
AERODYNAMIC PERFORMJ6NCE PREDICTION OF HORIZONTAL AXIS WIND TURBINES

D. R. Jeng, T. G. Keith and A. Aliakbarkhanafjeh

DepartmeNt of Mechanical Engineering

The University of Toledo

2801W. Bancroft Street

Toledo, Ohio 43606

ABSTRACT

IRe purpose of this work is to describe a new method for calculating the aerodynamic performance of

horizontal axis wind turbines. The method, entitled the helical vortex method, directly calculates the

local induced velocity due to helical vortices that originate at the rotor blade. Furthermore, the

method does not require a specified circulation distribution,

Results of the method are compared to similiar results obtained from Wilson PROP code methods

(Prandtl_ Goldstein, NASA and no tip loss) as well as to existing experimental data taken from the NASA
Nod-O wind turbine. It is shown that results of the proposed method agree well with experimental values

of the power output both near cut-in and at rated wind speeds. Further, it is found that the method does

not experience some of the numerical difficulties encountered by the PROP code when run at low wind

velocities.

INTRODUCTION

Recently there has been a renewed interest
in wind turbines as a means of producing power.

Consaderable effort has been directed toward

experimental and theoretical studies of wind

turbine performance.

At present, the analytical method used in

predicting aerod)mamie wind turbine performance by

the NASA Wind Energy research group utilizes a
modified blade element theory [1] or Clauert vortex

theory incorporated with Pra!ldtl [2], Goldstein

13] and NASA [4] tip loss models. In the Glauert
vortex theory, it is asstmed that trailing vortices

interference velocity. The factors, a and a' are
the axial and the rotational interference fa--Etors

respectively.

In order to evaluate the local drag force

and torque, the interference factors a and a' must
first be determined. However, before--presen-t-ing

the equations for determining a and a--, it may be

helpfuI to review the tip and hub losses for a
blade° It should be anticipated that the flow

around a rotor blade of finite length will be

disturbed at the tip and root or hub of the blade.
These disturbances are due to the fact that the

difference of pressure between the upper and lower

sides of the blade disappear along the blade span

originate from the rotating blades and form a and must therefore diminish to zerotoward the tip

helical vortex system that passes dow_ stream, and hub. An approximate method of estimating the

This vortex system, in turn, induces velocities
which alter the flow around the blade. However,

in this method, the induced velocities are not

detm_ined directly due to the co_lexity of the

method, instead, an interference velocity is

calculated as the induced velocity of this vortex

syazem on any blade element. The calculation of

these interference velocities is simplified by

assu_ing that the rotor has an infinite number of

bl;ades. The latter assumption removes the com-

plexity associated with the periodicity of the

fl_w and permits momentum theory to be directly
used to evaluate the interference velocities.

However, for single and double bladed rotors, this

assmaption may be inadequate.

Consider a wind turbine, rotating with an

anffalar velocity _ about its horizontal axis of

rotazion, that is placed in a uniform stream of

wind of velocity Vo parallel to the axis of
rotazion. The blaae can be coned or tilted to an

angle of v from the plane perpendicular to the

ax_s of rotation. _e velocity experienced by the

t_ical blade is shown in Fig. l. It can be seen

From Fig. 1, that Vo(1-a)cos_ is the wind free
stream velocity minus the axial interference

,ze!_city normal to the blade surface. Further,

_r[l+a')cos_ is the relative velocity of blade to

the air velocity and accordingly is the angular

velocity of the blade section plus the rotational

effect of these radial disturbances has been given

by Prandtl [2]. Later, a more accurate solution

to this problem was developed by Goldstein [3].

Introducing a reduction factor, F, to account for

the fact that only a fraction of the air between
successive vortex sheets of the slip stream

receives the full effect of the motion of these

sheets, into the momentum equation for the flow
at radius r and then equating the differentiaI

drag and torque equations obtained respectively
from momentum and blade element theories, permits

the _Titing of equations which must be satisfied

by & and a--. These equations may be written as:

a °L(CLC°S_ + CDsin_)c°s2_

I-----_= 4 F sinZ_ (I)

and

a' °L(CL sin_ - CDC°S_)

l+a' 4 F sins cosO
(2)

Expressions for the reduction factor F can be

found in [2,3]. The tip loss method which has

been used by NASA is the so-called "effective
radius model". Due to the radial flow near the

boundary of the slipstream, there is a drop of

circulation which can be represented by an equiv-
alent rotor with an infinite number of blades



and with the same drag force but with a smaller

radius Re, i.e., an effective radius is defined as

R e = B° • R (3)

where B° is a constant tip loss factor.

Wilson and Walker [4] developed a computer

program called PROP to evaluate the solution of

eqs. (I) and (2). A preassigned tip loss factor

(F = I, no tip loss) was used and an iteration

procedure for determining a and a' for a given

differential element was employe_. Once a and a'

were determined, torque, drag and power c_uld a_

be calculated from the appropriate equations.

llowever, the value of the axial interference factor

a has a limit. For a positive axial velocity V ,

The induced axial velocity of out flow near the °

rotor with a coning angle _ is (V° a cos_), thus,
from vortex theory, the induced axial velocity in

the ultimate slipstream will be (2V a cos_).
• O .

Therefore, the trailing veloclty of alr far behind

the rotor is [Vo(1-2a)cos_]. Equations (I) and (2)
are based on the notion that the axial velocity at

any location is unidirectional, and, therefore, the

analysis is valid only if a < _. If the rotor

absorbs all the energy, i.e._ V_ = 0, then a would

have a maximum value of _. UnfOrtunately, b--y

using the PROP code to calculate a, under certain

operating conditions, particularly for large tip

speed ratios (small wind velocities), the local

value of the axial interference factor can exceed

this limiting value for all tip loss models.

Therefore, the equations cease to be valid. It

was also found that the PROP code generally under-

estimated the performance iS, 6]. Accordingly, it

is the purpose of this paper to develop a computa-

tional method for predicting aerodynamic perfor-

mance Qf a horizontal axis wind turbine that avoids

these difficulties. In this method, the induced

velocity is directly calculated by integration of

Biot-Savart's law under the assumption that a

filament of the trailing vortices is helical in

nature, extends infinitely downstream of the rotor,

and has constant pitch and diameter. Of primary

importance, the method does not use interference

factors.

The predicted performance of wind turbines

obtained by use of the present technique will be

compared with those obtained from the PROP code and

with some experimental data obtained from the Mod-O

I00 kw wind turbine operated by NASA - Lewis

Research Center in Sandusky, Ohio.

ANALYSIS

General Assumptions and Discription of the Problem

Two major assumptions upon which the present

analysis is based may be stated as follows:

I.) The trailing vortex system is helicoidal

with constant pitch and diameter, and extends

infinitely far downstream from the blade.

2.) The relative velocity of a blade element

to the medium is identical to that in two-

dimensional motion if reference is made to

the relative velocity between the element and
the medium.

Unlike Goldstein theory, the helical vortex

assumption does not restrict the circulation dis-

tribution along the blade. In the Goldstein

theory, an optimum circulation distribution was

used that corresponded to a rigid helicoidal

vortex system moving backward with constant

velocity. However, in both theories, it is assumed

that the slipstream expansion may be secondary and

thus neglected.

The physical model of the problem is illus-

trated in Fig. 2. The coordinate system, which is

shown in Fig. 3 was chosen such that the z coordi-

nate is the distance measured from the rotor to a

segment of the trailing vortex parallel to the

axis of rotation of the rotor and that the r axis

is along the blade. The conning angle of blade is

9. The induced velocities are computed in terms

of the coordinate system in Fig. 3 as will be

demonstrated in the next section.

Calculation of Induced Velocity

Suppose that circulation at a particular span

location, say r, of the blade is P. The circula-

tion at a nearby point, say r + dr is

dF

F +_-_ dr

The difference in these circulation values i.e.,

dF dr according to Ilelmholtz theory, the strengthdr

of a vortex that will spring out from the blade

element of dr to form the trailing vortex, Fig. 2.

The induced velocity normal to the resultant

velocity W at a point r' due to the helical vortex

filament originating from each of the blades and

extending to infinity is determined, via the Biot-

Savart' law [7] by,

=f 1 dI" d_ i_° NI ÷ N2
w (_) _ de (4)

n 471Rcos_ k=_o D13/2 D21/2
_hub

where N 1

N 2

D 1

D 2

o k
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0

-
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R

r )

R

= (_ - _'cOSOk)K_'

= [_(OsinO k + cOSOk)-_']Xo2COS2@
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= X 2 cos2 + K,2
0

= @ + 2_(B-k)
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i0



Anexpressionsimilar to eq. (4)wasemployedby
Plencner[8] for studyingpropellercharacteristics.

Re intonationwith respectto @in eq. (4)
is anarduoustask. Furthermore,theformof the
e_ression,as it stands,is inconvenientfor
practicalusebecausetheintegralbecomesinfin-
itely _eat at thepoint g' = _ and@= 0.
Clearly,this featureunlessproperlyhandledcan
causeconsiderableerrorswhencalculatingthe
inducedvelocity.

Moriya[7] proposedamethodto remedythe
problem.In his method,he int_duceda so-called
inductionfactor I _ich is definedas

B 7Nl + N2
,(_,C',Xo)= (_-_') Z Jo D3/2D1/2dO (5)k=l 1 2

Withthis factor, thesingularityat _ =$' can
hesho_to reduceeq. (4) to

I
w _ d_ I= (6)

n

_hub 47_R cos_ (_-_')

It should be mentioned that the induction

factor, which is a continuous function of Io,

and ._', is simply the ratio of the normal

induced velocity for a helical trailing vortex

system to the nmnnal induced velocity for a

stra_gnt trailing vortex system of the same

_trength. At a point _' = _, the induction factor

I ha_ a valae of unity. In the following, the

induction factor will be determined by m_erical

integration using 24 terms of a Lagurre-Gaussian

Quadrature [9].

Governing ENu_tion Formulation

The governing equation used in this study can
be established from the fact that if the blade

section is set at a geometrical angle of attack,

_o, relative to the incoming wind velocity, W, as
" sho_ in Fig. 4, its setting relative to W is

a diminished by the downwash angle, _i" This
g relation may be written as

ag = me - ai

where

W
-i n

a i = tan _--

(7)

and _ is an effective angle of attack. The
e

negative sign appearing in eq. (7) occurs because

the induced angle of attack, a., is itself a
.1

negative number. The geometric angle of attack

can be obtained from Fig. 4 as

a = tan -I _o c°s_ - 8 (8)

g _,

where _ is the pitch angle of the blade element at

The induced angle of attack may be expanded
in series form in terms of wn. Moreover, because

W

the value of Wn is usually small, it may be
W

assumed that

1 dF

4_R 2 cos2_ D2_ (K - _')
_hub

(9)

The circulation function, F, may be expressed as

a Fourier-Sine series satisfying the following

boundary conditions

r(¢ = I) = P(_hub ) = 0

An expression that meets these conditions may be

written as

r(_) = E A sin m_ (I0)

m=l m 1-_hub]

The relation between circulation and lift coeffi-

cient is given by the Kutta-Joukowski theorem for

a two-dimensional airfoil as

P = _ c W C L (113

where c is the chord length.

Using equations (5) and (7) through (11), the

aerodynamic characteristics for a given glade
element can be determined. The calculation

involves an iteration process and requires that
the series for F be truncated at N terms. A

computer program has been developed for this

iteration and proceeds according to the following

logic:

i) Assume _ = a in the first iteration.
e g

2) Find C L from two-dimensional airfoil data
such as that shown in Figs. (S) and (6). In

the program, experimental data for C. and C_
• . _ L D

were curve f_tted usang polynomials

and were stored in the program.

3) Calculate the local circulation F(_) by

employing eq. (ll).

4) With the values of F(_) known at each

location _, the constant's A appearing in

eq. (10) can be determined by solwng a set

of linear algebric equations.

5) Calculate local _ by using eq. (9).

This can be done by s_bstituting eq. (i0)

into eq. (9) and integrating the resulting

equation. However, in practice, the integral

is broken into three separate integrals to

remove the singularity as follows

/I _'-8 (_'+_ +f 1gC_)d$ :J gCg)d_ +/g(g)d_ gC_)dg (12)

_hub _hub _ _'-6 _ ¢'+_

where 6 is an arbitraily small number, say

8 = i0 -5.
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Thefirst andthelast termsontheright hand
sideof eq. (12)canbeevaluatedbyusingstand-
ardnt_ericalintegrationprocedures.Thesecond
integral onright handsideof eq. (12)contains
a singularity,but, it canbeshownthat its value
is verysmall,0(10-4),and,thus,maybeignored
in the calculation.

6) Calculatea newa = a + a..
e g 1

7) Obtain C. from two-dimensional data usingL
newly calculated a .

e

8) Compare the current C L to the previous value
of C., and if equal, stop, otherwise repeat the
• L

iteration by returning to step 3.

Power, Torque and Dra$ on Wind Turbine

Once the iteration process is successfully

terminated and the effective angle of attack

distribution calculated, the rotor thrust, torque

and power can be calculated respectively from the

following equations

dT
_r_ = IpBcW2(CLCOS¢+CDsin¢)cos ,

dQ IpBcW2{CLsin¢-CDCOS@)r cos__Ig =

Integration yields

flT = (ioBcW2)(CLCOS_+CDsin_)R cos_d_

J <hub

(13]

i

Q :/(IvBcW2)(CLsin_-CDCOS¢)R2cos*

_hub

d_ (14)

1

P =/(i_BcW2)(R2_cos,)(CLsin_-CDCOS¢)_d ¢

ghub

(15)

RESULTS AND DISCUSSION

_le proposed method has been used to calcu-

late performance of two-bladed wind turbines. The

particular blade and operating conditions, listed

in Table i and used in the calculations, corres-

pond to those of NASA's Mod-0, 100kw large wind

turbine located in Sandusky, Ohio. Further des-

cription of this facility may be found in [10].

A circulation distribution corresponding to
the operating condition tabulated in Table 1 is

plotted in Fig. 8. As one can see, it is quite

irregular and departs greatly from an eliptical
shape generally used in aerodynamic studies in
which the distribution of circulation is unkno_m.

Kn empirical expression, taken from [II], was

used in the calculations to compare predicted to

recorded alternator power. This expression

accounts for drive train losses and is given as

PG = 0.95 (PR - 0.075 PE)

in which:

(16)

PG ; generated electrical power, kw

PR ; power produced by rotor, kw

PE ; rated electrical power, kw (100 kw).

Predicted alternator power is plotted against

wind speed in Fig. 9. Also shown are correspond-

ing theoretical results obtained by using the PROP

computer code and existing experimental data [12].

From these figures, it can be seen that there

is a closer correlation between the values pre-

dicted by the present method and the experimental
data than there is with the four PROP code methods

of predictions. It is generally known that PROP

code models underestimate performance compared with

experimental data [S, 11, 13]. ttowever, our results

are 10 to 15% higher than are PROP code values for

wind speeds ranging from 8 to 20 mph. There is

excellent agreement between our data and the exper-

imental values. Our data predicts a "cut-in" wind

speed of 8 mph which agrees with the actual value

reported in [5]. It is known that the "cut-in"

speed is not predicted accurately by any of the
methods found in the PROP code.

Other calculations have been made for the

bDD-1 wind turbine (2NW), The operating conditions

and the input data for these calculations are
listed in Table II. The airfoil used for the blade

construction is an NACA 4418 with a "half rough"

surface condition and a variable twist angle along

the blade span.

The chord and twist angle are tabulated in

Table III.

The power coefficient C vs. tip speed ratio

for MOD-I is presented in P Fig. I0. As can be

seen, the results obtained from the PROP code are

unlikely as the power coefficient has a saddle-

like distribution. On the other hand, our results

do not exhibit this behavior. It is believed that

incorrect handling of the interference factors is

the source of the difficulty.
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NOMENCLATURE

a axial interference factor

a' rotational interference factor

B nt_ber of blade

c chord

c D

C L

C
P

drag coefficient

lift coefficient

power coefficient

lift

P power

Q torque

13

Qc

r

r L

R

Re

T

V
O

W
n

W

W'

Z

c_e

g

t

F

P

° L

¢,

torque coefficient

distance along the blade

r cos

radius of rotor

effective radius

thrust

wind velocity

normal induced velocity

vector sum of rotational and wind

velocity

vector sum of W and w
n

rearward distance from the rotor

angle of attack

effective angle of attack

geometric angle of attack

induced angle of attack

pitch angle

circulation

density

BC
soIidity= 2 r

L

coming angle

rotational speed of blade



Table I Operating Condition of the Utility Pole Wind Turbine

Root/Tip Chord 6.25/2.08

Chord Distribution see Fig. 7

Percent Root Cut 23_

Blade Radius R, ft 62.5

Conning Angle, deg. 3.8

Solidity 0.033

Thickness to Chord Ratio .24

Airfoil NASA 230-24

Pitch Angle 0

Airfoil Surface Rib Stitched, Fiberglass Cloth

(half rough)

Operating RPM 32 and 33 rpm for 2 blade

Twist Angle 0

Table II Input Data and Operating Condition for MOD-I Wind Turbine (2MW)

Root/Tip Chord 12/2.82

Blade Radius R, ft. 100.8

Hub Radius 9.75

Percent Root Cut 10%

Conning Angle, deg. 9
No. of Blade 2

Airfoil NASA 4418 (half rough)

Pitch Angle 0

Operating RPM 34.7

Solidity 0.042

Table III - Chord and Twist Angle

r/R Chord ft. Twist Angle

degree

1 2.82 -3

.9 3.9 -l.8S

.8 5.0 -0.62

.7 5.95 0.62

.6 6.95 1.85

.5 8.0 3.0

.4 9.0 4.28

.3 10.03 5.5

.2 II .03 6.69

.1 12.0 8.0

f_ _ I_

'_ _ _I _

Fig. 1 Force and velocity diagram for Glauert vortex theory.
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Fig, 6
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Fig. 10 Cp vs. tip speed ratio, MOD-1 (NASA 44]8 airfoil).
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QUESTIONSANDANSWERS

D. Jeng

From:

Q:
A:

From:

Q:

A:

Anonymous

Canyou commenton actual powerbeing higher than predicted at high wind speed?

Comparison between experimental and theoretical values is valid only between wind

speeds of 8 mph to 18 mph. When the wind turbine reaches the rated power of 100 kW.

Because the blade geometry for the theoretical calculation was not changed, the

actual power and predicted power cannot be compared for wind speeds which exceed

the rated value of 18 mph (Fig. 9).

Anonymous

Can any conclusion about aerodynamic correlation be drawn from cut in speed results

which are largely dependent on mechanical friction and may vary from season to sea-

son?

To obtain alternator power, the rotor power values were corrected for drive train

losses by an empirical equation applicable for the MOD-O wind turbine and given in

the text. It is assumed that the power loss due to friction for this particular

machine is 7°5 kW which is constant. By comparing the cut-in speed, we can compare

the actual rotor power (alternator power is zero) and the predicted rotor power at

the lowest wind speed.


