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INTRODUCTION

The dynamic response of wind turbines to turbulent
wind fluctuations has generally been modeled using
only changes in the streamwise wind velocity as the
disturbance which causes the varying aerodynamic
forces and moments. Often these wind fluctuations
are t!1ought of, and modeled, as discrete wind

_ g_s-6_pecified shape and duration, which occur
_ _ at some average rate. In addition, these wind

fluctuatioi_s usually have been assumed to act uni-
Z formly over the entire rotor disk. In terms of

the designer's needs, these models are used to
..... generate design loads and expected control system

actions.

It _las the objective of the work reported here,
and in the companion paper [I], to take a broader
look at Wind turbine dynamic response to turbu-
lence, and attempt to ascertain the features of
turbulence that wind turbines are most sensitive
to. A statistical description of the wind input
including all three wind components and allowing
linear wind gradients across the rotor disk, was
used together with quasi-static aerodynamic theory

and an e!e@entary structural model involving only

_ a few _ degrees of freedom. The idea was to keep
...... the_tUrbine model simple and show the benefits of

............... this type of statistical wind representation be-
_ fore attempting to use a more complex turbine

model. As far as possible, the analysis was kept
: in _he simplest form, while still preserving key

physical responses.

From the onset of this work, it was felt that the
results should be validated by comparison with test
measurements. Due to the three-bladed rigid rotor
used on the turbine and the limited degrees of
freedom, comparison with data from one of the small
systems under test at Rocky Flats would provide the
most realistic comparison. At this time, the ex-
perimental comparison is incomplete.

Ti_e Turbine Model

The wind turbine model is shown schematically in
Figure I. Both the rotor and the nacelle are
assumed to be rigid bodies which move in unison,
except for the spinning rotor. Due to tower
f_exibility, the nacelle and rotor are free to
translate in a plane parallel to the ground and
rotate about the top of the tower in pitch and
yaw. The yaw angle of the rotor axis is defined
by Che angle, _, and the pitch angle by ×. The
lateral translation, U, is in the x direction,
while the V translation is in the y direction
a_ong the rotor axis. The rotor spin velocity
i_ given by _ + _, where Q is the mean rotation
rate and _ is some small fluctuation. For the
case of a turbine with a three-bladed rigid rotor,
the basic principles of Newtonian mechanics and
l-near, quasi-steady aerodynamics give motion

equations of the form

Mijxj + Cijl j + KijX j = FijV j (I)

where Mij, Cij, Kij and Fij are the turbine system
inertia, damping, _tiffnes_ and wind input coeffi-
cients. The five displacement coordinates already

described are Xj, while the wind inputs are Vj.

The Tower

The wind turbine tower was modeled as a single
finite element within which the tower displace-
ments were expressed in terms of interpolating
polynomials and the displacements at the top of
the tower. Then the tower deformation, v(z,t),
about one bending axis was written in the form

v(z,t) = Pv(Z)V(t) + Px(Z)X(t) (2)

where PV and PX are the interpolating functions
which approximate the displacements within the
tower. These are conveniently represented as
cubic polynomials satisfying the necessary bounda-
ry conditions of a cantilever tower. Using this
expression for the tower bending displacement, the
stiffness and mass coefficients may be obtained by
one of the numerous energy methods. In terms of

the interpolating functions PV and.. P.,× the gener-
alized stiffness and mass coefficients for the
tower may be expressed as

L
= f El(z_P'!(z)P'_(z)dz (3)

kij 0 " 1 j

L

= I m(z)Pi(z)Pj(z)dz (4)mij 0

where El(z) and m(z) are the stiffness and mass
per unit length as a function of height. For ad-
ditional detail concerning this technique, the
interested reader should see Clough and Penzien
[2]. Although the tower properties are the same
in both bending directions, only one degree of
freedom was desired for the x direction and there-
fore rotation of the nacelle about the rotor spin
axis was neglected. The method of static
condensation was used to eliminate the unwanted
degree of freedom and obtain the desired x direc-
tion stiffness and inertia coefficients as

= kVV = k2vx/kx× (5)kUU

muu = mVV - 2(kvx/kxx)mvx+(kvx/k×x)2mxx (6)

In addition, the nacelle and rotor inertias add
directly to the tower inertia coefficients, mij,
to give the turbine system inertias. A detail_d
tabulation of the various terms in the inertia
matrix is provided in the Appendix. There is also
a gyroscopic coupling between the turbine
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pitchandyawmotions.Thiscouplingcoefficient
appearsin thedampingmatrixandis givenby

C@X = Ir_ = -Cx¢ (7)

where I_ is the total effective inertia of all the
spinnin_ mass connected to the turbine rotor.
Using this simple model the structural stiffness
and inertia coefficients for a particular wind

turbine are numerically calculated using a TI-59
calculator code [3].

Aerodynamic Forces

The geometry of the three-bladed rigid rotor is
illustrated in Figure 2. The blades are coned at
an angle Bo, and are assumed to be twisted and

tapered. The angle e defines the pitch setting
as the angle from the plane of rotation to the

zero-lift-line of the airfoil at the blade tip.

For this analysis, quasi-static aerodynamics will
be used to compute the forces acting on the blades
due to the turbulent wind and structural motion.
The wind input including turbulence is assumed to

be made up of a steady mean wind, Vw, plus fluctu-
ating components, Vi(t), which at any instant are

constant over the rotor disk and turbulence gradi-
ents Vi,j(t), which vary linearly across the disk.

Both Vi(_) and Vi,j(t) may be thought as disk
averaged time dependent quantities. This allows
the wind velocity to be written in a linear expan-
sion as

•z,y Vz,z]

(8)

where r is the radial position in the rotor disk,
and _t is the azimuthal location. Motivation for
this particular form for the turbulence and dis-

cussion of its accuracy is presented in the com-
panion paper, reference Ill. In this equation
the mean wind direction coincides with the y axis
of Figure 2. In addition, the spatial change in
the y direction turbulence component due to the
coning has been dropped in the above expression,
which eliminates the effect of the turbulence

gradients Vi,y.

Using the above wind representation and funda-
mental kinematic relationships provides the rela-
tive velocity as observed from the turbine blade.
The relative velocity is made up of contributions
from the wind, the moving structure and the in-
duced velocity caused by aerodynamic action. In
equation form this is

= - - V,Vrel _ l

In terms of the displacement coordinates, the rela-

tive velocity components parallel and perpendicular
to the rotor disk rotational plane are given by

V /R_ : r_/R_ +{r_ + cos_t[-@(Vw-Vi) - 5Vx

+ 0 - aS]

8O

+ sin_t[-×(Vw-Vi) + _Vz

- ax] )/R_

V /R_ = (Vw-Vi)/R_ + {6Vy+ cos_t[-_o_V z + rx]

+ sin_t[Bo(O-SVx)

- r_] }/R_ (I0)

where the fluctuating part of the wind turbulence
has been written as _Vi to shorten the expressions.
These expressions have also been linearized assum-
ing small displacements, and wind fluctuations;
however, in some places the product of the static
coning angle and the wind fluctuation were retained
because of interest in their effect.

Referring to Figure 3, the aerodynamic forces
parallel and perpendicular to the rotor plane may
be written as

dAp : ½ pa' c d_{-qV_- eVvV# + (l-n/2)V_}

(ll)

dA = ½Pa' c d({-eV_ + (l+n)V Vp- OVa/2}

where the lift and drag for a blade element have
been calculated using the static formulas with the
instantaneous velocities. In the above expressions
a' is the slope of the sectional lift curve
dCL/d_, c is the local airfoil chord, q is the
ratio CDO/a' , and p is the air density.

Using the wind input of Eq. (8), together with the
velocity expressions of Eq. (lO) and substituting
into the aerodynamic force relationships gives

dAu = ½ pa'ct(R_)2Rdx{A'-B'[fo+fcCOS_t+fsSin_ t

+fc2COS2_t+fs2Sin2_t]

+C'[go+gcCOSQt+gssin_t

+gc2COS2£t+gs2sin2_t]}

= ½ 'c t 2Rdx{D'+E' fo+fcCOS_t+fsdAv pa (R_) [ sin_t

+fc2COS2_t+fs2sin2_t]

+F'[go+gcCOS_t+gsSin_t

+gc2COS2Qt+gs2sin2_t]} (12)

where the primed quantities are the aerodynamic
constants

A'(x) = [(l-n/2)X2-x(qx+e_)]c/ct

B'(x) = [2qx+ek]c/c t C'(x) = [(2-q)L-ex]c/c t

D'(x) = [(l+q)_x-e(x2+_2/2)]c/ct

E'(x) = [(I+q)k-2ex]c/c t

F'(x) = [(l+q)x-_e]c/c t (13)

with x = r/R = (h+_)/R, _ = (V -v4)/R_, and ct is
the chord at the rotor tip. N_te'that both t_e
pitch setting, o, and the blade chord, c, may be
functions of x. In the above force equations the



subscriptedf andgvariablesarecombinationsof
thewindinputsandresponsevariablesandarede-
finedasfollows:

fo = r(_ + Tzx)/RQ

f = -@_+(-Vx + 0 - a_)/R_c
fs = -×_+(Vz- ax)/R_

fc2= -r _zx/R_

is2= rEzx/R_
_1, )Yzx- _Vz,x - Vx,z

_zx= ½(Vz,z - Vx,x)

go = (Vy - V - r3oEzx)/Ra

gs = (rx + rVy,z - BoVz)/R_

gs = (8o(0 - Vx)-r_ + rVy,x)/R_

gc2 = - Bo is2

gs2 = _o fc2

+ Vx,z)_ (Vz, x'z×

- 1 + (14)-zx = g(Vz,z Vx,x)

To obtain the aerodynamic coefficients for the
total forces acting on the rotor hub_ the appropri-
ate components of the blade element forces, Eq.
(12), are summed over the three blades and inte-
grated with respect to radius for a specified in-
duced velocity distribution. This gives the net
thrust, torque, horizontal and vertical forces,
and the yaw and pitch moments, which are to be
added to the structural terms resulting in the
final equations of motion, Eq. (1). A detailed
list cf these equations is provided in the
AppenCix.

The l_idh_ced Velocity

The_rodynamics of wind turbines involve highly
comi;lex flow phenomena, which require rather
sophisticated theories in order to obtain accurate
predictions. However, some fairly simple theories
m_king relatively crude assumptions can often give
reaso$!able estimates and generally can give excel-
lent insight into the physical phenomena of inter-
est. In this case two different wake models were
used in an effort to gain insight into the signi-
ficance of changes in the induced velocity field
on wind turbine response to turbulence.

For tile first wake model, the induced velocity was
computed using blade element theory following the
approach of Wilson [4], and performing a momentum
balance neglecting wake rotation, This provided
the induced velocity as a function of radius,
under the assumption that the rotor axis was per-
fectly aligned with the wind direction. After
the induced velocity distribution was computed
for a given mean operating condition, it was as-
sumed to be constant and independent of turbu-
lent wind fluctuations. This model was named
the "frozen wake model."

The second wake model was called the "equilibrium
wake." For this model, the axial fluctuations in
wind velocity are assumed to occur so slowly that
the induced velocity is the steady state value for
the instantaneous wind speed. In this situation,
the axial flow will be not only time varying but
nonuniform, because of the inclusion of the fluctu-
ating wind gradient terms in the turbulence model
of Eq. (8). These gradients could be thought of as
slowly changing wind shears of arbitrary orienta-
tion, since their effect on the wind turbine
would be similar. To obtain an approximation for
the induced velocities of this "equilibrium wake,"
the "semi-rigid" wake model discussed by Miller
[5] was used, Miller shows that the effect of
including the induced velocity due to the nonuni-
form flow is to reduce the lift by a factor re-
ferrred to as the "lift deficiency" function.

For this analysis, assuming small velocity changes,
the lift deficiency function was approximately

I

_d(x) - l+_tF'(x)/x(2_-_w) (15)

where _ = V /RQ and = 3a'c_/8_R. In addition,
the azi_utha_ change _ the induced velocity dis-

tribution led to a change in the in-plane aerody-
namic coefficients B'(x), where the change was

AB'(x) = Tt[B'(x)F'(x)+C'(x)E'(x)]/

{x(2X-Xw)} (16)

Because this change is small, it was tempting to
neglect it, but all of the in-plane forces are
small so it was retained. Finally, the wind
fluctuations in the axial direction V , V and
V are associated with a change in _ome_t_m in
t_Xstreamwise direction which, for the assump-
tions of this wake model, change the equilibrium
thrust. This added lift factor is approximately

la(X) : l + _/(2_-_ w ) (17)

To incorporate these effects, the aerodynamic
coefficients B'(x), C'(x), E'(x) and F'(x) of
Eq. (13) were modified in the following manner to
obtain the "equilibrium wake" coefficients:

B_(x) =_d(X){B'(x)+6B'(x)}

C#(x)=_d(X)c'(x)

E_(X) :_d(X)E'(x)

F_(x)=_Cd(×IE'(x)

C' (x):__(×)_Ca(×)c'(x)
ey o

F;y(X)=_d(X)_a(X)C'(x) (18)

where the two coefficients C_v and F_v are speci-
fically associated with the w3nd fluc#uations Vv,
Vy,z and V,, x. The aerodynamic coefficients A'_x)
and D'(x) _e related to the mean thrust and torque
and are thus unaffected by wind fluctuations.
Computationally, the influence of the wake model
can be observed by changing the primed aerodynamic
coefficients in the blade element force relation-
ships Eq. (12).
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Although both of these wake models were useful in
developing an understanding of the influence of
the induced velocity distribution on machine
response to turbulence, it is unclear whether

either model accurately approximates the real
distributions and future work is needed to

evaluate the effects of unsteady wake aero-
dynamics.

State Space Equations

The equations of motion Eq. (1) can be written in
matrix form

[M]{X}+[C]{_}+[K]{X} = {Ql}+[F]{u} (19)

where

{X} T =

{QI }T:

{u} T :

r

(U,V,@,X,_) = displacement coordinate

(0,T,0,Q,0) = steady state

(V ,V ,V ,V ,V ,yxz,Cr,Yr,Cxz)x y z y,x y,z
wind inputs

_zx cos3Qt + ¥zx sin3Qt

Yr = -Czx sin3Qt + Yzx cos3Qt

Furthermore, it is Possible to model each of the

nine turbulence inputs using a set of stochastic
differential equations of the form

{u} : [Awl{u} + [Bw]{W} (20)

where the components of {w} are white noise of
equal power spectral density, [Bw] is the white
noise input distribution matrix which is diagonal.
The [Awl matrix is diagonal except for two ele-
ments

all

[Aw] = "..

a77 3_

-3_ a88

a 9

which arise as a result of the sin3_t and cos3_t

in the _ and _r wind inputs. A more detailed
presentation of the wind input model is pre-
sented in the companion paper [I].

Discarding the steady terms, it is convenient to
transform the equations of motion given in Eq.
(19) to the state space form, so that they are
written as a set of first order equations similar
to the turbulence inputs of Eq. (20). To further
facilitate the computation of results, the state
space form of Eq. (19) can be augmented with the
turbulence inputs, Eq. (20), to form a single
system of equations with white noise as the
driving input. The five turbine displacements
and their derivatives together with the nine
turbulence inputs will form the state vector for
this augmented system. The governing equations
can then be written

(_} : [A]{x} + [B]{w}

{y} = [c]{x}

whe re

1
UuU

iO] [I]

o] [o]

(21)

Eojl
EM]i[F]I

[Awl ]

IFxlF=o=l
:|Power_

l{x}J

outputs

[ioIci;101resoomarx
[i] ]

With this formulation it is a relatively straight-
forward numerical procedure, to determine the com-
plex eigenvalues of the A matrix and then to com-
pute the modal matrix, which is made up of the
associated eigenvectors. The modal matrix can then
be used to decouple the equations of motion, so
that transfer functions between any of the nine
white noise inputs and any output, Yi, may be
easily computed. These transfer functions account
for differences in the energy level for the turbu-
lence inputs, {u), so that a comparison of the
transfer function magnitudes provides a direct
estimate of relative importance. The final re-
sult uses the central equation from random
vibration theory, which states that the spectral
density for any of the outputs {y} will be given
by

{Sy(m)} = [IHyw(_)l 2] {Sw(_1}

for uncorrelated inputs, where {Sv(m )} is the 9
spectral density of the outputs {_}, [IHyw(m) l _]
is the matrix of the transfer functions magnitude
squared and {Sw(m )} is the spectral density of the
white noise driving inputs, which are all equal.

Results

To determine the influence of the turbulence in-
puts modeled in this work two wind systems of
vastly different size were examined. The smaller
machine, called the Mod-M, was an 8 kW turbine,
with a three bladed rotor located downwind of the
tower, and designed for free-yaw operation. The
specific characteristics are as follows:
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r_od-M

Rotor Characteristics:

Rotor Radius
Blade Chord (constant)
Coning Angle
Blade Twist

16.67 ft
1.5 ft
3.5 °
0.0 °

System Frequencies:

Ist Bending (fore-aft)
2nd Bending (fore-aft)
Ist Side to Side

15.1 rad/s
53.1 rad/s
15.9 rad/s

AeroJynamic Properties:

Lift Curve Slope
Drag Coefficient,
Stall not Modeled CDO

5.7
.02

Operating Conditions Used:

Wind Velocity (mean)
Rotor Speed (mean)
Pitch Setting (to ZLL)
Turbulence Length Scale
Rms Turbulent Intensity
Approximate Output

16.63 MPH
73.35 RPM

3.0 °
300 ft

2.03 ft/s
6 kW

Selected analysis results for this situation are
shown in the power spectral density plots of
Figures 4 through 6. The figures clearly illus-
trate the difference in response for the two wake
models. For forces and moments which are highly
dependent on the streamwise velocity such as
thrust, the equilibrium wake assumptions give a

larger response, as shown in Figure 4. This
figure also indicates a significant response at the
two system fore-aft bending frequencies. Figure
5 shows the yaw response, while Figure 6 gives

the pitching moment response. These two figures
indicate the degree of coupling between pitch and

yaw for this free-yaw turbine. Notice that as
the yaw response increases, there is a correspond-
ing increase in the pitching moment. Figure 6
also shows a small response peak at 3_, which is

the result of the sin3_t and cos3Qt in the cr and
Yr inputs.

The second wind system to be analyzed in this

study was a large turbine called the Mod-G. The
Mod-G was 2.5 MW turbine with a three bladed rotor

located upwind of the tower, and was designed for
fixed_yaw operation. The specific characteristics

of this system are:

Mod-G

RotQr Characteristics:

Rotor Radius 150 ft

Blade Chord (linear taper) 7.74 ft
at hub to
3.15 ft

at tip

Coning Angle 4 °
Blade Twist (linear) 8 °

System Frequencies:

Ist Bending (fore-aft)
2nd Bending (fore-aft)
Ist Side to Side
2nd Side to Side

Aerodynamic Properties:

Lift Curve Slope

Drag Coefficient, CDo
Stall not Modeled

Operating Conditions:

Wind Velocity
Rotor Speed
Pitch Setting at tip
Turbulence Length Scale
Rms turbulent intensity

Approximate Power Output

2.75 rad/s
12.8 rad/s
2.9 rad/s
9.5 rad/s

5.73
.008

20 MPH
17.5 RPM
-6.2 °

500 ft
2.44 ft/s
I.I MW

Figures 7, 8 and 9 shows some typical results for
the Mod-G. As was the case in the previous plots,

the system frequencies are easily identified.

The primary objective of this work was to identify
the features of turbulence which are most important
in wind turbine design. In an effort to focus on

these key features, the response at specific sys-
tem frequencies was broken down into fractional
contributions from each turbulence input. The

most significant results of these calculations
are tabulated in Tables l and 2.

From these results it would appear that the most

important inputs are the three longituainal turbu-
lence terms, and in some instances, the two in-

plane shear terms which have an effective fre-
quency of 3Q. An alternate means of presenting
this same information is to plot power spectral

density curves for the various outputs using only

the turbulence input Vy, and then adding the two
gradients V_ x and Vv,z. This has been done in
Figures lO _rough l_ for the outputs previously

presented. As can be seen from these figures,
a major contribution to the machine excitation
is lost if the turbulence gradients are not in-

cluded. However, neglecting the Yr and er appears
to have only a local influence around the frequen-

cy 3_.

Conclusions and Recommendations

On the basis of the work done in this 'study, the
longitudinal turbulence input, Vv, and the two
gradients, Vv,x and Vy,z are of _qual importance
when computing the dyhamic response of wind sys-
tems, and these three inputs together comprise
the major excitation source for horizontal axis
wind turbines. Because of the simplifying assump-
tions and approximations used in this analysis,
it is imperative that the results and the tech-
nique be validated with experimental data, prior
to use for design.
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Table I. Fractional response contributions of the turbulence inputs for the Mod-M using the
equilibrium wake.

Response/Input Vy Vy_x Vy_z Er Yr Other

Frequency _ 0

Side Force, Fx .0 .96 .0 .0 .0 .04

Thrust, Fy l.O .0 .0 .0 .0 .0
Pitch Moment, Mx .0 .82 .12 .0 .0 .06

Frequency = 15.1 (Ist Bending)

Side Force, Fx .33 .07 .56 .0 .0 .04
Thrust, Fy .75 .06 .18 .0 .0 .Ol
Pitch Moment, M .70 .07 .22 .0 .0 .Ol

x

Frequency : 3_ = 23

Side Force, Fx .0 .02 .69 .14 .13 .02
Thrust, Fy .32 .08 .52 .04 .04 .0

Pitch Moment, Mx .0 .ll .77 .06 .06 .0

Table 2. Fractional response contributions of the turbulence inputs for the Mod-G using the
equlibrium wake.

Response/Input Vy Vy,x Vy,z _r _r Other

Frequency = 0

Side Force, Fx .0 .06 .92 .0 .0 .02
Thrust, Fv l.O .0 .0 .0 .0 .0
Yaw Momenl, Mz .0 .97 .D .0 .0 .03
Pitch Moment, Mx .0 .0 .97 .0 .0 .0

Frequency : 2.76 (Ist Bending)

Side Force, Fx .90 .02 .07 .0 .0 .Of
Thrust, FV .77 .0 .22 .0 .0 .Ol
Yaw Momenl, M 77 .Ol .21 .0 0 .Of

• Z " °

Pitch Moment, Mx .76 .0 .23 .0 .0 .Ol

Frequency = 3_ = 5.5

Side Force, Fx .Of .36 .07 .27 .27 .02
Thrust, Fv .06 .05 .42 .22 .24 .Ol
Yaw Momenl, Mz .Of .29 .0 .35 .34 .Ol

Pitch Moment, Mx .0 .05 .45 .23 .25 .02
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APPENDIX

Governing Equations:

Nil 0 ri13 0

0 M22 0 M24

M31 0 M33 0

0 N42 0 M44

0 0 0 0

Inertia Matrix

0

0

0

0

M5

m

Fll

0

F31

F41

0

U

V

×
o,

.4

m|]

m33 = ImL/3 , m44 = mtL2/105 , mt

Cll

0

+ C31

C41

.o

0 C13 C14 0 "

C22 0 0 C25

0 C33 C34 0

0 C43 C44 0

C52 0 0 C55

'01

ba

"Kll 0 KI3 KI4

0 K22 0 K24

0 0 K33 K34

0 K42 K43 K44

0 0 0 0

0 FI3 FI4 FI5 O FI7 FI8 0

F22 0 0 0 F26 0 0 F2

0 F33 F34 F35 0 F37 F38 0

0 F43 F44 F45 0 F47 F48 0

F52 0 0 0 F56 0 0 F59

O" 'U I

0 V

0

0 x

0
w •

Vx

Vy

Vz

Vy,x

Vy,z P

Yzx

(EzxCOS3_t + #zxSin3P.t)

(-CzxSin3_t + #zxCOS3Qt)

L zxj
M]I = mll + mn + mr ; MI3 = M31 : -(m n + mr)q

t_22 = m22 + mr + mn ; M24 = m24 = M42 ; M33 = m33 + Izz

M44 = m44 + Ixx ; M55 = I r ; mr : mass of rotor ; mn : mass of nacelle

q = distance from CL tower to nacelle-rotor C.G. ; Ixx and lyy = mass moment of inertia of nacelle-
rotor system about x and y axes ; I r = rotor effective splnning inertia ; mij = tower inertia
coefficients of Eq. (4), where for a uniform cantilever tower,

= 99 mt/420 , m22 = 156 mt/420 , m24 = 22 mtL/420

: tower mass , I m = tower polar inertia

uammin_ Matrix

C11 = 3f(Bo+B_Fo)/2R_ ; C13 = -3f(_Bo+BoFl)/2_ ; Cl4 = -3f(CI+_BoEo)I2Q

C22 = 3fFo/RR ; C25 = -3fEI/Q ; C31 : -3f(Bo{FI+B_}+_{Bo+B_Fo})/2Q

C33 = 3fR({F2+Bo_BT}+_{_Bo+6oFI})/2Q ; C34 = 3fR({EI_+6oC_}+_{CI+_6oEo})/2Q+IrQ

C4I = 3f({EI+B_C_}+aBo{Co+Eo})/2Q ; C43 = -C34 ; C44 : C33

C52 = 3fCl/_ ; C55 = 3fRB2/Q+Cg ; Cg = Generator torque coefficient

Stiffness Matrix

K_I = kll ; KI3 = -3fGo/2 ; KI4 = -3fBoHo/2 ; K22 = k22 ; K24 = k24

K33 = k33 + 3fR(BoG_+aGo)/2 ; K34 = 3fR(HI+Bo_Ho)/2 ; K42 : K24

K43 = -K34 ; K44 = k44 + 3fR(BoG_+_Go)/2

where kij = tower structural stiffnesses from Eq. (3), and for a uniform cantilever tower kll = 3EI/L 3 "
k22 = 12EI/L 3 ; k24 = 6EI/L 2 ; k33 : GJ/L ; k44 = 4EI/L
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Wind Input Matrix

FII = 3F(Bo+B_Fo)/2RQ ; FI3 = -3fBo(Co+Eo)/2R_ ; FI4 = -3fBoFI/2R

FI5 = 3fG|/2_ ; FI7 = -3fBo(CI-EI)/2Q ; FI8 = -3f(-BI+_FI)/2Q

T = 3fD o ; F22 = 3fFo/R_ ; F26 = 3fEI/Q ; F29 = -3fFiBo/_

F31 : -3f(Bo{FI+B_}+_{Bo+B_Fo})/2Q ; F33 = 3f({EI+_CT}+aBo{Co+Eo})/2_

F34 = 3fR(F2+Bo_FI)/2_ ; F35 = -3fR(BoC_+_CI)/2Q

: -3fR({E2-  C }- Bo{CI-EI ; F38: 3fR(BO{F2-B }+ {-BI+B FI})/2 

F41 = F33 ; F43 = -F31 ; F44 = F35 ; F45 = -F34 ; F47 = -F38 ; F48 = F37

Q = 3fRA I ; F52 : 3fCl/_ ; F56 = -3fR B2/_ ; F59 = 13R_oC2/_

where f = _ pa'Rc,(R_) 2, The single subscript capitalized coefficients An through Hn are integral aero-
dynamic coefficients of the form

R

An = % A'(x) x n dx where n = 0,I,2
h

with A' through F' defined as given in Eq. (13) for the "frozen wake" or Eq. (18) for the "equilibrium
wake". In addition, G'(x) : _B'(x) and H'(x) = _E'(x), while the coefficients with stars are B_=Bn-BBn-I,

C_=Cn-_Cn-I and G_=Gn-_Gn-I, and _=h/R, a=a/R.
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QUESTIONS AND ANSWERS

R.W. Thresher

From: B.J. Young

Your results show a substantial excitation which is continuous down through zero

frequency, while J.P. Sullivan's results were zero at zero frequency. Any comment
on differences?

A: Professor Sullivan used the Davenport mode_ for the horizontal component of wind

turbulence which vanishes at zero frequency. We used the model suggested by Von

Karman which is finite at zero frequency; therefore, this excitation difference

at low frequency i8 due to the turbulence models.

From: K.H. Hohenemser

Q: How should you expect the results to change for hinged (teetering) blades?

A: I have not done the analysis, so I do not know exactly. I wouZd expect the magni-

tude of the forces and moments to decrease significantly.

From: Anonymous

Q: What is the effect of damping on the first and second blade bending power spectra

spikes?

A: The blade is rigid so there are no blade resonances. The bending resonances illus-

vrated in the plots are for the tower. The only damping in the model is aerodynamic

damping, but if structural damping were added, the response near resonance points
should be reduced.

From: R. E. Wilson

Q:

A:

Do you plan to treat teetering rotors?

T would like to add teetering to the model, but at this time, our sponsor has not

indicated a strong interest in adding this additional degree of freedom. Perhaps

after the model i8 validated this will be possible.
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