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Abstract 

The distortion of a two-dimensional bubble (or drop) in a corner of angle 6, due to 
the f l w  of an inviscid incompressible fluid around it, is examined theoretically. The 
flow and the bubble shape are determined as functions of the angle 6, the contact angle 
6 and the cavitation number . The problem is formulated as an integrodifferential 

equation for the bubble surface. This equati generalizes the integrodifferential 
equations derived by Vanden-Broeck and Keller P72. The shape of the bubble is found 
approximately by using the slender body theory for bubbles presented by Vanden-Broeck and 

~eller~. When Y reaches a critical value Y (6,6 1, opposite sides of the bubble touch 
each other. Two different families of solutioB for Y Y are obtained. In the first 
family opposite sides touch at one point. In the second f8miiy contact is allwed along a 
segment. The methods used to calculate these tvo families are similar to the ones used by 

Vanden-Broeck and ~ e l l e r ~  and vanden-~roeck~. 

1. Introduction and formulation 

We consider the steady potential flow around a gas bubble or liquid drop in a corner of 
angle 6 .  The contact angle is denoted by 6 (see Figure 1). We shall write "bubble" to 
mean either bubble or drop. We take into account the surface tension 0 at the interface, 
but we ignore the flow inside the bubble, assuming that the pressure is a constant 43 
throughout it. 

Figure 1. Sketch of the bubble and the coordinates 

In  order to formulate this problem we assume that the complex potential without the 
6a 

hcMie is ( x  + iy)'I6, where a is a constant and x and y are Cartesian 
c m r  linates. 
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We introduce dimensionless variables by choosing (4) as the unit length and 
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4 7 )  as the unit velocity. We also introduce the dimensionlers potential be and 



stream function b9. Here, b > 0 is a dimeneionlesm conetant to be chosen 80 that 

= and + - - -  at the stagnation points on the wall8 y = 0 and y = xtan6, 
respe~tively. We dinote the streamline along the tvo la118 and along the bubble boundary 

6 by $ - 0 In theee variables b( + + i$) - i (x + iy 1' at infinity or. equivalently 

at infinity. 

The flow occupies the region $ 3 0 of the +, 9 plane, and the bubble boundary 
1 1 corremponde to the segment - 5 + < 5 of the axis $ = 0 The problem of finding the - - 

flow consists of determining x + iy as an analytic function of + + i$ in the half plane 
$ 3 0 satimfying Equation (1) at infinity. Then the bubble surface is given by setting 

1 1 
$ = 0 in x(+ + iS) and y(+ + i$) and letting + range from - 2 to 2. The contact 

angle conditions require that the bubble surface meets the walls at the angle 6, which 
yields 

* (  x 
tan 6 as + + 

+ 1 -tan(B-6) as + * - 5 .  

On the bubble surface the pressure in the fluid, vhich is given by the Bernoulli 
equation, must differ from $ by ak, where k is the curvature of the interface. This 
leads to the boundary condition 

Here, pa, P and q are, respectively. the stagnation pressure, the density and the speed 

of the fluld outside the bubble. In dimensionless variables (3) becomes 

where Y ie the cavitation number defined by 

The problem can be fu~ther simplified by requiring the bubble to be symmetric about tho 
Y line y = x tan 2. This implies that 

y+(+.O) = y+(-+,O)cos( - x I-+,O)sin6. 0 < + < + T ' ( 6 )  

By using Equation ( 6 )  we can restrict our analysie to the interval 0 < + < 5. 
2. Reformulation as an integrodifferential equation 

It is convenient to reformulate the boundary value problem as an integrodifferential 
equation by considering the function 

which is analytic in the half plane 9 > Q and vanishes at infinity am a consequence of 
Equation (1). Therefore, on 9 = 0, its real part is the Hilbert tranmform of its 

1 imaginary part. The imaginary part vanishes on 9 - 0 ,  ) + I  ? 2 and therefore the Hilbert 
transform yields 



6 1- - 
I 0 ( -  [-y (+',O)cos6 + ; (+',0)sin6] 

+ + j  ,' - 4 d,' . 
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We nor use the symmetry condition (61 to rewrite ( 7 )  in the form 

Next we express the boundary condition (4) in terms of x, and y, noting that 

q2 = b x  + I .  Then (4) becomes 

Now (8)  and (9) together constitute a nonlinear integrodifferential equation for y ( + )  
1 + 

in the interval 0 6 + 6 D $ - 0 The contact angle conditions (2) complete the 

formulation of the problem for y (+,0) and b. 
0 

For Y = -, the equation defined by (8 )  and (9) reduces to the integrodifferential 

equation derived by Vanden-Broeck and ~eller'. 'Phe particular case I = ; represents half 
of a free bubble. 

For Y = 0 = i. the equations (8)  and (9) reduce to the integrodifferential equation - 
derived by Vanden-Broeck and Keller'. This case represents a quarter of a free bubble in a 
straining flow. 

The integrodifferential equation defined by (8) and (9) can be oolved numerically for 
arbitrary valuer pf 6, y and 6 by using the numerical procedures described by Vanden- 
Broeck and Keller ' 2. 

In the next section,, we shall find the shape of the bubble approximately by using the 

slender body theory for bubbles presented by Vanden-Broeck and ~ellerl. 

3. Slender body approximation 

For Y large the bubble tends to an arc of a circle of radius Y .  A r decreases 
numerical solutions show that the bubble elongates in the direction of the line which 
bisects the angle between the two walls. Then it develops a horn or spike which larye 
curvature near ita end. Finally when Y reaches a critical value Y0(I,6), opposite 

midem of the bubble touch each other. For 6 < the contact point is at x = y = 0. For 

6 ' 2  the contact point is away from x = y = 0. Typical prof iles for 6 = r and 

6 - I = can be found in Vanden-Broeck and Kellerle2. These profiles were obtained by 

solving numerically the integrodifferential equation of Section 2. 

For y - yO(6,6) the bubble im slender. Therefore we shall use the slender body theory 

for bubble. presented by Vanden-Broeck and Kellerl to get an approximate description of the 
flow around tha bubble. In the lwest order, the flow about a mymletric slander bubble is 
approxinatod by the flow about a rigid plate lying along the center line of the bubble. In 
the present case the center line of the bubble conrists of a straight segment of 8ome 
length a lying along the line y = x,tan6/2. We introduce the coordinates x ,y' (see 
Figure 1) and find the potential b+(x ,y') of the flaw about these plates requiring that 

r 
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at infinity b(+ + i9) - ; (x + iy) . Evaluating the potential on the plate 
y' = 0 ,  x' > 0 we obtain 



By differentiating (10) we find that the flow speed q on the plate is 

Before using q to get the bubble shape, we ahall determine the length a. We do so by 
requiring the suction force F, exerted by the flow on the end of the spike, to balance .. 
the surface tension 2a. As we see in Ref. 5 [p. 412, Eq (6.5.411, F = rp~'/4. Here 

e 
A, is the coefficient in the expansion b+ - Ar1l2 cos in terms of polar coordinates 

- 

with their origin at the end of the plate. Upon setting F = 20 and introducing 
dimensionless variables we obtain 

26 a% -' 
From (10) we find A2 = --; , so (12) yields 

We next use (11) for q in (4) and approximate the curvature k by -nx,,,(xl). Here 
the equation of the bubble is y x .  Then (4) becomes 

At the end of the spike we require 

n(a) = 0 . 
In addition the contact angle condition yields 

6 
n'(u) = -tan(@ - . 

Here a is defined by the equation 

The function n(xl) is easily obtained by integrating (14) twice with the auxiliary 
conditions (15) and (16). In the particular case 6 = ., the result of the integration is 

1 - a(a - xl)log(a - x') + a210g2a + (a - xe)tan(8 - ;) . (18) 

For 6 = r ,  (13) becomes 

2 a = ; .  

Vanden-Broeck and ~eller' have shown that the approximate solution (17), ( l 8 )  ia in fair 
1 agreement with the exact numerical solution of ( 8 )  and (9) for 3 - 8 and Y - Yo( 8, 1). 

For Y < Y (8.6) (14)-(16) yield unphysical profiles in which opposite sides of the 
bubble cross 8ver. In the next two sections we construct physically acceptable families of 
solutions for Y < r0(B,6). We shall present these results in the important particular 
case 6 = 1. 

4. Solution with one point of contact 

To obtain solutions for Y < y0(m,8) we require the free surface to be in contact with 

itoelf at one point. Then the bubble contains a small sub-bubble near its tip (see Figure 
2). We denote by c the x' coordinate of the contact point. 

We describe the profile of the bubble by the equations y' = nl(xl) 0 < X' < c and 
y' = n2(x1) c x X' < a. Then by symmetry we have 



Figure 2. Profile of the bubble with one point of contact for Y = Y - - 1 .  and 
0 = 2r /3 .  The vertical scale is the same a8 the horizontal ccale. The 
cavitation number in the sub-bubble is equal to 

yo. 

Figure 3. Profile of the bubble with one point of contact for Y - -4.5 
and B = 2 r / 3 .  The vertical scale i8 the same as the horizontal 
scale. The cavitation number in the 8ub-bubble is u - -0.6. 



The conditions (15) and (16) yield 

ni(0) = -tan($ - ;j . (23 

The functions nl(xl) and n2(x1) are obtained by integrating (14) twice. The four 

constant o l  integrations and the value of c have to be evaluated to satisfy the six 
conditions (20\-(23). This yields a system of six equations with five unknowns. Therefore 
we cannot ex act this system of equations to have a solution for any value of Y other 
than i0(B.*P 

The physical reason why the problem does not have a solution for ia that it 
rtqtiirea the cavitation number in the mub-bubble to be the same as inYthleypain bubble. It 
is to be expected that the cavitation number within the sub-bubble will have some value 
other than Y, which we cannot prescribe. Following the general philosophy of the method 

used by Vanden-Broeck and ~ e l l e r ~  we shall introduce the unknown cavitation number u in 
the interval c ( x' ( a. 

Integrating (14) twice we obtain 

1 - 7 a(a - x')log(a - x') + A + Ex' , 

Here 
(20)- 
Dl IJ 

A, 8, E and D are the four constants of integration. Using the six conditions 
(23) we obtqin a system of six algebraic equations for the six unknowns A, B, E, 
and c. This system can easily be solved and yields a unique solution for any Y in 

the interval -- . y . 1 0 ( 8 1 . ) .  Typical profiles for 6 = $!! are shown in Figures 2 and 

3. The value of yo is approximately equal to -1.7. As Y decreases the size of the 

sub-bubble increases and the size of the main bubble decreases. For r = --, u = -0.39 
and the main bubble vanishes. It. is interesting to note that the present solution a180 
exists in the interval Yo < Y < Y Here Y* is the value of Y for which sy(c) = 0. 
A similar result was found by Vanclen-Broeck and l(eller3. 

The results are summarimed in Figure 4. The solution before contact described in 
Sections 2 and 3 correspond to the interval yo ( Y < -. It is represented by the straight 

line v = Y in Figure 4. The other curve in Figure 4 corresponds to the present 

solution. It exists in the interval -- < Y < Y*. Therefore there are two possible 
solutions ir. the interval yo ( Y 4 I*. 

5. Solution with an interval of contact 

In this section we derive another solution for Y Y ~ (B,=) by requiring the bubble to 
be collapmed between x '  = f and x' = g (see Figure 5). We describe the profile of the 
bubble by the equation8 y' = nl(x'), 0 < X '  ' f and y' - n (x'), g . x' < a. The 
functions sl (x ) and n2( x' ) m:mt satisfy the following coiditions 



Fiqure 4. The cavitation number r as a function of I .  

Figure 5. Profile of the bubble with one regment of contact for Y = -3.0 and 
6 = 2r/3. The vertical acale ia the same as the horizontal scale. 
The values of f and g are rerpectively 0.19 and 0.47. 

The functions nl(x') and n2(x8) are obtained by integrating (14) twice. They are 

therefore given by the relation. (24) and (25). The six conmtantr A, B, E, D, g and f 
are found by ratisfying the mix conditions (26)-(29). We note that the prerent rolution 
can be found with the same cavitation number everywhere. 

2. A typical profile for B - is shown in Figure 5. As Y decrearer the sizes of the 

mein bubble and of the rub-bubble decreame. Furthermore the length of the contact regment 
increarer as Y decrearer. For Y = - ,  the bubble reduce. to a rtraight segment of 
length a lying on the x' axis. 



Finally let ur mention that tbe equilibrium of forcer require tho regment of contact to 
be a "film of impuritier" characterized ~y a rurface tenrion equal to 20. Thir ir very 
unlikely to occur in reality. Therefore the bubble with a segment of contact ir phyrically 
unrealirtic. However, thir mathematical rolution ir phyrically relevant to dercribe the 

deformation of an inflated membrane. For detail8 ree vanden-Bro.ck4. 
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