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Abstract 

The confi uration of liquid hydrogen ins ide  a spherical s lass shell ICF target has been 
studied both t feoret lsal ly  and experimentally Because of the zero contact a n ~ l e  between 
the D liquid and g lass  substrate end the limited wettinq surface that i~ continuous, the 
l iquid hydrogen completely covera the interior o f  the glass shell, resulting in the forma- 
t i on  of a void at the center. For this reason, the present nroblem distin~uiaher i t se l f  
from that for a sessile drop sit tin^ on a f l a t  surface. A theory has been formulated to 
calculate the liquid hydrogen confi uration bv includinp. the London-dispersion force between 
the t iquid  and the substrate molecufes . The nee r e s u l t  i s  an augmented Bashforth-ddms 
equation appropriate to a spherical substrate, which is considered to be the major cont r f -  
burion of the present work. Preliminary calculations indicate that this new equation ac- 
curately models the liquid hydrogen behavior Inside a s ~ h e r i c a l  microshell. 

h t r a a q * ~  t* 

In the Inertial confinement fusion (ICP) research, one o f  the imvortmt tasks i s  to find 
an optimum target design which can achieve sufficiently h i ~ h  fuel qezsitv v i th  minimum com- 
pression energy input, Various target designs have been pronosed. Among, them is a crvo- 
genic target, which consfsts of a hollow uniform s h e l l  of l inuid or solid PT (Deuterium; 
Tritium mixrure) condensed onto the inner surface of a glass microballbon (m). Mason has 
theoretically predicted that such targets will give higher fusion yields. Recently, Srom the 
preliminary results of their target implosion exoeriment, Henderson and his coworkers have 
noted that neutron yields are enhanced by a factor of ten or more when a cryogenic DT tarqtt  
is xsed instead of a gas DT target.  

Because of this preliminary finding (whLch needs further investiqatian), the cryogenic 
targets are currently attracting a faf~~gmount of attention.  Several techniques have been 
developed to fabricate these targets. However. difficulties have been encountered, 
especially in conjunction w i t h  producin and maintaining a unifom liauid layer inside the 
GMB. Sme researchers have obtaLned a f i a u i d  snheroid on one side of the WB, whereas others 
have produced a continuous Liquid layer, more often w i t h  one s i d e  thinner than the other. 

Shown in Figure 1 are the micrographa of a D2-filled GFB tar~et, 320 urn in diameter. 
L5 urn i n  thickness, and filled w i t h  approximately 700 a m  of D gas a t  room temperature. 
Figures la and lb ere, sespeccively, the shadow end interferenge micro~raphs of the tarset 
at room temperature. The correspm$ing pictures taken at a ternnereture ( -25 K} below the 
liquefaction point oE D are shown in Ftgures le and Id.  The interferen~e microarauhs were 
obta Lned using a home-mide Mach-Zehdes interference microscope . 

L 

Figure 1. Pictures of  a D2-filled glass mierashell, 320 yn in diameter and 15 urn in thick- 
ness. f i l l e d  with approximately 700 atm of D gas a t  roam temperature. Figure le. Shadow 
micrograph a t  room temperature ; Figure lb. 3nterference microrraph at room temperature ; 
Figure lc. Shadm micrograph of the target with a continuous f iauid- lI2  layer a t  a cryopenic 
tempemture; Figure Id.  Interference microgranh of the same tarEet in  Ftp.ure 1c. 
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One distinct feature exhibited by Figure 1 is that the liquid D formed inside the GMB 

spreads out and completely wets the entire substrate. The net resule is a continuous liquid 
layer having a gas void inside of it. This situation is particularly interesting, not only 
because it is unique (note that one cannot achieve the same situation with a sessile drop 
sitting on a flat surface), but also because it offers a promising possibility for fabri- 
cating a uniform layer of DT-condensate inside an ICF target. 

Presented in this paper is an in-depth study of the behavior of a liquid inside a 
spherical microshell (SMS). First, a physical model is formulated to predict the liquid 

i_ profile inside the SMS. These theoretical predictions are then compared with the experi- 
4 mental results obtained for a GFB containing liauid hydrogen. It is hoped that this study 
.. 

I .  

will result in a reliable scheme for producing and maintaining a ur'form laver of DT- 
. I 

condensate inside a cryogenic ICF target. 

?- Theories for the profile of liquid inside a spherical microshell 

For the convenience of presentation, we first formulate a simple theory a~olicable to ... a liquid contained in a spherical substrate. Then, after showing that the theorv is in- 
capable of describing a continuous liquid layer wetting the entire substrate - namelv, that 
it is only appropriate to a liquid layer having a well-defined line of contact between the 
substrate, liquid, and vapor, it is extended by including the van der Glaals attraction be- 
tween the liquid and the substrate molecules. This latter theory, as will be shown, does 
have the properties appropriate for describing a continuous liquid layer and, therefore, 
constitutes a major contribution of the current work. 

Profile of liquid with contact line inside a spherical microshell 

Following ~ i b b s l ~ ,  we calculate the minimum energ" configuration of the liouid enclosed 
in an SMS using the calculus of variations. Consider a coordinate system shown in Fieure 2a 
where the thick solid line represents the inner surface of the CMB. For the moment, we con- 
sider the gravitational force and the interfacial tensions at the licuid-vanor, liouid-solid 
and solid-vapor interfaces as the maior forces contributing to the energy of the svstem. 
Providing that the profile of the liquid-vapor interface is symmetric about the y-axis, the 
total energy of the system can, therefore, be expressed as the sum of the following terms. 

Figure 2. (a) Cylindrical coordinate system employed for the description of a spherical 
target. (b) The cylindrical system shown above redefined in dimensionless units. 



ESV L ds = Constant - 271 
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where L, is the density of liquid; g is the gravitational acceleration; VL is the volume of 
the liquid, y .  and r are the interfacial tensions at the liauid-vanor, solid-liauid 
and solid-vapbY' in?k;faces ?BLV, SSL rid SsV) resoectivelv; Pi is the inner radius of the 
SYS; and x = dxldv. 

The variations are now subject to the constraint of the enclosea liouid volume, which 
is constant for a given temperature and gas fill nressure (e.~., !? nressure) of the SMS. 
(Note that the thermal enernv of the system. which is also a consthi at a eiven temnerature, 
is uniquely determined once the liquid vclume is specified, and, therefore, not specifically 
considered.) The expression of the liquid volume in this case is 

Combining Eq~.~/l) throughA(5), and carryinp out the mathematics reouired to arrive at the 
Euler equation , one obtains 

where x '  and x", respectively, denote the first and second derivatives of x with resnect to 
y ,  and \ is the usual Lagrange multiplier resulting from the constraint of constant liouid 
volume. The absence of the solid-liouid and solid-vanor interfacial tensions, and y 
in E q .  (6) wan to be expected since the corresaonding interfacial enerpy terns ,'gL and $:;, 
depend only on the two end points el and i2, xhich remain unchanged durinn the nr8kess of 
calculus of variations. 

Letting 

the dimensionless form of Eo. (6) is obtained as 

Two end-point conditions are needed to close this eauation. They are 

The first condition simply states that the liquid profile is syynetric about the y-axis. 
The second condition is the so-called transversality condition - that is, at y = y the 
liquid-vapor interface lies on tb? inner surfacel~f the SVS. It is easy to verifv taat the 
second condition gives rise to Young's equation for the contact angle, 0 ,  i.e., 

The definitions of the angles and f>2  are given in F ~ E .  2b. 
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Note thatlTq. (6) is reduced to the eauation derived earlier by Bashforth and Adams for 
a sessile drop if the origin of the coordinate system is shifted to x = 0 and y = yl, and 
the normalization variable is replaced by the radius of curvature at the oriqin. So, we 
henceforth, refer to Eq. (6) (or En. ( L ) )  as the Bashforth - Adams eauation. The original 
derivation was based on the force balance 96 the liouid-vapor interface, i.e., a direct 
application of the Young-Laplace equation. 

For the case of a sessile drop, the reader is referred to thelyork of D. N. Staicopolu~ 
for a complete numerical solution of the Bashforth-Adams equation , An anproximate ana- 
lytical solution of a similar equation has been worked out by PtOConcus for calculation of 
the equilibrium meniscus in a vertical right circular cylinder. 

In the current analysis, a direct integration of EQ. (8) subject to a given cCm'3ct 
angle is carried out using numerical methods. Before presenting the numerical solut..an, 
however, certain points must be clarified: 

1. The liquid-vapor interfacial tension is assumed to be constant throu~hout 
the calculations regardless of the position and curvature of the interface. 
This assumption is justified because the radii of curvature of interest in the 
present case are in the rangy of 0.01 cm, which $9 several magnitudes larger thfg 
the case studied by Tolman, Kirkwood and Buff, and Benson and Shuttleworth. 
These authors have found that the surface tension of a small droplet decreases with 
increasing curvature. Tolman estimated that n 4 per cent droo in the s u g f ~ c ~  
tension would occur if the diameter of a droplet was in the order of 10 cm; 

2 .  The liquid is assumed to be incompressible, and the effect of the vaoor 
pressure on the liquid-vapor surface tension is neglected; 

3. The contact line is assumed to be ideal. A r  ideal contact line means that 
two mathematically defined surfaces meet together. Thus, the line should be 
infinitesimal and no liquid film exists beyond the line. In conjunction with 
this, we note that the val i-v of Youph's eouation for t.~e contact anqfe has 
long been2glaimed by Gauss" ;hd Gibbs and more recently bv Johnson, and 
Goodrich. For arguments advocatin;: its invalidity, however, the reapqr 
is referred to a recent paper bv G. J .  Japeson and F a .  C. G. del Cerro. 

Nurr,erical solutions of the Bashforth-Adams eouation (Eouation (8)) satisfying the end- 
point conditions Equation (9) have been obtained. Figure 3 shows a set of tv~ical solutions 
obtained for the liquid deuterium enclosed in a GMB for diiferent values of contact anele. 
The GPlB target chosen was 67 gm in inner radius, of 3 :in thickness, and was assumed to be 
at a uniform temperature of 24 K. For ease of comparison with the experimental results, which 
is to be made in the future, the room-temperature D -fill pressure of the target was chosen 
to be 110 atm. This fill pressure, along with the Jimensions and temperature of the target, 
allows onsgto determine the amount of liquid deuterium inside the target using the eouation 
of state.' b Y 

Flgure 6. Numerical solutions of the Aug- 
Figure 3. Numerical solutions of the Rash- mented Bashforth-Adams equatiy~. The solid 
forth-Adams equation for various contact line is for B = 4 . 2 7 7  x 10- erg-cm 5find 
angles. The inner radiris of the GMF is the brgken !i%b is for B = 4 . 2 7 7  x 10 
67 um, the wall thickness is 3 ~im, and the 21-cm . Tge vglume of fksuid deuterium is 
temperature is 24 K. The liquid enclosed l.&OP 10- cm and the temperature is 
is deuterium and the fill pressure is 28 K. The inner radius of the SMS is 67 urn 
110 atm at room temperature. and the wall thickness is 3 um. 



As clearly seen from Fi ure 3, the location of the contact line between liauid, solid, 
and gas rises as the value of the input contact angle (one of the end-point conditions. 
Equation (9)) is decreased. This is slmply because of the fact that the smaller the contact 
an le, the larger is the area wet bv the liauid. For zero contact an le, it is, therefore, 
befieved that the liquid will vet the entire target substrate. resultfng in a continuous 
liquid layer. In this case, there will be a gas bubble inside the target completely 
surrounded by the liquid--a situation not possible in the case of a sessile drop sitting on 
a flat surface. 

Although different input values of the contact angle were used at the same temperature 
to produce the results in Figure 3, in reality, there can only be one correct contact angle 
ct>rres onding to a given temperature. Since this correct contact angle is not theoretically 
availagle as a function of temperature for the current problem, it must be rica~lured experi- 
mentally. Good and Perry measured the contact angle between liquid hydroge.1 and29 fed 
different materials and reported that it was zero for all the materials studied. Neither 
the details of the experimental arrangement nor the ranges of the 0bsertratic.n temppratures 
wel,e, however, included in their report. Considering the difficulties involver! in main- 
taining a stable cryogenic environment and, in particular, the difficulties in creatirg and 
verifying an isothermal environment, it might perhaps not be totally unreason~bl~ to suggest 
that the work of Good and Ferry be re-examined, or even redone using csrefu" ,!c,igned, 
more modern equipment for all liquid hydrogen temperatures. 

.\~suming now that the contact angles of liqui6 hydrogen and, according: tat of 
linuid deuterium are zero, it is most probgblg that the liauid deuterium coc ' ,  1 in an SPlS 
exists in the for,,. of a continuous layer. * It is for this reason that we now go back 
to the Bashforth-Adams equation and see if it can adequately give rise to a continuous 
Liquid layer solution. 

Profile of a continuous liquid layer inside o spherical microshes 

Let as now consider a situatiov- where the liquid inside an SIS forms a continuous 
layer, i.e., no liquid-vapor-solid contact line. The coordinate system used in this case 
is shown in Figure 4a. Following the same procedures previously used, and considering only 
the terms pertaining to the gravitational force and the liquid-vapor interfacial tension. 
one can easily derive a differential equation, which is identical to C3. (8). The boundary 
conditions are, however, different. Since the gravitational force is chosen acting parallel 
to the y axis, the profile of the vapor void (or the bubble) should also be symmetric about 
the y axis. Therefore, t5e boundarv conditions for the bubble are 

Figure 4. (a )  Coordinate systems used in the continuous 1iq:iid layer case. At x - xm and 
y = y , x' is equal to zero. (b) Numerical solutLon of Barhforth-Adams equation with one 
boundgry condition satisfied, i.e., at x - 0: x . Note that xmB > xmT at x' - 0. 

3efore finding the numerical solutions of Eouations (8) and (ll), it is worthwhile to 
study Equation (8) somewhat more carefully. Upon integration, Eauation (8) gives rise to 



where y denotes the two values of y corresponding ta a single value of x: in the regicy 
where xB*Ts positive, yB is used, with B denoting the "Bottom"; and in the region where x 
is negative, y is used, with T representing the "Top". From Ecluation (12) one finds that 
where x '  = 0, That is, when x takes or the maximum value, Xm, the values of x are given by 

where the subscripts "B" and "T" again refer to "Bottom" and "Top," respectively. Because 
a and 8 are constants a..d y $ y . Eouation (13) implies that one has tr:- different values 
of x at x' = 0. Referring !o ~iaure 4b. since yT is always larger tL.an yg. one d *duces that 

This dca'uction is clearly physically contradictory because no bubble caa exist if there is 
a discontinuity in the liquid..vapor iaterface. Consequently, there will be no s~lution to 
Equation (8) which can satisfy the bubble boundary conditions Eouation (11). 

The numerical solutions of Ecuation (8) indeed illustrate this nnly one of 
the two boundary conditions Equation (11) is satisfied, i.e., either x' = - at x = 0, but 

= - at x + 0; or x' = - at x 0. but X I  + a, at x = 0. It is obvio8s that some force:: 
5ting on the bubble That are different fr$ the gravitational force and liquid-vaoor 
interfacial tension are left out of the theorv hitherto considered. 

There are several types of forces among molecules and atoms31: the attactive forces 
are primary (chemical) bonds, metallic bonds, and secondarv (physical) bonds, whereas the 
repulsive forces are Born repulsions. Primary bonds and metallic bonds are usually strong, 
and are the basic forces responsible, for examnle, for foning different stable substances 
on earth. Secondary bonds are the long-range but weak attraction forces among atoms and 
molecules and are generally called van der Vaals forces. 

In fact, van der Waals forces are a collective term f:r the four different forcjf, 
namely, the Debye induction force between a permanent dipr r and a ne~traf~molecule, the 
Keesom orientational force between two freely rotating permagtnt dipoles, the London- 
dispersion force due to electron fluctuations ayj~md nuclei, and the Margenau force 
arising frvm the dipole-quadrupole interaction. Since the liquid of our interest is 
deuterium or deuterium-tritium mixture and they are non~ol.ar neutral molecules, 

On? the London-dispersion force is considered. The Born repulsion force is also neclected ecause 
it is inverse twelfth power of distance and thus quickly dies out as the distance is in- 
creased. The typical effective distance of the Born repulsion force is about 7 A .  

Two approaches are widely used to calculate the total attracticn energy of the &njgn- 
van der Waais type between two macroscopic bodies. One is London-Hamaker's approach ' 
in which the additivity of the 49ndon-van der Vaals forces is assumed. The other is 
Lifshitz's macroscopic approach in which the attraction energy is directly calculated 
from the ima inary parts 95 the complex dieiectric constants of the media, especially their 
far ultravio ! et portions. Lifshitz's approach is thought to be bettc,: than that of London 
and Hamaker, cspeci~lly in the case where the separstion distance between two macrc3copic 
bodies is large. This ie mainly due to the additivity assumption and the intrinsic 
characteristics of the dispersion forces. 

The Loqdon-van der Waals forces are electromagnetic-like forces, so they will be 
subject to retardation, i.e., at large separations the  force^ will be reduced because the 
finite time re uired for their prJ agation causes a phase difference hetween the electronic 
oscillatior~s O! the interacting mo ! ecules. Because of this retardation effect, the attraction 
energy calcalated 94 London-Hamaker's approach will be over-estimated for molecules with 
large separutions. When the retardation effect is put into the calculation, as Casimir 



40 and Polder, andj8\14ZblSk41 did, the two approaches usually have differences vrrhin an 
acceptable range. 

To avoid the mathematical difficxlties and the scarcity ol the data required of the 
Lifshitz's macroscopic approach, the London-::maker's approach is adodted. The nonretarded 
London-van der Waals forces are considered first. The effects of retardation then follow. ..- 
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Figule 5. Spherical coordi~ate system used in the calculation of the London-van der Waals 
attraction energy between the liquid molecule at p(?.o.o) and the spherical substrate with 
inner radius equal to Ri and outer radius equal to Ro. 

The coordinate system tsed is shown in Figure 5. The energy due to the London-van Jer 
Waals forces of a lLquid molecule at the point p(t,o,o) is then expressed as 

6 where the London potential U(d) - -B /d with B denoting the London constant between the 
solid (substrate) and liquid molecul8k; d is theShistance between the subst~ate and liauid 
molecules; N is the number density of the substrate ~olecules; and VS is the volume oc- 
cupied by the substrate. Noting the azimuthal symnetry of the system, a~nlirztion of the 
cosine rules enables one to rewrite Eauation (15) as 

where u = cos 6 .  

After straightforward integration. Eauation (16) becomes 

The total energy due to the London-van der LTaals forces beh~een the licluid and the 
solid wall is then 

L 

where NL is the number density of the liquid and VL is the volume occupied by the liquid. 



In terms of the normalized cylindrical coordinate svstem defined in Fieure ha, 
Equation (18) is 

where 

Followinq the same mathematical ~rocedures previouslv used (i.e., the calculus of vari- 
ations), one obtains 

where 
N N 

I( - B~~ s L A = 3 
3 I R t  

and the rest of t.he symbols are as defined in Eouation (7). This emation is similar to the 
Bashforth-Adams equation Enuntion (a),  cxceDt that an extra term resulting from the London- 
van der Waals energv is added. For this reason, we name Eouation (20) as the "Au~mented 
Bashforth-Adams eqwt ion. " 

Integrating Equation ( 2 0 )  once and anplving the bubble boundarv conditions Eouation 
(11). one has 

where Vv is Ihe spe~ific~volume of the vapor void, or the bubble (i.e., the actual volume 
of the yoid divided by R.). the subscript T denotes the upper (top) portion of the bubble 
where x - 0; and the subscript B denotes the lower (bottom) portion of the bubble where 
::' . " F r o m  Eou~tinn (21). one cnn ensilv see that r s  P anproaches zero and/or A aV- 
proaches infinity, ID (x v ) - D (x v ) 1  will take on a value which is vanishin~lv small. 
Or, puttin&? it in enoThe;-&ay, a! eitaer or both of these two limits, the thickness of the 
liquid laver is uniform, or the bubble is a com~lete sphere. In ~ractice, howevc?r, the 
values of A and P are finite and, therefore, the thickness of the liquid laver at the bottom 
of an SMS is always larger than that at the top. 

The numerical solutions of Equation (20) satisfving the bubble boundarv conditions 
Equation (11) are plotted in Figure 6. Note that there is only one uniaue solution for 
each set of parameters used. The SMS chosen7is 97 ilm in inner radius, 3 Dm in thickness. 
and contains liquid D of volume 1.208 * 10- cm . The calculations are done for two dif- 
ferent values of the ?ondon constant B As expected, larger produces a liouid laver 
more uniform in thickness. This effecSLis more clearly demonstr8ked by Figure 7 in which 
both the top and bottom thicknesse; of the liquid laver are nlotted as A function of 0 
for two different values of liquid D volume. That ra larger B is reouired to sunvori!La 
thicker uniform layer is clearly stlo& in the figure, which isSEonsistent with the competins 
nature of the gravity and the van der Waals attraction. 
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Figure 7. Equlibrium top and bottom tt~ickucsses of liouid deuterium laver inside sn SMS 
I 8 . The target has itrncr radius of 67 ~8 tang wrall thickness of 3 pm. The broken 
lines are fyr t$c liquid voliune of 6.47 \ 10 cm and the solid lines are for 
1.208 10- cm . 
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; 
Figure 8. Comparison of equilibrium top and bottom thicknesses of li uid deuterium 'aycr 
for nonretardcd (solid lines) and retarded (broken lines) London-var !cr Waals forces. The 
inner radius of the SMS_+s 63 prn and its wall thickness is 3 Ltm. The volume of liquid 
deuterium is 1.208 10 cm and the tempe3ature is 28 K. \, used in the calculation of 
retarded London-van der Waals forces is 10 cm. 



L Since the wall thickness of the SMS and the thickness of the lieuid layer are generally 
in the order of 1 um, the retardation effect of tat London-van der Waals forces could be 
significant as pointed out hy Casimir and Polder. To include such a reta:~lati~p effect, 
a correction function has been introduced into the London potential by Overbeck: 

where p = 2 n d/lc with A c  being the characteristic wavelennth of the electronic oscillation. 
of atoms; and 

1.01-0.14 p , for 0 < p .. 3 
f(p) = 

2.45l1-l - 2 . 0 4 ~ - ~  , for 3 i p . %v 

Unfortunately, this formula is nct easily applicable to our case siege two separate func- 
tions are involved in two different ranges. Schenkel and Kitchener have found an anproxi- 
mation for f(p) for the range, 1 p < m. According to these authors, the deviation in 
the values of f(p) is less than 5% within this range. The Schenkel-Kitchener anvroximation 
is 

(23) 

R\?placing ihe London-potential U(d) in Eouation (15) with this approximation (Eouations 
( 2 2 )  and (23)) and carrying out the straightforward, yet tedious, integration, one obtains a 
lengthly expression for the retarded London-van der Waals attraction energy between a 
liquid molgbule at point p(t.o.o) and the entire substrate of thickness of (Ro - Ri) (see 
Figure 5). 

This expression has been used in conjunction with the Augmented Bashforth-Adams at?- 
proach to determine the retardation effect of the London-van der Waals forces. Plotted in 
Figure 8 are the equilibrium top and bottom layer thicknesses of the liouid deuterium in- 
side an SMS of inner radius 67 urn for various strengths of the London constant. Thelcmg temperature of the SIlS is 28 K and the volume of the liouid deuterium is 1.208 10 
As expected. the thickness of the top liquid laver is smaller than the case where the 
retardation effect is not included. 

Note that the Augmented Bashforth-Adams equation Eouation (20) with the retarded 
London-van der Waals energv term is onlv good within the range 1 P m .  This ran%e mi5ht 
be extendet4down to p = 0.5, with a slightly larger5error, as pointed out by Schenkel and 
Kitchene~. In general, \ is in the order of 10- cm, so that D = 0.5 corresponds to 
d - 100 A. Conse?uentl~.,a~ long as the top liquid laver thickness (i.e. the smaller thick- 
ness) is larger than 100 A, the error in the solution of this eauation will be ne~liaible. 

Finallv, it must be pointed out that the liquid-vapor interfacial tension has been 
assumed to be constant throughout the calculations, which might turn out to be an important 
source of error. 

Conclusion 

An "Augmented Bash: %rth-Adams" emation, Eouation (20), apvrovriate to a s~herical 
substrate, has been derived for the first time by including the London-disper-,ion force 
as the two-body interaction force between the liquid and substrate molecules. This was 
prompted b, a proof presented in this work that the Bashforth-Adams equation. Eouation 
( 0 ) ,  has no solution subject to the boundary conditions Equation (11) rcouircd of a contin- 
uous liquid layer. The choice of the London-dispersion force W R Y  specifically motivated 
by the desire to describe the liquid hydrogen behavior inside a spherical microshell ICF 
target, and was justified by the fact that liquid hydrogen consists of nonpolar neutral 
molecules. 

Considering the fact t h q ~  83st of the previous work on the thin-film phenomena, of 
which a wealth of literatlre exists, has only dealt with either plane- or cvlinder- 
like geometries, tile principal contribution of the present work is to have formulated a 
theory appropriate to a spherical substrate. 

It is hoped that with chis work headway has been made toward an active investigation 
of the thin-film phenomena involving spherical eometry, not only for its own scientific 

research. 
P merit, but also for a very interesting practica application - namely, the ICF tarnet 
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