Tables 3-2 and 3-3 and described in detail in References 10 and 11.

Table 3-4 defines all potential response modes of the combined STS/Centaur vehicle, from liftoff through Centaur deployment from the orbiter. The carrying of Centaur in the Orbiter payload bay does not change the vehicle response probabilities previously computed for case numbers 1, 2, 3, 4, 5, 7, 8 and 9 (see Reference 11) and 12 and 13 (see Reference 10) of Table 3-4. Cases 6, 10, 11 and 14 are either affected by, or result directly from, carrying Centaur in the Orbiter. The computed vehicle response probabilities for these latter four cases are the central requirements of this study. These results, along with those computed in earlier studies, are presented in Section 6.

A summary of the failure modes relevant to this study from liftoff to Centaur separation from the Orbiter are listed in Tables A-1 through A-3, B1 and C1 through C4 of the Appendix. (Tables B1 and C1 through C4 are extracted from References 11 and 10, respectively.) These tables Table 3-1. Vehicle Response Modes and Centaur Failure Mode Contributors

NO.	VEHICLE RESPONSE MODE	CRITICAL TIME PERIOD	CENTAUR FAILURE MODES CONTRIBUTING TO THE HAZARD ⁴
	EXTERNAL TAMK PUNCTURED	LIFTOFF TO ET SEPA- RATION (LIFTOFF TO MECO + 16 SECS.)	FAILUKES IN THE FOLLOWING SYSTEMS WHICH PROPAGATE TO THE EXTERNAL TANK?: • FUEL TANKS • PROPULSION • TANK PRESSURIZATION • PRESSURE REGULATION • PURGE • VENTING • FILL, DRAIN, & DUMP • INTERMEDIATE BULKHEAD RELIEF • CISS HELIUM SUPPLY • CENTAUR HELIUM SUPPLY • REACTION CONTROL • HYDRAULICS • PNEUMATIC VALVE CONTROL • CENTAUR SUPPORT STRUCTURES
2	FIRE & EXPLOSION IN PAYLOAD BAY - ORBITER TUMBLES TO EARTH	MECO + 16 SECONDS TO ORBIT INSERTION (END OMSI BURN)	SAME FAILURE MODES AS FOR NO. 1.
3	FIRE & EXPLOSION IN PAYLOAD BAY - ON ORBIT	 (a) END OMS 1 BURN TO OPENING OF PAYLOAD BAY DOORS (b) OPENING PAYLOAD BAY DOORS TO DE- PLOYMEN? 	 (a) SAME FAILURE MODES AS FOR NO. 1. (b) SAME FAILURE MODES AS FOR NO. 1 EXCLUDING THOSE WHERE H₂ TANK RUPTURES FIRST.
4	CENTAUR RECONTACT AT SEPARATION WITH ORBITER	DEPLOYMENT	• FAIL TO SEPARATE RISE-OFF FLUID DISCONNECTS

 ¹External tank and orbiter failure modes which contribute to this hazard (vehicle response - external tank ounctured) are contained in References 10 and 11.

 $^{2}\mathrm{A}$ fire and explosion in the payload bay, resulting from direct or propagated rupture of Centaur fuel tanks, could propagate directly through the base of the Orbiter, or indirectly via an OMS/RCS pod or the main engine compartment.

³This vehicle response mode is broken into two distinct time periods according to failure mode contributors. In the first time period (a), the payload bay doors are closed and all failure modes for case number 1 vehicl; response are relevant. Once the payload bay doors are opened, an atmosphere must be available to support a fire and explosion. If the hydrogen tank fails, this need not lead to a failure of the oxygen tank and so, with no atmosphere, the result is likely to be benign.

⁴Hydrogen tank failure modes have been excluded as contributors to vehicle response number 3(b), for the time period beginning when the payload bay doors open. With the payload bay doors closed, however, an atmosphere is available to support an explosion initiated by a hydrogen tank rupture. If the oxygen tank ruptures first then the hydrogen tank is likely to fail with a resulting mixing of hydrogen and oxygen. A suitable ignition source could cause this partially confined mixture of propellants to explode, even with the payload-bay doors open. Although there would be no pressure wave with an explosion in this environment, the large volume of propellants would result in an explosion of quite high yield which would impart considerable energy to fragmented components of the Centaur and Orbiter.

e Response Modes - Liftoff to MECO	FAILURE MODES CAUSING HAZARD	 I SRB IGNITION FAILURE HIGH THRUST IMBALANCE BETWEEN SRB'S 	 SRB MOTOR CASE BURNTHROUGH SRB MOZZLE BURNTHROUGH SRB INADVERTANT DESTRUCT 	 STRUCTURAL FAILURE AT THE AFT SRB/ET ATTACHDENT INADVERTANT DETONATION OF THE ATTACHMENT FITTING TPS FAILURE AT THE AFT SRB ATTACHMENT RING (100-124 SEC's OMLY) 	 STRUCTURAL FAILURE AT THE FORMARD SRU/ET ATTACHNENT INADVERTANT DETONATION OF THE FORMARD ATTACHNENT FITTING 	FIRE/EXPLOSION IN THE SAB AFT SKIRT (CAUSING LOSS OF SAB TYC)	 LOSS OF SRB TYC (SERVOACTUATOR FEEDBACK LINKAGE FRACTURE, JAPPHED PONER SPOOL OR MANUAL BYPASS AND LOCK VALVE, ETC.) SRB TPS FAILURE AT THE THERMAL CURTAIN HEAT SHIELD OR THE CABLE TRAY 	LOSS OF AVIONICS CAUSING SRB AND ME TVC LOSS M/O ME COLLISION (DUE TO AN EXPLOSION IN THE FORMARD RCS SYSTEM WHICH PENETRATES INTO THE INU COMPARTMENT OR THE RUPTURE OF AN AUXILIARY STORAGE TANK [OXYGEN, NITROGEN, ETC.]	 FIRE/EXPLOSION IN THE ME COMPARTMENT ME NOZZLE COLLISION DUE TO TVC LOSS FOR ONE ME FIRE/EXPLOSION IN THE OMS/RCS POO WHICH PROPAGATES TO THE ME COMPARTMENT FAILURE AT AN ORBITER/ET ATTACHMENT 	
Table 3-2. STS Vehicle	VEHICLE BEHAVIOR	TIPUYER ON PAD	LOSS OF CONTROL AND TUMBLE (SRB CASE OR NOZZLE FAILURE)	INADVERTANT SEPARATION AT AN SRB/ET AFT ATTACHMENT	INADVERTANT SEPARATION AT AN SRB/ET FOR- Mard Attachment	CORKSCREW MOTION (COMBINED PITCH, YAN, ROLL MOTION)			ET PUNCTURED	
	ко.		~ .	m		v		99 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200	0	

sponse Modes - Liftoff to MECO (Cont'd)	FAILURE MODES CAUSING HAZARD	 TPS FAILURE AND BLONDUT AT THE LH, TANK BARREL OR LOX TANK OGIVE (100-125 SEC ONLY) OR AT THE LH, TANK MATT DOME (LIFTOFF) TPS FAILURE AT THE SRB THERMAL CURTAIN HEAT SHIELD TPS FAILURE AT THE SRB THERMAL CURTAIN HEAT SHIELD TPS FAILURE AT THE SRB THERMAL CURTAIN HEAT SHIELD TPS FAILURE AT THE SRB THERMAL CURTAIN HEAT SHIELD TPS FAILURE AT THE SRB THERMAL CURTAIN HEAT SHIELD TPS FAILURE AT THE SRB THERMAL CURTAIN HEAT SHIELD TPS FAILURE AT THE SRB THERMAL CURTAIN HEAT SHIELD LOSS OF AVIONICS CAUSING LOSS OF ME TYC AMU COLLISION OF NOZZLES [SEE ALSO CASE 5, FAILURE MOCE 4] LOSS OF LH, TANK ULLAGE (JOINT, RELIEF VALVE, LINE, ETC, FAILURE); GROSS LEAKS OMLY RUPTURE OF THE COX LINE (THROUGH MECO) AND LH, LINE RUPTURE OF THE LOX LINE (THROUGH MECO) AND LH, LINE RUPTURE OF THE LOX LINE (THROUGH MECO) AND LH, LINE RUPTURE OF THE LOX LINE (THROUGH MECO) AND LH, LINE RUPTURE OF THE LOX LINE (THROUGH MECO) AND LH, LINE RUPTURE OF THE LOX LINE (THROUGH MECO) AND LH, LINE RUPTURE OF THE LOX LINE (THROUGH MECO) AND LH, LINE 	 TPS FAILURE AT THE ET INTERTANK STRUCTURAL FAILURE OF THE LOX TANK AFT DONE (NELD FAILURE, LOSS OF ULLAGE, ETC.) 	 FAILURE TO FRACTURE AT THE FORMARD OR AFT SRB/ET ATTACH- NEHT TPS FAILURE AT THE AFT SEPARATION MOTOR PREMATURE OPERATION OF THE FORMARD OR AFT SEPARATION MUTORS 	 LOSS OF 3 MES PUNCTURE OF THE EXTERNAL LH, FEED LINE (THROUGH MECO) RUPTURE UF THE LH2 LINE INTERNAL TO THE ORBITER (AFTER SRB STAGING ONLY) 	
Table 3-2. STS Vehicle Re	VEHICLE BEHAVIOR	•••••••••••••	ET INTERTANK AND/OR AFT LOX TANK DOME FAILURE	SRB RECONTACT AT SEPARATION	LOSS OF MAIN ENGINE (ME) PROPULSION	
	.0%	anders andere and a	2	20	σ	* • • • •

A STANCE

• • . .

Table 3-3. STS Vehicle Response Modes - MECO to Paylad Deployment

Case No.	VEHICLE BEHAVIOR	CRITICAL THE PERIOD	NECESSARY CONDITIONS
(a)	External Tank Punctured	MECD to ET separation (MECD to MECD + 16 seconds)	• Failures in Main Propulsion System releasing residual propellant into aft ME compartment and ignition from within NE compartment
			• LH ₂ tank rupture
			 Failures in the Orbiter/ET Separation System
			 Failures of forward or aft Orbiter ET attachments
			• Inadvertent operation of the PSCD
		During Orbiter/ET Separation Maneuver	• Failure of the forward on aft RCS system
		{MECO + 11 seconds to end of RCS separ- ation burn}	 Failures of the DMS systems which propagate and cause loss of RCS
		MECO to MECO • 11 seconds	 Aft RCS or QMS failures which propagate to HE compartment and cause fire and explosion with residual ME propellants
(b)	Loss of Maneuver- ability & Orbiter Tumbles to Earth	NECO to orbit inser- tion (end of OMS1 burn)	 Failures of forward RCS which pro- parate and cause failure of all 3 1MUs
			 Failures of aft RCS which procease and lead to loss of ONS in one cod (with lost capability to cross feed to other OMS engine).
• • •	enterne terre en en e		• Failures of OMS in one bod leith lost capability to cross feed to other OMS engine)
			 Failures of electrical power or atmosphere revitalization system tank sub-assemblies which promanate and cause failure of all 3 lines
(:)	Loss of Maneuver- ability on Orbit	End OHSI burn to payload deployment	• Same conditions as for (b)
(d)	Fire & Explosion in ME Comnartment and Orbiter Tumbles to Earth	HECO + 16 seconds to Orbit Insertion (end OMS1 burn)	• Failures in the aft RCS or 045 which propagate to the ME commartment causing fire and explosion

Never the second second

Table 3-4. Combined STS/Centaur Yehicle Response Modes

LIFTUFF THROUGH END OF STAGE 1 BOOST LIFTOFF THROUGH END OF STAGE 1 BOOST (a) END OMS 1 BURN TO OPENING PAY-LOAD DOORS ET SEPARATION TU ORBIT INSERTION LIFTOFF THROUGH ET SEPARATICA LIFTOFF THROUGH ET SEPARATION ٤ LIFTOFF THROUGH SRB STAGING LIFTOFF THROUGH SRB STAGING CRITICAL TIME PERIOD OPENING PAYLOAD DOORS CENTAUR DEPLOYED LIFTOFF THROUGH NECO SRB STAGING LIFTOFF (q) FIRE/EXPLOSICH IN PAYLOAD BAY - ORBITER Tumbles to Earth (See Tables 3-1 And 3-3* For Contributors) FIRE/EXPLOSION IN PAYLOAD BAY - ON ORBIT (SEE TABLE 3-1 FOR CONTRIBUTORS) INADVERTANT SEPARATION AT AN SRB/ET FORMARD ATTACHMENT (SRB BREAKS FREE IN A QUASI-STABLE EXTERNAL TANK PUNCTURED (SEE TABLES 3-1, 3-2, AND 3-3 FOR CUMTRIBUTORS) CORKSCREM MOTION (RESULTING FROM AN SRB TVC FAILURE) LOSS OF CONTROL AND TUMBLE (SRB CASE/NOZZLE ET INTERTANK AND/OR AFT LOX TANK FAILURE INADVERTANT SEPARATION OF AN SRB/ET AFT ATTACHMENT (SRB BREAKS FREE AND TUMBLES) VEHICLE RESPONSE MODE LOSS OF MAIN ENGINE PROPULSION SRB RECONTACT AT STAGING *TIPOVER ON PAD* FAILURE) MODE) 10. 11. ¥0. • 6 <u></u> <u>ہ</u> ~ ۍ م

Table 3-4. Combined STS/Centaur Vehicle Response Modes (Cont'd)

ł

CRITICAL TIME PERIOD	MECO TO END OF OMS 1 BURN	END OMS 1 BURN TO CENTAUR DEPLOY- Ment	CENTAUR DEPLOYMENT
VEHICLE RESPONSE MODES	LOSS OF MANEUVERABILITY AND ORBITER/CENTAUR TUMBLES TO EARTH	LOSS OF MANEUVERABILITY ON ORBIT	CENTAUR RECONTACT WITH ORBITER AT SEPA- RATIUN (SEE TABLE 3-1 FOR CONTRIBUTORS)
k0.	12.	13.	14.

*A fire and explosion in the Orbiter ME compartment is likely to spread to the payload bay resulting in the combined vehicle response mode as defined in case number 10 of this table. Therefore failure modes contributing to case number 4 of Table 3-3 (Orbiter only) will contribute to case number 10 for the combined Centaur/Orbiter vehicle.

describe which particular item failed, the numbers of items involved, the types of failure modes, the subsystems affected (critical time periods) upper and lower bounds on the item failure rates and any assumptions made.

Weighting factors have been included in Tables Al through A3, B1 and C1 through C4 to reflect the conditional probability that, given failure of an item of hardware, a criticality 1 condition will occur. For Tables C1 through C4, this is a departure from the approach taken in the earlier analysis (Reference 10). Because these conditional probabilities, provided by NASA, were considered to be realistic for the "Space Shuttle Range Safety Hazards Analysis" (Reference 11) it is reasonable to be consistent and include them for all hardware items. These conditional probabilities are specified in the tables of the Appendix using mnemonics as follows:

ACT: actual loss. The probability of a criticality 1 condition is 100 percent.

PROB: probable loss. The probability of a criticality 1 condition is between 5 and 100 percent, except for SRB components where a value between 10 and 100 percent was used.

POSS: possible loss. The probability of a criticality 1 condition is between 0 and 5 percent, except for SRB components where a value between 0 and 10 percent was used.

NONE: The probability of a criticality 1 condition is essential-

The weighting factor is used as a multiplier on the hardware failure rate to obtain the "critical" failure rate used in this analysis. The median value of the weighting factors were used (i.e., 10 to 100 percent is 55 percent).

4. DATA BASE AND ASSIGNMENT OF FAILURE RATES

WASH-1400's data sources included Department of Defense data, NASA data and general industrial operating experience as well as nuclear power plant data. The Reactor Safety Study assessed the data sources and defined the five percent lower bound and ninety-five percent upper bound on component failure rates and demand probabilities. The five percent lower bound indicates that five percent of failure rates are expected to be found below this value. The ninety-five percent upper bound value indicates that ninety-five percent of the failure rate values are expected to be found below this value. Thus, there is a ninety percent probability that the failure rate values will fall within the five percent and ninety-five percent bounds.

By comparing components of the STS/Centaur with those of similar components of the WASH-1400 data base, judgements were made as to the expected range of failure rates for STS/Centaur vehicle components. The expected upper and lower bounds of failure rates of components relevant to this study are included in Tables A-1 through A-3, B1 and C1 through C4 of the Appendix. Thus, the component failure rates are treated as random variables viewed as having a range of possible values. The exact nature of the variability of the component failure rates is described by the probability density function. The probability density functions for STS/Centaur component failure rates are assumed to be log normal distributions. This is in keeping with the variability in failure rates found by the Reactor Safety Study on analyzing data from mechanical components.

The log normal distribution, describing the variability in failure rates of components making up the STS/Centaur systems, is written mathematically as follows:

$$F(\lambda) = \frac{1}{\lambda \sigma \sqrt{2\pi}} \cdot \exp \left[-\frac{(1n\lambda - \mu)^2}{2\sigma} \right] \text{ for } \lambda > 0$$

Mode: $\lambda_{m} = \exp(\mu - \sigma^{2})$ Median: $\lambda_{0.5} = \exp(\mu) = \sqrt{\lambda_{\mu}\lambda_{g}}$ Mean: $\overline{\chi} = \exp(\mu + \sigma^{2}/2)$ Variance: $\beta^{2} = \exp(2\mu + \sigma^{2}) \cdot [\exp(\sigma^{2}) - 1]$

Where λ is the component failure rate in number of failures per a given time period; $\lambda_{\rm U}$ is the failure rate upper bound and $\lambda_{\rm L}$ is the failure rate lower bound.

The logarithms of the values of the random variables of a log normal distribution are normally distributed (i.e., belong to a normal or Gaussian distribution function). The skewedness of the log normal distribution allows one to account for rather high, or unlikely, component failure rates. The log normal distribution was therefore used to bound the expected failure rate values for STS/Centaur components. Failure rates were assumed to remain constant with time. In other words, e.g., a shift in the mean value of a failure rate for a component with time was not considered in this analysis. This assumes (a) that the incidence of burn in failures will not significantly affect the results and (b) that the incidence of wear-out failure will not significantly affect the results.

VEHICLE RESPONSE MODE FAILURE PROBABILITY CALCULATIONS

Since only category 1 failures are considered in this analysis, the failure rate for each STS/Centaur response mode can be calculated from the following Boolean expression:

$$X = X_1 \cup X_2 \cup X_3 \cup \cdots \cup X_n$$
 (1)

where X_i are the individual component failure rates for each response mode and U represents the union of events, i.e., plus in Boolean notation.

Expansion of this Boolean equation into probability form is obtained using the following expression:

$$P(X) = \sum_{i=1}^{n} P(X_{i}) - \sum_{i=2}^{n} \sum_{j=1}^{i-1} P(X_{i})P(X_{j}) + \sum_{i=3}^{n} \sum_{j=2}^{i-1} \sum_{k=1}^{j-1} P(X_{i})P(X_{j})P(X_{k})$$

- ... + (-1)ⁿ⁻¹ $\prod_{i=1}^{n} P(X_{i})$ (2)
$$P(X) = Sum of individual probabilities$$

- Sum of products of two at a time

+ Sum of products of three at a time

- etc.

± Product of all

For two components

5.

or

• •

$$P(X) = P(X_1) + P(X_2) - P(X_1AX_2)$$

(3)

where $P(X_1 \wedge X_2)$ is written as $P(X_2 / X_1) \cdot P(X_1)$

For independent events where failures X_1 and X_2 are not correlated

$$P(X) = P(X_1) + P(X_2) - P(X_1) \cdot P(X_2)$$
(4)

For small failure rates, terms such as $P(X_1) \cdot P(X_2)$ can be neglected.

Then

ì

$$P(X) = P(X_1) + P(X_2)$$
(5)

(6)

Neglecting 2nd and higher order terms in this analysis will have negligible effect on the final results, as the individual expected failure rates of STS/Centaur components are expected to be small (see Tables A-1 through A-3, B1, and C1 through C4 of the Appendix).

Equation (2) neglecting 2nd and higher order terms becomes

$$(x) = \sum_{i=1}^{n} P(x_i)$$

This is the form for P(X) used in this analysis.

The computer program developed under contract NAS 10-9374 was used to calculate the mean and 90% bounds of P(X) for each combined vehicle response mode from liftoff to Centaur-STS separation. Input to the program is the upper and lower bounds of each lognormally distributed component failure rate.

Each response mode failure probability can be presented as an a-priori probability or as an a posteriori probability. The a-priori value is an

unconditional probability and is only concerned with the event at time t i.e., it is the probability of failure in the interval t to t + dt without any regard to whether prior failure has occurred. The aposteriori probability is a conditional probability and is a more complete answer since it is calculated with regard to whether prior failure has occurred.

The failure probabilities/second as calculated by the program are the aposteriori failure probabilities. It will, however, be useful to quote these probabilities over the complete time period during which each response mode can occur. The equation for performing this calculation is derived in the following manner, assuming a negative exponential distribution for component mortality:

$$P_{failure} = \int_{T}^{T+t} f(T) dT = \int_{T}^{T+t} \lambda e^{-\lambda t} dT$$
$$= e^{-\lambda T} (1 - e^{-\lambda t})$$

Equation (7) is the a-priori probability of failure in the period T to T+t. This equation must be divided by the probability of survival up to time T to obtain the a-posteriori probability of failure.

(7)

Therefore

$$P_{\text{failure}} = \frac{e^{-\lambda T} (1 - e^{-\lambda t})}{e^{-\lambda T}} = 1 - e^{-\lambda t}$$
(8)

i.e., for the exponential distribution of mortality and constant failure rate λ , the equation is identical to that for the cumulative probability of failure from T=0 to T=t. In this analysis however, t is the time period during which each response mode can occur.

6. RESULTS

The results of this study are presented in Table 6-1. The results of the study covering flight phases from liftoff to MECO, which excludes the impact of Centaur failure modes, are presented in Tables 6-2 and 6-3 (taken from Reference 11). The results of the study covering flight phases from MECO to payload deployment, which also excludes the impact of Centaur failure modes, are presented in Table 6-4 (taken from Reference 10). Table 6-5 consolidated table for all flight phases, from liftoff through payload deployment, which includes the impact of carrying Centaur in the STS. Table 6-6 defines the item failure modes, in terms of the tables of the Appendix, relevant to each vehicle response mode.

All of these tables, 6-1 through 6-5, contain the conditional failure probabilities per second from liftoff to payload separation, i.e., the failure probabilities in the time period t to t+1 seconds given that a failure has not occurred prior to t. The probability values are presented as a mean with upper and lower bounds, consistent with the use of the lognormal distribution to describe the uncertainty in component failure rates. Given the nature of the uncertainty in an analysis of this nature, a point estimate value would prove to be less than useful.

The interval failure probabilities from liftoff to payload separation can be calculated using the failure rates of Table 6-5 and equation 8 of Section 5 where t is the time period in each interval. It is apparent from equation 8 that these interval probability values will increase with increasing value of t, i.e., the longer the interval, the higher the probability of failure. The interval failure probabilities have not been calculated here since, at the time of writing, the exact time values for the Galileo flight (with Centaur) were not known. (References 8 and 12 offer conflicting interval time values, from liftoff through payload deployment.) However, these interval failure probabilities can be calculated in a few minutes with the aid of a calculator.

Table 6-1. Response Mode Failure Rates - Including Impact Of Centaur

		NO. COMPONENT		FA	ILURI: RATES*	
NO.	FAILED VEHICLE RESPONSE MODE	FAILURE MODES	NO. OF		90% CONFIU	ENCE BOUNCE
			CONFUNERIS	PCAN	LOWER	UPPER
و	EXTERNAL TANK PUNCTURED D LIFTOFF THROUGH STAGING A STACTUC TUPOUCH MECO	269 263	994 901	4.4E-7 3 05-7	1.9E-7 1 7E-7	8.2'-7 7 15-7
	MECO TO START RCS SEPARATION BURN DURING RCS SEPARATION BURN	217 234	631 807	3.1E-7 4.6E-7	1.25-7 1.85-7 1.85-7	7.46-7
10	FIRE/EXPLOSION IN PAYLOAD BAY-ORBITER TUMBLES TO EARTH (FROM END OF RCS SEPARATION BURN TO ORBIT INSERTION)	190	261	3.2E-7	9.3E-8	6.3E-7
	FIRE/EXPLOSION IN PAYLOAD BAY - ON ORBIT E END OMS I BURN TO PAYLOAD BAY DOORS OPEN O GPENING OF PAYLOAD BAY DOORS TO CENTAUR DEPLOYED	170 135	456 363	2.6E-7 1.5E-7	7.8E-8 4.0E-8	5.7E-7 3.9E-7
14	CENTAUR RE-CONTACT WITH ORBITER AT SEPARATION**	2	4	3.8E-9	6.0E-10	1.1E-8

;

*FROBABILITY OF FAILURE PER SECOND (Except For #14) **PROBABILITY OF FAILURE PER EVENT

. .

.

Table 6-2. Response Mode Failure Rates - Excluding Impact of Centaur¹

. . 5

				نب	AILURE RATES	
سر این انگران	FAILED VEHICLE RESPONSE MODE	FAILURE MODES	NO. OF COMPONENTS	MFAN	90% CONFID	ENCE BOUND
					LOWER	UPPER
	TIPOVER ON PAD	7	14	3.3E-5**	1.6E-5 ^{**}	6.0E-5**
2.	LOSS OF CONTROL AND TUMBLE	· · · .	SEE TABL	E 6-3		
ы.	INADVERTANT SEPARATION AT AN SRB/ET AFT ATTACHMENT	·				
	 LIFTOFF TO 100 SECONDS 100 SECONDS TO STAGING 	ص ب	36	4.5E-9 5.3E-9	3 . 1E-9 3.6E-9	6.5E-9 7.4E-9
4.	INADVERTANT SEPARATION AT AN SRB/ET FORWARD ATTACHMENT	m . * -	8	1.5E-9	7.2E-10	2.4E-9
5.	CORKSCREW MOTION (RESULTING FROM AN SRB TVC FAILURE)	38	442	4.2E-7	2.3E-7	7.4E-7
.	EXTERNAL TANK PUNCTURED ² • LIFTOFF TO STAGING • STAGING TO MECO	. 66	538 445	2.0E-7 ~1.8E-7	8.4E-8 ~7.5E-8	4.6E-7 -4.1E-7
7.	ET INTERTANK AND/OR AFT LOX TANK FAILURE***	15	98	7.7E-8	2.6E-8	1.6E-7
ω	SRB RECONTACT AT SEPARATION	18	168	1.1E-5**	7.1E-6**	1.7E-5**
°6	LOSS OF ME PROPULSION • LIFTOFF TO STAGING • STAGING TO MECO	18 23	60 71	6.6E-9 3.4E-⊘	1.2E-9 3.9E-9	2.3E-8 1.2E-7
*PEOE *PEOE *THIS	BABILITY OF FAILURE PER SECOND. (EXCI BABILITY OF FAILURE PER EVENT. 5 MODE IS MUCH MORE LIKELY TO OCCUR 4 THE LOADS AND HEATING ARE HIGH.	EPT FOR RESPONSE DURING STAGE I FI	MODES 1 AND 8) LIGHT		AKEN FROM RE (Liftoff to M Contributes 1 [Able 6-1	EFERENCE 11. 4eco) 10 No. 6. of

د ـ ۲

	FAILURE RA	TE (1/SEC.)
TIME SPAN (SEC.)	CASE 1 (TOTAL PROBABILITY = 2 x 10 ⁻³)	CASE 2 (TOTAL PROBABILITY = 2 x 10 ⁻⁴)
0-10	7.2E-5	7.2E-6
10-70	1.9E-5	1.9E-6
70-125	2.6E-6	2.6E-7

Table 6-3. Estimated 'Loss of Control and Tumble' (SRB Case/Nozzle Failure) Failure Rates (From Reference 11)

<u>.</u>

Table 6-4. Response Mode Failure Rates - Excluding Impact Of Centaur¹ (MECO To Payload Deployment)

				FAILURE RATES	
FAILED VEHICLE RESPONSE MODE	FAILURE MODES	NO. OF		90% CONFIU	ENCE BOUND
	-	COMPUNENTS	REAN	LOWER	UPPER
 a. EXTERNAL TANK PUNCTURED² b. MECO TO START RCS SEPARATION BURN. b. DURING RCS SEPARATION BURN 	50 73	255 461	1.86-7 1.36-6	7.6E-8 5.5E-7	4.25-7 2.16-6
 D. LOSS CF MANUEVERABILITY & ORBITER TUMBLES TO EARTH D. MECO TO START RCS SEPARATION BURN D.URING RCS SEPARATION BURN** D.URING RCS SEPARATION BURN** END RCS SEPARATION BURN ** 	15 46	93 11 360	6.0E-8 2.2E-7	1.6E-8 - - - -	1.1E-7 4.6E-7
C. LOSS OF MANUEYERABILITY ON ORBIT (ORBITAL DECAY) © CMAS-1 COMPLETE TO PAYLOAD SEPARATION	46	360	2.2E-7	9-02-8	4.6E-7
 d. FIRE & EXPLOSION IN MAIN ENGINE COMPARTMENT³ e. End RCS SEPARATION BURN TO ORBIT INSERTION (CMS-1 COMPLETE) 	23	185	1.16-7	4.4E-8	3.06-7
*PROBABILITY OF FAILURE PER SECOND	¹ TAKEN FROM REFE	RENCE 10 (NECO	TO PAYLOAD	DEPLOYNENT)	•

6-5

****YALUES ARE INSIGNIFICANT**

³CONTRIBUTES TO NO. 10 OF TABLE 6-1

Ţ

²COMTRIBUTES TO NO. 6 OF TABLE 6-1

	Table 6-5. Response Mode Failure Kates - Includin	ng impact of ce	וורמתו זרוו האוו	10 1 41 10	a och olecur	
				FAI	LURE RATES*	
NO.	FILED VEHICLE RESPONSE MODE	O. CUMPUNENI AILURE MODES	NO. OF		90% CONFIDE	NCE BOUNCE
			COMPUNENTS	ur va	LONER	NPER.
	TIPOVER ON PAD	7	14	3.35-5**	1.6E-5**	6.0E-54
2.	LOSS OF CONTROL AND TUMBLE		SEE TABLE	6-3		
÷	IHADVERTANT SEPARATION AT AN SRB/ET AFT ATTACHMENT					• •
	 LIFTOFF TO 100 SECONDS 100 SECONDS TO STAGING 	un uo	3 4 36	4 .5E-9 5.3E-9	3.1E-9 3.6E-9	6.5E-9 7.4E-9
~	INADVERTANT SEPARATION AT AN SRB/ET FURWARD Attachment	m	Ð	1.5E-9	7.2E-10	2.4E-9
5.	CCRKSCREM MUTION (RESULTING FROM AN SRB TYC FAILURE)	38	442	4.25-7	2.3E-7	7.46-7
é.	EXTERNAL TANK PUNCTURED C LIFTOFF THROUGH STAGING C STACTOR THROUGH MECH	269 263	994 901	4.4E-7 3.9E-7	1.96-7 1.76-7	8.2E-7 7.7E-7
	© MECO TO START RCS SEPARATION BURN © DURING RCS SEPARATION BURN	217 234	631 807	3.1E-7	1.2E-7	7.46-7
7.	ET INTERTANK AND/OR AFT LOX TANK FAILURE***	15	36	7.75-8	2.6E-8	1.62-7
8.	SRB RECONTACT AT SEPARATION	18	168	1.15-5**	7.1E-6**	1.76-5
6	LOSS OF ME PROPULSION O LIFTOFF TO STAGING U STAGING TO MECO	18 23	60 71	6.6E-9 3.4E-8	1.2E-9 3.9E-9	2.3E-8 1.2E-7
						•

Table 6-5. Response Mode Failure Rates - Including Impact of Centaur (Liftoff To Payload Deployment) (Cont'd)

. . .

				FA	ILURE RATES*	
KO.	FAILED VEHICLE RESPONSE MODE	FAILURE MODES	NO. OF		901 CONFID	ENCE BOUNCE
					LOWER	UPPER
ġ	FIRE/EXPLOSION IN PAYLOAD BAY-ORBITER TUMBLES TO EARTH (FROM END OF RCS SEPARATION BURN TO CRBIT INSERTION)	130	561	3.2E-7	9.3E-8	6.3E-7
•	FIRE/EXPLOSION IN PAYLOAD BAY - ON ORBIT 9 END CMS 1 BURN TO PAYLOAD BAY DOGRS OPEN 9 OPENING OF PAYLOAD BAY DOORS TO CENTAUR 0EPLOYED	170 135	456 363	2.6E-7 1.5E-7	7.8E-8 4.0E-8	5.7E-7 3.9E-7
12.	LOSS OF MANEUVERABILITY & ORBITER TUMBLES TO Earth © MyECO TO START RCS SFPARATION RUPM	<u>.</u>	Ğ	0 V V	5 1	
	DURING RCS SEPARATION BURH** E END RCS SEPARATION BURH** COMPLETE	1 4 6	360	0.05-0 - 2.25-7	1.06-8 - 9.06-8	1.1t-/ 4.6E-7
13.	LOSS OF MAMEUVERABILITY ON ORBIT (ORBITAL DECAY)	<u>.</u>				
	6 045-1 COMPLETE TO PAYLOAD SEPARATION	46	360	2.26-7	9-05-8	4.65-7
14.	CENTAUR RE-CONTACT WITH ORBITER AT SEPARATION**	2	*	3.8E-9	6.0E-10	1.1E-8

*PROBABILITY OF FAILURE PER SECOND. (EXCEPT FOR RESPONSE MODES 1, 8 & 14) **PROBABILITY OF FAILURE PER EVENT. ***THIS MODE IS MACH MORE LIKELY TO OCCUR DURING STAGE I FLIGHT WHEN THE LOADS AND HEATING ARE HIGH.

Table 6-6. Item Failure Modes Relevant to Each Vehicle Behavior Mode - Liftoff to Payload Separation

					E A-3
	K	N/A	N/N	TABLE A2	N/A TABL
	N/A	N/A	TABLE AI	N/N	N/A
(NOT TO SCALE)	V/N	TABLE A1 TABLE C3	N/A	N/A	N/A
E FROM LIFTOFF	TABLE AI TABLE CI TABLE CI TABLE C2	V/N	N/N	N/A	N/N
INCREASING TIME	TABLE AI TABLE CI TABLE CI TABLE C3	N/N	N/A	H/A	N/A
	TABLE AL TABLE BL	V/N	N/N	N/A	, N/A
	TABLE AI TABLE BI	V /N	N/A	N/A	N/A
VEHICLE RESPONSE MODE	ę	9	11(a)	11(b)	14

2

It is worthwhile noting some interesting results as outlined in Tables 6-1 through 6-5. The first of these is that the Category 6 vehicle response mode probabilities, for the period liftoff through MECO, are roughly a factor of two higher with Centaur in the Orbiter payload bay as contrasted with an empty payload bay. This is evident from a comparison of the failure rates for case number 6 of Table 6-1 with case number 6 of Table 6-2.

The failure rates generated for case number 6, for the period MECO to completion of RCS separation burn, cannot be directly compared from the results of Table 6-1 and Table 6-4. Table 6-4, case (a), was generated under a previous contract (Reference 10) without the application of weighting factors on the component failure rates.* If weighting factors had been employed in this earlier study, the effect would have been to reduce the case (a) (External Tank Punctured) failure probabilities quite significantly. The application of weighting factors on the component failure rates, for this combined STS/Centaur study (but not in the earlier STS study from MECO to payload separation), accounts for the apparent anomally between the results of category 6 (Table 6-1) and case (a) of Table 6-4 (for the period during RCS separation burn).

A further comparison can be made between case number 10 of Table 6-1 and case (d) of Table 6-4. These are essentially the same cases, where number 10 of Table 6-1 is for the combined STS/Centaur vehicle and case (d) is for the STS only. (The failure modes contributing to case (d) of the earlier study contributed to case number 10 of this study for the combined vehicle. <u>All</u> component failure rates were assigned a weighting factor in this combined vehicle analysis.) The effect of carrying Centaur in the Orbiter is to increase the failure rate for case number

*The application of weighting factors was suggested by NASA, and implemented by the J.H. Wiggins Company, for the STS Range Safety Hazards Analysis (Reference 11). This analysis was completed about 21 months after the STS failure probabilities, from MECO to payload separation, were produced (Reference 10).

10 by a factor greater than two. This difference would be even more marked than is evident from a comparison of Tables 6-1 (case 10) and 6-4 (case (d)), if weighting factors had been applied to the component failure rates in the earlier analysis (case (d)).

Table 6-5 presents all fourteen combined STS/Centaur response mode failure rates from liftoff to payload deployment. This combined table is an amalgamation of Tables 6-1, 6-2 and 6-4.

Cases 12 and 13 of Table 6-5 present failure rates which were computed from an earlier analysis (Reference 10). As a consequence, and because transporting Centaur in the Orbiter did not impact cases 12 and 13, their probability values do not reflect the impact of weighting factors on the component failure rates. For cases 12 and 13 of Table 6-5, therefore, the failure rates quoted are likely to be high by a factor estimated between 2 and 5 (assuming the NASA weighting factors are valid).

One further point is worth noting: that is that the results presented in Table 6-5 do not include the impact of potential Spacecraft failure modes. Although the inclusion of Spacecraft failure modes was outside the scope of this study, their potential impact should be considered. On the positive side, however, the impact of Spacecraft failure modes on the final results, as presented in Table 6-5, is likely to be small.

It is important to note that no credit has been taken in this study for emergency procedures which could in certain circumstances mitigate the effects of certain component failure modes. These procedures will have increasing chances of success with success vely higher time periods in which action can take place. The time available for mitigating actions related to vehicle response modes 1 through 10 (Table 6-5) are relatively short and, given the nature of these vehicle failure modes, any action is likely to be unsuccessful. Mitigating actions are, however, likely to be highly relevant to vehicle behavior mode 13. The component failures listed for the aft RCS and OMS contributing to response mode 13 may, in certain circumstances, be circumvented by actions of the crew. Although it was not part of the objective of this study to consider mitigating actions, the results quoted must be considered against this backdrop.

REFERENCES

- "Reactor Safety Study WASH-1400. An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants." United States Atomic Energy Commission. August 1974.
- 2. "Space Shuttle External Tank Critical Items List." MMC-ET-RA-04b-A. November 1977.
- 3. "Critical Items List for the Space Shuttle Solid Rocket Booster." SE019-127-2H. November 1977.
- 4. "Orbiter 102 Critical Items List, Revision B." JSC 10686. April 1979.
- 5. "Shuttle Element Interface Functional Analysis for the Space Shuttle Main Engine/Orbiter." SD75-SH-0200A.
- 6. "Shuttle Element Interface Functional Analysis for the Solid Rocket Boosters/ET Orbiter." SD75-SH-0130A.
- 7. "Shuttle Element Interface Functional Analysis for the ET/Orbiter." SD75-SH-0130A.
- 8. "Shuttle/Centaur Orientation At NASA LeRC." General Dynamics Convair Division. May/June 1981.

9. "Centaur F Technical Description, A High Performance Upper Stage For The NASA Space Transportation System." Report CFTD, General Dynamics Convair Division. Sept./Oct. 1981.

- "Development Of STS Failure Probabilities MECO To Payload Separation." Technical Report No. 79-1359, Prepared for National Aeronautics And Space Administration, J.H. Wiggins Company, Redondo Beach, CA. October 1979.
- "Space Shuttle Range Safety Hazards Analysis." Technical Report No. 81-1329. Prepared for National Aeronautics and Space Administration. J.H. Wiggins Company, Redondo Beach, CA. July 1981.
- 12. "Flight 16 Conceptual Flight Profile for the Galileo Mission." 79-FM-14, JSC 14789. April 1979.
APPENDIX A

CENTAUR FAILURE MODES (Liftoff to Centaur Deployment) (Contributing To Combined STS/Centaur Behavior Modes Nos. 6, 10, 11(a), 11(b) and 14, As Outlined In Table 3-4)

The failure rates quoted in this Appendix are in units of hour,⁻¹ unless otherwise stated

· · . · · · · · · · . · · ·

Table A-1. Centaur Failure Modes Contributing To STS/Centaur Behavior Modes -Categories 6, 10 and 11(a) (Page 1 of 8)

1.

					FAILURE RATE	
NO.	SYSTEM	ITEM	ITEMS	FAILURE HODE	۶. × × × × × × × × × × × × × × × × × × ×	FACTOR
ĩ	TAMK STRUCTURE	EVEINDRICAL LH2 TANK WELDS		WELD RUPTURE	1.00E-07 1.00E-10	ACT
2	TANK STRUCTURE	FORWARD BULKHEAD WELDS	12	WELD RUPTURE	1.00E-07 1.00E-10	ACT
3	TANK STRUCTURE	FORWARD TANK RING WELDS	2	WELD RUPTURE	1.00E-07 1.00E-10	ALT
4	TAME STRUCTURE	AFT LH ₂ TANK RING WELDS	2	WELD RUPTURE	1.00E-07 1.00E-10	ACT
5	TANK STRUCTURE	LH ₂ TANK CONICAL TRANSITION MEEDS	11	WELD RUPTURE	1.00E-07 1.00E-10	ACT
Ó	TANK STRUCTURE	LO2 TANK AFT RINGS WELDS	4	WELD RUPTURE	1.00E-07 1.00E-10	ACT
7	TANK STRUCTURE	CYLINDRICAL LOZ TANK WELDS	2	WELD RUPTURE	1.00E-07 1.00E-10	ACT
8	TAMK STRUCTURE	DOUBLE WALLED INTERMEDIATE BULKHEAD WELDS	24	WELD RUPTURE	1.00E-07 1.00E-10	ACT
9	TANK STRUCTURE	AFT BULKHEAD WELDS	8	WELD RUPTURE	1.00E-07 1.00E-1J	ACT
1ú	TANK STRUCTURE	FORWARD DOOR WELD	1	WELD RUPTURE	1.00E-07 1.00E-10	ALT
11	TANK STRUCTURE	LM2 TANK ENGINE FEED FITTING	1	RUPTURE OF FITTING OR AT TANK TO FITTING WELD	1.00E-05 1.00E-06	• • ACT
12	TANK STRUCTURE	LO2 TANK ENGINE FEED FITTING	1	RUPTURE OF FITTING OR AT TANK TO FITTING WELD	1.00E-05 1.00E-06	ALT
13	PROPULSION SYSTEM ²	LO ₂ FEED DUCT ³ (FROM TANK TO LO ₂ PRE-VALVE)	L SET	RUPTURE OR GROSS LEAKAGE	2.00E-04 2.00E-07	ACT
14	PROPULSION SYSTEM	LO2 FEED DUCT PRE-VALVE	1	RUPTURE OR GROSS LEAKAGE	2.00E-u7 2.00E-09	ACT
15	PROPULSION SYSTEM	LH2 FEED DUCT ³ (FROM TANK TO LH2 PRE-VALVE)	1 SET	RUPTURE OR GROSS LEAKAGE	2.00E-04 2.00E-07	ACT
16	PROPULSION SYSTEM	LH2 FEED DUCT PRE-VALVE	ì	RUPTURE OR GROSS LEAKAGE	2.00E-07 2.00E-09	K T
17	TANK PRESSURIZATION SYSTEM [®]	FLEXIBLE LINE (BETWEEN CISS & DEPLOYMENT ADAPTER)	1	GROSS RUPTURE	2.00E-05 2.00E-06	PROE
10	TANK PRESSURIZATION SYSTEM	LINES & FITTINGS (4000 PSI SECTION UP TO ORIFACE IN DE- PLOYMENT ADAPTER)	1 SET	GROSS RUPTURE	2.00E-04 2.00E-07	P2(3
19	TANK PRESSURIZATION SYSTEM	MANUAL SHUTOFF VALVE (IN DE- PLOYMENT ADAPTER)	2	GROSS RUPTURE	1.00E-07 1.00E-09	PROB
20	TANK PRESSURIZATION SYSTEM	DEPLOYMENT ADAPTER FILTER	1	GROSS RUPTURE	1.00E-05 1.00E-08	PRUL
21	TANK PRESSURIZATION SYSTEM	PILOT OPERATED SOLENDID VALVE (IN DEPLOTMENT ADAPTER)	20	GROSS RUPTURE	1.00E-07 1.00E-09	PRCB
22	TANK PRESSURIZATION SYSTEM	DRIFACE (IN DEPLOYMENT ADAPTER)	6	GROSS RUPTURE	1.00E-07 1.00E-09	PRÓB
23	TANK PRESSURIZATION SYSTEM	LINES & FITTINGS (BETHEEN DRIFACES & DISCONNELT PAHELS << 4000 PSI)	1 SET	GROSS RUPTURE	5.002-05 5.002-00	POSS .
24	TANK PRESSURIZATION SYSTEN	FLEXIBLE LIVE (BETWEEN CENT- AUR & DEPLOYMENT ADAPTER)	3	GROSS RUPTURE	1.00E-05 1.00E-08	POSS

Table A-1. Centaur Failure Modes Contributing To STS/Centaur Behavior Modes -Categories 6, 10 and 11(a) (Page 2 of 8)

	VEHICLE AND SUB-	-	NO.		FAILURE RATE	WEIGHTING
NO.	SYSTEM	1 TEM	LTEMS	FAILURE MODE	λ _μ , λ _ξ	FACTOR
25	TANK PRESSURIZATION SYSTEM	OXIDIZER & FUEL DISCONNECTS	3	GROSS. RUPTURE	1.00E-U7 1.00E-U9	POSS
26	TANK PRESSURIZATION SYSTEM	CHECK VALVE {LO2 TANK SIDE IN CENTAUR}	1	RUPTURE OR GROSS LEAKAGE ⁵	2.00E-07 2.00E-09	ACT
27	TANK PRESSURIZATION SYSTEM	CHECK VALVE (LH ₂ TANK SIDE IN CENTAUR)	1	RUPTURE OR GROSS LEAKAGE ⁵	2.00E-07 2.00E-09	ACT
2â	TANK PRESSURIZATION SYSTEM	CHECK VALVES (FURTHEST FROM LO2 & LH2 TANKS)	2	GROSS RUPTURE	1.00E-07 1.00E-09	POSS
29	TANK PRESSURIZATION SYSTEM	ORIFACES (IN CENTAUR LO2 TANK SIDE)	2	RUPTURE OR GROSS LEAKAGE ⁵	2.00E-07 2.00E-09	ACT
30	TANK PRESSURIZATION SYSTEM	ORIFACES (IN CENTAUR LH ₂ TANK SIDE)	4	RUPTURE OR GROSS LEAKAGE ⁵	2.00E-07 2.00E-09	ACT
31	TANK PRESSURIZATION SYSTEM	PILOT OPERATED SOLENOID VALVE (LO2 TANK SIDE NEAREST ORIFACE)	2	RUPTURE OR GROSS LEAKAGE ⁵	2.00E-07 2.00E-09	ACT
32	TANK PRESSURIZATION SYSTEM ⁶	PILOT OPERATED SOLENDID VALVE (LH ₂ TANK SIDE)	6	RUPTURE OR GROSS LEAKAGE ⁵	2.00E-07 2.00E-09	ACT
33	TANK PRESSURIZATION SYSTEM	LINES & FITTINGS (FROM LO2 TANK-TO IST SOLENOID VALVE & IST CHECK VALVE)	1 SET	RUPTURE OR GROSS LEAKAGE ⁵	2.00E-04 2.00E-07	ACT
34	TANK PRESSURIZATION SYSTEM	LINES & FITTINGS (FROM LH ₂ TAWK TO IST SOLENDID VALVE & IST CHECK VALVE)	1 SET	RUPTURE OR GROSS LEAKAGE ⁵	4.00E-04 . 4.00E-07	ACT
35	TANK PRESSURIZATION SYSTEM	PILOT OPERATED SOLENOID VALVES (TWO VALVES ON SACH TANK SIDE FURTHEST FROM ORI- FACES)	4	GROSS RUPTURE	1.00E-07 1.00E-09	POSS
36.	TANK PRESSURIZATION SYSTEM	CHECK VALVES (NEAREST LH2 TANK ON GH2 CHARGE LINE)	2	RUPTURE OR GROSS LEAKAGE ^S	2.00E-07 2.00E-09	ACT
37	TANK PRESSURIZATION System	ORIFACE (BETWEEN LH2 PRESSURIZATION LINE & GM2 CHARGE LINE)	Ł	RUPTURE OR GROSS LEAKAGE ⁵	2.00E-07 2.00E-09	ACT
38	TANK PRESSURIZATION SYSTEM	LO2 TANK PRESSURE TRANSDUCERS & FITTINGS	5	RUPTURE OR GROSS LEAKAGE ⁵	2.00E-U5 2.00E-08	ACT
37	TANK PRESSURIZATION SYSTEM	LH2 TANK PRESSURE TRANSDUCERS 8 FITTINGS	5	RUPTURE OR GROSS LEAKAGE ⁵	2.00E-05 2.00E-08	AUT
4J	CISS PRESSURE REGU- LATION SYSTEM ⁴ , ⁰	CISS MANUAL SHUTOFF VALVES	2	GROSS RUPTURE	1.00E-07 1.00E-09" -	PRúp
41	CISS PRESSURE REGU- LATION SYSTEM	CISS FILTER	1	GROSS RUPTURE	1.00E-05 1.00E-08	PRCS
42	CISS PRESSURE REGU- LATION SYSTEM	CISS DISCONNECT	1	GROSS RUPTURE	1.00E-07 1.00E-09	PROB
43	CISS PRESSURE REGU- LATION SYSTEM	CISS LINES & FITTINGS (UP- STREAM OF REGULATORS)	1 SET	GROSS RUPTURE (DETWEEN REGU- LATOR & IST SOLENOID VALVE)	1.00E-04 1.00E-07	PRJ:
44	CLSS PRESSURE REGU- LATION SYSTEM	CISS SOLEWOID OPERATED VALVES (UPSTREAM OF REGULATORS)	3	GROSS RUPTURE (VALVES HEAREST TO REGULATORS)	1.00E-07 1.00E-09	PROB
45	CISS PRESSURE RECU- LATION SYSTEM	CISS CHECK VALVES	6	GROSS RUPTURE	1.00E-07 1.00E-09	. POSS
46	CISS PRESSURE REGU- LATION SYSTEM	CISS PRESSURE TRAHSDUCERS & FITTINGS	3	GROSS RUPTURE	1.00E-05 1.00E-Jó	POSS
47	CISS PRESSURE REGU- LATION SYSTEM	CISS REGULATORS	3	GROSS RUPTURE	1.002-07	PROG

Table A-1. Centaur Failure Modes Contributing To STS/Centaur Behavior Modes - Categories 6, 10 and 11(a) (Page 3 of 8)

	VENTELE AND END.		***		FAILURE RATE	
NO.	SYSTEN	1 TE M	I TEMS	FATLURE HODE	م. عد ب _{ال} د	FACTOR
45	CISS PRESSURE REGU- LATION SYSTEM	CISS LINES & FITTINGS (DOWN- STREAM OF REGULATORS)	1 SET	GROSS RUPTURE (FROM REGU- LATOR TO LAST SET OF PARAL- LEL VALVES)	2.00E-04 2.0UE-07	POSS
49	CISS PRESSURE REGU- LATION SYSTEM	CISS SOLENOID OPERATED VALVES (DOWNSTREAM OF REGULATORS)	2	GROSS RUPTURE (VALVES NEAREST TO REGULATORS)	1.00E-07 1.00E-09	P055
50	CISS PRESSURE REGU- LATION SYSTEM	CISS/DEPLOYMENT ADAPTER FLEXIBLE LINE	1	GROSS RUPTURE	1.00E-05 1.00E-08	P 055
÷1	CISS PRESSURE REGU- LATION SYSTEM	CISS SOLENOID VALVES (UP- STREAM OF REGULATORS)	3	GROSS RUPTURE (VALVES Furthest from reguators)	1.00E-07 1.00E-09	PROB
52	CISS PRESSURE REGU- LATION SYSTEM	CISS SOLENOID VALVES (DOWN- STREAM OF REGULATORS)	3	GROSS RUPTURE (VALVES FURTHEST FROM REGULATORS)	1.00E-07 1.00E-09	P055
53	CISS PRESSURE REGU- LATION SYSTEM	CISS LINES & FITTINGS (UP- STREAM OF REGULATORS)	1 SET	GROSS RUPTURE (FROM He SUPPLY TO 1ST SET OF PARALLEL VALVES)	1.00E-04 1.00E-07	PRÙB
5 4	CISS PRESSURE REGU- LATION SYSTEM	CISS LINES & FITTINGS (DOWN- STREAM OF REGULATORS)	1 SET	GROSS RUPTURE (FROM LAST SET OF PARALLEL VALIES TO CISS/ DEPLOYMENT ADAPTER FLEXIBLE LINE)	1.00E-04 1.00E-07	POSS
55	PURGE SYSTEM ⁹	HE PURGE LIKES TO 28 Vdc RECIRC PUMP, MOTORS	2 SETS	RUPTURE OR LEACAGE AND LOSS OF MOTOR PURGE ^{TO} (LINE FROM ORIFACE IN PNEUMATIC SYSTEM TO MOTOR}	2.00E-04 2.00E-07	P055
56	PURGE SYSTEM	CISS FLEXIBLE LINES	2	GROSS RUPTURE	1.00€-05 1.00Е-08	POSS
57	PURGE SYSTEM	DEPLOYMENT ADAPTER SOLENOID VALVES	15	GROSS RUPTURE (1ST SET OF PARALLEL VALVES TO INSULA- TION & ENGINE PURGES AND ALL VALVES TO LO2/LH2 FILL/DRAIN/ VENT)	1.00E-07 1.00E-09	Puss
58	Purge system	DEPLOYMENT ADAPTER LINES & FITTINGS (BETHEEN CISS/DE- PLOYMENT ADAPTER FLEX LINE & IST SOLENOID VALVES)	L SET	GROSS RUPTURE	5.00E-05 5.00E-08	Poss
59	PURGE SYSTEM	DEPLOYMENT ADAPTER LINES & FITTINGS (CONMECTING SOLE- NOID VALVES, DRIFAGES, CHECK VALVES ETC.)	1 SET	GROSS RUPTURE	4.00E-04 4.00E-08	ذدبP
6.	PURGE SYSTEM	DEPLOYMENT ADAPTER LINES & FITTINGS (BETWEEN ORIFACES & FLEXIBLE LINE TO TANK IN- SULATION)	1 SET	GROSS RUPTURE	1.00E-04 1.00E-08	PUSS
61	PURGE SYSTEM	DEPLOYMENT ADAPTER LINES & FITTINGS (BETWEEN CRIFACES & ENGINE PURGES)	L SET	GROSS RUPTURE	1.00E-34 1.00E-38	Püss
62	PURGE SYSTEM	DEPLOYMENT ADAPTER FLEXIBLE LINE (TO ENGINE PURGE)	1	GROSS RUPTURE	1.00E-J5 1.00E-J8	P055
63	PURGE SYSTEM	DEPLOYMENT ADAPTER FLEXIBLE LINE (TO TANK INSULATION)	1	GROSS RUPTURE	1.00E-05 1.00E-08	PộS3
64	PURGE SYSTEM	DEPLOYMENT ADAPTER TANK IN- SULATION DISCONNECT	1	GROSS RUPTURE	1.00E-07 1.00E-09	PUSS
65	PURGE SYSTEM	CENTAUR LINES & FITTINGS (TO LO2 & LH2 TAMK PRESSURIZA- TION LINE, LO2 YENT STAND PIPE, LO2 TAMK PRESSURE TRANSDUCERS LTC.)	1 SET	RUPTURE OR LEAKAGE	4.002-04 4.002-07	ALT

Table A-1. Centaur Failure Modes Contributing To STS/Centaur Behavior Modes - Categories 6, 10 and 11(a) (Page 4 of 8)

ï

4

!]

					FAILURE RATE	
NO.	SYSTEM	ITEN	NO. I TEMS	FAILURE MODE	λ _μ , λ _Ε	WEIGHTING FACTOR
ÓÓ	PURGE SYSTEM	CENTAUR ORIFACES (TO LO, TANK PRESSURE TRANSDUCERS, ETC.)	4	RUPTURE OR LEAKAGE	2.00E-07 2.00E-09	ACT
67	PURGE SYSTEM	CENTAUR ORIFACE (BETWEEN PYRO VALVE AND INSULATION PURGE LINE)	1	GRUSS RUPTURE	1.00E-07 1.00E-09	POSS
00	PURGE SYSTEM	CENTAUR ORIFACE (TO HYDRAU- LIC RECIRC. MOTOR PURGE)	2	GROSS RUPTURE	1.00E-07 1.00E-09	POSS
69	PURGE SYSTEM	CENTAUR CHECK VALVE (NEAREST TO LO, TANK PRESSURE TRANS- DUCERS)	1	RUPTURE OR LEAKAGE	2.00E-07 2.00E-09	ACT
79	PURGE SYSTEM	CENTAUR CHECK VALVE (FURTHEST FROM LO2 TAMK PRESSURE TRANSDUCERS)	1	GROSS RUPTURE	1.00E-07 1.00E-09	POSS
- 71	PURGE SYSTEM	CENTAUR PYRO OPERATED VALVE (TO PRESS. TRANS. PURGE, ETC.)	1	GROSS RUPTURE	1.00E-07 1.00E-09	P055
72	PURGE SYSTEM	CENTAUR SOLENOID OPERATED VALVE (TO PRESSURE TRANS. PURGE, ETC.)	2	RUPTURE OR LEAKAGE	2.00E-07 2.00E-09	ACT .
73	PURGE SYSTEM	CENTAUR SOLENDID CONTROLLED SELF REGULATING VALVE (TD LOZ-VENT STAND-PIPE)	1	GROSS RUPTURE	1.00E-07 1.00E-09	POSS
74	PURGE SYSTEM	LH, TANK, INSULATION PURGE VENT, AP TRANSDUCERS	3	GROSS RUPTURE	1.00E-05 1.00E-08	PCSS
75	PURGE SYSTEM	LH2 TANK, INSULATION PURGE VENT, RELIEF VALVES	2	GROSS RUPTURE	1.00E-07 1.00E-09	دَدْت ⁹
6	PURGE SYSTEM	LH, TANK, INSULATION PURGE VENT, LINES & FITTINGS	1 SET	GROSS RUPTURE	1.00E-04 1.00E-07	PUSS
77	VENT SYSTEMS ¹²	LH, TANK SELF REGULATING VERT VALVE	1	RUPTURE OR LEAKAGE	2.00E-07 2.00E-09	ACT
70	VENT SYSTEMS	LH2 PHEUMATIC OPEN, SPRING- LOAD CLOSED, BALL VALVE	1	RUPTURE OR LEAKAGE	2.00E-07 2.00E-09	ALT
79	VENT SYSTEMS	LINES & FITTINGS (BETWEEN LM2 TANK & MECHANICAL VENT VALVES)	1 SET	RUPTURE OR LEAKAGE	5.00E-05 5.00E-08	ACT
60	VENT SYSTEMS	LH2 TANK THROTTLING REGU- LATORS	2	RUPTURE OR LEAKAGE	2.00E-07 2.00E-09	ALT
8 1	VENT SYSTEMS	LH, TANK THERMO VENT SYSTEM SHUTOFF VALVES	2	RUPTURE OR LEAKAGE	2.00E-07 2.00E-09	ACT
82	VENT SYSTEMS	LINES & FITTINGS (BETWEEN LH ₂ TANK HX & VALVES)	3 SETS	RUPTURE OR LEAKAGE	5.00E-05 5.00E-08	AUT
83	VENT SYSTEMS	LH2 TANK 3-WAY PNEUMATIC VALVES	2	RUPTURE OR LEAKAGE	2.00E-07 2.00E-09	Aû*
64	VENT SYSTEMS ¹³	LINES & FITTINGS (BETWEEN LH ₂ vent valves ' disconnect)	1 SET	RUPTURE OR LEAKAGE	5.00E-05 5.00E-08	POSS
85	VENT SYSTEMS	LH ₂ TANK HEAT EXCHANGER	1	FAILURE OF HX TANK NOUN (14G	3.00E-08 3.00E-11	PRCà
86	VENT SYSTEMS	LH, TAWK ELECTRICALLY DRIVEN PUAP	1	FAILURE OF PUMP OR MOTOR TANK MOUNTINGS	3.00E-08 3.00E-11	PRUD
87	VENT SYSTEMS	LH2 TANK VENT DISCONNECT	1	RUPTURE OR LEAKAGE	2.00E-07 2.00E-09	PUSS

Table A-1. Centaur Failure Modes Contributing To STS/Centaur Behavior Modes - Categories 6, 10 and 11(a) (Page 5 of 8)

				• · · · ·	FAILURE RATE	unte, Stur
ND.	VENICLE AND SUB- SYSTEM	ITEN	NO. ETEMS	FAILURE HODE	Ny Ne	FACTOR
68	VENT SYSTEMS	LD, TAMK SELF REGULATING VENT VALVE	1	AUPTURE OR LEAKAGE	2.00E-07 2.00E-09	ACT
89	VENT STSTEMS	LO, TANK PNEUMATIC OPEN. SPRING-LOAD CLOSED. BALL VALVE	1	RUPTURE OR LEALAGE	2.00E-07 2.00E-09	ACT
94	VENT SISTERS	LINES & FITTINGS (BETNEEN LO, TANK & MECHARICAL VENT VACVES)	1 SET	RUPTURE OR LEAKAGE	1.00E-05 5.00E-07	ACT
91	vent systems .	LOS TANK ELECTRICALLY DRIVEN PUMP	1	FAILURE OF PUNP OR NOTOR TANK NOUNTING	5.00E-06 6.00E-11	Paue
92	VENT SYSTEMS	LH, TANK VENT SYSTEM CISS TELESCOPING LINE	i .	RUPTURE OR LEAKAGE	2.00E-05 2.00E-38	P055
43	VENT SYSTEMS	LN, TAMA VENT SYSTEM ORBITER 1307 BUCKMEAD FLEXIBLE LINE	1	RUPTURE OR LEANAGE	2.00E-05 2.00E-08	4204
94	VENT SYSTEMS	LH, TAM VENT SYSTEM ORBITER MID-BOOY FLEXIBLE LIME	ì	RUPTURE OR LEANAGE	2.00E-05 2.00E-08	POSS
95	VENT STATEMS	LM, TANK VENT SYSTEM ORBITER 1307 BULKMEAD DISCONNECT	1	RUPTURE OR LEARAGE	2.00E-07 2.00E-09	P055
96	VENT STSTEMS	LH, TAMA VENT SYSTEM ORBITER NID-BODY DISCOMMECT	1	RUPTURE OR LEAKAGE	2.00E-07 2.00E-09	P055
9 7	VENT SYSTEMS	LH, TANK VENT SYSTEM CISS PHEJMATIC SHUTOFF BALL VALVES	٩	RUPTURE OR LEALAGE	2.00E-07 2.00E-09	*255
49	VENT SYSTEMS	LINES & FITTINGS (BETNEEN LM, VENT SYSTEM CISS VALVES & FUEL DISCONNECT PANEL FLEX. LINE	\$ SETS	RUPTURE OR LEALAGE	5.00E-05 5.00E-08	63C4
99	vent systems	LINES & FITTINGS (BETHEEM CISS LM, SHUTOFF FALVES & 1307 BUCKHEAD FLEX, LINE	1 SET	RUPTURE OR LEARAGE	5.00E-05 5.00E-00	₹
è	vent systems	LINES & FITTINGS (BETWEEN CISS LM ₂ Shutoff Valves & Orbiter Mid-Body Vent}	1 SET	RUPTURE OR LEANAGE	\$.008-05 \$.008-06	Pù55
- 191 -	FILL DRAID OWN	ENA TANK PYRO SHUTOFF VALVES		RUPTURE OR LEAKAGE	1.00e-07 1.00e-04	A; 7
152	FILL-ORAIN ORUMP Statem	LINES & FITTINGS (BETWEEN LN2 TAME AND PIRG SHUTOFF VALVES)	1 SET	RUPTURE OR LEAANGE	7.00E-05 7.00E-08	A1* . *
103	FILL DRAIN DUMP SYSTEM	LH, TANK DUMP LINE QUICK- DISCONNECT	1	RUPTURE OR LEAKAGE	1.00E-07 1.00E-09	A.; *
104	FILL ORAIN DUMP STSTEM	LOZ TANK PYRO SHUTOFF VALVES	2	RUPTURE OR LEANAGE	1.00E-07 1.00E-09	AL*
105	FILL ORAIN OUMP Stotém	LINES & FITTINGS (BETWEEN LO, TANK AND PYRO SHUTOFF VALVE) -	1 587	RUPTURE OR LEANAGE	7.00E-05 7.00E-08	ACT .
lus	FILL ORAIN DUMP SYSTEM	LD, TANK DUMP LINE QUICK- DISCOMMECT	1	RUPTURE OR LEARAGE	1.00E-07 1.00E-09	ALT *
147	INTERMEDIATE BULK- MEAD RELIEF SYSTEM	PRESSURE TRANSDUCERS	3	RUPTURE OR LEALAGE	2.00E-05 2.00E-06	ALT
lue	INTERMEDIATE BULK- HEAD RELIEF SYSTEM	CHECK VALVES	2	RUPTURE OR LEARAGE	2.00E-07 2.00E-09	ALT
109	INTERMEDIATE BULK- NEAD RUILE SYSTEM	DISCONNECT (AT AFT FUEL FANEL)	1	RUPTURE OR LEARNEE	2.001-07 1.001-09	A.T -

and an an and an an an area and an

وتشتاء والبابي فالعلقا تلفاية تخا

Table A-1. Centaur Failure Modes Contributing To STS/Centaur Schavior Modes - Categories 6, 10 and 11(a) (Page 6 of 8)

	VENICLE AND SUB-		M0	•	FAILURE RATE	
NO.	STSTEM	1 TEM	ITCHS	FAILURE HODE	×	WEIGHTING FACTOR
110	INTERMEDIATE BULK- HEAD RELIEF SYSTEM	ORIFACE (FROM ORBITER GN2 PURGE)	1	RUPTURER OR LEAKAGE	2.00E-07 2.00E-09	NCT .
111	INTERMEDIATE BULK- NEAD RELIEF SYSTEM	CISS FLEXIBLE LINES	z	RUPTURE OR LEAKAGE	2.00E-05 2.00E-08	ACT
112	INTERMEDIATE BULK- HEAD RELIEF SYSTEM	CISS VENT	1	RUPTURE OR LEAKAGE	2.00E-07 2.00E-09	ACT
113	INTERMEDIATE BULK- HEAD RELIEF SYSTEM	LINES & FITTINGS (BETWEEN CAVITY & DISCONNECT)	1 SET	RUPTURE OR LEAKAGE	2.00E-04 2.00E-07	ALT
114	INTERMEDIATE BULK- NEAD RELICE SYSTEM	LINES & FITTINGS (IN CISS)	1 SET	RUPTURE OR LEAKAGE	5.00E-05 5.00E-0#	ALT
115	INTERMEDIATE BULK- MEAD RELIEF SYSTEM	CHECK VALVES	5	BL DCK AGE	2.00E-07 2.00E-09	ACT
115	CISS HELIUM SUPPLY16	HELIUM BUTTLES	20	GROSS RUPTURE	1.00E-7 1.00E-9	PROB
117	CISS HELIUM SUPPLY	CLSS/GRB. TER DISCONNECT	1	GROSS RUPTURE	1.00E+07 1.00E+09	PROB
118	CISS HELLIN SUPPLY	FLEXIBLE INE	1	GROSS RUPTURE	1.00E-05 1.00E-08	PRUS
119	CISS HELLUM SUPPLY	PILOT OPERATED SOLENQID VALVE	٩	GROSS RUPTURE	1.00E-07 1.00E-09	PRUS
120	CISS HELIUM SUPPLY	CHECK VALVES	2	GROSS RUPTURE	1.00E-07 1.00E-09	PRUS
121	CISS HELIUM SUPPLY	LINES & FITTINGS	1 SET	GROSS RUPTURE	2.005-04	PRJB
122	CENTAUR HELIUM SUPPLY	FILTER	1	GROSS RUPTURE	1.00E+05 1.00E-08	PR.P -
123	CENTAUR HELLUM Supply	CHECK VALVES	4	GROSS RUPTURE	1.00E-07 1.00E-09	PRUD
124	CENTAUR HELTUM Supply	LINES & FITTINGS (BETWEEN CENTAUR/CISS DISCONNELT & REGULATOR)	1 SET	GROSS RUPTURE	2.00E-04 2.00E-07	Pà
125	CENTAUR HELLUM SUPPLY	RESSURE REGULATOR	1	GROSS RUPTURE	1.00E-07 1.00E-09	PALE
126	CENTAUR HELIUM SUPPLY	RELIEF VALVES	, l	SROSS RUPTURE	1.00E-07 1.00E-09	Privê
127	CENTAUR HELTUM SUPPLY	HELIUM BOTTLES	5	RUPTURE & FRAGMENT PROPAGA- TION	1 . QOE - 7 1 . QUE - 9	PROB
128	CENTAUR HELIUM Supply	LINES & FITTINGS (BETWEEN REGULATOR & IST PTRO VALVES OF NOMA & ENGINE CONTROLS SYSTEMS)	1 SET	GROSS RUPTURE	1.00E-04 1.00E-07	P055
158	REACTION CONTROL SYSTEM ⁴	NYDRAZINE (N2 ^H 4) SUPPLY TANK (FUEL SIDE)	1	RUPTURE OR LEAKAGE	2.00E-07 2.00E-09	PRUB
130	REACTION CONTROL SYSTEM	NYDRAZINE SUPPLY TAME (GNO SIDE ABOVE LINER)	ı	GROSS RUPTURE	1.00E-J7 1.00E-J9	PRUð
131	REACTION CONTROL SYSTEM	N ₂ M ₂ TANK ISOLATION PVRO VALVES (ON UPSTREAM TAMA PRESSURIZATION SIDE)	2	GROSS RUPTURE	1.00E-07 1.00E-09	P022
132	REACTION CONTROL SYSTEM	NyHA TANK ISDLATION PYRD VRLVES LON DOWNSTREAM NyHA DES	2	RUPTURE OR LEARAGE	2.00E-07 2.00E-09	PRUB

1

A CONTRACTOR OF A CONTRACT

Table A-1. Centaur Failure Modes Contributing To STS/Centaur Behavior Modes -Categories 6, 10 and 11(a) (Page 7 of 8)

					FAILURE RATE	
W 0.	VENICLE AND SUB- Systen	17EH	NO. ITEMS	FAILURE MODE	in it	WEIGHTING FACTOR
111	REACTION CONTROL SYSTEM	LINE (ON UPSTREAM Gree SLDE OF TANK)	1 SET	GROSS RUPTURE (LINE BETWEEN NyM _A TAMI AND ISOLATION PYRO VALVES	\$.00£-05 \$.00£-08	POSS
- 134	REACTION CONTROL SYSTEM	LINE FOR DOWNSTREAM NZH _G SIDE:	1 SET	RUPTURE OR LEAKAGE (LINE BETWEEN N ₂ M ₄ TANK AND ISO- LATION-PYRO VALVES)	\$.00E-05 \$.00E-08	PRUB
135	REACTION CONTROL SYSTEM	FILL & VENT VALVE (ON UP- STREAM GHO SIDE OF TANK)	1	GROSS RUPTURE	1.00E-07 1.00E-09	P055
136	REACTION CONTROL STSTEM	FILL & DRAIN VALVE (ON DOWN- STREAM SIDE OF N ₂ N ₆ TAME)	1	RUPTURE OR LEANAGE	1.00E-07 1.00E-09	PROS
137	REACTION CONTROL SYSTEM	PRESSURE TRANSDUCERS (ON FUEL SIDE OF TANN)	2	RUPTURE OR LEAKAGE AT TANK FITTING	1.00E-05 1.00E-08	PRUB
134	NYORAULIC SYSTEN ¹⁸	PRESSURE & RETURN LINES (IN- CLUDING JOINTS & FITTINGS)	2 SETS	GROSS RUPTURE (PRESSURE LINE ~ 100 PS1 WHEN IN SHUTTLE)	2.00E-04 2.00E-07	P055
139	HYDRAULIC SYSTEM	SERVO VALVE	4	GROSS RUPTURE	1.00E-07 1.00E-09	PJ35
140	MYDRAULIC SYSTEM	NAM1FOLD ASSEMBLY	2	GROSS RUPTURE	1.00E-07 1.00E-09	P055
14:	NYDRAULIC SYSTEM	ENGINE DRIVEN PUMP	2	CASE RUPTURE	1.00E-07 1.00E-09	P055
142	NIORAULIC SYSTEM	RECIRCULATION PUMP	2	CASE RUPTURE	1.00E-07 1.00E-09	P255
;43	NYORAULIC SYSTEM	RELIEF VALVES	٠	GROSS RUPTURE	1.00E-07 1.00E-09	P022
144	NYDRAULIC SYSTEM	CHECK VALVES	4	GROSS RUPTURE	1.00E-07 1.00E-09	6772
145	HYDRAULIC SYSTEM	PRESSURE TRANSDUCER	2	GROSS RUPTURE AT FITTING	1.00E-05 1.00E-08	Puss
:40	NYDRAULIC SYSTEM	TEMPERATURE TRANSDUCER	2	GROSS RUPTURE AT FITTING	1.00E-05 1.00E-08	PJ45
5 32 -	NYORAULIC SYSTEM .	DISCONNECTS	1 - 1 4	GROSS RUPTURE	1.00E-07 1.00E-09	POSS
148	PNEUMATIC VALVE CONTROL SYSTEM ¹⁹	DEPLOYMENT ADAPTER LINES & FITTINGS TO PRESMATIC ACTI- VATED VALVES	2 SETS	GROSS RUPTURE (FROM SOLENDID VALVES TO FLEXIBLE LINE)	3.00E-05 3.00E-08	Puss
149	PNEUMATIC VALVE CONTROL SYSTEM	DEPLOYMENT ADAPTER SOLENOID VALVE (TO PNEUNATIC ACTI- VATED VALVES)	1	GROSS RUPTURE	1.00E-07 1.00E-09	PU22
150	PNEUMATIC VALVE CONTROL SYSTEM	DEPLOYMENT ADAPTER FLEXIBLE Lines (to pneumatic acti- Vated valves)	z	GROSS RUPTURE	1.00E-05 1.00E-08	PJ23
151	PHEUMATIC VALVE Control system	DEPLOYMENT ADAPTER-CENTAUR PHEIMATIC VALVE ACTUATION DISCONNECT	5	GROSS RUPTURE	1.00E-07 1.00E-09	PUSS
152	PHELMATIC VALVE CONTROL SYSTEM	CENTAUR CHECK VALVES (TO PHEUMATIC ACTIVATED VALVES)	4	GROSS RUPTURE	1.00E-07 1.00E-09	PU22
153	PNEUMATIC VALVE CONTROL STSTEM	LINES & FITTINGS (CONNSTREAM OF REGULATORS IN CLSS TO FILL/DUMP & VENT VALVES)	4 5675	GROSS RUPTURE	1.00£-04 1.00E-07	Püss
154	PNEJMATIC VALVE CONTROL SYSTEM	CISS J-WAY SOLENGID VALVE ACTUATORS	20	GROSS RUPTURE	1.00£-07 1.00£-09	Pûsar
155	PREUMATIC VALVE CONTROL SYSTEM	CISS SOLENDID CROSS CON- NECTION VALVES	د	GROSS RUPTURE	1.00E-07 1.00E-09	P05>

Table A-1. Centaur Failure Modes Contributing To STS/Centaur Behavior Modes -Categories 6, 10 and 11(a) (Page 8 of 8)

	MEMICIE AND SHR.				FAILURE RATE	
40.	STATEM	1 TEM	tens	FALLURE MODE	۰. ۱۳۰۶ - ۲	FACTOR
150	PHEIMATIC VALVE CONTROL SYSTEM	CLSS PRESSURE TRANSDUCERS	10	GROSS RUPTURE	1.001-05 1.001-00	POSS
157	PNEJMATIC VALVE CONTROL SYSTEM	CENTAUR SOLEWOLD CROSS CON- NECTION VALVES	z	GROSS RUPTURE	1.00E-07 1.00E-09	P055
158	PREJMATIC VALVE CONTROL SYSTEM	LINES & FITTINGS (TO VENT & DUMP VALVES IN CENTAUR)	\$ SETS	GROSS RUPTURE	1.00E-04 1.00E-07	. Poss
159	PREIMATIC VALVE CURTADE SYSTEM	CENTAUR 3-WAY SOLENOID VALVE ACTUATORS	19	GROSS RUPTURE	1.00E-07 1.00E-09	P055
160	Phelmatic valve Curtaul system	CENTAUR LH, TAM VENT VALVE 3-WAY SOLEBOID ACTUATORS	3	INADVERTENT OPERATION ²⁰	3.00E-05 3.00E-05	ACT
lel	PNEUMATIČ VALVE CUNTRUL SVSTEM	CENTAUR LO, TAMA VENT VALVE 3-WAY SOLEROID ACTUATOR	ì	INAOVERTENT OPERATION ²⁰	3.00E-05 3.00E-06	ACT
102	CENTAUR STRUCTURES ²³	CONICAL SPACECRAFT ADAPTER	ì	STRUCTURAL COLLAPSE ²² SHUTTLE 9 LOADS1	3.00E-08 3.00E-11	P055
103	CENTAUR STRUCTURES	FORWARD ORBITER-CENTAUR Support Structure (Including Trunions)	3	COLLAPSE OF SILL (2) OR NEEL ELI STRUCTURE® (SMUTTLE 9 LOADS)	3.008-11 3.008-11	PRUE
104	CENTAUR STRUCTURES	FURWARD ORBITER CENTAUR ATTACHMENTS	3	CULLAPSE OF FORWARD SILL LATEN (2) FORWARD VLEC LATEN (1) ²²³ (SMUTTLE 9 (DADS)	3.008-00 3.008-11	Prop
105	CENTAUR STRUCTURES	CENTAUR SUPPORT STRUCTURE (AFT) (INCLUDING TRUNIONS)	1 UNIT	STRUCTURAL COLLAPSE ²⁴ (Smultle & LOADS)	3.00E-00 3.00E-11	PRUS
:00	CENTAUR STRUCTURES	CENTAUR SUPPORT STRUCTURE LAFTE ATTACHMENTS	5	STRUCTURAL COLLAPSE ²⁴ (SHUTTLE 9 LURDS)	3.00E-08 3.00E-11	P2.4
10.	CENTAUR STRUCTURES	CYLINDRICAL STUB ADAPTER	1	STRUCTURAL COLLAPSE ²³ (Smuttle g LUADS)	3.006-08 3.006-11	P4.14
108	CENTAUR STRUCTURES	AFT ADAPTER	1	STRUCTURAL COLLAPSE ²⁴ (Shuttle & LOADS)	J.00e-08 J.00e-11	Pico
109	CENTALA STRUCTURES	DEPLOYMENT ADAPTER (INCLUO- ING TRUNIONS)	1.0417	STRUCTURAL COLLAPSE ²⁸ (Shuttlé g Loads)	3.00E-08 3.00E-11	Pac -
170	LENTALE STRUCTURES	, RUTATION MECHANISM SUPPORT STRUCTURE (INCLUDING RELL PIN)	1, 1411	STRUCTURAL COLLAPSE ²⁴ (SmuTTLE & LUADS)	3.00[-05 3.00[-11	Part

• . *

Table A-2. Centaur Failure Modes Contributing to STS/Centaur Behavior Mode Category 11(b) of Table 3-4 (Page 1 of 6)

					FAILURE RATE	
NO.	SYSTEM	L TEM	ITENS	FAILURE HODE	1. 1. 1. L	HEIGHTING FACTOR
1	TAM STRUCTURE	LOZ TANK AFT RINGS WELDS	4	WELD RUPTURE	1.00E-07 1.00E-10	ACT
2	TANK STRUCTURE	CYLINDRICAL LOZ TANK WELDS	2	WELD RUPTURE	1.00E-07 1.00E-10	ACT
3	TANK STRUCTURE	DOUBLE WALLED INTERMEDIATE BULKHEAD WELDS	24	WELD RUPTURE	1.00E-07 1.00E-10	ACT
4	TANK STRUCTURE	AFT BULKHEAD WELDS	8	WELD RUPTURE	1.00E-07 1.00E-10	ACT
5	TANA STRUCTURE	LOZ TAM ENGINE FEED FITTING	1	RUPTURE OF FITTING OR AT TANK TO FITTING WELD	1.00E-05 1.00E-08	ACT
6	PROPULSION SYSTEM ²	LO2 FEED DUCT (FROM TANK TO LO2 PRE-VALVE)	1 SET	RUPTURE OR GROSS LEAKAGE	2.00E-04 1.00E-07	. ACT
7	PROPULSION SYSTEM	LO2 FEED DUCT PRE-VALVE	1	RUPTURE OR GROSS LEAKAGE	2.00E-07 2.00E-09	ACT
8	TANK PRESSURIZATION SYSTEM	FLEXIBLE LINE (BETWEEN CISS & DEPLOYMENT ADAPTER)	1	GROSS RUPTURE	2.00E-05 2.00E-08	PRUD
9	TANA PRESSURIZATION SYSTEM	LINES & FITTINGS (4000 PSI SECTION UP TO ORIFACE IN DE- PLOYMENT ADAPTER)	1 SET	GROSS RUPTURE	2.00E-04 2.00E-07	Prub
10	TANK PRESSURIZATION SYSTEM	MANUAL SHUTOFF VALVE (IN DE- PLOYMENT ADAPTER)	2	GROSS RUPTURE	1.00E-07 1.00E-09	PROB
11	TANN PRESSURIZATION SYSTEM	DEPLOYMENT ADAPTER FILTER	1	GROSS RUPTURE	1.00E-05 1.00E-08	Prjð
12	TANK PRESSURIZATION SYSTEM	PILOT OPERATED SOLENOID VALVE (IN DEPLOYMENT ADAPTER)	20	GROSS RUPTURE	1.00E-07 1.00E-09	PROB
13	TANK PRESSURIZATION SYSTEM	ORIFACE (IN DEPLOYMENT ADAPTER)	6	GROSS RUPTURE	1.00E-07 1.00E-09	PR.C
14	TANK PRESSURIZATION SYSTEM	LINES & FITTINGS (BETWEEN ORIFACES & DISCONNECT PANELS << 4000 PS1}	1 SET	GROSS RUPTURE	5.00E-05 5.00E-08	PUSS
15	TANK PRESSURIZATION SYSTEM	FLEXIBLE LINE (BETWEEN CENT- AUR & DEPLOYMENT ADAPTER)	3	GROSS RUPTURE	1.00E-05 1.00E-08	Pusa
16	TANN PRESSURIZATION SYSTEM	· OXIDIZER & FUEL DISCOMMENTS	3 ·	GROSS RUPTURE	1.00E-07 1.00E-09	P.35
17	TANK PRESSURIZATION SYSTEM	CHECK VALVE (LO2 TANK SIDE IN CENTAUR)	1	RUPTURE OR GROSS LEAKAGE ⁵	2.00E-07 2.00E-09	ALT
10	TANN PRESSURIZATION SYSTEM	CHECK VALVES (FURTHEST FROM LO2 & LH2 TANKS)	2	GROSS RUPTURE	1.00E-07 1.00E-09	P055
19	TANK PRESSURIZATION SYSTEM	ORIFACES (IN CENTAUR LOZ TANK SIDE)	2	RUPTURE OR GROSS LEAKAGE ⁵	2.00E-07 2.00E-09	ACT
20	TANK PRESSURIZATION SYSTEM	PILOT OPERATED SOLENOID VALVE (LO3 TANK SIDE NEAREST ORI- FACE)	2	RUPTURE OR GROSS LEAKAGE ^S	2.00E-J` 2.00E-U9	ACT .
21	TANK PRESSURIZATION SYSTEM	LINES & FITTINGS (FROM LO2 TAME TO IST SOLEHDID VALVE & IST CHECE VALVE)	1 SET	RUPTURE OR GROSS LEAKAGE ^S	2.00E-04 2.00E-07	ALT
22	TANK PRESSURIZATION SYSTEM	PILOT OPERATED SOLENOID VALVES (TWO VALVES ON EAD) TANK SIDE FURTHEST FROM ORI- FALES)	•	GROSS RUPTURE	1.00E-07 1.00E-09	دون۹ ا
23	TANK PRESSURIZATION SYSTEM	LO, TANA PRESSURE TRANSDUCERS & FITTINGS	S .	RUPTURE OR GROSS LEAKAGE ⁵	2.00E-05 2.00E-08	ATT .

÷

Table A-2. Centaur Failure Modes Contributing to STS/Centaur Behavior Mode Category 11(b) of Table 3-4 (Page 2 of 6)

					FAILURE RATE	
NO.	VENICLE AND SUB- SYSTEM	1 TEM	NO. ITEMS	FAILURE MODE	××.	HEIGHTING FACTUR
24	CISS PRESSURE REGU- LATION SYSTEM ⁴	CISS MANUAL SHUTOFF VALVES	2	GROSS RUPTURE	1.00E-07 1.00E-09	PROS
25	CISS PRESSURE REGU- LATION SYSTEM	CLSS. FILTER	1	GROSS RUPTURE	1.00E-05 1.00E-06	PROB
20	CISS PRESSURE REGU- LATION SYSTEM	CISS DISCOMECT	1	GROSS RUPTURE	1.00E-07 1.00E-09	PRJU
27	CISS PRESSURE REGU- LATION SYSTEM	CISS LINES & FITTINGS (UP- STREAM OF REGULATORS)	1 SET	GROSS RUPTURE (BETWEEN REGU- LATOR & IST SOLEHOLD VALVE)	1.00E-04 1.00E-07	PAUB
28	CISS PRESSURE REGU- LATION SYSTEM	CLSS SOLENGID OPERATED VALVES (UPSTREAM OF REGULATORS)	3	GROSS RUPTURE (VALVES HEAREST TO REGULATORS)	1.00E-07 1.00E-09	PRJB
29	CISS PRESSURE REGU- LATION SYSTEM	CLSS CHECK VALVES	6	GROSS RUPTURE	1.00E-07 1.00E-09	POSS
30	CISS PRESSURE REGU- LATION SYSTEM	CISS PRESSURE TRANSDUCERS & FITTINGS	3	GROSS RUPTURE	1.00E-05 1.00E-06	PUSS
31	CLSS PRESSURE REGU- LATION SYSTEM	CISS REGULATORS	3	GROSS RUPTURE	1.00E-07 1.00E-09	PRJB
32	CISS PRESSURE REGU- LATION SYSTEM	CISS LINES & FITTINGS (DONN- STREAM OF REGULATORS)	1 SET	GROSS RUPTURE (FROM REGULATOR TO LAST SET OF PARALLEL VALVES]	2.00E-04 2.00E-07	PUSS
ۇ ئ	CISS PRESSURE REGU- LATION SYSTEM	CISS SOLENOID OPERATED VALVES (DOWNSTREAM OF REGULATORS)	2	GROSS RUPTURE (VALVES NEAR- EST TO REGULATORS)	1.00E-0° 1.00E-09	PUSS
4	CISS PRESSURE REGU- LATION SYSTEM	CISS/DEPLOYMENT ADAPTER FLEXIBLE LINE	1	GROSS RUPTURE	1.00E-05 1.00E-08	PU22
35	CISS PRESSURE REGU- LATION SYSTEM	CISS SOLENCID VALVES (UP- STREAM OF REGULATORS)	3	GROSS RUPTURE (VALVES FURTHEST FROM REGULATORS)	1.00E-07 1.00E-09	PRJB
30	CISS PRESSURE REGU- LATION SYSTEM	CISS SOLENDID VALVES (DOWN- STREAM OF REGULATORS)	3	GROSS RUPTURE (VALVES FURTHEST FROM REGULATORS)	1.00E-07 1.00E-09	P055
37	CISS PRESSURE REGU- LATION SYSTEM	CISS LINES & FITTINGS (UP- STREAM OF REGULATORS)	1 SET	GROSS RUPTURE (FROM NO SUPPLY TO IST SET OF PARALLEL VALVES)	1.00E-04 1.00E-07	PALD
38	CISS PRESSURE REGU-	CISS LINES & FITTINGS (DOWN- STREAM OF REGULATORS)	1 SET	GROSS RUPTURE (FROM LAST SET OF-PARALLEL VALVES TO CISS/ DEPLOYMENT ADAPTER FLEXIBLE LINES	1.00E-04 1.00E-07	P.'33
••						•
74	PURUE SYSTEM"	NE PURGE LINES TO 20 YOC RECIRC. PUMP MOTORS	ZSETS	NUPTURE OR LEAANGE & LOSS OF NOTOR PURGETO (LINE FROM DRI- FACE IN PNEUMATIC SYSTEM TO NOTOR)	2.00e-J4 2.00e-J7	F. 33
45	PURGE SYSTEM	CLSS FLEXIBLE LINES	2	GROSS RUPTURE	1.00E-05 1.00E-08	P.55
41	PJRGE SYSTEM	DEPLOYMENT ADAPTER SOLENOID VALVES	15	GROSS RUPTURE (IST SET OF PARALLEL VALVES TO INSULA- TION & ENGINE PURGES & ALL VALVES TO LOZILNZ FILL.ORAIN: VENT)	1.005-07 1.005-04	PC33
42	PURUE SYSTEM	DEPLOYMENT ADAPTER LINES & FITIMOS (BETWEEN CISSIDE- PLOYMENT ADAPTER FLEXIBLE LINE & IST SOLEHOID VALVES)	1 SCT	GROSS RUPTURE	5.00E-05 5.00E-08	PU22
43	PURGE SYSTEM	DEPLOTMENT ADAPTER LINES & FITTINGS (CONNECTING SOLE- WOLD VALVES, ORIFALES, CHECK VALVES, FTC)	1 SET	GROSS RUPTURE	4.00[-04 4.00E-04	P022

1

.

/

c

Table A-2. Centaur Failure Modes Contributing to STS/Centaur Behavior Mode Category 11(b) of Table 3-4 (Page 3 of 6)

					FAILURE RATE	
¥0.	VENICLE AND SUB-	ITEN	NO. ITENS	FAILURE MODE	λ _μ , λ _ε	WEIGHTING FACTOR
•		DEPLOYMENT ADAPTER LINES & FITTINGS (BETWEEN GAIFACES & FLENIBLE LINE TO TAME IN- SULATION)	1 SET	GROSS RUPTURE	1.00E-04 1.00E-08	P055
	TORUE STOTEM	DEPLOYMENT ADAPTER LINES & FITTINGS (BETWEEN ORIFACES & ENGINE PURGES)	1 SET	GROSS RUPTURE	1.00E-04 1.00E-08	POSS
5	TRAC SYSTEM	DEPLOYMENT ADAPTER FLEXIBLE LINE (TO ENGINE PURGE)	1	GROSS RUPTURE	1.00E-05 1.00E-08	POSS
47	PURGE SYSTEM	DEPLOYMENT ADAPTER FLEXIBLE LINE (TO TANK INSULATION)	1	GROSS RUPTURE	1.00E-05 1.00E-06	POSS
48	PURGE SYSTEM	DEPLOYMENT ADAPTER TANK IN- Sulation disconnect	1	GROSS RUPTURE	1.00E-07 1.00E-09	POSS
49	PURUE SYSTEM	CENTAUR LINES & FITTINGS (TO LO2 TANN PRESSURIZATION LINE, LO3 VENT STAND PIPE, LO2 TAÑN PRESSURE TRANSDUCERS ETC.}	1 SET	RUPTURE OR LEAKAGE ¹¹	4.00E-04 4.00E-07	ACT
50	PURGE SYSTEM	CENTAUR ORIFACES (TO LO- TANA PRESSURE TRANSDUCERS, ETC.)	4	RUPTURE OR LEAKAGE	2.00E-07 2.00E-09	ACT.
÷	PURGE SYSTEM	CENTAUR ORIFACE (BETWEEN PYRO VALVE & INSULATION PURGE LINE)	1	GROSS RUPTURE	1.00E-07 1.00E-09	Pjis
52	PURGE SYSTEM	CENTAUR ORIFACE (TO WYDRAU- LIC RECIRC, MOTOR PURGE	2	GROSS RUPTURE	1.00E-07 1.00E-09	PUSS
53	PJRGE SYSTEM	CENTAUR CHECK VALVE TNEAREST TO LO, TANK PRESSURE TRANS- DUCERST	1	RUPTURE OR LEAKAGE	2.JJE-J7 2.JJE-Jÿ	ACT.
54	PURGE SYSTEM	CENTAUR CHECK VALVE (FURTHEST FROM LO2 TANN PRESSURE TRANS- DUCERS)	1	GRASS RUPTURE	1.00E-07 1.00E-09	PUSS
55	PURGE SYSTEM	CENTAUR PYRO OPERATED VALVE (TO PRESS. TRANS. PURGE, ETC.)	1	GROSS RUPTURE	1.JJE-07 1.JJE-09	POSS
ಸ್	PURUE SYSTEM	CENTAUR SOLEHOID CONTROLLED SELF REGULATING VALVE (TO LO ₂ VENT STAND-PIPE)	1	GROSS RUPTURE	1.00[-0] 1.00[-09	Pəsə
57	PURGE SYSTEM	LH, TANK, INSULATION PURGE VERT, AP TRANSDUCERS	3	GROSS RUPTURE	1.00E-05 1.00E-08	Püss
58	PURGE SYSTEM	EN, TANK, INSULATION PIPE VERT, RELIEF VALVES	2	GROSS RUPTURE	1.00E-07 1.00E-09	· PUSS
59	PURGE SYSTEM	LH, TANK, INSULATION PURGE VERT, LINES & FITTINGS	1 SET	GROSS RUPTURE	1.00E-04 1.00E-07	PUSS
60	VENT SYSTEMS	LH2 TANK SELF REGULATING VENT VALVE	1	RUPTURE OR LEAKAGE	2.00E-07 2.00E-09	ALT -
61	VENT SYSTEMS ¹³	LINES & FITTINGS (BETWEEN LH2 VENT VALVES & DISCONNECT)	1 SET	RUPTURE OR LEAKAGE	5.00E-05 5.00E-08	Púss
• '	VENT SYSTEMS	LN2 TANK HEAT EXCHANGER	1	FAILURE OF HX TANK HOUNTING	3.00E-08 3.00E-11	PROE
دە	VENT SYSTEMS	LH2 TANK ELECTRICALLY DRIVEN PURP	1	FAILURE OF PUMP OR MOTOR TANK MOUNTING	3.00[-08 3.00[-11	PROB
64	VENT SYSTEMS	LH2 TANK VENT DISCONNECT	1	RUPTURE OR LEALAGE	2.00E-07 2.00E-09	POSS-
65	VENT SYSTEMS	LO2 TANK SELF REGULATING VENT VAEVE	1	RUPTURE OR LEAKAGE	2.00E-07 2.00E-09	ACT

Ĺ....

١

	WENTCHE AND SINA		-		FAILURE RATE	
- 40-	SYSTEM	ITEM	ITERS	FAILURE NODE		FACTOR
66	VENT SYSTEMS	LO ₂ TAMK PNEUMATIC OPEN, SPRING-LOAD CLOSED, BALL VALVC	1	RUPTURE OR LEAKAGE	2.00E-07 2.00E-09	ACT
67	VENT SYSTEMS	LINES & FITTINGS (BETWEEN LO ₂ TANK & MECHANICAL VENT VALVES)	1 SET	RUPTURE OR LEAKAGE	5.00E-05 5.00E-07	ACT
69	VENT SYSTEMS	LO2 TANK ELECTRICALLY DRIVEN PURP	1	FAILURE OF PUMP OR MOTOR TANK MOUNTING	6.00E-08 6.00E-11	PROB
69	VENT SYSTEMS	EN, TANK VENT SYSTEM CLSS TEEESCOPING LINE	1	RUPTURE OR LEAL E	2.00E-05 2.00E-08	POSS
73	VENT SYSTEMS	LH- TANK VENT SYSTEM ORBITER 1307 BULKHEAD FLEXIBLE LINE	1	RUPTURE OR LEAKAGE	2.00E-05 2.00E-08	POSS
71	VENT SYSTEMS	LH2 TANK VENT SYSTEM ORBITER MID-BODY FLEXIBLE LINE	1	RUPTURE OR LEAKAGE	2.00E-05 2.00E-08	P055 -
72	VENT SYSTEMS	LM2 TANK VENT SYSTEM ORBITER 1307 BULKHEAD DISCONNECT	1	RUPTURE OR LEAKAGE	2.00E-07 2.00E-0 9	POSS
73	VENT SYSTEMS	LN2 TANK VENT SYSTEM ORBITER MID-BODY DISCONNECT	1	RUPTURE OR LEAKAGE	2.00E-07 2.00E-09	POSS
74	VENT SYSTEMS	LH2 TANK VENT SYSTEM CISS PHEUMATIC SHUTOFF BALL VALVES	4	RUPTURE OR LEAKAGE	2.00E-07 2.00E-09	POSS
75	VENT SYSTEMS	LINES & FITTINGS (BETWEEN LH, VENT SYSTEM CISS VALVES & FUEL DISCONNECT PAMEL FLEX. LINE)	Z SETS	RUPTURE OR LEAKAGE	5.00E-35 5.00E-08	P055
76	VENT SYSTEMS	LINES & FITTINGS (BETWEEN CISS LH-2 Shutoff Valves & 1307 Buëkhead Flex. Line	1 SET	RUPTURE OR LEAKAGE	5.00E-05 - 5.00E-08	· + POSS
;7	VENT SYSTEMS	LINES & FITTINGS (BETWEEN CISS LH ₂ Shutoff valves & Orbiter Mid-Body vent)	1 SET	RUPTURE OR LEAKAGE	5.00E-05 5.00E-08	PƏšə
76	FILL DRAIN/DUMP SISTEM	LO2 TANK PYRO SHUTOFF VALVES	. ² .	RUPTURE OR LEAKAGE	1.00E-07 1.00E-09	ALT
79	FILL:DRAIN/DUMP StSTEM	LINES & FITTINGS (BETHEEN LO2 TANK AND PYRO SHUTOFF VALVE)	1 SET	RUPTURE OR LEAKAGE	7.00E-05 7.00E-08	ACT
69	FILL DRAIN DUMP System	LOS TANK DUMP LINE QUICK- DISCONNECT	1	RUPTURE OR LEAKAGE	1.00E-07 1.00E-09	ACT
81	INTERMEDIATE BULK- NEAD RELIEF SYSTEM	PRESSURE TRANSDUCERS	3	RUPTURE OR LEAKAGE	2.00E-05 2.00E-08	ACT
82	INTERMEDIATE BULK- NEAD RELIEF SYSTEM	CHECK VALVES	2	RUPTURE OR LEAKAGE	2.00E-07 2.00E-09	ACT
63	INTERMEDIATE BULK- HEAD RELIEF SYSTEM	DISCONNECT (AT AFT FUEL PANEL)	1	RUPTURE OR LEAKAGE	2.005-07 1.005-09	A27
84	INTERMEDIATE BULK- NEAD RELIEF SYSTEM	ORIFACE (FROM ORBITER GN2 PURGE)	1	RUPTURE OR LEAKAGE	2.00E-07 2.00E-09	ACT
65	INTERMEDIATE BULK- NEAD RELIEF SYSTEM	CISS FLEXIBLE LINES	2	RUPTURE OR LEAKAGE	2.04E-05 2.04E-08	ACT
50	INTERMEDIATE BULK- NEAD RELIEF SYSTEM	CISS VENT	1	RUPTURE OR LEAKAGE	2.00E-07 2.00E-09	- ACT
87	INTERMEDIATE BULK- NEAD RELIEF SYSTEM	LINES & FITTINGS (BETWEEN CAVITY & DISCONNECT)	1 SET	RUPTURE OR LEAKAGE	2.00E-04 2.00E-J7	AUT
88	INTERNEDIATE BULK- NEAD RELIEF SYSTEM	LINES & FITTINGS (IN CISS)	1 SET	RUPTURE OR LEARAGE	5.00E-05 5.00E-08	ACT

Table A-2. Centaur Failure Modes Contributing to STS/Centaur Behavior Mode Category 11(b) of Table 3-4 (Page 4 of 6)

.

• . •

Table A-2. Centaur Failure Modes Contributing to STS/Centaur Behavior Mode Category 11(b) of Table 3-4 (Page 5 of 6)

					FAILURE RATE	
NO.	VEHICLE AND SUB- System	ITEN	NO. ITENS	FAILURE HODE	۶. ۶.	WEIGHTING FACTOR
89	INTERMEDIATE BULK- HEAD RELIEF SYSTEM	CHECK VALVES	2	BLOCKAGE	2.00E-07 2.0UE-09	ACT
90-	CISS HELIUM SUPPLY ¹⁶	NELIUM BOTTLES	20	GROSS RUPTURE	1.00E-7 1.00E-9	PROB
91	CISS HELIUM SUPPLY	CISS/ORBITER DISCONNECT	1	GROSS RUPTURE	1.00E-07 1.00E-09	PROB
92	CISS HELIUM SUPPLY	FLEXIBLE LINE	1	GROSS RUPTURE	1.00E-05 1.00E-08	PRCB
93	CISS HELIUM SUPPLY	PILOT OPERATED SOLENOID	4	GROSS RUPTURE	1.00E-07 1.00E-09	PRJS
94	CISS HELIUM SUPPLY	CHECK VALVES	2	GROSS RUPTURE	1.00E-07 1.00E-09	PRUB
95	CISS HELIUM SUPPLY	LINES & FITTINGS	1 SET	GROSS RUPTURE	2.00E-04 2.00E-07	PROB
96	CENTAUR HELIUM SUPPLY	FILTER	1	GROSS RUPTURE	1.00E-05 1.00E-08	PRCB
97	CENTAUR HELIUM SUPPLY	CHECK VALVES	4	GROSS RUPTURE	1.00E-07 1.00E-09	PROB
98	CENTAJR HELIUN SUPPLY	LINES & FITTINGS (BETWEEN CENTAUR/CISS DISCONNECT & REGULATOR)	1 SET	GROSS RUPTURE	2.00E-04 2.00E-07	PROB
99	CENTAUR HELIUM SUPPLY	PRESSURE REGULATOR	1	GROSS RUPTURE	1.00E-07 1.00E-09	PROB
100	CENTAUR HELIUM SUPPLY	RELIEF VALVE	1	GROSS RUPTURE	1.00E-07 1.00E-09	PRCS
101	CENTAUR HELIUM SUPPLY	NELIUM BOTTLES	2	RUPTURE & FRAGMENT PROPAGA- TION	1.00E-7 1.00E-9	PROE
152	CENTAUR HELIUM SUPPLY	LINES & FITTINGS (BETWEEN RE- GULATOR & 1ST PYRO VALVES OF N ₂ M ₄ & ENGINE CONTROLS	1 SET	GROSS RUPTURE	1.00E-04 1.00E-07	₽J\$\$
•		5151[95]	•	•		• • •
103	REACTION CONTROL SYSTEM	MYDRAZINE SUPPLY TANK (GHe SIDE ABOVE LINER)	1	GROSS RUPTURE	1.00E-07 1.00E-09	PRio'+
104	REACTION CONTROL SYSTEM	N ₂ H ₄ TANK ISOLATION PYRO VALVES (ON UPSTREAM TANK PRESSURIZATION SIDE)	2	GROSS RUPTURE	1.00E-07 1.00E-09	Púss
155	REACTION CONTROL SYSTEM	LINE (ON UPSTREAM GHE SIDE OF TANK)	1 SET	GROSS RUPTURE (LINE BETWEEN Nymy TANK AND ISOLATION PYRO VALVES)	5.00E-05 5.00E-08	POSS
lué	REACTION CONTROL SYSTEM	FILL & VENT VALVE (ON UP- STREAM GHE SIDE OF TANK)	1	GROSS RUPTURE	1.005-07 1.005-09	Pu\$\$
107	HYDRAULIC SYSTEM ¹⁸	PRESSURE & RETURN LINES (IN- Cluding Joints & Fittings)	2 SETS	GROSS RUPTURE (PRESSURE LINE - 100 PSI WHEN IN SHUTTLE)	2.00E-04 2.00E-07	4055
108	HYDRAULIC SYSTEM	SERVO VALVES	4	GROSS RUPTURE	1.00E-07 1.00E-09	₽Ĵ3\$
109	HYDRAULIC SYSTEM	MANIFOLD ASSEMBLY	2	GROSS RUPTURE	1.00E-07 1.00E-09	PU55
110	HYDRAULIC SYSTEM	ENGINE DRIVEN PUPP	2	CASE RUPTURE	1.00E-07 1.00E-09	PUSS
111	HYDRAULIC SYSTEM	RECIRCULATION PUMP	2	CASE RUPTURE	1.00E-07 1.00E-09	POSS
112	HYDRAULIC SYSTEM	RELIEF VALVES	6	GROSS RUPTURE	1.00E-07 1.00E-09	POSS

Table A-2. Centaur Failure Modes Contributing to STS/Centaur Behavior Mode Category 11(b) of Table 3-4 (Page 6 of 6)

•

1

NO.	VEHICLE AND SUB- SYSTEM	1 TEM	NO. I TEMS	FAILURE MODE	FAILURE RATE	WEIGHTING FACTOR
113	HYDRAULIC SYSTEM	CHECK VALVES	4	GROSS RUPTURE	1.00E-07 1.00E-09	POSS
114	HYDRAULIC SYSTEM	PRESSURE TRANSDUCER	2	GROSS RUPTURE AT FITTING	1.00E-05 1.00E-08	POSS
115	HYDRAULIC SYSTEM	TEMPERATURE TRANSDUCER	2	GROSS RUPTURE AT FITTING	1.00E-05 1.00E-08	- POSS
116	HYDRAULIC SYSTEM	DISCONNECTS	4	GROSS RUPTURE	1.00E-07 1.00E-09	POSS
117	PREJMATIC VALVE CONTROL SYSTEM ¹⁹	DEPLOYMENT ADAPTER LINES & FITTINGS TO PNEUMATIC ACTI- VATED VALVES	2 SETS	GROSS RUPTURE (FROM SOLENOID VALVES TO FLEXIBLE LINE)	3.00E-05 3.00E-08	POSS
118	PNEUMATIC VALVE CUNTROL SYSTEM	DEPLOYMENT ADAPTER SOLENOID VALVE (TO PNEUMATIC ACTI- VATED VALVES)	1	GROSS RUPTURE	1.00E-07 1.00E-09	POSS
-113	PHEJMATIC VALVE CONTROL SYSTEM	DEPLOYNENT ADAPTER FLEXIBLE LINES (TO PNEUMATIC ACTI- VATED VALVES)	2	GROSS RUPTURE	1.00E-05 1.00E-08	POSS
150	PNEUMATIC VALVE CONTROL SYSTEM	DEPLOYMENT ADAPTER/CENTAUR PNEUMATIC VALVE ACTUATION DISCONNECT	2	GROSS RUPTURE	1.00E-07 1.00E-09	POSS
121	PHEUMATIC VALVE CONTROL SYSTEM	CENTAUR CHECK VALVES (TO Preumatic activated valves)	4	GROSS RUPTURE	1.00E-07 1.00E-09	POSS
122	PREUMATIC VALVE CONTROL SYSTEM	LINES & FITTINGS (DOWNSTREAM OF REGULATORS IN CISS TO FILL/DUMP & VENT VALVES)	4 SETS	GROSS RUPTURE	1.00E-04 1.00E-07	PUSS
: 23	PHEUMATIC VALVE CONTROL SYSTEM	CISS 3-WAY SOLENOID VALVE AETUATORS	20	GROSS RUPTURE	1.00E-07 1.00E-09	Páss .
124	PREUMATIC VALVE CONTROL SYSTEM	CISS SOLENOID CROSS CON- NECTION VALVES	3	GROSS RUPTURE	1.00E-07 1.00E-09	PUSS
125	PREUMATIC VALVE CONTROL SYSTEM	CLSS PRESSURE TRANSDUCERS	10	GROSS RUPTURE	1.00E-35 1.0JE-38	PUSS
. 150 .	PNEJMATIC VALVE	CENTAUR SOLENOID TROSS CON- NECTION VALVES	2	GROSS RUPTURE	1.00E-J7 1.00E-J9	Pass
127	PREJMATIC VALVE CONTROL SYSTEM	LINES & FITTINGS (TO VENT & DUMP VALVES IN CENTAUR)	5 SETS	GROSS RUPTURE	1.00E-04 1.00E-07	Púšs
120	PHEUMATIC VALVE CONTROL SYSTEM	CENTAUR 3-WAY SOLENOID VALVE ACTUATORS	10	GROSS RUPTURE	1.00E-J7 1.00E-J9	P055
129	PNEUMATIC VALVE CONTROL SYSTEM	CENTAUR LOS TANK VENT VALVE 3-WAY SOLEROID ACTUATOR	1	INADVERTENT OFFRATION ²⁰	3.00E-05 3.00E-06	AUT
130	CENTAUR STRUCTURES ²¹	CONICAL SPACECRAFT ADAPTER	1	STRUCTURAL COLLAPSE ²² (Smuttle g LOADS)	3.00E-08 3.00E-11	POSS
131	CENTAUR STRUCTURES	CENTAUR SUPPORT STRUCTURE (AFT) (INCLUDING TRUNIONS)	1 UNIT	STRUCTURAL COLLAPSE ²⁴ (Shuttle g LOADS)	3.00E-dà 3.00E-11	PRUS
132	CENTAUR STRUCTURES	CENTAUR SUPPORT STRUCTURE (AFT) ATTACHMENTS	5	STRUCTURAL COLLAPSE ²⁴ (Shuttle g LOADS)	3.00E-08 3.00E-11	PRus
133	CENTAUR STRUCTURES	AFT ADAPTER	1	STRUCTURAL COLLAPSE ²⁴ ESHUTTLE 9 LOADS)	3.00E-08 3.00E-11	PRUS
134	CENTAUR STRUCTURES	DEPLOYMENT ADAPTER (INCLUD- ING TRUNIONS)	1 UNIT	STRUCTURAL COLLAPSE ²⁴ (SHUTTLE g LOADS)	3.00E-08 3.00E-11	PKÛQ
135	CENTAUR STRUCTURES	ROTATION MECHANISM SUPPORT STRUCTURE LINCLUDING REEL PINJ	1 UNIT	STRUCTURAL COLLAPSE ²⁴ (Smuttle g LOADS)	3.00E-08 3.00E-11	PRub

Table A-3. Centaur Failure Modes Contributing To STS/Centaur Behavior Mode - Category 14 of Table 3-4

ź

11

.1

;

: ;

ME IGHTING FACTOR	POSS	Poss
FAILURE PROBABILITIES A ₄ · A ₄	1.00E-07 1.00E-09	1.00E-07 1.00E-09
FAILURE MODE	FAIL TO SEPARATE ²⁶	FAIL TO SEPARATE ²⁶
NO. LTEMS	2 (>2 ⁻)	2 (>2")
LTEN	LHA RISE-OFF FLUID DIS- COMMECTS	LO2 RISE-OFF FLUID DIS- COMMEUTS
VEHICLE AND SUB- System	CENTAUR/DEPLOYBENT ADAPTER PANEL2	CENTAUR/DEPLOYMENT ADAPTER, PANEL
žo.		2

*Since these failures can only occur at a discrete instant in time, the 'rates' quoted are estimates of total failure probability on demand.

÷

Ŷ

1

. .

•

FOOTNOTES FOR TABLES A-1, A-2 AND A-3

- 1. Rupture of the LO_2 tank is considered to lead directly to the failure of the LH_2 tank with resulting oxidizer propellant mixing and fire and explosion in the payload bay. Rupture of the LH_2 tank will not necessarily lead to failure of the LO_2 tank, but sufficient oxygen is likely to be present in the payload bay (until payload bay doors opened) to support combustion.
- 2. Duct includes tank-to-duct transition pieces, elbows, etc.
- 3. It is assumed that fuel and oxidizer is present in feed lines up to pre-valves only. Not concerned with ruptures of feed ducts, flexible joints, etc., downstream of pre-valves when Centaur is in Orbiter.
- 4. Some parts of the system are under pressure equal to, or in excess of, 4000 p.s.i. Other parts under considerably less pressure (< 500 psi). Parts subjected to > 4000 psi pressure are assigned a weighting factor of 'probable'; parts subjected to << 4000 psi pressure are assigned a weighting factor of 'possible.'
- 5. These failure modes (rupture and gross leakage) are considered to result in direct and rapid failure of the tank. They have been assigned a single failure rate. Relatively small leaks are not considered catastrophic, since Centaur propellants can be dumped and abort procedures initiated before tank collapse occurs. Back up means are available for maintaining fuel tank pressures in the event propellants are dumped.
- 6. Six of the solenoid values on the LH_2 tank side and two on the LO_2 tank side (in Centaur) are under back pressure from the tanks. Gross leakage is therefore a potentially catastrophic failure mode.

- 7. While Centaur is in the Orbiter, only two of the check valves in the GH₂ pressurization lines are under back pressure from the LH₂ tank. The rest of the dormant GH₂ tank pressurization lines, valves, and fittings are excluded from the analysis.
- Leakage failure modes have been excluded. Even if the system is shut down (system leaks sensed from the Orbiter) the centaur helium supply, and related pressure regulation, will take over essential functions.
- 9. Except for Nos. 55, 65, 66, 69, and 72, leakage failure modes have been excluded. Even if the system is shut down (system leaks sensed from the Orbiter) time is available, even in extreme cases, to dump propellants and initiate abort procedures. There is no requirement for tank insulation system purge during the boost phase.
- 10. Loss of motor purge is considered to potentially cause explosion and fire of the recirculation pump of the hydraulic system.
- 11. Leakage or rupture, in certain line sections, could result in direct failure of the fuel tanks.
- 12. Venting of the LO_2 tank is not necessary during the boost phase, assuming the tank can absorb all energy input when LO_2 is adequately mixed via the electrically driven pump. Therefore, failures downstream of LO_2 tank vent valves are not considered to be Category 1 and have been excluded from the analysis.
- 13. Ruptures or leakages downstream of the LH₂ vent valves could result in gaseous hydrogen being released to the Orbiter payload bay, with the possibility of fire and explosion.

- 14. With the pyrotechnic shutoff valves on the fill/drain and dump system normally closed (unless opened to dump fuel in an abort mode) failures downstream of the 1st set of pyro valves (closest to tanks) cannot be classified as Cat 1 and therefore are excluded from the analysis.
- 15. Inauvertent opening of normally closed fill/drain and dump valves is not of concern since two or more valves would have to be affected before inadvertent dump could occur. This is not a Category 1 failure mode and therefore is excluded from the analysis.
- 16. Leakage failures are excluded as contributors to potential catastrophic events. Instrumentation on the Orbiter will sense these leaks and cause shut-down of the system. Back-up means are available for providing essential helium supplies (Centaur helium system) or essential functions in the event that CISS helium is not available.
- 17. If rupture occurs on the GHe (tank pressurization) side then concern is for possible propagated effects. If rupture or leakage occurs on N_{2H_4} (hydrazine fuel) side then fire and explosion is considered probable up to opening of the payload bay doors.
- 18. All lines are assumed to be under approximately 100 psi pressure while Centaur is in the Orbiter.
- 19. Rupture of any one line in the CISS or Centaur pneumatic valve control system will not prevent operation of fill/dump and vent solenoid actuators, unless the failure propagates.
- 20. Inadvertent operation of solenoid actuation valves of the valve control system could result in inadvertent operation of LH₂ and/or

LO₂ tank vent valves. Of concern is inadvertent opening of normally closed vent valves, which could lead to excessive venting and tank collapse. Inadvertent closure of normally closed valves is of no concern since redundant paths for venting are available.

- 21. Failures of Centaur engine support structures have been excluded even though they could result in failure of Centaur fuel lines. It is assumed that fuel lines are empty upstream of tank pre-valves and so any failures in this upstream section would be benign.
- 22. This failure mode could result in tilting of the spacecraft and failure of its hydrazine or helium bottles which could lead to fire and explosion in the payload bay.
- 23. This failure mode could result in tilting of Centaur, failure of the LH₂ tank and fire and explosion in the payload bay.
- 24. This failure mode could result in tilting of Centaur and failure of the LO_2 tank (followed by the LH_2 tank) or failure of Centaur He bottles. The end result could be fire and explosion in the payload bay.
- 25. Should the Centaur fail to separate from the orbiter, because of failure for example of the Super*Zip, the Centaur would be rotated back down into the payload bay and an abort sequence undertaken. These types of failure modes are therefore excluded from the analysis since they are not Category 1.

Two or more adjacent deployment adapter springs would need to fail to cause a recontact of Centaur with the deployment adapter. This is not a Category 1 failure mode and so is excluded from the analysis.

THE STATE OF THE S

26. Rise-off fluid disconnects on lines less than 2 inches in diameter will not pose a potential threat from re-contact of Centaur with the Orbiter at separation. These small lines are not considered strong enough to pose a threat if they become hung up.

APPENDIX B

STS FAILURE MODES (Liftoff to MECO)

(Contributing To Combined STS/Centaur Behavior Mode No. 6-As Outlined In Table 3-4)

The failure rates quoted in this Appendix are in units of hour,⁻¹ unless otherwise stated

·····

Table B-1. Criticality 1 Component Failure Modes by Vehicle Response Mode Category (Page 1 of 6)

							-			
110.	VEHICLE AND SUB SYSTEM	ETEM	FAILURE MODE	TINE PERIOD	NO. LTEMS	DOC./PAGE	- NOTES	FALLURE	RATES	HE EGHT ENG
۱	HPS (ORB)	12" LOZ FEEDLINES TO EACH	RUPTURE OR LEAKAGE	L.8.5.P	J	\$ /966		1.005+04	1.006-07	PROB
2	HPS (ORB)	2" LH2 RECIRCULATION BY- PASS AND RETURN LINES OF SSMES	RUPTURE OR LEAKAGE	L .8. 5.P	3	0/967, 970		4.006-05	4.00E-C8	FROS
3	HPS (ORB)	LO2 BLEED, RECIRCULATION POGO SUPPRESSION LINE ASSEMBLY	RUPTURE OR LEAKAGE	L.8.5,P	١	8/971		5.002-05	5.00E-08	PROB
	NAIN PROPULSION SYSTEM (OR8)	LH2 FEED DISCONNECT PHEU- MATIC SHUT-OFF VALVE	FAIL TO REMAIN OPEN CAUSED BY FLAPPER LINKAGE STRUC- TURAL FAILURE	L.0,5,P	1	B/ 959		1.006+07	1-00E-09	PR08
5	IPS (ORB)	LOZ FEED DISCONNECT PHEU- MATIC SHUT-OFF VALVE	FAIL TO REMAIN OPEN CAUSED BY FLAPPER LINKAGE STRUC- TURAL FAILURE	L.8.5,P	1	6 / 960		1.005-07	1.005+09	FR(%
6	MAIN PROPULSION SYSTEM (ORB)	HELIUH ACCUMULATOR (TO HPS VALVES)	RUPTURE WITH RESULTING DAMAGE TO SURROUNDING COMPONENTS	L.B.S;P	2	8/941	ITEM CALLED SURGE CHAM IN 11/15/79	1.00E-07 BER'	1.005-09	ross
,	MPS (ORB)	GD- CHECK VALVE SSME ISOLATION	FAILS TO REMAIN OPEN (STOPS FLOW TO ET)	L.8.5.P	د ا	Ø7983		1.000-06	1.008-07	PEOR
	125 (ORB)	LOZ RELIEF LINE	RUPTURE OR LEAKAGE	L.8.5.P	1	0 / 969		5.008-06	5.00E-08	POSS
9	GINBAL ASSEMBLY (ORB)	GINBAL BEARING	GIMBAL STUCH CAUSED BY BEARING SEIZURE	L.8.5.P	3	ME/4-78, 5-10		1.006-05	1.008-08	PCSS
10	LITN PROPERSION SYSTEM (DRB)	HELLUM STORAGE TANKS	GROSS RUPTURE	L.8.5.F	5	0/939,945, 946,947		1.001-07	1.005-09	P055
н	HYDRALLICS (ORB)	TVC SERVO ACTUATOR ZYLINDER	RUPTURE OR LEANAGE	L.0.S.P	6	0/339	(6)	5.008-08	5.002-10	5 ACT
12	HYDRAULICS (ORB)	TVC SERVO ACTUATOR POWER	STUCK POWER VALVE SPOOL	L.8,5,P	6	P 7 340	(6)	\$.0ne+07	5.008-04	* AC*
IJ	HYDRAULIES (ORB)	TVC SERVO ACTUATOR FITTER	CLOGGED FILTEN ELEMENT	a.s.p	6	Ø7 341	(6)	5.00E+06	5.008-09	A(T
14	HYDRAULICS (ORB)	TVC SERVO ACTUATOR FEED BACK HECHANISH	JANHED OR SEPARATED HECH-	L.8.5.P	•	0/348	(6)	5.001-07	5.00E-04	1 40,41
15	HYDRAULICS (DRB)	RUDDER/SPEED BRAKE SWITCH- ING VALVE OUTPUT MANIFOLD	RUPTURE OR LEANAGE	L.8.5,P	1	H-0/1-21	(b)	\$. OOE - 08	5.008-10	8023
16	HYDRAULICS (088)	RUDDER/SPEED BRAKE 4 CHANNEL SERVO VALVE	RUPTURE OR LEANAGE	L.8.5.P	2	H-0/1-21	(6)	5.00E-08	5.008-10	4 () 3 7
17	HYDRALLICS (DRB)	ELEVON SERVO ACTUATOR . CYLINDER ASSEMBLY	RUPTURE OR LEAKAGE	L.8.5.P	•	M-#/1-21	(b)	5.008-08	5.00E-10	86.98
18	AUXILIARY POWER (ORBITER)	APU GAS CLHERATOR	LEARAGE FROM DECOMPRESSION CHAMBER SEAL FAILURE OR INJECTION TUBE STRUCTURAL FAILURE	L.8.5.P	3	\$ ∕1253-1254	(6)	5.00E+05	5.005-08	•
19	AURILIANY POWER {ORBITER}	APU TURBINE SHUT-OFF SOLENGID VALVE	FAILS TO SHUT FROM CRACKED SEAT, CONTAMINATION, LOGIC FAIL, ETC.	L.8.5.P	3	Ø/1272-1271	(b), (c)	5.008-07	5.008-08	0055
20	AUXILIARY PONER (ORBITER)	APU HON FUEL STORAGE TANKS	GROSS RUPTURE FROM NATERIAL DEFECTS	L.B.S.P	3	0/1259	(6)	S DOE-OR	5.008-10	1021
			1	1			4		1	

CATEGORY 6: EXTERNAL TANK PUNCTURED (FROM ORBITER IMPACT, SHRAPHEL, TPS FAILURES, ETC.)

1

Table B-1. Criticality 1 Component Failure Modes by Vehicle Response Mode Category (Page 2 of 6)

		т <u>т</u>						FATIINE	RATES	
110.	VEHICLE AND SUB SYSTEM	11EN	FAILURE HODE	PERIOD	NO. LTEMS	DOC./PAGE	NOTES	- AILONE	4	FACTOR
21	ACTIVE THE MAL CONTROL (URS)	WATER SPHAT BOILER WATER TANK	GROSS RUPTURE	L.8.5.P	3	\$/717	(6)	5.008-08	5.00E-10	P055
22	ACTIVE THERMAL CONTROL (ORB)	WATER SPRAY BOILER NZ TANE	GROSS RUPTURE	L .8.5. P	3	#/718	(6)	5.002-08	5.00E-10	POSS
23	ACTIVE THERMAL CONTROL	APONIA BOILER AND PIPING	OVERPRESSURE RUPTURE	L,8,5,P	z	● /714	(6)	1.00E-07	1.002-09	Poss
24	AFT REACTION CON- TROL ASSEMBLY (ORB)	NONCHETHYL HYDRAZINE (1998) FEEDLINE AND FITTINGS	RUPTURE OR LEAKAGE OF LINES, VALVES OR FITTINGS	L.8.5,P	z	8 ₩1038-1031 2007 - 0	(4)	1.008+04	1.000-07	POSS
25	AFT REACTION CON- TROL ASSEMBLY LORB)	N704 OXIDIZER FEEDLINE AND FITTINGS	RUPTURE OR LEAKAGE OF LINES. VALVES OR FITTINGS	L.8.5.P	z	6/1040-1041	(4)	1.002-04	1.006-07	POSS
26	AFT REACTION CON- TROL ASSEMBLY (ORB)	1991 AND 11204 TANK ASSEN- BLIES	RUPTURE, LEAKAGE, OR TANK SEAL FAILLRE	L.0.5.P	•	8/1042	(d)	2,00E-08 2,00E-05	2.00E-10 2.00E-08	PROB
27	AFT REACTION CON- TROL ASSEMBLY (ORB)	NON AND N-OF TANK FLEXIBLE GIMBLE JOINT	RUPTURE OR LEAKAGE	L.8,5,P	12	\$ /1046	(d)	\$.00E+06	2.005-09	POSS
28	ORBITAL MANEUVER SYSTEM (ORB)	ION AND N204 STORAGE TANKS	RUPTURE, LEANAGE, OR TANK SEAL FAILURE	L.8.5.P	10	6 /1114-1115	(ð)	2.00E-08 2.00E-05	2.00E-10 2.00E-08	PROB
Z9	ORBITAL NANEUVER SYSTEN (ORB)	MAN AND RYD& FILL AND DRAIN COUPLINGS	RUPTURE OR LEAKAGE	L,8,5,P	2	9/1162	(c), (d)	\$.00E+06	2.005-09	PROB
30	ORBITAL MANEUVER	MAN AND N204 FEEDLINES	RUPTURE OR LEAKAGE	L.8.5.P	•	•/1116-1117	(d)	1.005-04	1.008-07	PROB
31	ORBITAL MANEUVER SYSTEM (ORB)	GN2 TANK SUPPLY TO VALVE (2,500 PS1) ACTUATORS	GROSS RUPTURE	1,8,5,6	2	€/1130-1131	(d)	2.008-08	2.00E-10	POSS
32	ORBITAL MANEUVER SYSTEM (ORB)	GR2 ACCUMULATOR	GROSS RUPTURE	L.8.5,P	2	₩ 1188-1189	(c),(d)	2.00E-08	2.005-10	₽0 <u>5</u> 5
33	ORBITAL MANEUVER SYSTEN (ORB)	HEN AND NOCA FLEXIBLE	RUPTURE OR LEAKAGE	L.8.5.P	12	₩1132-113	(d)	2.00E-06	2.006-09	PROS.
34	ORBITAL NANEUVER SYSTEM (ORB)	H. STORAGE TANKS (4,800 PS1)	GROSS RUPTURE	L.8.5,P	5	∎/110-1111	(d)	2.005-08	2.005-10	POSS
35	ORBITAL MANEUVER SYSTEN (ORB)	ENGINE TO VENICLE FLEXIBLE	STRUCTURAL FAILURE ALLOW- ING LEARAGE	L.8.S.I	4	€/1118-111S	(d)	2.00E-06	2.00E-09	P908
36	ORBITAL MANEUYER SYSTEM (ORB)	GINGLE RING FORGING (ENGINE ATTACHMENT)	STRUCTURAL FAILURE CAUSING FAILURE OF FLEXIBLE CON- NECTOR	1.8.5,1	2	B/1134-1135	{c},{d}	2.005-08	2.00E-10	PROB
37	ORBITAL RANEUVER SYSTEM (ORS)	PROFELLANT POR AND POD CROSSFEED COUPLING	EXTERNAL LEAKAGE FROM STRUCTURAL FAILURE	L.8.5.1	6	€/1201-120	(c).(d)	2.005-06	5.005-09	POSS
38	AFT REACTION CONTROL (ORB) ASSENBLY	H. STORAGE TANKS (4,000 PSI)	GROSS RUPTURE WITH PRO- POCATED FRAGMENTS RUPTUR- ING PROPELLANT TANKS	L.8,5,1	•	&/1032-103	(d)	2.005-08	2.005+10	POSS
39	AFT REACTION CONTROL (ORB) ASSEMBLT	ENGINE BELLOWS ASSEMBLY	EXTERNAL LEAKAGE FROM STRUCTURAL FAILURE	1.8.5.	° 56	€/1070-1071	(c).(d)	2.098-06	2.005-09	PROB
40	SEPARATION NECH- ANISM (ORB/ET)	DETONATOR OF AFT ATTACH- NENT FRANCIBLE NUT	INADVERTENT DETONATION	1.8.5.	•	F/96		3.00E-06	3.000-07	. ACT

CATEGORY &: EXTERNAL TANK PUNCTURED (FROM ORBITER IMPACT, SHRAPHEL, TPS FAILURES, ETC.)

: ;

. قدارها Table B-1. Criticality 1 Component Failure Modes by Vehicle Response Mode Category (Page 3 of 6)

<u> </u>	· · · · · · · · · · · · · · · · · · ·				· · · · ·					
10.	VEHICLE AND SUB SYSTEM	ITEM	FAILURE MORE	TIME PERIOD	NO. LTEMS	DUC./PAGE	NOTES		HATES	WEIGHTING FACTOR®
41	SEPARATION HECH- ANISH (ORB/ET)	AFT FRANGIBLE NUT	PREMATURE FRACTURE THROUGH STRUCTURAL FAILURE	L.8.5.P	2	# /98-99		3.008-08	3.00E-11	ACT
42	SEPARATION MECH- AMISM (ORB/ET)	AFT BOLT	STRUCTURAL FAILURE	L,8,5,P	2	B /101		3.00E-08	3.008-11	ACT -
43	SEPARATION NECH- ANISM (ORB/ET)	AFT FRANGIBLE NUT CART- RIDGE BOOSTER	INADVERTENT OPERATION	L,8.5.P	•	Ø/ 102		3.00E-06	3.008+07	ACT
4	SEPARATION MECH- ANISM (ORB/ET)	PRESSURE CARTRIDGE OF FORWARD SEPARATION BOLT	INADVERTENT OPERATION	L.8.S.P	2	●/103		3.008-06	3.000-07	ACT
45	SEPARATION NECH- ANISM (ORB/ET)	FORWARD BOLT	STRUCTURAL FAILURE	L.8.5,P	1	8/104		3.006-08	3.008-11	ACT
46	ORB/ET FORWARD	SUPPORT STRUCTURE	STRUCTURAL FAILURE	L.8.5,P	1	E-Ø/6-9		3.005-08	3.008-11	ACT
47	ORB/ET AFT ATTACHMENT	SUPPORT STRUCTURE	STRUCTURAL FAILURE	L,8.5,P	z	E-8/6-10		3.005-08	3.00E+11	ACT
48	ORB/ET FORMARD ATTACHMENT	SPINOLAS	SEIZED (ROTATION SEIZURE)	L.8.5.P	2	E/P-C-55		1.008-05	1.005-08	POSS
49	CRB/ET FORMARD	ET BIPOD FITTINGS	SEIZED (ROTATION SEIZURE)	L.8.5.P	Z	E/P-C-56		1.00E-05	1.00E+08	POSS
50	ORB/ET AFT ATTACHMENT	PIVOTAL SUPPORTS	SEIZURE	L.8.5.P	12	E/P-C-9		1.00E-05	1.00E-08	PCSS
sı.	ORB/ET AFT ATTACHMENT	SLIDING SUPPORTS	SELZURE	L,8,5,P	2	E/P-C-58		1.008-05	1.008-08	POSS
52	ERTERNAL TANK	LH2 TANK BARREL TPS	SEPARATION FROM ET OR STRUCTURAL FAILURE DUE TO UNCLEAN SURFACE OR INADE- QUATE QUALITY	100- 124 SEC	2	NOT IN 'CIL' DOC'S		3.00E-06	3.00E-07	POSS
53	ERTERNAL TANK	LH2 TANK AFT DOME TPS	SEPARATION FROM ET OR STRUCTURAL FAILURE DUE TO UNCLEAN SURFACE OR INADE-	LIFTOFF	1	NOT IN 'CIL'DOC'S		3.00E-06	3.008+07	POSS
ŀ			QUATE QUALITY	••••						.
54	ELTERNAL TANK	LOZ TANK OGIVE TPS	SEPARATION FROM ET OR STRUCTURAL FAILURE DUE TO UNCLEAN SURFACE OR INADE- QUATE QUALITY	100- 124 SEC	1	NOT IN 'CIL' DOC'S		3.002-06	3.00E-07"	PROB
55	SR8	THERMAL CURTAIN HEAT SHIELD TPS	SEPARATION FROM SRB OR STRUCTURAL FAILURE DUE TO UMCLEAN SURFACE OR INADE- QUATE QUALITY	100- 124 SEC	2	NOT IN		3.00E-06	3.002+07	POSS
56	ELECTRICAL POWER (ORB)	02 TANK SUBASSEMBLY NUMBERS	CVERPRESSURE RUPTURE; EACESS HEAT INPUT FROM HEATERS OR MATERIAL DEFECT	L.8		Ø/467,468, 471	(a) SEE 5-37	1.00E-08	1.008-10	PROB
57	ELECTRICAL POWER	H2 TANK SUBASSEMBLY NUMBERS	OVERPRESSURE RUPTURE; EXCESS HEAT INPUT FROM HEATERS OR MATERIAL DEFECT	L.8	2	8/469.470. 472	(4) SEE 5-38	1.005-08	1.008-10	PROB
58	ATMOSPHERIC REVITALIZATION	AUXILIARY 02 STORAGE TANK (900 PS1)	OVERPRESSURE RUPTURE	ι,8	1	B /558	(A) SEE 5-39	5.00E-09	5 001-11	8099
59	ATHOSPHERIC REVITALIZATION	N7 STORAGE TANKS (3,000 PSI)	OVERPRESSURE RUPTURE	1.8	4	P/568	(a) SEE 5-40	5.00E-09	5 00E-11	POSS

CATEGORY 6: EXTERNAL TANK PUNCTURED (FROM ORBITER IMPACT, SHRAPHEL, TPS FAILURES, ETC.)

...

Table B-1. Criticality 1 Component Failure Modes by Vehicle Response Mode Category (Page 4 of 6)

11.

_					1					
••	VEHICLE AND SUB SYSTEM	ITEM	FAILURE MODE	TINE PERIOD	NO. LTEPIS	DOC,/PAGE	NOTES	FAILURE	RATES	MEIGHTING FACTOR+
60	ELECTRICAL POWER (ORB)	O2 TANK SUBASSEMBLY NUMBERS 1, 2 AND 3	OVERPRESSURE RUPTURE; EXCESS HEAT INPUT FROM HEATERS OR MATERIAL DEFECT	P	3	₽/467,468, 471	SAME AS #56	2.006-08	2.00E-10	PROB
61	ELECTRICAL POWER (ORB)	H2 TANK SUBASSEMBLY NUMBERS 1, 2 AND 3	OVERPRESSURE RUPTURE; EXCESS HEAT THPUT FROM HEATERS OR MATERIAL DEFECT	٢	3	Ø/469,470, 472	SAME AS P57	80-300.5	2.00E-10	PROB
•	ATHOSPHERIC REVITALIZATION	AUKILIARY OZ STORAGE FANK (900 PSI)	OVERPRESSURE RUPTURE	₽	١	₽/558 ÷	SAME AS +58	1.005-08	1.006-10	PROB
63	ATHOSPHERIC REVITALIZATION	N ₇ STORAGE TANKS (3,000 PSI)	OVERPRESSURE RUPTURE	P	•	Ø/ 568	SAME AS	1.008-08	1.00E-10	POSS
64	FORWARD REACTION CONTROL ASSEMBLY (ORB)	NON AND N ₂ 04 LINE FLEXIBLE ASSEMBLIES	RUPTURE OR L'CARAGE	L,8,5	2	Ø/1085	(a) SEE 5-31	5.00E-07	5.008-10	POSS
69	FORMARD REACTION CONTROL ASSEMBLY (ORB)	NNN AND N204 TANK ASSEN- BLIES	RUPTURE, LEAKAGE ON TANK SEAL FAILURE	L.8,5	Z	●/1086	(a) SEE 5-32	5.00E-09 5.00E-06	5.00E-11 5.00E-09	PROB
61	FORWARD REACTION CONTROL ASSEMBLY (ORB)	IN FUEL FEEDLINE AND FITTINGS	RUPTURE OR LEARAGE OF LINES, VALVES, OR FITTINGS	L.8,5	1	8 /1096-1097	(a) SEE 5-33	3.008-06	3.00E-08	POSS
6	FORWARD REACTION CONTROL ASSEMBLY (ORB)	N-OR OXIDIZER FEEDLINE AND	RUPTURE ON LEAKAGE OF LINES, VALVES, OR FITTINGS	L.8.S	1	Ø/1096-1097	(a) SEE 5-34	3.001-06	3.00E-C8	POSS
6	FORWARD REACTION CONTROL ASSEMBLY (ORB)	Nø STORAGE TANKS (4,000 PSI)	GROSS RUPTURE WITH PRO- PAGATED FRAGMENTS RUPTUR- ING PROPELLANT TANK(S)	L.8.5	2	A 1089-1090	(a) SEE 5-35	5.00E+09	5.00E-11	POSS
6	9 FORMARD REACTION ECNIPOL ASSEMBLY (GRB)	FLEXIBLE COUPLINGS AND	RUPTURE AT PRIMARY OR VERNIER THRUSTER	L.8.5	32	9/1084	(#) SEE 5-36	1.00E-06	1.008-09	POSS
,	O FORMARD REACTION CONTROL ASSEMBLY (ORB)	NNH AND N204 LINE FLEXIBLE	RUPTURE OR LEAKAGE	P	2	6/1085	SAME AS #64	1.00E-06	1.006-09	POSS
,	I FORWARD REACTION CONTROL ASSEMBLY (ORB)	NNH AND N204 TANK ASSEN- BLIES	RUPTURE, LEARAGE OR TANK SEAL FAILURE	. р	z	€/1086	SAME AS #65	1.00E-08 1.00E-05	1.00E-10 1.00E-08.	PROB
,	2. FORWARD REACTION CONTROL ASSEMBLY (ORB)	MMH FUEL FEEDLINE AND FITTINGS	RUPTURE OR LEAKAGE OF LINES, VALVES, OR FITTINGS	P	1	●/1096-1097	SAME AS #66	5.00E-05	5.008-08	POSS
,	J FORWARD REACTION CONTROL ASSEMBLY (UPB)	N204 OKIDIZER FEEDLINE AND	RUPTURE OR LEAKAGE OF LINES, VALVES, OR FITTINGS	P	1	€¥ 1096 - 1097	SAME AS #67	\$.00E-05	5.00E-08	POSS
;	A FORMARD REACTION CONTROL ASSEMBLY (URB)	H. STORAGE TANKS (4.000 PS1)	GROSS RUPTURE WITH PRO- PAGATED FRAGMENTS RUPTUR- ING PROPELLANT TANK(S)	P	2	₩ 1089-1090	SAME AS #68	1.008-08	1.008-10	. POSS
;	S FORWARD REACTION CONTROL ASSEMBLY (ORB)	FLEXIBLE COUPLINGS AND FITTINGS	RUPTURE AT PRIMARY OR VERNICE, THRUSTER	P	32	9/1084	SAME AS +69	2.00E-06	2.008-09	POSS
,	6 HPS (ORS)	LHZ RECIRCULATION PURP	HOUSING RUPTURE	L.8.5	3	8/958	SEE 9-14	1.005-07	1.00E-09	POSS
,	7 HPS (048)	12" LH2 FEEDLINES TO EACH	RUPTURE OR LEARAGE	L.8.5	3	#/963	SEE 9-15	1.002-04	1.005-07.	PROB
1	I	•	1	1	1	1	1	1	1	1

CATEGORY 6: EXTERNAL TANK PUNCTURED (FROM ORBITER IMPACT, SHRAPHEL, TPS FAILURES, ETC.)

1 - - 1

17

. ! -

. . .

1

Table B-1. Criticality 1 Component Failure Modes by Vehicle Response Mode Category (Page 5 of 6)

A A VANA

-1. 4 1-1

_										· · · · · · · · · · · · · · · · · · ·
IK	VEHICLE AND SUB SYSTEM	ITEM	FAILURE HODE	TIME PERIOD	NO. LTEMS	DOC./PAGE	NOTES	FAILURE Å	RATES Å	WEIGHTING FACTOR®
[7	MAIN PROPULSION SYSTEM (ORP)	2" GH2 PRESSURIZATION DISCOMMECT VALVE	VALVE FAILS CLOSED CAUSING LH2 TAME STRUCTURAL FAILUR	L.8.5.P	1	€ -8 /4-7		1.008-07	1.005-09	POSS
7	SSHE (ORB)	BURST DIAPHRAGHS	RUPTURE OF H2 LINES DIAPHRAGHS	1,8,5	30	HSC/3-52	SEE 9-16	1,006-05	1.006-08	ACT
•	P MPS (ORB)	LH2 RELIEF LINE	RUPTURE OR LEAKAGE	L,#,S	1	0/968	SEE 9-17	5-00E-06	5.00E-08	PROB
•	MAIN PROPULSION SYSTEM (ORB/ET)	4" DIAMETER LHZ RECIRCU- LATION LINE	RUPTURE	L .8. 5	1	<u>#</u> /952	SEE 9-18	2.00E-04	2.00E-07	PROB
a	MAIN PROPULSION SYSTEM (ORB/ET)	17" LH2 FEEDLINE AND NANIFOLD ASSEMBLY	RUPTURE OR LEAKAGE	L,8,5	1	Ø/961-962	SEE 9-19 & 20; (1)	5.006-05	5.00E-08	ACT
	LOZ FEEDLINE (ET)	17" RACO-CREAVY SEALS	EXCESS LEAKAGE	L,8,5,P		E/P-C-4	(e)	1.006-04	1.002-07	POSS
8	LO2 FEEDLINE (ET)	17" FLEXIBLE COUPLING (RIGID LINE AND BELLOWS)	EXCESS LEAKAGE FROM STRUC- TURAL FAILURE OF FUSION WELDS LINE TO BELLOWS	L ,8,5, P	5	E/P-C-3	(•)	1.00E-05 1.00E-07 (COUPLING	1.00E-08 1.00E-10 ND WELD)	POSS
8	LO2 FEEDLINE (ET)	17" FLEXIBLE COUPLING (RIGID LINE AND BELLONS)	SEIZURE (BALL AND SOCKET) CAUSING LO2 FEEDLINE STRUCTURAL FAILURE	L ,8, 5,P	5	E/P-C-8	(*)	1.00E-05 1.00E-07 (COUPLING	1.00E-08 1.00E-10 AND WELD)	PROB
8	LOZ FEEDLINE (ET)	PIVOTAL SUPPORTS	SEIZURE (BALL AND SOCKET) CAUSING LO2 FEEDLINE STRUCTURAL FAILURE	L.8.5.P	27	E/P-C-9	(•)	1.008-05	1.005-08	POSS
•	LO2 ANTIGEVSER LINE (ET)	4" FLEXIBLE COUPLING (RIGID LINE AND BELLOWS)	EXCESS LEAKAGE FROM STRUC- TURAL FAILURE OF FUSION HELDS LINE TO BELLONS	L.8.5.P	6	E/P-C-12	(*)	1.00E-05 1.00E-07 (COUPLING	1.00E-08 1.00E-10 AND WELD)	PROB
8	LUC ANTIGEYSER LINE (ET)	4" RACO-CREAVEY SEAL	EXCESS LEAKAGE	L.8.5.P	8	E/P-C-4	(e)	1.008-04	1.00E+07	Puss
8	LO2 ANTIGEYSER LINE (ET)	4" FLEXIBLE COUPLING (RIGID LINE AND BELLOWS)	SEIZURE (BALL AND SOCKET) CAUSING LO2 ANTIGEYSER LINE STRUCTURAL FAILURE	L.B.S.P	6	E/P-C-14	(•)	1.006-05	1.005-08	POSS
8	LO2 ANTIGEYSER - LIRE (ET)	TEFLON-COVERED SLIDING -	SEIZURE CAUSING LOZ ANTI- GEYSER LINE STRUCTURAL FAILURE	L.8,S.P	- 14	E/P-C-15	(•)	1.00E-05 1.00E-07 (COUPLING	1.00E-08 1.00E-10 AND WELD)	PROB
•	LO2 H INJECT	CHECK VALVES	EXCESS LEAKAGE OR RUPTURE (EXTERNAL)	L,8,5,P	2	E/P-C-4, P-C-25	(e)	1.00E-07	1.00E-09	POSS
9	LOZ He INJECT	HARRISON-K SEALS	EXCESS LEAKAGE	L,8,5,P	2	E/P-C-26	(+)	1.00E-04	1.008-07	POSS
,	LH2 PRESSURIZA- TION LINE (ET)	2" FLEXIBLE COUPLING (RIGID LINE AND BELLOWS)	EXCESS LEAKAGE FROM WELD OR STRUCTURAL FAILURE	L.8.S.P	6	E/P-C-19		1.00E-05 1.00E-07 (COUPLING	1.00E-08 1.00E-10 AND WELD)	POSS
3	LH2 PRESSURIZA- TION LINE (ET)	HAFLER SEALS	EXCESS LEAKAGE	L.8.5.P	6	E/P-C-20		1.00E-04	1.008-07	POSS
•	LH2 PRESSURIZA- TION LINE (ET)	PIVOTAL SUPPORTS	SEIZURE (BALL AND SOCKET) CAUSING LH ₂ PRESSURIZATION LINE STRUCTURAL FAILURE	£,8,5,P		E/P-C-9		1.008-05	1.008-08	POSS
,	LH2 PRESSURIZA- TION LINE (ET)	TEFLOM COVERED SLIDING SUPPORTS	SEIZURE CAUSING LH2 PRESS- URIZATION LINE STRUCTURAL FAILURE	L.8.5.P	15	E/P-C-15		1.006-05	1.006-08	PROB
"	T LH2 VENT-RELIEF ASSEMBLY (ET)	CALMEC V/R VALVE GASKETS (5) AND SEALS (2)	EXCESS LEAKAGE	L.8.5.P	,	E/P-C-4, P-C-25		1.005-04	1.002-07	POSS
L	1	1	1	l	1	ŧ	ļ	ł	l	1

CATEGORY 6: EXTERNAL TANK PUNCTURED (FROM ORBITER IMPACT, SHRAPHEL, TPS FAILURES, ETC.)

,.

Table B-1. Criticality 1 Component Failure Modes by Vehicle Response Mode Category (Page 6 of 6)

10.	VEHICLE AND	ETEM	FAILURE MODE	TIME	NO. LTEMS	DOC./PAGE	NOTES	FAILURE	RATES	WE IGHT ING
98	LH2 VENT-RELIEF ASSEMBLY (ET)	PIVOTAL SUPPORTS	SEIZURE (BALL AND SOCKET) CAUSING V/R ASSEMBLY LINE STRUCTURAL FAILURF	L.8.5.P	4	E/P-C-9		1.008+05	T.00E+08	PROB
99	LHZ TANK (ET)	FORMARD DOME FEED THROUGH COVER SEALS	EXCESS LEAKAGE RESULTING IN LOSS OF ULLAGE AND LH2	L.8.5.P	5	E/P-C-4, P-C-26		1.00E-04	1.006-07	ACT
100	LH2 TANK (ET)	FORWARD DOME ACCESS COVER HAFLEX SEAL	EXCESS LEAKAGE RESULTING IN LOSS OF ULLAGE AND LM2 TANK FAILURE	L,8.5.P	1	E/P-C-20		1.008-04	1.00E-07	ACT
101	LH ₂ TANK (ET)	AFT DOME SCREEN; ACCESS COVER MAFLEX SEAL	EXCESS LEAKAGE RESULTING IN LH2 TANK FAILURE	L.8.5.P	1	E/P-C-20	-	1.005-04	1.00E-07	ACT
102	LH2 TANK (ET)	AFT DOME ACCESS COVER NAFLER SEAL	EXCESS LEAKAGE RESULTING IN LH2 TANK FAILURE	L.8.5.P	۱	E/P-C-20		1.008-04	1.00E-07	ACT
103	LH2 TANK (ET)	AFT LONGERON COVER RACO SEAL	EXCESS LEAKAGE RESULTING IN LH2 TANK FAILURE	L.B.S.P	1	E/P-C-4		1.005-04	1.00E-08	ACT
104	LH2 VENT-RELIEF ASSEMBLY	VENT VALVE	INADVERTENT OPENING	L.8.5.P	1	H-g/1-17		3.00E-05	3.00E-C6	PROB
105	LH2 TANK (ET)	WELDS (ASSUME SO DEFFERENT WELD RUNS)	WELD RUPTURE	L.8.5.P	1	H-9/4-6		6.00E-06	6.00E-09	ACT
106	MPS (ORB)	0.63" GH2 PRESSURIZATION LINE (TO MODULE)	RUPTURE OR LEAKAGE	L,8,5,P	3	Ø / 978		1.508-04	1.50E-07	POSS
107	MPS (ORB)	2" GH2 PRESSURIZATION LINE ASSEMBLY + 1" SECTION TO CHECK VALVE	PHPTURE OR LEAKAGE CAUSING LOSS OF ULLAGE PRESSURE	L.8.5.P	1	# /980		2.50E-04	2.508-07	POSS
108	MPS (ORB/ET)	17" LO2 FEEDLINE AND MANI- FOLD ASSEMBLY	RUPTURE OR LEAKAGE	L.8.5.P	1	0/964-905	(e)	7.00E-05	7.00E-08	ACT
109	RANGE SAFETY COMMAND DESTRUCT (ET)	NSI DETOMATOR	INADVERTENT DETONATION FROM LIGHTNING, STRAY EMI OR AFL, ELECTROSTATIC DIS- CHARGE, OR AUTOIGHITION	L,B.S,P	2	E/A-2		3.00E-06	3.002-07	ACT
110	RANGE SAFETY COMMAND DESTRUCT (ET)	SAFE AND ARM ASSEMBLY	INADVERTENT DETONATION OF PETN INSERTS DUE TO AUTOIGNITION	L.B.S.P	1	E/A-3		3.00E-06	3.00€≠07	ACT
111	RANGE SAFETY COMMAND DESTRUCT (ET)	CDF ASSEMBLY	INADVERTENT DETONATION OF EXPLOSIVE INSERTS FROM AUTOIGNITION	L.8.5.P	7	E/A+3		3.002-06	3.00E-07	ACT
112	RANGE SAFETY COMMAND DESTRUCT (ET)	COF MANIFOLD	INADVERTENT DETONATION OF EXPLOSIVE INSERTS FROM AUTOIGNITION	L.B.S.P	2	E/A-4		3.002-06	3.00E-07	ACT
113	RANGE SAFETY COMMENT DESTRUCT (ET)	LINEAR SHAPED CHARGE	INADVERTENT DETONATION CAUSED BY AUTOIGHITION	1.8.5.P	Z	E/A-4		3.008-06	3.008-07	ACT
									•••	
										4

CATEGORY 6: EXTERNAL TANK PUNCTURED (FROM ORBITER IMPACT, SHRAPNEL, TPS FAILURES, ETC.)

1..

APPENDIX C

A for the formation of the second sec

STS FAILURE MODES (MECO To Centaur Deployment)

(Contributing To Combined STS/Centaur Behavior Modes Nos. 6, 10, 12 and 13 As Outlined In Tables 3-1 and 3-3)

The failure rates quoted in this Appendix are in units of hour, $^{-1}$ unless otherwise stated

Table C-l.

7.

VEHICLE BLHAVIOR: Category (6) of Table 3-4

External Tank Punctured

CkillCAL TIML FikiUD: ML() to faternal Tank September (MECO to MECU + 16 seconds)

1

ASSUMPTIONS	feedline failures on External Tank are not considered to be a	<pre>urublem for the period between MCCO to Ex- ternal Tank separation Failures 4 and 5 could cause overcome.</pre>	surfaction of all surfaction of all main engine compart- ment, structural damane and rupture	of feedines etc. Failures 6 2 7 could also cause rupture of main engine components.	Failures I through 7 Assumes an ignition source is present within the NE	compartment up to ET separation is complete (5100 lbs. of properlant vented	until after OHS I complete).
A ₂ /HK1A ₀ /IIK	1.00E-07 1.00E-04	5.00E-08 5.00E-05	7.00E-08 7.00E-05	5.00E-08 5.00E-05	5.00E-08 5.00E-05	1.00£-09 1.00£-07	1.00£-09 1.00£-07
FALLURE MODE	Rupture or Leakage	-	3	3	Ĩ	Gross Rupture	
NO. ITLMS.	m	-	-	-	-	· 8	2
ITLM	12" LO ₂ Feed- lines to cach Sunt	102 Bleed, Re- circulation Pogo Suppression Line Assembly	17" LO ₂ Feed- line and Mani- fold Assemuly	l" LO ₂ Relief Line	l" LH ₂ Relief Line	Helium Accumu- lator to MPS Valves	lkel ium Storage Tanks (4009 psi)
VEHICLE AND SUB-SYSTEM	Main Propulsion System		-				
2	-	2.	ri	4	°.	ę.	~

.

Weighting Factors: Mos. 1, 2 & 5 - PRUB No. 3 - ACT Nus. 4, 6, 7 - POSS

;]

Ż

• :-۰. Table C-1. (continued)

į

VEHICLE BEHAVIOR: Cateyory (6) of Table 3-4

· • . • External Tank Punctured

CKITICAL TIME PERIOD: MECO to External Tank Separation Complete (MECO to MECO + 16 seconds)

1.

22	ENICLE AND JB-SYSTEM	ITEM	MO. I TEMS.	FAILUKE MODE	۸ _۴ /۱۹۳۵ م _ا /۱۱۹	ASSURPT LONS
Rep Hec	aration hanism	Aft frangible Nut	. 2	Premature Fracture Caused by Structura Failure	3.006-11 3.006-08	
		Aft Frangible Nut Detonator	2 .	Inadvertant ⁻ letonation Signał	3.00E-07 3.00E-06	Failures 9 through 13 cause collision of
	Alex, 2 - 97 T A 2 - 47	Aft Bolt	2	Structural failure	3.006-11	Tark through premature release of altacimments
		Aft Frangible Nut Cartridge Booster	•	lnadvertant Operation	3.00E-07 3.00E-06	
		Forward Bolt		Structural failure	3.006-11 3.006-08	
		Pressure Car- tridge of For- ward Bolt	-	Inadvertant Operation	3.00£-07 3.00E-06	Failures 14, 15, 16, and 17 o.cur at the
		Umbilical Plate Frangible Ruts	و	fail to fractore	3.006-07 3.006-06	for fracture is community for fracture is tranting of RCS 1st burn. The associated probabili-
		Aft Frangible Nut	2	2	3.001-07 3.00£-06	tics are failures on demand.

1

Weighting Factors: Nos, 8 through 15 - ACT

-

۰.

۰.

Table C-1. (continued)

VEHICLE BEHMAVIOR: Category (6) of Table 3-4

External Tank Punctured

CRITICAL TIME PERIUD: MED to Exernal Tank Separation Complete (MECO to MECO + 16 seconds)

9	VEHICLE AND	111M	NÚ.	FAILUKE MOUE	A / HR: A J /11R	ASSUMPTIONS
16.	SuB-STSILF Separation Mechanism	Forward Bolt	·	fail to Fracture	3.006-06 3.006-06	
17.	Forward Attackment	Support Structure		Structural failure	3.00E-11 3.00E-08	Failures 17, 18 & 19 caust collision of Orbiter with External Tank L:rough premature
-18		Spindles		Rotation Seizure	1.00£-08 1.00£-05	release of attachments
.61		ET Bipod Fittings	~ .	1	1.006-08 1.006-05	
8.	Aft Attachment	Support Structure	~	Structural failure	3.00£-11 3.00£-08	Failures 20, 21 & 22 cause collision of Orbiter with External Tank through premature
51.		Pivotal Support	2	',eizure	1.001-08 1.001-05	release of attachments
22		Sliding Support	~	Seizure	1.00£-08 1.00£-05	
23	Range Safety Command Destruct	Linear Shaped Charye	C1	Inadvertant Detonation	3.00E-07 3.00E-06	
						•

٠,

Weighting Factors: Nos. 16 through 23 - ACT

۰.

:

۱<u>.</u>

Table C-1. (continued)

(Real

VEHICLE BCHAVIOR: Category (6) of Tabl~ 3-4 . External Tank Punctured

(RIFILAL TIME FIRIOD: MED to External Tank Seperation Complete (MICO to MECO + 16 seconds)

SSUMPTIONS								
2/HR: A./11R AS	3.006-07 3.006-06	3.006-07 3.006-06	3.00E -07 1.00E -06	. 00E - 07 . 00E - 06				
FAILURE MODE A	nadvertant etonatiun	nadvertant etonalion of ETN Inserts	nadvertant etonation of xplosive Inserts	1				
NO.	2			C 1				
ITCM	HSI Detonator	Safe & Arn Assembly	CUF Assenbiy	CDF Manifold	1			-
VEHICLE AND SUB-SYSTEM	Ranye Safety Command Destruct				·····	L <u></u>	L	L
ġ	24.	25.	26.	27.			T	

•

Weighting Factors: Nos. 24 through 27 - ACI

· · · .

• '

.

Table C-2.

S. 67.7

VEHICLE BEHAVIOR: Laturyory (6) of Table 3-4

External Tank Punctured

CKHILCAL TITY PLKIUL: Furner Generation Maneuver Tank Separation Maneuver (ALCO + 11 seconds to end

		ż			· ·				
CS separation burn)	ASSUMPTIONS	failures 1 through 8 could concealy pro gate through fire and	explosion and lead to loss of all 3 IMUS and hence loss of avionic tower, during this	the failure of RCS is considered to be the dominant one,"	Tailures 9 and 11 through 13 are not con sidered 11kely to propagate, but to caus	loss of RCS, and and failure 9, 10, 13 and 14 are considered to	occur when RCS is required for external tank separation andeuser with no time	1000 1000 1000 1000 1000 1000 1000 100	
of R	А ₁ /н г ;А ₁ /н г	1.00£-08 1.00£-08	1.006-09 Tank 1.006-07 Tank 1.006-07 Seal	5.000-01 5.000-01	5.00E-07 5.00E-04	2.006-u8 2.006-05	1.006-09	3.006-051 Valve 3.006-051 Valve 1.006-071 Seal	3.006-061 valve 3.006-051 valve 1.006-071 seal
	FAILURE MODE	Rupture or Leakaye	Rupture, Leakage or Tank Seal Failure	Ruplure or Leakage of Lines, Valves or Fillings	2	Pupture at Primary or Vernier Thruster	ross Rupture With rosssied Fragments ontoring Propellant acts	all Open of Spring Oaded Pupper Value r Excess Leakage	t
	NO. ITEMS.	2	2	Asse I	1 1	33	~	<u>v</u>	I
	ITCM	MHH and N ₂ 0 ₄ Line Flexible Assemblies	Mill and N ₂ 0 ₄ Tank Assemblies	Feed the and filthings	M ₂ 04 Oxidizer Feedine and Fittings	Flexible Coupling and Fittings (Engine Bellows	ke Storace Kanto (4000 psi)	Procellant Tank Drain, Vent & Bleed Quick Dis- onnect	ropellant Tank urge Aujok Iscomect
NULLI C TO	SCB-SYSTEM	Forward Reaction Control Assembly		-				<u>a 6 a 6 1</u>	<u> </u>
L	Ŷ	-	2.	ŕ	4	ۍ ا	é	~	xi.

The failure rates quoted include the possibility of propagation, but the dominant effect during this time period is considered to be the result of RCS loss with or without propagation i.e. Urbiter layacts faternal Tank. It is assumed that loss of une RCS unit, without propagation and prior to this critical time period, need not be relating. Heighting factors: Nos. 2 - FxCB

Table C-2. (continued)

S. Sec. or A

· •• • ·

VEHICLE BENAVIOR- Category (6) of Table 3-4

External Tank Functured

CKITICAL TIME HERDRON: Two District External Tank Separation Maneuver (MCD * 11 Seconds to end of MCD separation burol

o sejaration burn)	ASSUMPTIONS	failures 11 and 12 are likely to occur during the firing of the MCS 1.e. the ear	posure time for failure is relative short.				·	Tailures 15 through 20, could concervatly propagate through fire	and explosion and lead to loss of all OMS in one of tood." However, during
	4,/HK2,0,/HK	3.00£-06 3.00£-05	3.006-08 3.006-08	2.04£-09 2.04£-07	2.006-09 2.006-07	3.006-06 Val ve 3.006-05 Val ve 1.006-07 Seal 1.006-04 Seal	1,00£-09 1.00£-07	1,006-68 1,004-66	1.006-03 Tenk 1.006-07 Seal 1.006-07 Seal
	FAILUKE MUNE	Rupture or Excess Leakage	Structural Failure causing tank blockage	Structural failure Burn Through Or Rupture	¥	fail Open of Spring Loaded Puppet Valve or Excess Leatage From Seals Jr Cap	Structural Failure Causing Tank Blockage	kupture or Leakage	Rupture, Leakaye ur Tank Seal Failure
	NU. ITEMS.	2 455y5	2	2 16	28	2	2	12	4
	. 11(M	He Feedlines Valve & Regula- tors to Propetiant Tanks	MMH & N ₂ 0 ₄ Tank Acquisition Elevice (Fad)	Thrust Chanter Primary Thruster	Prisary Thruster No.271e Extension	He Pressuriza- tion Tank Guick Fill Disconnect	Propellant Tank Compartment Screens	MH and N ₂ 04 Tant flexible Gradie Joint	MtH and N ₂ 0 ₄ Tank Assemblies
	VEHECLE AND SUB-SYSTEM	forward Reaction Control Assembly						Aft Reaction Control Assembly	
L	Ŕ	é	2	=	Ň	13.	÷	5	<u>é</u>

The failure rates quoted include the possibility of propagation, but the dominant effect during this time period is considered to be the result of RCS loss with or without propagation i.e. Orbiter Impuets faternal Tank. It is assumed that loss of one PCS unit, without propagation and prior to this critical time period, need not be catastrophic. Weighting factors: Nos. 9 through 14 - PCS5 Mos. 15 & 16 - PROB Table C-2. (continued)

VEHICLE BEIMANIGH: COLONING (6) OF TODIC 3-4 . External Tank Functured

like my White's External Tank 'Aparation Naneurer (1966) + 11 :seconds to end of 1665 securation Parke CHITICAL TITY MERICU-

		•				
<u>B</u>	VEHICLE AND CUR-SYSTEM	¥11	MJ. HIRC.	FALLUKE MUUE	× 4/HP. 5, 4/HP	ASSUMPTIONS
2	Aft Reaction Control Assembly	MeH Fuel Feedling and fittings	2 45535	Rupture or Leatage of Lines, Valves or Filtings	5.006-04	this critical time period, the failure of RCS is considered these failures could
18,		M ₂ O ₄ Oxadizer Feedline and Fittings	2 455ys	•	5.006-01 5.006-04	further propagate to the MC compartment causing fire and explo- sion with residual
51		he Storage Tanks (4000 + 51)	4	Gross Kupture	10-300.1	propertancs. Ine ultimate affect of this failure coupled with impact between the
3	·····	Propellant Tank Vent and Bleed Muck Disconnect	2	fail Guen of Soring Loaded Puccet Valve or facess teakare from Scals of fau	3.006-061 VALVE 3.006-051 VALVE 1.006-091 SEAL	sidered to be the same as simply Orbiter/ET impact.
2		rie fredinnes Valve & Regulator to Prop. Tanks	4	kwiture or Licess Leakage	3.01£-06 3.00£-05	failures 21, 23 through 25 could propagate and cause aft pod damage
2		MMH & N ₂ 0 ₄ Tank Acquisition Device (Fed)	-	Structural failure Causing Tank Elocharye	3.006-11 3.006-08	and loss of aft CMS ergine." This possi- buility is lest likely than for failures 15
5		Frindry Thruster	54	Structural failure Burn Through or Rupture	2.106-09 2.006-07	the explosion could be caused as a direct result of failure. However, during this
	T	Restore of any en- here but a re-en- failures. Bo and category 1, they		محر دیکھنارے میں در اوالحالے تحدید عدلاً عالیہ ایکا دی در اور در الحد محر ایک الحکوم 1929 دو الدھ (14 حمدار) ا	int Lund 1 such hated	critical time period. failure of RCS is con- sidered to be the dominant one.

MAG

*Approximately 5400 lbp. of residual propellants will be vented to atmosphere. This venting procedure lasts until after 645 lburn is completed. venting procedure lasts until after 645 lburn is completed.
•The failure rates quoted include the possibility of propayation. but the dominant effect during this time period is considered to be the result of RCS loss with or without pro-during this time period is considered to be the result of RCS loss with or without pro-during this time period is farenal Tank. It is assumed that loss of one RCS unit, without propagation and prior to this critical time period, need not be catastrophic.

:
VEHICLE BEINAVION: Category (6) of Table 3-4 External Tank Punctured

.

CRIFICAL TIM. PLK100: During Univer Laternal Tank Separation Bunever (NLCO + 11 seconds to end of RCS

. 1					<u> </u>	<u> </u>				
[100 Durn].	ASSUMPTIONS	failures 21, 22, 25 and 26 are considered to occur when RCS is	tank separation maneuver with no time to cross feed.		failures 27 through 37 are considered to lead to fire and evolution sither direct	or indirectly within the aft GTC/RCS pod. The result will be loss of RCS which for this	critical time period 15 considered to be dominant. Concervably, failures	in the aft CMFS/RCS pod could further propagate to the ME compartment causing fire and	propellants "(See also first atteriated note on page A-B.) The ultimate affect is considered	
Styara	ъ₁/нк ;ъц/нк	2.00£-09 2.00£-07	3.666-66 valve 3.606-05 valve 1.606-01 Seal 1.006-04 Seal	1.00£-09 1.00£-07	1.006-08 1.006-05	1.00f-091 Tank 1.00f-071 Tank 1.00f-071 Seal	1.006-08 1.006-05	5.006-04 5.006-04	1.6/6-09 1.606-07	
	FAILURE MODE	Structural failure Burn Thrownh or Rupture	Fail Open of Suring Loaded Purget Valve or Excess Leatane From Seals or Cap	Structural failure Causing Tank Electage	fucture or Leakage	Pupture, Leakage ur Tank Seal Failure	Rupture or Leakage	9	Gross Pupture	
	NO. LTENS.	24	4	4	ę	01	2	4	ş	
	11£M.	Primary Thruster Nozzle Extension	He Pressurization Tank Autok Fill Disconnect	Projellant Tank Loocartaent Locreens	Propellant Payloa Edy Kit and Pod Kross Feed Kouphings	Fent And My ()4 Fank Assemblies	MPM and M ₂ 0 ₄ Fill and Drain Couplings	9944 and M ₂ 04 Feedlines and Valves	LM ₂ Tank Supply To Yalye Kickuotors (2500) DS11	
	VEHICLE AND SUB-SYSTEM	Aft Reaction Control Assembly			Orbital Tianeuvering System					
	Â.	24.	25.	Ż£.	27.	22.	. 6 2	Х	31,	

The failure rates quoted include the possibility of propagation to the ME convertment. As noted however, the ultimate affect on the vehicle is considered to be the same as Orbiter/ET inpact Second factors: Mos. 24 through 27 & 31 - POSS

Nos. 28 through 30 - PROB

. . .

11

VEHICLE BFHAVIOR: Lateyury (6) of Table 3-4 External Tank Punctured

CRITICAL TIME PERIOD: During Unbiter External Lank Separation Maneuver (McCu + 11 seconds to end of RCS separation

	ASSUMPTIONS	to be the same as simply Oribter/ET impact.	Failures 36 and 37 are considered to cause breating of	lines Other Oth failure modes have been	excluded as irrelevant to this mode of vehicle behavior.			1	
- Insure	_{Å I} /нк; λ _u /нк	1.006-09	1.00£-08 1.00£-05	1.00£-09	1.006-08	1.006-09	3.006-11 3.006-08		
	FAILURE MODE	Gross Runture	Rupture or Leakage	Gross Ruoture	Structural failure	•	•		
	0. IEMS.	2	12	5	+	2	æ		
	WJ11	GN ₂ Accumulator	49 th and M ₂ 0 ₄ Flexible Gimble Joint	He Storage Tanks (4800 psi)	Engine to Vehicle flexible Connector	Ginteal Ring Forging (Engine Attachment)	Engine and Gimba Ring Mounting Pad		
	VEHICLE AND	Orbital Maneuvering System							-1
	8	32.	Ĩ.	×	×	R	З.		

Weighting Factors: Nos. 32 & 34 - PUSS Nos. 33 & 35 through 37 - PROB

.

Table C-3.

VEHICLE BEHAVIOR: Categories (6) & (10) of Table 3-4 (6) External Tank Punctured (10) Fire and Explosion in ME Compartment

LE BE Exteri Fire .	HAVIOR: Categori nal Tank Puncture and Explosion in rbiter Tumbles to	es (6) & (10) of ed ME Compartment o Earth	Table	-4 CRITICAL TI	ME PERIOO(S): (6 (10) MECO TO MECO + 11 secc) MECO + 16 seconds to C insertion (end OMS1 bu
<u>9</u>	VIHICLE AND SUB-SYSTEM		NO. LILMS.	FUCKE MOCH	4,/146.5Au/118	ASSUMPTIONS
	Aft Reaction Control Assembly••	11114 and H ₂ 0 ₄ Tank Flexible Gumble Joint	j2	Rupture or Leakage	2.00£-09 2.00£-06	fur failures 1 to 20, the failure rates quoted are exclusive-
ci		1944 and N ₂ 0 ₄ Tank Assemblies	•	Rupt ure, Leak age or Tank Seal Failure	2.00E-10 Tank 2.00E-08 Tank 2.00E-08 Seal 2.00E-05 Seal	ry for propedation of DMS/RCS fire and explosion to the Orbiter ME compart- ment
ri I		Matt Fuel. Feed- line and fittings	2	Rupture or leakage of Lines, Valves or Fittings	1.006-07 1.005-04	
4		M ₂ 0 ₄ Oxidizer Feedline and Fittings	2	8	1.006-04 1.006-04	
, v		lie Storage Tanks (4000 ps1)	4	Grass Rupture	2.0410 2.0008	•
6 .		Propellant Tank Vent and Bleed Duick Disconnect	12	fail them of Suring Loaded Puppet Valve or Excess Iralage From Seals or Cap	6.016-07/Valve 6.016-06/Valve 2.006-05/Seal 2.006-05/Seal	
	Orbital Maneuvering System	Propellant Pay- load Bay Kit and Pod Cross feed Couplings	9	Rupture or leakane	2.004-09 2.004-06	

"for the critical period MCO+11 seconds to MCO+16 seconds, during Orbiter/LT Separation, the effect of propagated failures has been considered as being the same as the effect of loss of RCS and is considered in Table C-2.

**Rupture of any engine Lellows assembly was originally included here but a recent design change will allow isolation of such failures. Because these failures were no longer designated category 1, they were removed from the analysis.

WEIGHTING FACTORS: Nos. 1 & 2 - PRUE . Nos. 3 through 1-- PUSS

. ``

j

ţ

1

VEHICLE BEHAVIOK: Categories (6) & (10) of Table 3-4 (6) External Tank Punctured (10) Fire and Explosion in Aft ME Compartment

CRITICAL TIME PERIOD(S): (6) MECO to MECO+11 seconds (10) MECO + 16 seconds to Orbit Insertion (end)MS1 burn)

.....

!

[]

ļ

Pue Pue	Orbiter Jumbles	to Earth '				•	1
ġ	VEHICLE AND SUB-SYSTEN	- WELL	NO. ITLMS.	FAILURE NODE		ASSUMPTIONS	
ઝ	Orbital Maneuvering System	IPHI and M ₂ 0 ₄ . Tank Assemblies	01	Rupture, Leabane Or Tank Seal failure	2.006-101 Tank 2.006-081 Tank 2.006-081 Seal 2.006-051 Seal		T
9.		PANI and M ₂ 0 ₄ Fill and Drain Couplings	2	Rupture or Leakage	2.00E-09 2.00E-06		
i0.		Mort and M ₂ 04 Feedlines and Valves	* *	a 8	1.006-07 1.006-04	•	
÷		GM2 Tenk Supply To Valve Actua- tors (2500 psi)	2	Grass Rupture	2.00£-10 2.00£-08		
12.		GM ₂ Accumulator	2	2	2.006-10 2.006-08	·	
Ľ.		Moth and M ₂ 04 Flexible Gimble Joint	12	fupture or Leakage	2.006-09 2.006-06	• •	
4		He Storage Tanks (4800 psi)	ŝ	Gross Rupture	2.00£-10 2.00£-08		
5.		Engine To Vehicle Flexible Connector	-	Structural failure	2.64 - 69 2.006 - 06		
513	ITING FACTORS:	Nos. 8 throwah 11		15 - PROB			1

; ; ;

. !

Nos. 8 through 10, 13 & 15 - PRO8 Nos. 11, 12 & 14 - POSS

. •

. .

. . .

.

ł

and the second se

VEHICLE BEHAVIOR: Categories (6) L (10) of Table 3.4 (6) External Tank Punctured (10) Fire and Explosion in Aft ME Compartment

CRITICAL TIME PERIOD(S): (6) MECO to MECO + 1] seconds (10) MECO + 16 seconds to orbit Invertion food (MR) burn)

i ,i

11

÷

.

7

1

1 / / ...-

. ŀ

·								
ASSUMPTIONS	failures 18, 19 and 20 are relevant only during OMS burn period:							
» _в /нк;»"/нк	2.006-10 2.006-08	6.00E-12 6.00E-09	4.006-10 4.006-08	4.006-10 4.006-08	4.006-10 4.006-08			
FAILURE MODE	Structural failure	•	Structural Failure Burn Through or Rupture	Ŧ	•			
NO. I TEMS.	2	8	2	an	~			
116M	Gizable Ring Forging (En- gine Attachment)	Engine and Gimbal Ring Mounting Pad	Engine Thrust Chamber•	Engine Nozzle Extension*	Engine Injection"	-		
VEHICLE AND SUB-SYSTEM	Orbital Maneuvering System						L	L
g	16.	~	æ	.6	0	1	1	

"Since the CMS burn periods are so swall in comparison to the overall period at risk, these failures (18, 19 & 20) can effectively be evoluded from the analysis as having negligible effect especially since their failure rates are relatively insignificant.

WEIGHTING FACTORS: Nos. 16 & 17 - PROB Nos. 18 through 20 - POSS

· · · .

he managed areas and

1

t

A CONTRACTOR OF A CONTRACT OF A CONTRACT

Table C-4.

YEHICLE BENAVIOR: Categories (12) and 13) of Table 3-4 (12) Loss of Maneuverability **6** Orbiter Tumbes to Earth (13) Loss of Maneuverability on Orbit

CRITICAL TIME PERIOD: (12) MECO to Orbit Insertion (end OMS1 burn) (13) End OMS1 burn to Payload Deployment

," .

.1

}

	·							
ASSUMPTIONS	Failures i through 8 could conceivably propagate and lead to loss of all i this	and herce loss of aviantics leading ultimately to loss of orbiter maneuverability	failures 1 through 8 apply from MECO to MECOP1 secs, from MECOP16 secs to end	OMSI burn and from end OMSI burn to pay- load separation. The failure rates quoted	propagation and loss of IMUS	-		
λ ₁ /нк;λ _u /нк	1.006-06 1.006-06	1.00E-10 Tank 1.00E-08 Seal 1.00E-05 Seal	5.00£-08 5.00£-05	5.00E-08 5.00E-05	2.00E-09 2.00E-06	1.00£-10 1.00£-08	3.006-071 Tank 3.006-051 Tank 1.006-051 Valve 1.006-051	3.005-071 Valve 3.005-061 Valve 1.005-081 Seal 1.005-051 Seal
FALLUKE MODE	Rupture or Leakage	Rupture, keakage or Tank Seal Failure	Pupture or Leakage of Lines, Valves or Fittings	Pupture or Leakage of Lines, valves or fittings	Rupture at Primary or Vernier Thrus ter	Gross Rupture Hith Procendated Franments Rusturing Propellant Tanks	Fail Open of Spring Loaded Poppet Valve or Excess Leakage Frow Seal or Caps	1
NO. 111MS.	2	61	t t	l dssb	32	2	و	14
116M	Have and M ₂ 04 Line Flexible Assemblies	Meth and N ₂ 0 ₄ Tank Assemblies	War Fuel Feed-	M ₂ O ₄ Oxidizer Feedline and Fittings	Flexible Couplings and Fittings (Engine Reilros Assembly	He Storage Tanks (4000 psi)	Propellant Tank Drain, Vent å Bleed Auick Disconnect	Propellant Tank Purge Quick Disconnect
VIHICLE AND SUB-SYSTEM	Forward Reaction Control	Assertion y						
S.		2.		4	ۍ ا	فت	~	αġ

1

•

WEIGHTING FACTORS: Nos. 1 & 3 through 8 - POSS No. 2 - PROB

/

CRITICAL TIME PERIOU: (12) MECO to Orbit Insertion (end OMS1 burn) (13) End OMS1 burn to Payload Deployment VEHICLE BEHAVIOR: Categories (12) and (13) of Table 3-4 (12) Loss of Maneuverability & Orbiter Tumbles to Earth (13) Loss of Maneuverability on Orbit

_							
ASSUMPTIONS	failures 9 through 15 could conceivably propagate through fire	and explosion and lead to loss of all QMS and RCS in one aft pod. These failures could further proposite to	ME compartment causing fire and explosion with residual propel- lants.• This affect	is likely to be felt sooner than loss of maneuverability alone.	Failures 15 and 16 could propagate and cause aft pod damage	and loss of aft CMS engine ** This possi- bility is expected to be less likely than for failures 9 through	14 where a fire and explosion could be caused as a direct result of failure.
	3.00E-09 3.00E-06	3.00E-10.1 Tank 3.00E-08.1 Tank 4.00E-08.1 Sea1 4.00E-05.1 Sea1	2.00E-07 2.00E-04	2.00E-07 2.00E-04	3.00£-10 3.00£-08	8.006-07 Valve 8.006-06 Valve 4.006-08 Seal	6.00E-10 6.00E-08
FAILURE MUDE	Runture or Leakage	Rupture, Leakage or Tank Seal Failure	Rupture or Leakage of Lines, Valves or Fittings	÷	Gross Rupture	fail Open of Spring Loaded Puppet Valve or Excess Ledage From Seal or Cop	Structural Fallure Burn Through or Rupture
NÚ. LTEMS	21	+	2 asys	2 d'sys	+	21	24
IIIM	Milli and N ₂ 04 Tank Flexible Gimble Joint	HTH and N ₂ 04 Tank Assemblites	Medi fuel Feedine and Fittings	N ₂ O ₄ Oxidizer Feedline and Fittings	He Storege Tanks (4000 psi)	Propellant Tank Vent and Bleed Quick Disconnect	Thrust Chamber Primary Thruster
VENTCLE AND SUB-SYSTEM	Aft Reaction Control Assembly***						
ġ	<u>م</u>	0.	=	12.	13.	14.	15.

1 •

> •Approximately 5400 lbs of residual propellants will be vented to atmosphere. This venting procedure lasts until after CMSI burn is completed. The failure rates quoted are conditional upon non-propagation to the ME compartment, but for propagation und loss of UMS and RCS in one pod.

**These values are relevant during RCS burn periods. Since the RCS is used app:oximately 70% of the time from MECU to payload separation and since the failure rates quoted are relatively small, the effect of assuming continuous operation is negligible.

***Rupture of any engine Lellows assembly was originally included here but a recent design change will allow isolation of such failures. Because these failures were no longer designated category 1, they were removed from the analysis.

WEIGHTING FACTORS: Nos. 9 & 10 - PROB Nos. 11 through 15 - PUSS

. .

ł

. . . .

!

į

4

ł :,

ł

VEHICLE BEHAVIOR: Categories (12) and (13) of Table 3-4 CRITICAL TIME PERIOD: (12) MECO to Orbit Insertion (12) Loss of Maneuverability & Orbiter Tumbles to Earth (13) Loss of Maneuverability on Orbit (13) Loss of Maneuverability on Orbit Tumbles to Earth

vtHICLF AND 5UB-SYSTEM Aft Reaction Control Assembly Maneuvering System	ITLM Primury Thruster Nozzie Extension Nozzie Extension Propellant Pay- luad Bay Kit and Pod Cross Feed Couplings MetH and N ₂ 04 Fill and Drain Couplings HetH and N ₂ 04 Fill and Drain Couplings Meth and N ₂ 04 Fill and Could and N ₂ 04 Fill and Could and Fill and Fil	NO. 11LMS. 24 6 6 6 6 6 6 7 10 10 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 2 3 2 3	FAI'.UKE MODE Structural Failure Burn Through or Rupture or Leakage Rupture, Leakage Rupture or Leakage Rupture or Leakage Gross Pupture	λ _k /HR:λ _u /HR 6.006-10 6.006-08 3.006-09 3.006-09 3.006-09 3.006-09 3.006-09 3.006-06 3.006-06 3.006-06 3.006-06 3.006-06 3.006-08	ASSUMPTIONS failures 15 and 16 are only relevant during RCS burn periods failures 17 through 27 are considered to cause fire and explo- sion either directly with- in the aft ONS/RCS pod and lead to loss of ONS the dominant failure during this critical time period. These failures could also further propagate to HE compartment causing fire and explo- sion with residual propellants. (See also asteristed note on page A-15.) This affect is likely to be felt sooner than loss of maneuver- ability alone.
	MATH and N ₂ 0 ₄ Flexible Gimble Joint	12	Rupture or Leakage	3.00E-09 3.00E-06	y through (c) apply from End ET separation maneuver to payload separation.

Nos. 16. 17 & 21 through 23 - POSS Nos. 18 through 20. - PROB WEIGHTING FACTORS:

•

•

.

Ţ,

1

4

YEHICLE BEHAVIOR: Categories (12) and (13) of Table 3-4 CRITICAL TIME PERIOD: (12) End External Tank Separation (12) Loss of Maneuverability & Orbiter Tumbles to Earth (13) Loss of Maneuverability on Orbit (13) Loss of Maneuver to ONS1 burn) (13) Loss of Maneuverability on Orbit

yment - Bauland Menlord

	. ·		<u> </u>					
ASSUMPTIONS			failures 26 and 27 are considered to cau breating of the QNS		failures 28 through 32 cause loss of CMS engines through inability to use	propellant		
λ _ε /н г ;λ _u /нr	3.00E-10 3.00E-08	3.00£-09 3.00£-06	3.00E-10 3.00E-08	9.006-12 9.000-09	3.00£-09 3.00£-06	8.00£-07 8.00£-06	3.00E-09 3.00E-06	9.00E-12 9.00E-09
FALLURE MODE	Gross Rupture	Structural Failure	Structural Failure	Structural failure	Structural Failure Rupture or Leakare	Rupture or Excess Leakage	Structural failure Rupture or Leakage	Structural failure Causing Tank Blockage
KO. 11LMS.	Ś		2	œ	m	3	6	10
ITEM	l le Storage Tanks (4800 psi)	Engine To Vehicle Flexible Connector	Gimbal Ring Forging (Engine Attactssent)	Engine and Gimbal Ring Hounting Pad	Helium Fill Coupling	Helium feedlines Valves and Regu- lators to Propellant Tanks	Propellant Fill and Vent Coupling	MPHH & M ₂ O ₄ Tank Acquisition Device (Pad)
VEHICLE AND SUB-SYSTEM	Orbital Kaneuvering System							
ŝ	24.	25.	26.	27.	23.	29.	ж.	31.

•

WEIGHTING FACTORS: Nos. 24 & 28 through 31 - POSS Nos. 25, 26 & 27 - PROB

-

۰. .

. .

VEHICLE BEHAVIOR: Categories (12) and (13) of Table 3-4 (12) Loss of Maneuverability & Orbiter Tumbles to Earth (13) Loss of Maneuverability on Orbit

CRITICAL TIME FERIOD: (12) MECO to Orbit Insertion (end OMS) burn) (13) End OMS1 burn to Payload Deployment

9 <u>3</u>	VENICLE AND SUB-SYSTEM	N)II	NO. LŢEMS.	FAILURE MODE	λ ₁ /HR:λ _u /HR	ASSUMPTIONS
32.	Orbital Maneuvering Svstem	Propellant Tark Compartment Screens	10	Structural failure Causing Tank Blockage	3.00E-10 3.00E-08	Failures 33, 34 and 35 lead to a fire and explosion hazard in the aft CHS/RES pod
33.		Engine Injector*	S	Structural Failure Burn Through Or Rupture	6.00E-10 6.00E-08	Carling to 1055 of CAS (during USS burn period only). These failures could also further propagate to
Ä		Engine Thrust Chamber*	N 	g. 4	6.00£-10 6.00£-08	ME compartment causing fire & explosion with residual propel- lants. (See 1st aster- steed note not note
35.		Engine Nozzle Extension*	8	•	6.006-10 6.006-08	A-15) This is litely to be felt sooner than loss of muneuverability alone.
8	Electrical Power	0 ₂ Tank Sub- Assemblies 1, 2	. m	Gross Rupture Caused by Eacessive Meat Input From Neaters or Material Defect	2.00£-10 2.00£-08	Failures 36 through 39 could conceivably propagate and lead to logs of and 3 laus
37.		H ₂ Tank Sub- Assemblies 1, 2 & 3	e	1	2.00E-10 2.00E-08	and hence loss of avionics leading ultimately to loss of orbiter maneuverability
્યું	Atmospheric Revitalization	Auxiliary N ₂ Storage Tank (900 psi)	-	Gross Rupture Caused by Material Defect	1.006-10 1.006-08	Failures 36 through 39 apply from MECO to payload separation. The failure rates
39.		M ₂ Storage Tanks (300 psi)	+	2	1.006-10 1.006-08	quuted are exclusively for propayation.
].	Annrosimately 54	00 lbs of residua	prote	llants will be vented	to atmusphere.	Ihis

venting procedure lasts until after CHSI burn is completed. The failure rates quoted are conditional upon non-propagation to the FL compartment, but for propagation and loss of CHS and RCS in one pod.

WEIGHTING FACTORS: Nos. 32 through 35 & 39 - POSS Nos. 36 through 38 - PROB

::

1