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Abstract

An extension of the method of moments is developed for the numerical integration of the kinetic equa-
tions of droplet spectra evolution by condensation/evaporation .nd by coalescence/breakup processes. The nu-
mber density function n.(x,t) in each separate droplet packet between droplet mass grid points (x, ) is
represented ‘. an expans¥on in ortkogonal polynomials with a given weighting function. In this way 5:251&: num-
ber concentrations, liquid water contents and other moments in each droplet packet are conserved and the prob-
lem of solving the kinetic equations is replaced by one of solving a set of coupled differential equations
for the number density function moments. The method is tested against existing analytic solutions of the cor-
responding kinetic equations. Numerical results are obtained for different coalescence/breakup and condensati-
on/evaporation kernels and for different initial droplet spectra. Also droplet mass grid intervals, weighting
functions and time steps are varied.

_Introduction

There are three major difficulties in numerical computation of droplet spectra evolution by condensa-
tion/evaporation and coalescence/breakup processes, which occur as a result of interaction between droplets
and vapour-air environment.
a)The relaxation time of condensation/evaporation process is much smaller than the relaxation time of
coalescence/breakup process and therefore the numerical computations of these processes .equire a different
time steps.
b)A correct appioximation of droplet number oens;ty function mny(x,t) is requiieg in each separate
droplet packet between droplet mass grid points (x, »Xg In Berr;, s approximation®s¢ of pumber density .
function Eelther the number concentration nor the liquid wlter content of droplets are conserved. In Bleck’s ~
aethod®d it is impossible to estimate the error of the approximate numerical solution and an assumption .
is made *) .t in 2ach separate droplet packet all droplets are spread over the whole mass interval (xj Xy
This Bleck’s uniform distribution hypothesis gives as a result a significant increase of the mass convlr-
sion velocity from small droplets to large drops.
c)The problem of correct cowputation of water vapour supersaturation taking into account the release
of latent heat of condensation/evaporation during the time step used for the numeri¢al computation of the
condensation/evaporation processes.

Method of moments

In this study an extension of Bleck’s method3 and of the method of moments 56 is developed for nu-
merical integrating the kinetic equations of droplet spectra evolution by condensation/evaporation and
coalescence/breakup processes. Each separate droplet mass interval (x,,xy +1),where =sx, is consjidered
as a droplet packet with its own number concentrativn, liquid water content and other ho*e The unknown
number denstty -function (x,t) in each droplet packet is represented by an expansion in orthogonnl polyno-
mials with a given weighting function

"k(zat)'wk(l.tlzoaik(t)Gik(z) )
where z=x/x, represents the nondimensional mass of droplets in the packet (xk'xk‘l)‘ }
Nk(z,¥)-—wexghting function,

G;x(z)-are polymomials orthogonal in the range (l,s) with weighting function Hk(z.t).

ay ét)-are the expansion coefficients which are expressed as linear combina.lons of the number
density unction moments and depend on the moments of Wk(z.t) as well,

In this way droplets number concentration, iiquid water content and other moments are conserved in each
separate droplet packet and the problem of solving the kinetic equations is replaced by one of solving an
infinitive set of coupled differential equations for the number density function moments.However, approxima- x
ting ny (z,t) by means of first L terms of the expansion (1) and also replacing the expansion coefficients ’
‘ik(‘) by means of linear combinstions of number density function moments we obtain a finite set of
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coupled differential equations to compute the first L moments of the (1,1)7_ Note that the approxima-
tion of the ny(z,t) by means of the first L terms of the expansion (1)" assumes that the expansion
coefficients for i ., isL+l, ...... are zero, that is

‘u((t)-O; aL,l.k(t)"lJ; veenes 2)

By(2) the larger order moments of the number density function may be determined by means of the
first L moments of the mny(z,t).

The accuracy of the approximation of ny(z,t) by means of the first L terms of the
expansion (1) in droplet packet( Xy o Xy, depends on the choice of W (z,t) as well as on the
choice of droplet mass grid points. +Ae number density function n(x,t) is a distribution funct-
ion which in experiments is determined only for the range (x,x+dx} If droplet mass increment
dx is much smaller thin x, the n(x,t) in each range (x,x+dx) represents a piecewise constant
function and an arbitrary moment of n(x,t) in the range (x,x+dx) is expressed by means of the
zero-order moment dN(x,t)=n(x,t)dx; therefore also the number density function n(x,t) is determined
by zero-order moment dN(x,t) and does not depend on the choice of the weighting functions in
the range (x,x+dx).

For the numerical =»mputations of the kinetic equations it is imposs'ble to cho-
ose droplet mass grid points for which (Xg41-%) is much smaller than x; ; therefore for such
grid points the zero-order approximation of the expansion (1) (L= 1) will b2 incorrect for an
arbitrary weighting function Wy (23t). So, if for numerical solution of the corresponding kinetic
equations we have choosen the droplet mass grid points Xy,1"8X, , then we have to define for
what value or the grid intervals (xk01'x ) the €first-order approximation of (J) (L=2) will be
correct that is will be not dependent on khe choice of the weighting functicen W (z,t). It is
shown that for s equal or smaller than two the first-order approximation of tke expansion (1)
that is the approximation of m(z,t) by means of the first two moments is sufficiently correct.

The relations are obtained to compute the zero-order and the first-order approxima-
tions of the polynomial expansion (1) for an arbitrary range (1,s) and for an arbitrary weight-
ing fuetions.

It should be noted that the first-order approximation of the expansion (1) (L=2)
describes not only the case where the droplets in the packet (xk,xk‘ ) are spread over the
whole mass interval (xk.xk* ) : but also the case where the droplets in the packet (xk,kuI)
are located only in the pidrt of the whole mass interval (xk,xROI) 7

Numerical method for integrating the condensation/evaporation
kinetic equation

In this study a separate treatment of microphysics of condensation/evaporation process
(without advection phenomena) is adopted and this process for sufficiently small time steps is
corsidered as a space-homogenous process. Such consideration is based on the assumption that
the time .ntegration i§ broken up into separate treatment of the dynamic tendency and of the
microphysical processes’ which control the vapour supersaturation field.

Differential equations which describe the microphysics of the droplet spectra evo-
lution by condensation/evaporation processes can be written as:

an(x,t) .
ot . %; { (g%é n(x,t,} 0 3
dx .x 2/3 _ a1/3, 2/3 @
at 73 o ¢
5{(t)=Q(t)-Q 4(v) (5)
Q(t)+1.(t)=Q(0)+N(0) (e)
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where S(t)-water vapour supersaturation; M(t)- droplets total liquid water content; Q(t)-water vapo-
ur density; Q_(t)- water vapour saturation density at temperature T(t). The equation (3) represents
the condensntiSn/evnporltion kinetic equation; (4)-represents the individual droplet diffusional growth

equation which includes the terms due to surface tension (B) and solute eoffects-¢(c); (6) re-

presents the mass conservation equation; (7)- the first 1lsw of thermodynamics; (8)- the Clapeyron
-Clausius equation.

Multiplying (3) by x™dx and .ntegrating from xk(t) to xp,,(t), and also taking into
account that n(x.t)dx-noty)dy we have the set ¢f number density function moments equatioms

ka1 () x (0
B (1) kel

-1 -1
=n/ xn (dx/dt)n(x,t)dxs m / (,;(y.t))“l (c:lx(y.t)/flt)no (y)ay 9
dt ,k(t) xk(O)

where

*ge1 (8) % (0
M@= 7" n(x,t)dxw S (x(,t)™ ng(y)dy

represants the n-order moment of the number density function in the droplet packet with nonfixed
grid points ( xk(t), ‘kol(t) ), that is in the droplet packet which for ts=0 is contained within
grid points ( x(0), x,,;(0) ) and for time t transfesrs in the droplet packet Cxy (2], %y 00(0) )

as a result of the droplets diffusional growth,
For t=0 we have initial conditions:

n(x,0) = no(y);  x(y,0)=y;  xx(0)=x; Xyo1 (0)=X) 4y

From equation (9) we have for m=0 and m=l

X 0)
k+l
dN, (t) i, (t
L o S0 ./ (dx(y,t)/dt)n (y)dy (10
dt ' de xx(0)

where Nk(t)-Mg(t) and “k(t)‘ 1(t) represent the number concentration and liquid water content
respectively in the droplet plcket with nonfixed grid points (xk(t), xkol(t) ). Using (10) we
have for the droplets totsl liquid water content

I %0

dM(t)
s I / (dx(y,t)/dt)n d 11)
Tt kel X, (0) o(Y)dy (

where J-the total number of droplet packets.
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Picard's method of successive approximations is used for the integration of differen-
tial equation (4) with the initial condition for te=0 xewy., It is assumed that the droplet indi-
vidual diffusional growth rate in the (j+1)-th apprOximation is determined by the droplet —ass
in j-th approximation. Substituting (4) in (11) and approximating ny(y) by means of the first
two moments Nk(o) and Mk(O) we obtain the first relationship between total 1liquid water con-
tent of dropluts and between water vapour supersaturation: i

e M > et

3 G) (-1 G-1)
'dM_'Q')‘lS (t) + ¥ (t)

R :

at {t) |
where ,

j-1 J *k+1(0) . G-1) 1/3
MMy Tl (8 Do.anamen 7 (a0 o R,
k=1 Xk(O) .
G- I e G113 G
= - J'l) . 2/3 s
Y (t) K kfl ik ©) (dy)(( B(x (y.t)) +8(c)(x (v,t)) )no(y))/((x(J 1} (y,t))l/s.g))

are the condensation/evaporation integrals.

The second relationship between M(j)(t) and S(j)(t) can be derived wusing the equations
(5)-(8). Expanding Qs(t) in Tailor’s series, we have for sufficiently small time steps,( that is
for time steps for which ( T(t)-T(0))<< T(0) is satisfied)

sG) (r)=s(0)- (1+F) MY (2) -Me0)) (12)

where

= (((Q (T L)/ (ry T(O)) ((Lo/R,T(0))-1)

and L, represents the latent heat of water vaporization.Such an approach gives the possibility to
obtain "the analytic relationships to compute the unknown values of x(y,t), x (xk(o),t}, M (3,
M(t), S(t), Q(t), T{t), Q_(t) for sufficiently small time steps =+. (O<t<t.) which may be much
smaller than the time stép used for the numerical computation - the Coslescence/breakup pro-
cesses. The redistribution of the 1liquid water mass from the dre.let packets between nonfi.ed
. grid points (“k(t)uxkol(‘)) among the droplet packets located between fixed grid points (xk'xk~l)

which are used for the nu’orical computation of the coalescence/Lreakup processes can be computed
without too much difficulty".

Note that according to (10)the number concentration i, (t) in the droplet packets with
nonfixed grid points (xx(1,,%,1(t)) i3 constant and for initial "monodisperse droplet spectrum
M(t)-NiQ)x(t) where N(0) represénts the total number concentration of droplets. Therufore for the
initial monodisperse droplet spectrum and for the case B=0 and ¢(c)=0 in equation (4) there
exists the analytic solution of the set of differential equations (4), (11), (12) wkich may be
used for the test of the numerical method developed in this study.

Numerical method for integrating the coalescence/breakup
kinetic equation

The coslescence/breakup kinetic equation for the droplet number density function n(x,t)
can be written as:

- x/z -
—a';'-?‘-t)- =-n(x,t) Jo(x,y)n(y,t)dys Jo(x-y,v)n(x-y,t)n(y,t)dy-n(x,t)P.x)¢ /n(y,t)Qy,x)P(y)dy (13) v
N X x

In this equation o(x,y) 1spresents the coalescence kernel for two droplets of mass x and y;
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X, is the smallest mass in the spectrum of croplety, P(x)- the probability that a dropiet of
n}ss x will Dbreak up during a uvnit time and Q(y,x)-the droplet mmber density function, “ormed
due o breakup of a parent drop of mass Y.

Multiplying (13) by xBdx and integrating (13) froa X to )kol"xk yields

aM:(t) $x - sxk a2
Y J x®n(x,t)dx / o(x,y)n(y.t)dy + /x"dx J o(x-y,y)n(x-y,t)n(y,t)dy
xk Xl xk X

sx, sx, .

- 7 ®nlx,t)P(x)dx + / x7dx / n(y,t)Q(v.x)P{y)dy (14)
X, Xy x

where

n Xy o s

M (t)= / x n (x,t)dx = x f 2z nk(z t)dz (15)

Xk

roprosonts the m-th order !ent of the number density function of droplets in the packet
(xy, ,xlém5 According to Bleck Y, the first two double integrals on the right side of (14) can
uted

be c sectionally over small areas. Using this ides also for the cosputation of the last
two integrals in (14), we have

n
auk(t) J o k-1m k-1 m J m ]
T " hMadhr et r ek B (e

where k=1, 2,......,J; J is the number of droplet packets: =me=0, 1. 4,...... ; and m is the order
of moments. In the set of diffcrential equatirns (16) Af y » Ai k-1,k ¢ are coalescence
double integrals which describe the kinetics of the coalescorce pxocoss. 1%6 ast two terms in
(16) describe the droplet breakup process.

The computation of the coalescence and breaku; double integrals requires the values
of the unknown number Jensity function n(x,t) in each separute droplet pactet., Therefore approxi-
mating again the number density function n,(z,t) by means o the first L terms oi the expgn si-
on (1) and replacing the expansior coeffi isnts l by means of linear combinations of "k.ét)'
we have from (1b) a finite set of couplel axffe*hnt a8l equatious to compute the first L
ments of the nk(z.t) in each separate Jdroplet p:.cket.

There exist conservation relations between the coalescence double integrals, which for
=0 and w»=] describe the droplets number concentratica conservation and liquid water :Gontent con-
servation respectively during the coalescence intersction Letween two droplet packets.

The detai)ad method for numerical integraiing of the coalescency/breakup kinecic equ-
ation is contained irn

Numerical corputstivns and coacluding
reaarks

The unknown number density funstion n,(z,r) ia =ach separ.te droplet packet (xk,x o1)
(xy,1*8xg) is 7Tepreseated by an expansion in ort ogonll polynociesls with a given weighting f%n!-
tion in the range (x,,Xy41). In this way the problem of solving the condensation/evapcration and
coalescence/breakup kinotxc equations is replaced by one of soiving a set of coupled differential
equations for the moments of the number density function ny(z,t).

The method of moments developed in this study, is testsd rgainst eaisting analytic
solutions of the correspondii; kinetic equations. Numerical results »-¢ obtained for .uifferent
coalescence/breakup kernels, for  ifferent individual droplet diffusional growth rate and for dif

ferent initial droplets spectra. Also droplet mass gr'! points intervals, weighting functions anda
integration time steps are veried.

The results of the numerical computations of the droplet spectra evolution by cuncdensa-
tion/evaporation processes indicate that the convergence of the Ficard’s method of the succesive
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spproximations for the equation (4) for small time intervals is sufficiently rspid. For wmwonodis-
perse initial droplet spectra a comparison between numerical results computed by the method of
this study snd between existing analytic solution of droplet spectra evolution by condensation pro-
cess is made. It is shown that a simultaneous use of the Picardss method and of the wmethod of
moments gives veasonable results which are very close to the existing analytic solution.

For the mumerical integration of the coupled differential equations for Ny(t] and
My (t) which are derived from (16), the forward time dJdifferencing is adopted. For practical com-
putations the droplet mass grid points x, .= are the wmost convenient. The results of the nu-
merical computations indicate that if the chosén weighting function is close to the unknown num-
ber density function nk(z.t). the difference between numerical results computed by means of the
zero-order aporoximation and by weans of the first-order approximation of the expansion (1) is
sufficiently small. The results of numerical computations also show that the difference between
numerical results computed by means of the first-order approximation of the expansion (1) with
different (z,t) is not large and even if the chosen weighting functions are not close to the
unknow~ r & ity function np(z,t), the use of the first-order approximation of the expan-
sion ."} for dji.fecrent .k("t) gives numerical results which are close to the existing analytic
solutions. Therefore one important aspect of the method >f wmoments is its ability to estimate
for a s..en kernels the efficiency of the chocen weigh.ing function, that is the sufficiency of
the 3. S-order approximation of the expansion (1) when there is no analytic solution. A prelimi-
nary numerical results are obtained to study the influance of the condensation/evaporation proces-
ses on the droplet spectra evo'ition by the coalescence/breakup processes.

Thus, the convergence of the expansion of the number density function m(z,t) in
-crms of orthogonal polynomials with a given weighting functions in the range (1.s} (s¢2) is
sufficiently rapid and for droplet mass grid points x +1%5%  (s€2) the approximation of n,(z,t)
by means of the first two terms of the expansion (1) "is “sufficiently correct.
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