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Abstract

The configuration of liquid hydrogen inside a spherical glass shell ICF target has been
studied both theoretically and experimentally. Because of the zero contact angle between
the D, liquid and glass substrate and the limited wetting surface that is continuous, the
liquia hyjrogen completely covers the interior of the glass shell, resulting in the forma-
tion of a void at the center. For this reason, the present nroblem distinguishes itself
from that for a sessile drop sitting on a flat surface. A theory has been formulated to
calculate the liquid hydrogen configuration by including the London-dispersion force between
the liquid and the substrate molecules. The net result is an augmented Bashforth-Adams
equation appropriate to a spherical substrate, which is considered to be the major contri-
bution of the present work. Preliminary calculations indicate that this new equation ac-
curately models the liquid hydrogen behavior inside a spherical microshell.

Introdnetion

In the inertial confinement fusion (ICF} research, one of the importznt tasks is to find
an optimum target design which can achieve sufficiently high fuel ansity with minimum com-
pression energy input. Various target designs have been nroposed. Among them is a cryo-
genic target, which consists of a hollow uniform shell of liouid or solid DPT (Deuteriumy
Tritium mixture) condensed onto the inner surface of a glass microballoon (GCMB). Mason  has
theoretically predicted that such targets will give higher fusion yields. Recently, from the
preliminary results of their target implosion experiment, Henderson and his coworkers~ have
noted that neutron yields are enhanced by a factor of ten or more when a cryogenic DT target
is used instead of a gas DT target.

Because of this preliminary finding (which needs further investigation), the cryogenic
targets are currently attracting a fa;rlsmount of attention. Several techniques have been
developed to fabricate these targets.” However, difficulties have been encountered,
especially in conjunction with producing and maintaining a uniform licuid layer inside the
GMB. Some researchers have obtained a liquid spheroid on one side of the GF%. whereas others
have produced a continuous liquid layer, more often with one side thinner than the other.

Shown in Figure 1 are the micrographs of a D,-filled GMB target, 320 um in diameter,
15 ym in thickness, and filled with approximately“700 atm of D, gas at room temperature.
Figures la and lb are, respectively, the shadow and interferenfe micrographs of the tarset
at room temperature. The corresponding pictures taken at a temnerature (-25 K) below the
liquefaction point of D, are shown in Figures lc and 1d. The interference micrographs were
obtained using a home-mgde Mach-Zehnder interference microscope.

. h
Figure 1. Pictures of a D,-filled glass microshell, 320 ym in diameter and 15 ym in thick-
ness, filled with approximately 700 atm of D, gas at room temperature. Figure la. Shadow
micrograph at room temperature; Figure 1b. %nterference micrograph at room temperature;
Figure lc. Shadow micrograph of the target with a continuous {iouid-D, layer at a cryogenic
temperature; Figure ld. Interference micrograph of the same target in“Figure lc.
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One distinct feature exhibited by Figure 1 is that the liquid D, formed inside the GMB
spreads out and completely wets the entire substrate, The net resul@ is a continuous liquid
layer having a gas void inside of it. This situation is particularly interesting, not only
because it is unique (note that one cannot achieve the same situation with a sessile drop
sitting on a flat surface), but also because it offers a promising possibility for fabri-
cating a uniform layer of DT-condensate inside an ICF target.

Presented in this paper is an in-depth study of the behavior of a liquid inside a
spherical microshell (SMS). First, a physical model is formulated to predict the liquid
profile inside the SMS. These theoretical predictions are then compared with the experi-
mental results obtained for a GMB containing liouid hydrogen. It is hoped that this study
will result in a reliable scheme for producing and maintaining a uriform laver of DT-
condensate inside a cryogenic ICF target.

Theories for the profile of liquid inside a spherical microshell

For the convenience of presentation, we first formulate a simrle theory apnlicable to
a liquid contained in a spherical substrate. Then, after showing that the theory is in-
capable of describing a continuous liquid layer wetting the entire substrate - namelv, that
it is only appropriate to a liquid layer having a well-defined line of contact between the
substrate, liquid, and vapor, it is extended by including the van der Waals attraction be-
tween the liquid and the substrate molecules. This latter theory, as will be shown, does
have the properties appropriate for describing a continuous liguid layer and, therefore,
constitutes a major contribution of the current work.

Profile of liquid with contact line inside a spherical microshell

Following Cibbsla, we calculate the minimum energv configuration of the licuid enclosed
in an SMS using the calculus of variations. Consider a coordinate system shown in Fieure 2a
where the thick solid line represents the inner surface of the GMB. For the moment, we con-
sider the gravitational force and the interfacial tensions at the licuid-vanor, licuid-solid
and solid-vapor interfaces as the major forces contributing to the energy of the svstem.
Providing that the profile of the liquid-vapor interface is symmetric about the ¥-axis, the
total erergy of the system can, therefore, be expressed as the sum of the following terms.

Figure 2. (a) Cylindrical coordinate system employed for the description of a spherical
target. (b) The cylindrical system shown above redefined in dimensionless units.

N Y2 2 . . .
Eg = pg f y dv = 27 f~ . y[Ri - (y - Pi)2 - x2] dy 'eh)
v v
L 1
Y2 - - .
Ely Ly JSLV ds = 2n f~ Yiv x[1 + (x") ]% dy (2)
"
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Y where , is the density of liquid; g is the gravitational acceleration; V, 1is the volume of
L the liquid, y&¥, y§%, and y§g are the interfacial tensions at the licuid=vanor, solid-liquid
inteérf

: and solid-vap aces , Se;, nd S.y). resvectivelv; R, is the inner radius of the
s SMS; and x = dx/dy. LV “sL sV i

The variations are now subject to the constraint of the enclosea ljiouid volume, which
is constant for a given temperature and gas fill nressure (e.g., I', nressure) of the S™S,
(Note that the thermal energv of the system, which is also a constgnt at a given temnerature,
is uniquely determined once the liquid vclume is specified, and, therefore, not specifically
considered.) The expression of the liquid volume in this case is

2 2 _ 2
VL = Constant + 2n Jy &[Ri - (v - Ri) - x°) dv (5)
1
Combining Eqs.lgl) through (5), and carrying out the mathematics recuired to arrive at the
Euler equation®”, one obtains
x" 1 _ pe. v o+ (6)
D] - = = — )
o+ <O x4t L

where x' and X", respectivelv, denote the first and second derivatives of X with resnect to
y, and \ is the usual Lagrange multiplier resulting from the constraint of constant liocuid
volume. The absence of the solid-licuid and solid-vanor interfacial tensions, y L and v v
in Eq. (6) was to be expected since the corresvonding interfacial enerpy terms, E and iSV'
depend only on the two end points ¥, and V,, which remain unchanged during the prgEess of
calculus of variations.

Letting
% v AR 02R%
x=R—i._v=§—i, Lx=r—a11d8=;—*. (7N
LV Lv
the dimensionless form of Eo. (6) is obtained as
< 377 " erre e O (8
1+ xHD7177° x(1 + (x")4)
Two end-point conditions are needed to close this ecuation. They are
1, x' =« atx=20 (9a)
2. x(» = 11 - (G -DIY aty=y, (9b)
The first condition simply states that the liquid profile is sxgmetric about the y-axis,
The second condition is the so-called transversality condition™” - that is, at vy = y, the
liquid-vapor interface lies on th2 inner surfacelgf the SMS. It is easy to verify tﬂat the
second condition gives vise to Young's equation for the contact angle, ¢, i.e.,
Y - Yy
cos © = cos (i) - @,) = -§!-;Z;E§ (19)

The definitions of the angles vy and ", are given in Fig. 2b.
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Note thatlsq. (6) is reduced to the equation derived earlier by Bashforth and Adams for
a sessile drop”’ if the origin of the coordinate system is shifted to x = 0 and y = Y1 and
the normalization variable is replaced by the radius of curvature at the oriein. So, we
henceforth, refer to Eq. (6) (or Ec. (€)) as the Bashforth - Adams equation. The original
derivation was based on the force balance 15 the liouid-vapor interface, i.e., a direct
application of the Young-Laplace equation.

For the case of a sessile drop, the reader is referred to thelgork of D. N. Staicopolur
for a complete numerical solution of the Bashforth-Adams equation . An aoproximate ana-
lytical solution of a similar equation has been worked out by PZOConcus for calculation of
the equilibrium meniscus in a vertical right circular cylinder.

In the current analysis, a direct integration of Eaq. (8) subject to a given cor 1ct

angle is carried out using numerical methods. Before presenting the numerical solut-on,
however, certain points must be clarified:

1. The liquid-vapor interfacial tension is assumed to be constant throughout

the calculations regardless of the position and curvature of the interface.

This assumption is justified because the radii of curvature of interest in the
present case are in the range of 0.01 cm, which ii several magnitudes larper thQB
the case studied by Tolman, Kirkwood and Buff, and Benson and Shuttleworth.
These authors have found that the surface tension of a small droplet decreases with
increasing curvature. Tolman estimated that a 4 per cent drop in the sggfch
tension would occur if the diameter of a droplet was in the order of 10 ~ cm;

2, The liquid is assumed to be incompressible, and the effect of the vavpor
pressure on the liquid-vapor surface tension is neglected;

3. The contact line is assumed to be ideal. Ar ideal contact line means that
two mathematically defined surfaces meet together. Thus, the line should be
infinitesimal and no liquid film exists beyond the line. In conjunction with
this, we note that the va‘égity of Youea's ecuation for tae contact angge has
long beenzslaimed by Gauss and Gibbs and more recently bv Johnson, and
Goodrich, For arguments advocating its invalidity, however, the reaggr

i{s referred to a recent paper bv G. J. Jameson and M. C. G. del Cerro.

Numerical solutions of the Bashforth-Adams ecuation (Ecuation (8)) satisfying the end-
point conditions Equation (9) have been obtained. Figure 3 shows a set of tvpical solutions
obtained for the liquid deuterium enclosed in a CMB for diiferent values of contact anele.

The GMB target chosen was 67 um in inner radius, of 3 um thickness, and was assumed to be

at a uniform temperature of 24 K. For ease of comparison with the experimental results, which
is to be made in the future, the room-temperature D,-fill pressure of the target was chosen

to be 110 atm, This fill pressure, along with the 8imensions and temperature of the target,
allows onesto determine the amount of liquid deuterium inside the target using the ecuation

of state.” y

e K

Figure 6. Numerical solutions of the Aug-
Figure 3. Numerical solutions of the Bash- mented Bashforth-Adams equatigg. The golid

forth-Adams equation for various contact line is for B, = 4.277 x 10 erg-cm 5gnd
angles. The inner radius of the GMB {s the brgken 1iRkE is for B, = 4.277 x 10
67 um, the wall thickness is 3 um, and the sTg-cm . The vglume of i&quid deuterium is
temperature is 24 K. The liquid enclosed 1.208 » 107" em” and the temperature is

is deuterium and the fill pressure is 28 K. The inner radius of the SMS is 67 um
110 atm at room temperature. and the wall thickness iz 3 um,
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As clearly seen from Figure 3, the location of the contact line between liouid, solid,
and gas rises as the value of the input contact angle (one of the end-point conditions,
Equation (9)) is decreased. This is simply because of the fact that the smaller the contact
angle, the larger 1s the area wet by the licuid. For zero contact angle, it is, therefore,
believed that the liquid will wet the entire target substrate, resulting in a continuous
liquid layer. 1In this case, there will be a gas bubble inside the target completely

surrounded by the liquid--a situation not possible in the case of a sessile drop sitting on
a flat surface.

Although different input values of the contact angle were used at the same temperature
to produce the results in Figure 3, in reality, there can only be one correct contact angle
corresponding to a given temperature. Since this correct contact angle is not theoretically
availagle as a function of temperature for the current problem, it must be rieasured experi-
mentally. Good and Ferry measured the contact angle between liquid hydrogea andzg few
different materials and reported that it was zero for all the materials studied. Neither
the details of the experimental arrangement nor the ranges of the observation temperatures
were, however, included in their report. Considering the difficulties involved in main-
taining a stable cryogenic environment and, in particular, the difficulties in creatirg and
verifying an isothermal environment, it might perhaps not be totally unreasonwble to suggest
that the work of Good and Ferry be re-examined, or even redone using carefu’” .le.ignzd,
more modern equipment for all liquid hydrogen temperatures.

Assuming now that the contact angles of liquid hydrogen and, according: rat of
linuid deuterium are zero, it is most pro?gb}s that the liquid deuterium cor - 1 in an SM¢S
exists in the for.. of a continuous layer." "' It is for this reason that we now go back
to the Bashforth-Adams equation and see if it can adequately give rise to a continuous
liquid layer solution.

Profile of a continucus liquid layer inside a spherical microshell

Let us now consider a situatio~ where the liquid inside an SMS forms a continuous

layer, i.e., no liquid-vapor-solid contact line. The coordinate system used in this case

is shown in Figure 4a, Following the same procedures previously used, and considering only
the terms pertaining to the gravitational force and the liquid-vapor interfacial tension,
one can easily derive a differential equation, which is identical to £a. (8). The boundary
conditions are, however, different. Since the gravitational force is chosen acting parallel
to the y axis, the profile of the vapor void (or the bubble) should also be symmetric about
the y axis., Therefore, the boundary conditions for the bubble are

- X

mT Xmp

Figure 4. (a) Coordinate systems used in the continuous liquid layer case. At x = x_ and
y =y , x' is equal to zero. (b) Numerical solution of Bashforth-Adams equation with one
boundgty condition satisfied, i.e., at x = 0: x' = «, Note that X > Xmr at x' = 0,

(1) x" = atx=0, y-= 21 (11)
(2) «' =« atx=0, y= Y2

efore finding the numerical solutions of Fouations (8) and (11), it is worthwhile to
study Equation (B) somewhat more carefully. Upon integration, Fouation (8) gives rise to
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X(a + BYy 1) dx

where Y8 denotes the two values of y corresponding to a single value of x: in the region
vhere x®'Ts positive, y, is used, with B denoting the "Bottom''; and in the region where x'
is negative, y. is used, with T representing the "Top". From Ecuation (12) one finds that
where x' = 0, Ihat is, when x takes ot the maximum value, xm, the values of x are given by

XmB

X.B = j X(a + 8yg) dx , and (13a)
0
F T _

XoT = ) *(a + BVT) dx , (13b)
0

where the subscripts "B" and "T'" again refer to "Bottom'" and "Top," respectively. Because
« and p are constants a.d y_, # y., Eouation (13) implies that one has tw~ different values
of x at x' = 0. Referring o Fifure 4b, since yp is always larger t%an Yg. one d 'duces that

X X 14)

mB mT

This deduction is clearly physically contradictory because no bubble can exist if there is
a discontinuity in the liquid-.vapor iuterface. Consequently, there will be no solutien to
Equation (8) which can satisfy the bubble boundary conditions Ecuation (1l1).

The numerical solutions of Ecuation (8) indeed illustrate this Doint.30 Only one of
the two boundary conditions Ecuation (11) is satisfied, i.e.,, either x; = « at x = 0, but
xi =« at X ¥ 0; or X, = «~ at x = 0, but x;, # ~ at x = 0. 1t is obviofls that some force:
alting on the bubble that are different fr8m the gravitational force and liquid-vavor
interfacial tension are left out of the theory hitherto considered.

There are several types of forces among molecules and atoms31: the attactive f{orces
are primary (chemical) bonds, metallic bonds, and secondarv (physical) bonds, whereas the
repulsive forces are Born repulsions. Primary bonds and metallic bonds are usually strong,
and are the basic forces responsible, for examnle, for fo.ming different stable substances
on earth. Secondary bonds are the long-range but weak attraction forces among atoms and
molecules and are generally called van der Vaals forces.

In fact, van der Waals forces are a collective term for the four different forces,
namely, the Debye induction force between a permanent dipc’: and a neutra§3molecu1e, the
Keesom orientational force betwecen two freely rotating permaggnt dipoles, the London-
dispersion force due to electron fluctuations asgund nucleli, and the Margenau force
arising from the dipole-quadrupole interaction. Since the liquid of our interest is
deuterium or deuterium-tritium mixture and they are nonpolar neutral molecules, onlg the
Ltondon-dispersion force is considered. The Born repulsion force is also neclected because
it is inverse twelfth power of distance and thus quickly dies out as the distancg is in-
creased. The typical effective distance of the Born repulsion force is about 7 A.

Two approaches are widely used to calculate the total attracticn energy of the &gnign-
van der Waalis type between two macroscopic bodies. One is London-Hamaker's approach” '
in which the additivity of the §9ndon-van der Vaals forces is assumed. The other is
Lifshitz's macroscopic approach”’ in which the attraction energy is directly calculated
from the ima%inary parts 38 the complex dielectric constants of the media, especially their
far ultraviolet portions. Lifshitz's approach is thought to be bette: than that of London
and Hamaker, especiilly in the case where the separation distance between two macrcscopic
bodies is large. This is mainly due to the additivity assumption and the intrinsic
characteristics of the dispersion forces.

The London-van der Waals forces are electromagnetic-like forces, so they will be
subject to retardation, i.e., at large separations the forces will be reduced because the
finite time reguired for their pragagation causes a phase difference between the =lectronic
oscillations of the interacting mo
energy calculated 33 London-Hamaker's approach will be over-estimated for molecules with
large separations. When the retardation effect i{s put into the calculation, as Casimir
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and Po].der."0 and39vg§bg§k“1 did, the two approaches usually have differences wichin an
acceptable range. "7

To avoid the mathematical difficulties and the scarcity of the data required of the
Lifshitz's macroscopic approach, the London-llamaker's approach is adooted. The ncnretarded
London-van der Waals forces are considered first. The effects of retardation then follow.

7
)

p(f.0,0)

-~

ot

Figuie 5. Spherical coordinate system used in the calculation of the London-van der Waals
attraction energy between the liquid molecule at p(¥,0,0) and the spherical substrate with
inner radius equal to Ri and outer radius equal to Ro'

The coordinate system 1sed is shown in Figure 5. The energy due to the London-van der
Waals forces of a liquid molecule at the point p(f¥,0,0) is then expressed as

E (¥) = N J dv U(d) (15)
P s Jy
where the London potential U(d) = -B /d6 with BS denoting the London constant between the
solid (substrate) and liquid moleculgk; d is the &istance between the substcate and liouid

molecules; N_ is the number density of the substrate molecules; and V. is the volume oc-
cupied by th8 substrate. Noting the azimuthal symmetry of the system, apnrlication of the
cosine rules enables one to rewrite Ecuation (15) as
. ) Ro 2 +1 1 @6
E_(r) = -27 B, N f R2dR f du 1
P SL s -1 (RZ + ¥ 2 28py)3

R.
i

where u = cos €.

After straightforward integration. Ecuation (16) becomes
3 ]

E (2) = BT g N[ "o B i (7
p T3 PsL s R’ - 210 [R2 - i,2]‘3‘
o i
The total energy due to the London-van der Vaals forces between the licuid and the
solid wall is then
Epvow = N Jv dv E_ () (18)

L
where NL is the number density of the liquid and VL is the volume occupied by the liquid.
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In terms of the normalized cylindrical coordinate svstem defined in Ficure 4a,
Equation (18) is

2 X
Euow = 27 N, [ 9y Jo x dx Ey(r) 19)
1
where
E (r) = 207 By, N, i 1
M v, B -
P iEg SL s (R; _ r2]3 (1 - rZ;B
————
r = X + (V - 1)7
R
- Q
Re "R,

Following the same mathematical oprocedures previously used (i.e., the calculus of vari-
ations), one obtains

‘ll 1

0+ O e ol

-fa + 8v + A D(x.V)] 20)

where
L -
£ B NNy
3y Ry
.
D(x.v) = 7y Ty
(R; -r7)

1
(1 - o3

and the rest of the svmbols are as defined in Ecuation (7). This ecuation is similar to the
Bashforth-Adams ecuation Eguation (8), exceot that an extra term resulting from the London-
van der Waals energv is added. For this reason, we name Ecuation (20) as the "Augmented
Bashforth-Adams equation.”

Integrating Equation (20) once and applving the bubble boundarv conditions Ecuation
(11), one has

X

m
ﬁVv + 27X Jo x(DT(x.yT) - DB(x.vB)l dx = 0 21)

where VV is the specific.volume of the vapor void, or the bubble (i.e., the actual volume

of the void divided by R;). the subscript T denotes the upper (top) portion of the bubble
where x' - 0; and the suBscript B denotes the lower (bottom) portion of the bubble where

%' ~ 0, From FEouation (21), one can easilv see that as R approaches zero and/or A ap-
rroaches infinity, [D.(x,v.) - D (x,vy)} will take on a value which is vanishinglv small.
Or, putting it in ano?her gay, at eitHer or both of these two limits, the thickness of the
liquid laver is uniform, or the bubble is a complete sphere. In practice, however, the
values of A and r are finite and, therefore, the thickress of the liquid laver at the bottom
of an SMS is always larger than that at the top.

The numerical solutions of Ecuation (20) satisfying the bubble boundarv conditions
Egquation (l1) are plotted in Figure 6. Note that there is only one unique solution for
each set of paramcters usced. The SMS chosen7is §7 ym in inner radius, 3 um in thickness,
and contains liquid D, of volume 1.208 ~ 107’ cm The calculations are done for two dif-
ferent values of the fondon constant B, . As expected, larger B,, produces a licuid laver
more uniform in thickness. This effect“is more clearly demonstrited by Figure 7 in which
both the top and hottom thicknesses of the liquid laver are plotted as a function of B L
for two different values of liquid D, volume. That a larger B, is required to sunoor§ a
thicker uniform layer is clearly sho%n in the figure, which is“¥onsistent with the competing
nature of the gravity and the van der Waals attraction.
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Figure 7. Equlibrium top and bottom thicknesses of liquid deutevium laver inside an SMS
at 28 K. The target has inner radius of 67 'y ang wall thickness of 3 ym. The broken
lines are f?r tse liquid volume of 6.47 ~ 107" em” and the solid lines are for

1.208 ~ 107" em
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Figure 8. Comparison of equilibrium top and bottom thicknesses of liquid deuterium ‘ayer
for nonretarded (solid lines) and retarded (broken lines) London-var der Waals forces. The
inner radius of the SMS_§s 6 um and its wall thickness is 3 um. The volume of liquid
deuterium is 1.208 » 107" c¢m” and the tempegature is 28 K. \_ used in the calculation of
retarded London-van der Waals forces is 107~ cm. ¢
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Since the wall thickness of the SMS and the thickness of the licuid layer are generally
in the order of 1 um, the retardation effect of CRG London-van der Waals forces could be
significant as pointed out by Casimir and Polder. To include such a reta:datigg effect,

a correction function has been introduced into the London potential by Overbeck:

B
ud) = - EEL £(r) (22)

where p = 2 n d/\c with i, being the characteristic wavelength of the electronic oscillation.
of atoms; and

1.01-0.14 p , for 0 < p ~ 3
f(p) =

2.45p°1 - 2.06p7% , for 3 < p

Unfortunately, this formula is not easily applicable to our case sigge two separate func-
tions are involved in two different ranges. Schenkel and Kitchener~  have found an anproxi-
mation for £(p) for the range, 1 < p < =, According to these authors, the deviation in

the values of f(p) is less than 5% within this range. The Schenkel-Kitchener approximation
is

£(p) ° 2.45 2.%7 0.%9
p

P p
Raeplacing che London-potential U(d) in Fouation (15) with this approximation (Ecuations

(22) and (23)) and carrying out the straightforward, yet tedious, integration, one obtains a

lengthly expression for the retarded London-van der Waals attraction energy between a

liquid molgbule at point p(r,0,0) and the entire substrate of thickness of (R0 - Ri) (see

Figure 5).

(23)

This expression has been used in conjunction with the Augmented Bashforth-Adams apn-
proach to determine the retardation effect of the London-van der Vaals forces. Plotted in
Figure 8 are the equilibrium top and bottom layer thicknesses of the licuid deuterium in-
side an SMS of inner radius 67 um for various strengths of the London constant. The 3
temperature of the SMS is 28 K and the volume of the licuid deuterium is 1.208 ~ 10" ‘em”.
As expected, the thickness of the top liquid laver is smaller than the case where the
retardation effect is not included.

Note that the Augmented Bashforth-Adams equation Equation (20) with the retarded
London-van der Waals energyv term is only good within the range 1 « p < ~, This range might
be excendegadown to p = 0.5, with a slightly larger _error, as pointed out by Schenkel and
Kitcheney. In general, \  is in the order of 107” cm, so that p = 0.5 corresponds to
d ~ 100 A. Consequently,°a§ long as the top liquid laver thickness (i.e. the smaller thick-
ness) is larger than 100 A, the error in the solution of this ecuation will be neglirible.

Finally, it must be pointed out that the liquid-vapor interfacial tension has been
assumed to be constant throughout the calculations, which might turn out to be an important
source of error.

Conclusion

An "Augmented Bash: ‘rth-Adams' ecuation, Fauation (20), appropriate to a spherical
substrate, has been derived for the first time by including the London-dispe:sion force
as the two-body interaction force between the liquid and substrate molecules. This was
prompted b, a proof presented in this work that the Bashforth-Adams equation, Ecuation
(8), has no solution subject to the boundary conditions Equation (11) required of a contin-
uous liquid layer. The choice of the London-dispersion force was specifically motivated
by the desire to describe the liquid hydrogen behavior inside a spherical microshell ICF
targeti and was justified by the fact that liquid hydrogen consists of nonpolar neutral
molecules.

Considering the fact thag gest of the previous work on the thin-film phenomena, of
which a wealth of literat re“’'’” exists, has only dealt with either plane- or cylinder-
like geometries, tue principal contribution of the present work is to have formulated a
theory appropriate to a spherical substrate.

It is hoped that with chis work headway has been made toward an active investigation
of the thin-film phenomena involving spherical geometry, not only for its own scientific
merit, but also for a very interesting practical application - namely, the ICF target
research.
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