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Abstract 

An extensio9 of the method of moments is developed for the numerical integration of the kinetic equa- 
tions of droplet spectra evolution by condensation/evaporatioi~ a d  by coalescence/bre.kup processes. The nu- 
mber density function n (x,t) in each separate droplet packet between droplet mass grid points (x 
represented :-.. an expandon in orthogonal polynomials with a given weighting function. ~n this way 2- 
ber concentrations, liquid water contents and other moments in each droplet packet are conserved and the prob- 
lem of solving the kinetic equations is replaced by one of solving a set of coupled differential equations 
for the number density function moments. The method is tested against existing analytic solutions of the cor- 
responding kinetic equations. Numerical results are obtained for different coalescence/breakup and condensati- 
on/avaporation kernels and for different initial droplet spectra. Also droplet mass grid intervals, weighting 
functions and time steps are varied. 

Introduction 

There are three major difficulties in numerical computation of droplet spectra evolution by condensa- 
tion/evaporation and coalescence/brea)t;lp processes, which occur as a result of interaction between drop!ets 
and vapour-air environment. 

a)The relaxation time of condensation/evaporation process is much smaller than the relaxation time of 
coalescence/breakup process and therefore the numerical computations of these processes &.equire a different 
time steps. 

b)A correct appxnximation of droplet number Gensity function nk(x,t) in each separate 
droplet packet between d-oplet mass grid points (xkBq+ ). In Lrr, s appro%:%f~' of number density 

function either the number concentration nor the liquid witer content of droplets are conserved. In BlacksS 
mthod3*? it is impossible :o estimate the error of the approximate numerical solution and an assumption 
is made + I  .r in rtch separate droplet packet a11 droplets are spread over the whole mass interval (X~,X~+~;: 
This Bleckps uniform distributl~n hypothesis gives as a result a significant increase of the mass conv 
sion velocity from small droplets to large drops. 

c)The problem of correct cqutation of water vapour supersaturation taking into account the release 
of latent heat of condensation/evaporation during the time step used for the numerical computation of the 
condensation/evaporation processes. 

Method of mcme> 

In this study an extension of Bleck's method3 and of the method of moments 5*6 is developed for nu- 
merical integrating the kinetic equations of droplet spectra evolution by condensation/evaporation and 
coalescence/breakup processes. Each separate droplet mass interval (~~,x~+~),where .~x is 
as a droplet packet with its own number concentrati~n, liquid water content and otherkkntk. The unknown 
number densfty.function nk(x,t) in each droplet packet is represented by an expansion in orthogonal polyno- 
mials with a given weighting function 

where Z=X/X represents the nondimensional mass of droplets in the packet ( X ~ , X ~ + ~ ) ,  
Wk(r,k)--waighting function. 

Gik(z) -are polynomials orthogonal in the range (1 ,s) with weighting function 5 (z ,t). 

t)-are the expansion coefficients which are expressed as linear combina.lons of the number 
densitr.'kkunction moments and depend on the moments of Nk(z,t) as well. 

In this way droplets number concentration, iiquid water content and other moments are conserved in each 
separate droplet packet and the problem of solving the kinetic equations is replaced by one of solving an 
infinitive set of coupled differential equations for the number density function mmnts.However, approxiu- 
ting nk(z,t) by m a n s  of first L terns of the expansion (1) and also replacing the expulsion coefficients 
aik(t) by means of linear conbinrtians of n d e r  density function wnents we qbtain a finite set of 
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CcuPled differential equations to compute the first L moments of the nk(t,t)7, Note that the approxima- 
tion of the nk(z,t) by means of the first L terms of the expansion (1) assmer that the expansion 
coefficients for i b ,  i=L*l, . . . . . . are zero, that is 

aLk(t)mO; aL+l,k(t)m9; . . uv  [a 
By(2) the larger order moments of the number density function may be determined by means of the 
first L moments of the nk(z,t). 

The accuracy of the _approximation of nk(z,t) by means of the first L tenns of the 
CItpan~ion (1) in droplet packet( x k I x k , ~  depends on the choice of Wk(z.t) as well as on the 
choice of droplet mass grid points. e number density function n(x,t) is a distribution funct- 
ion which in experiments is determined only for the range (x,x+d& If droplet mass increment 
dx is nnrch snuller th17 X, the n(x,t) in each range (x,x+dx) represents a piecewise constant 
function and an arbitrary moment of n(x,t) in the range (x,x*dx) is expressed by means of the 
zero-order moment d?l(x,t)=n(x,t)dx; therefore also the number density function n(x,t) is determined 
by zero-order moment dN(x,t) and does not depend on the choice of the weighting functions in 
the range (x,x+dx). 

For the numerical :qmputotions cf the kinetic equations it is imposs'ble to cho- 
ose droplet mass grid points for which ( X ~ + ~ - X ~ )  is much smaller than xk ; therefore for such 
grid points the zero-order approximation of the expansion (1) (L= 1) will bz incorrect for an 
arbitrary weighting function Wk(zit). So, if f>r numerical solution of the corresponding kinetic 
quations we have choosen the droplet mass grid points xk+ =sxk , then we have to define for 
what value or' the grid intervals ) the first-order ~pproxination of ( I )  (L-2) will be 
Correct that is will be nor dependen:x&l-xkhe choice of the weighting functin W (z.t). It is 
shown that for s equal or smallex than two the first-order approximation of the expansion (1) 
that is the approximation of nk(z,t) by means of the first two moments is sufficiently correct. 

The relations are obtained to compute the zero-order and the first-order approxim- 
tions of the polynomial expansion (1) for an arbitrary range (1,s) and for an arbitrary weight- 
ing f ~ i o n s .  

It should be noted that the first-order approximation of the expansion (1) (G2) 
describes not only the case where the droplets in the packet (xk,x + are spread over the 
whole mass interval (xkIxk+ ) , but also the case where the dropletsk iA the packet (x~,\+~) 
are located only in the pirt of the whole r u s  interval (X~,%+~) 7 

Numerical method for integrating the condensation/evaporation 
kinetic equation 

In this study a separate treatment of microphysics of condensation/evaporation process 
(without advection phenomena) is adopted and this process for sufficien:ly small time stops is 
cor.sidered as a space-homogenous process. Such consideration is based on the assumption that 

the tine ;ntegration ia broken up into separate treatment of the dynamic tendency and of the 
microphysical processes which control the vapour supersaturation field. 

Differential equations which describe the microphysics of the droplet spectra evo- 
lution by condensation/evaporation processes can be written as: 



where S(t)-water vapour supersaturation; M(t)- droplets rota1 liquid water content; Q(t)-water vavo- i 
ur density; Q (t)- water va3our saturation density at temperature T(t). The equation (3) represents 
the condensati8n/evaporation kinetic equation; (4)-represents the individual drnplet diffusional growth 
equation which includes the terms due to surface tension ( 8 )  and solute effects-*tc); (6) re- 
presents the m u s  conservation equation; (7)- the first l m  of thermodynamics; (8)- the Clapeyron 
-Clawius equation. 

Multip!ying (3) by xmdx and :ntrgrating from xk(t) to xk+ (t), and also taking into 
account that n(x,t)dx=no(y)dy we have the set of number density function rannts quatiom 

~ k + l  (t) Xk*l (0) 
rn- 1 m- 1 - = 1 x (dx/dt)n(x,t)dx= rn / (ih,t)) (dx().,t)/dt)~ (Y)+/ 

where 

represents the n-order moment of the number density function in the droplet packet with nonfixed 
arid points ( xk(t), xktl(t) ) '  that is in the droplet packet which for t-0 is contained within 
grid points ( xk(0), xktl (0: ) and for time t transfers in the droplet packet ( xk(t), xktl(t) ) 

as a result of the droplets diffusional growth. 

For t-0 we have initial conditions: 

Exom equation (9) we h ~ v e  for m=O and m=l 

0 where Nk(t)=$(t) and ?(t)*((t) represent the nmber concentration and liquid water conte?t 
respectively in the drop et p cket with nonfixed g ~ i d  points (xk(t), ). Using (10) we 
h w ~ e  for the droplets total liquid water content 

where J-the total number of droplet packets. 



Picardns method of successive approximations is used for the. integration of differen- 
tial equation (4) with the initial condition for t=O x-y. It is assumed that the droplet indi- 
vidual diffusional growth rate in the (j+l)-th approximation is detem.ino2 by the droplet w s s  
in j-th approximation. Substituting (4) in (11) and approximating no&) by means of the first 
two *men's Nk(0) and j(0) we obtain the first relationship between total liquid water con- 
tent of droplets and be ween water vaGour supersaturation: 

where 

are the condensation/evaporation integrals. 

The second relationship between M(jl(t) and ~("(t) can be derived using the equations 
(5)-(8). Expanding Qs(t) in Tailor's series, we have for suffic!ently small time steps, ( that is 
for time steps for which ( T[t)-T(OI)<< T(0) is sotisffed) 

where 

and Lo represents the latent heat of water vaporisation.Such m approach gives the possibility to 
obtain the analytic relationships to compute the unknown values of x(y,t), x (xk(o),tj, Mk(&;, 
M(t). S(t), Q(t), T(t), Q (t) for sufficiently small time steps 7 .  (O<trrl) whkch msy be much 
smaller than the time sttp used for the numerical computation . the coalescence/brenku~ pro- 
cesses. The redistribution of the liquid water mass from the drc,let packets between nonfi~ed 
. grid points (~~(t),x~+~(t)) among the droplet packets locsted between fixed gri'd points ( x ~ , x ~ , ~ )  

. .. - 
which are used for the n erical computation of the coalescence/treakup processes can be computed ""4 without too much difficulty . 

Note that according to (10)the ntmber concentration ~ ~ ( t )  in the droplet packets with 
nonfixed grid points (X~(L;,X~+~(~)) is constmt and for initial manodisperse droplet spectrum 
M(t)-vrd)~(t) where N(0) represents the total number concentration of droplets. Thurcfore for the 
initial monodisperse droplet spectrum and for the case 6-0 and @(c)-0 in equation (4) there 
exists the analytic solution of the set of differential equations (4 ) ,  (ll), (12) which m y  be 
used for the test of the numerical method developed in this study. 

Numerical method for integrating the coalescence/breakup 
kinetic equation - 

The coalescence/breakup kinetic equation for the droplet number density function n (x,t) 
c m  be writtun as: 

.) x/ 2 - 
n x t  

= - t  Y Y Y  - Y - t n y t d - n , t +  n ( y t Q ( y B x ) ( ) d  at 
X1 1 X 

In this quation a(x,y) represents the coa1erct;nce kernel for two droplets of mass x m d  y; 



X is the smallest BUS in the spectnm of iropletr, P(x)- the probability that a droplet of 
d s s  x will break up during a unit ti- and Q(y,x)-the droplet mmber density function, *,me& 
due ?o bredcup of a parent drop of u s s  y. 

Multiplying (IS) by xmdx .nd integrating (13) from 5; to L,,~-S~ yield. 

where 

represents the m-th order 80 m t  of the number density function of droplets in the packet 
(xkDx + ). According to Bleck ', the first two double integrals on the right side of (14) can 
be c u u t e d  sectionally over small areas. Using this idea also for the couputation of the last 
two integrals in (Id), we have 

where k-1, 2,......,J; J is the nmbrr of droplet packets: -0, 1, i,......i; and m is the order 
of moments. In the set of difC.renti.1 equatirns ( 1 0  *TDk * q;k-l,k D khk,b .\re coalescmce 
double iritegrals which describe the kinetics of the coalescsnce plocess. art two teru in 
(16) describe the droplet breakup process. 

fie computation of the coalescence and brerkv; double integrals requires the' values 
of the unknown number density function n(x,t) in each scprrnte droplet packet. Therefore approxi- 
mting again the number density function ni(z,t) by m e m s  oi the f!rst L t e a s  oi' the exppsi- 
on (I) and replacing the npmsior coeffi irnts a (t c m m s  of linear combinations of v), 
we have from (1.) a finite m 11f ~0uplr2 drffekntlal quario..r to compute the first L - 
ments of the %(z,t) in w c h  separate droplet p:.cket. 

There exist canservation relations between the coalescence double integrals, which for 
8-0 and m-1 describe the droplets mmber concentratic.l conservation ud liquid water :ontent con- 
servation respectively during the coalescmce interaction between two uroplet packets. 

The detail? method for nmerical integrat3ng of the coalescmc~/brerkup kinevic q u -  
ation is contained ir. . 

The unluram number density f~:tion n ( z , ~ )  :i, s c h  separ~te droplet pbcket ( 5 , x  
( X ~ + ~ = S X ~ )  is represulted by an expansion in ortkogonal po1ynod.L~ with a given weighting &a! 
tion in thr range ( X ~ , X ~ + ~ ) .  In this way the problem of solving the condensatior~/mvapcration ud 
coalescmce/breakup kinetic equations is replaced by one of soiving a set of coupled differential 
equations for the momants of the number density fmction nt(z,t). 

The method of m n t s  developed in this study, is testd *gainst eristing analytic 
solutions of the correspondiri kinetic equations. Nusrica? results *:r obtained for Afferent 
coalescence/breakup kernels, f o ~  Ziffercnt individual droplet diffurional growth rate and for dif 
ferent initial droplets spectra. Also droplet mass p l . 1  points intervals, weighting functions .M 
integration t i n  steps are v~ried. 

Ihe results of the numerical camputatiws of the d m l e t  spectra evolution by c d m s a -  
tion/evaporation processes indicate that the comergehce of the ticard's mthod of the succerj.ve 



.pproxirrtions for the aquation (4) for small t i M  intewals is sufficiently rapid. For mnodis- 
parse initial droplet spectra a coqvison between nmeriul results conputed by the mthod of 
this study .nd between existing analytic solution of dmplet spactra evolution by condensation pro- 
cess is made. It is sham that a siultmeous use of the Picardns mthod and of the method of 
m n t s  gives raasoluble results which u e  very close to the existing analytic solution. 

For the n w r i u l  integration of the caupled differential equations for I+.(%) and 
%(t) which are derived fmm 06). the f o d  t h e  differencfng fs adopted. For practical c a -  
putations the droplet w s  grid points xk+l=% u e  the most convenient. The results of the nu- 
merical computations indicate that if the chosen weighting function is close to the unkaoun n u -  
ber density function %(rat). the difference between nutrical results caputed by maas of the 
zero-order ap~mxiution and by means of the first-order approximation of the expansion (1) is 
sufficiently small. The results of nueriul coqutations also show that the difference between 
rmcriu? results coquted by raas of the first-order .pprodntion of the expansion (1) with 

iw not luge d even if the chosen weighting functions are not close to the 
..=:ty fmction q.(z,t), the use of the first-order approximation of the expan- 

sion . ' I  for di-ftront %(r,t) gives nwrical results which a n  close to the existing analflic 
solutinns. Therefore one mportmt aspect of the method 3f mments is its ability to estinte 
far a ),,en kernels the efficiency of the chocen weighdng function. that is the sufficiency of 
the Z:;-order qproxiution of the expansion (lj when there is no analytic solution. A prelimi- 
nary nuerical results are obtained to study the influance of the cdensation/ev.poration pmces- 
ses on the droplet spectra evo'xtion by the coalescence/bre.lrup precesses. 

nus, the convergence of the expansion of the nuber density function nk(2.t) in 
. - e m  of orthogonal polynomials with a given weighting functions in the range (I,tj ( ~ 2 )  is 
sufficiently rapid d for droplet rass grid pints (plfsxk ( 3 2 )  the approximation of q(2.t) 
by mans of the first two terms of the expansion is sufficiently correct. 
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