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ABSTRACT

The present article reviews two of the more common procedures for analyzing
the stability and forced response of equations with periodic coefficients,
namely, the use of Floquet methods, and the use of multiblade coordinate

and harmonic balance methods.

The analysis procedures of these periodic

coefficient systems are compared with those of the more familiar constant

coefficient systems.

INTRODUCTION

In dynamic analyses of rotating wind turbine
systems, cne frequently encounters equations of
motion with periodic coefficients. Unlike systems
with constant coefficients whose analysis_techni-

Jaesare well known and familiar, the analysis of

““these pariodic coefficient equations are somewhat

less familiar. The present paper reviews two of
the more common procedures for analyzing the sta-

“biTity and response of these periodic coefficient

equations, namely, the use of Floquet methods and
the use of multiblade coordinate and harmonic
balance methods. To put things in proper perspec-
tive and to make comparisons, the paper will
briefly review the constant coefficient systems

_“T=firzt. The paper is essentially based on Appen-

dices A, B, C, and D of a recent report by the
authors, (ref. 1).

- - - CONSTANT COEFFICIENT SYSTEMS

““Given a system of N linear differential equations

with constant coefficients,

Mg+BQq+Kkg=FI(t) (1)

- where M, B, and K are square matrices of order

NxN, while g and F (t) are column matrices of
order Nx1. ~These can be rearranged as,

.’ﬁoa\; 0 Mifq 0
Pl bl @

Then, multiplying through by the inverse of the
mass matrix gives 2N first order equations,
y-Ay=8 (3)
whare A is a square matrix of order 2Nx2N, while y
and G are column matrices of order 2Nx1 given by

fo 11 ﬂ} 0
= - - 1. - (4}
A=yl s> x=ial: &7 iw's
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The zbove rearrangement, Eq. (3), is valid provid-
ing the mass M is not singular, which is usually
the case with physical systems.

{a} Stability

Tc investigate stability, one sets E =0 (which
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gives G = 0) in Eq. (3), to obtain a set of homo-
geneous equations. Then one seeks exponential
solutions of the form y = y ePt, Placing these
into Eq. (3) leads to the standard eigenvalue
problem,

Ay=py (5)

Eigenvalues py of the matrix A can be obtained by
standard numerical eigenvalue routines. If any
eigenvalue py is positive real or has a positive
real part, the system represented by Eq. (3) or
equivalently by Eq. (1) is unstable.

(b) Forced Response

Under steady-state conditions, the forces F (t) on
a rotating system tend to occur periodically in
multiples of the rotation frequency . One can
then express the force for a particular frequency
wy = mR, in the form,
- iwmt .

F(t) = Re(F e ) = EBFosmmt - f£§1nmmt (6)

The response q{t) is similarly of the form,
iw_t

q(t) = Re{q e my = qpeosapt - qpsing.t (7)
Placing Eqs. (6) and (7) into the basic Eq. (1)
and matching sine and cosine terms gives a set of
2Nx2N real equations,

6 H [%| | R
Sl 8
-6 | Y FI ®
where one has the matrix elements,
2 -
G=kK-oin, H=gB (9)

Gi¥en the aTognt of the mth harmonic force present
Fpi™and Fi\™, Eq. (8) can be solved by sim€1?
TﬁVers1on’ to find the response qR(m) and g; m

for each harmonic. Then, one may sum up ~ all
the harmonics to give the total periodic response
as,

q (m)sinmmt (10)
0_

[ ne B

q (m)cosmmt -
0— n

Finding the response g{t) this way rather than by
direct numerical integration, allows one to assess
the effects of a particular harmonic on the



resulting response of the system.
FLOQUET METHODS

Assume the coefficients M, B, K in Eq. (1) or
equivalently the coefficients & in Eq. (3) vary
periodically in time, rather than being constants.
For illustrating Floquet methods, it will be con-
venient to use the first order representation,
namely 2N equations of the form,

¥ - Alt)y = G(t) ()

where A(t) and G(t) are periodic over an
interval T.

(a) Stability

The Floquet stability analysis described here
follows that given by Peters and Hohenemser
(ref. 2). To investigate stability, one sets
6=0 in Eq. (11) to obtain homogeneous equations.
The Floquet theorem states the solution of Eq.
(11) with G=0 is of the form

Pkt
y(t) = B(t) Cke bt (12)
where y(t) and {Cke k } are 2N x1
column matrices, and B(t) is a 2N x 2N square
matrix periodic over period T, that is, B(T)=B(0).
From the above, one can express

y(0) = B(0) {C} (13)
y(1) = g(T){ckePkT}= g(o){ckePkT} (12)
Also, one can express y(T) as,

ym = ' B (0 (15)
YT {y,(0)
[0 :

where y{1) is the solution at t=T of Eq. (11)

with G=0, for the 1ni?ial conditions y1=1 and all
remaining y;(0)=0, y\2) is the solution for y,(0)=]
and all remaining y;(0}=0, etc. The square

matrix [Q] is called the "Transition Matrix."
Equating Eq. (15) to (14) and introducing Eq. (13)
gives,

[Q][{B(o)}]c] : {e(o)}2c2 Sk

P]T
- {3(0)1}019. b (16)
Since Ck are independent, one must have
[Q] (B(0)}, = X (B(0)}, a7
Pt
where A =e are the eigenvalues of the [Q]

matrix. One then has the relation

1

pszEn)\ =

T i Wy (18)

from which the real and imaginary parts of the
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stability exponent pk are given as

o = Fony = Frantn? + ()% (19)

T
o =+ tan”l [(A) /(0) ] (20)
kT kI k R
The real part oy is a measure of the growth or
decay of the response, as can be seen from Eq.(12).
Values of oy >0 (or equivalently |3, [>1) indicate
instability. The imaginary part ?k represents the
frequency. However, because tan™' is multivalued,
one can only obtain wy to within a multiple of 2m.
To obtain the acEKal ¥requency and motion corres-
ponding to the k™ root, py, one sets Ck=1 and
all other remaininﬁ Ci=0 in Egqs. (12) and (13).
Then, using the kt eigenvector {B{0)}, from Eq.
(17) as an initial condition, one would solve
Eq. (11) with G=0 by numerical technigues for the
resultant motion.

Summarizing: To check for stability of a system
of linear equations with periodic coefficients,
obtain the eigenvalues A of the "Transition
Matrix" [Q] « If [xg]>1, one has instability,
The traditional stability exponent Pk 1s related
to g through Eqs. {18) to (20). Two remarks on
the above procedure should be noted. (1) The
"Transition Matrix" [Q] can be formed by solving
either the first order equations, Eqs. (11) with
G=0, or the second order equations, Eqs., (1) with
F=0 and periodic coefficients, whichever is more
convenient for the integration scheme. (2) The
above procedure will still apply even if the
equations have constant coefficients. However,
for such cases it is usually easier to form the
matrix A given by Eq. (4) and obtain its eigen-
values py rather than to form the "Transition
Matrix" ko] and obtain its eigenvalues Ag-

(b) Forced Response

Solutions of Eq. (11), or equivalently Eq. (1)
with periodic coefficients, can be obtained by
direct numerical integration using some convenient
integration scheme, By proper choice of the
initial conditions, one can eliminate all tran-
sients from the response and obtain the desired
steady-state dynamic response by integrating
through only one period T, instead of the very
large number usually required to reach steady-
state for lightly damped systems. A procedure
for finding the proper initial conditions is
given below.

Solutions of Eq. (11) are of the general form,

y(t) = yu(t) + yp(t) (21)

where XH(t) is the homogeneous solution and xp(t)
is the particular solution, One can obtain a
complete solution of Eq. (11) numerically for any
given set of initial conditions.
XE(t)v One can add any number of additional homo-
geneous solutions Ayy(t) having different initial
conditions, to this solution. This would give a
new solution to Eq. (11),

y(t) = ye(t) + ay,(t) (22)

Call this solution
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__ pericdic solution over one period.

which would have different initial conditions
than those for XE(t)‘

One can obtain all the homogeneous solutions of
£q. (11) by solving Egq., (11) with G=0 a total of
2N times, subject to the initial conditions yq=1
and all remaining y;=0, then yp=1 and all re-
maining y;=0, etc. In fact, this was done
eariier to investigate stabi]i%y)and re?ugted in
the 2N homogeneous sotutions (1 2

etc., respectively. A OB A O
Thus one may write

ay(t) = M) ¥ @) Laf g
, e

[a(t)] RE

(23)

where [Q(t)] is the transition matrix at any in- -

stant of time, and Cy, Cp, ... are 2N arbitrary
constants, The new solution Eq. (22) can be re-
written as

Sy E () [l

For a periodic solution over period T=2n/Q, one

miist have y(T)=y(0). Placing Eq. (24) into this
condition and solving for the arbitrary constants
C gives,

Ye(T) + [Q(T)IC = ye(0) + [Q(0)]C

¢ [u- ]! {em - 0}
where it was noted that [Q(0)]=1, and [Q(T)]=[Q]

is the "Transition Matrix" found earliier for the
stability investigation. Placing these values of
C back into Eq. {24), the initial conditions for

Tnsuring a periodic solution become

(24)

(25)

20) = y(0) + 1101 g - w0} (26)

One can then solve the basic Eg. (11) numerically
with these initial conditions to obtain a

It should be
notad that if one had chosen the initial con-
ditions for XE(t) as XE(O)=0, one would obtain
simply

y(0) = [1-0T" (M) (27)
This is a particularly convenient form for finding
the initial conditions for periodic solutions.

An alternative form for determining the proper
initial conditions for periodic solutions has
been proposed by Friedmann and his coworkers
(refs. 3 and 4} in their work on wind turbines,
namaly,

:
y(0) = [1-077" gof [Q(t)] "F(t)dt (28)

This is similar to Eq. (27), but does not use y..
It seems easier to obtain y (T} with initial
conditions X5(0)=0 and use — Eg. (27), rather
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b4
: rEsu]ting 2N solutions are obtained.

than obtaining [Q(t)] at every point and perform-
ing the indicated operations required by Eq.(28).

The general procedure described by Egqs. (21) to
(27) may be extended to deal also with nonlinear
equations,
where the right hand side now contains nonlinear
functions of the coordinates. An iterative
variation of the previous linear procedure to ob-
tain the initial conditions for periodic solutions
of nonlinear equations is used by the MOSTAS Code
(ref. 5). The procedure is as follows. First, a
numerical solution XE(t) is obtained to the non-
Tinear Eq. (29) for ~some estimate of the initial
conditions y.(0). Then each of the 2N elements of
(0} 1is perturbed a small amount e; and the
This in-
volves solving the nonlinear Eq. (29) subject to
the initial conditions,

XE(O) t gl XE(O) + {0 ], etc. (30)
0 €y
0 0
and will result in 2N responses of the form
YD) = yete) + ay o) (31)

where Axﬁ1)(t) represents the effect of each per-
turbatio;:ei, and is found by subtracting XE(t)
frow each of the 2N resulting responses

lﬁ‘ (t). One can then express the total solution
approximately as,

y(t) = ye(t) + [1?] A,y_(g), ]?ZM(EZ)’”'} &
—— E2

1]
[ :
(32)

which is in the same form as Eq. (23). Then,
again requiring the periodicity condition y(T)=
y(0) and following through as before, will result
in the same relation Eq. (26) found previously.
Because of the nonlinearities now present, the
elements of [N] as found from Eqgs.(32), (31), (30}
may vary with the amplitude of the initial con-
dition used, y-(0)+e;. This is in contrast to

the linear cask where [Q] remains always constant.
Hence, an iterative application of Eq.{26) with a
new corrected gE(O) should be done. If the non-
linearities are"not too great, convergence to the
required XE(O) should be rapid.

It should be remarked that the numerical procedure
for forced response described in this section, can
also be used for the constant coefficient linear
case, although it is probably easier there to ob-
tain the solution by using Harmonic response
methods given by Egs.(6) to (10). However, for
cases where there is some nonlinearity, the
present iterative approach becomes attractive.



MULTIBLADE COORDINATES AND HARMONIC BALANCE

Given a rotor with N blades rotating with rotation
speed §2, attached to a flexible tower. Because
the tower motions x, are described in a fixed
reference framewhile the blade motions Bi are
described relative to a rotating frame, the
resulting equations may have mass, damping, or
stiffness coefficients which are functions of the
azimuthal position of the kP blade y,. A typical
such set of equations is given, for e§amp1e, in
refs, 6 and 7 as,

MX + Cox +kx+S$ ¢’ E (k) - F
X & & ;;ﬁ- B'’cos wk X(t) (33)
s% cos y, + 18] + cag(k) s kBB(k) } Fs(k)(t)
(k=1,2, ... N)
where the azimuthal position wk is,
b = at + (k - 1) 2n/N (34)

The first equation above represents force equi-
librium for the tower motion x, while the remain-
ing N equations represent force equi}i rium for
the motion of each of the N blades glk). The
above equations are readily generalized to more
tower motions X5 ?Q? more blade coordinates for
each blade Bi .

(a) Stability

To examine %qﬁ. (33) for stability, one sets
Fx=0 and FB =0 to obtain homogeneous equations.

For rotors with 3 or more blades N2 3, one may
eliminate the periodic coefficients in these
equations by introducing new multiblade coordinates
bo(t), bs(t), bc(t) such that

g(k) bo(t) + b (t) sin y, + b (t) cos ¢, ~ (35)

Substituting these into Egs. (33), then multiply-
ing the last N equations by sin y,, cos wk, and 1
respectively, then summing these “last N “equations
and noting that

N N

L sin %ﬁk; cos Y =0 For N2 3

N N

) sin? b = ) cos? b = N2y (36)
k=1 k=1

N s

kZ] sin g, cos y, =0 ‘

results in a new set of differential equations in
the variables x, b_, bc, b_ which now all have
constant coefficieﬁts, nam81y,
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. Nep .
MX + CXX + kxx + §-S bC 0

N, o . )
-5[1 by + Cgbg + (ky - 18P)b,
-2qlb. -qcC b:[=0
C B ¢ (37)
N e .
> [Sx + 29155 +Qcgho + Tb

2 -
+ cBBC + (kB - 19 )bc] =0

N [Ibo + CBBO + kao] =0

These equations may then be investigated for
stability using the standard constant coefficient
techniques described earlier, For additional de-
tails and applications of multiblade coordinates,
see Hohenemser and Yin {ref. 8), Multiblade co-
ordinates were originally introduced by Coleman
and Feingold (ref. 9) in their studies of heli-
copter ground resonance,

For rotors with 2 blades, N=2, the analysis is
more difficult because the rotor disk no Tonger
has polar symmetry, If the same multiblade co-
ordinates given by Eq.(35) are used in the basic
Eqs.(33), the periodic coefficients would not be
entirely eliminated since now,

Z
1 sin P = 1 - cos 2y,
k=1

2
) cos? Uy = 1+ cos 2y, (38)
k=1

2
k§1s1n Yy €os Y = sin 2¢]

instead of the convenient constant terms given by
Eqs.(36). A rough estimate of the stability and
response can be obtained by simply time-averaging
the resulting cos Zw] and sin 2y, variations to
zero and using only the constanﬂ coefficient
terms. This is equivalent to setting N=2 in the
multiblade transformed Eqs.(37).

For more accurate estimates for these 2-bladed
rotors, one may use harmonic balance methods.

This consists of first introducing new coordinates
bT(t) and bA(t) for these two blades such that,

s(1) - Br * By s 8?) - Br - By (39)

then summing and subtracting the last two equations
of Egs.(33) while noting that sin Y,=-siny, and
cos Y =-cosw1, then expanding each “of the coor-
dinat@s in a harmonic series,

X = X, + x1ss1'n§2t+ X1C°°59t+ xzssin 20t + ..,
bT = bTO + bnssin Qt + bnccosﬁt LN

by = bAo + bmssin at+ bA]Ccos Qt+ ... (40)

(RN T R
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whera X., Xics Dyns Drycs ... are all functions of
time. 0* 718 7T0* "TIS Placing these into
Egs.{33) and balancing out each harmonic term in
each equation will yield a truncated series of
constant, coefficient differential equations.

These equations may again be examined for stability
using the standard constant coefficient tech-
nigues.described earlier,

Often, depending on the form of Egs.(33), the re-
sulting constant coefficient differential equations
will uncouple into several smaller coupled systems
of equations which may be examined independently
of one another. For example, for the case of
Eqs.{33), one smaller coupled system would involve
the variables Xgr X255 Xo0» bA]C’ bA1S’ +.. While

another would involve X100 %50 bAO’ bAZC' bAZS R
... For such systems, one could use an alternate
extended form of the multiblade coordinate trans-
formation Eq.(35) namely,

X = X + Xyg SN 2Qt+ XoCOS 20t+ ...

glk) . byg Siny, + byc cosp, + ... (41)

together with the harmonic balance method to solve
the problem., This works here, since the form
given by Eq.(41) exactly duplicates the motion of
the two blades given by the general case Egs.(39)
and {40}, since sin ¢2=-sin¢ﬁ , c051b2=-cos w],

and only Xgs Xpg» Xpe» bA]C’ bA]S’ ... wWould be

present; However, in more general cases (for
example, if the first equation of Egs.(33) had an
additional term M]x cos w1or k]x cns&p1present),

the resulting equations would not split into two
smaller groups, and the general harmonic balance
method Egs.(39) and (40) would have to be used.

Indeed, for the more general case mentioned above,
one would also investigate the system for direct
Mathieu eguation type instabilities of half
integer order /2. 30/2, ... by introducing
additional harmonic terms sinmQt and cos mQt
where m=1/2, 3/2, 5/2, ... into Eqs.(40), and
harmonically balancing as before. These terms
would not couple in with the previous equations
and can b2 solved independently of them. The
primary instability region would result from the
Q72 terms, See Bolotin (ref, 10} for further de-
tails of the general harmonic balance method.
Also see Sheu (ref. 7) for an application of the
alterrate extended form of the multiblade trans-
formation Eq.(41), to a simple two bladed rotor
in ground resonance,

(b)

For rotors with 3 or more
the multiblade coordinate
to eliminate the periodic
basic equations of motion Eqs.(33), as described
in the preceding section. The equations then re-
duce to the constant coefficient equations given
by Egs.{37), only now the right-hand-sides are

Forced Response

blades, Nz 3, one uses
transformation Eq.(35)
coefficients in the
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[ F(t)

N
(k) .
kZ]FB (t) siny,

R.H.S. =4 \ (42)

N
(k)
F t 1
kZ] 8 (t) cos K

N

(k)

Fo it
kz16 )

instead of the previous value of zero. Under
steady-state conditions, the tower and blade forces
generally occur periodically in multiples of the
rotation frequency Q, and can generally be
expressed as,

Fx(t) - FxO * Fx]SSTn wl * Fx]CCOS¢1

+ szss1n 2w1 + ...

: ) (43)
F (k%t) = Fon + Fooesing, + F oo cosy, +

B 80 B1S 1 g1C 1 e
where y, = Qt + (k-1)2n/N. Placing the above
forces — into Eqs.(42) and using the trigonometric
identities and summations,

sin m¢k Sinwk = % cos(m-1)wk - %—cos(m+1)wk

cos mwk siny K= etc. (84)
N N sin mw1 +<m=N, 2N, ...

} sin my =

k=1 0 «m# N, 2N, ...

N N cos mw] <m= N, 2N, ...

} cos mp, =

k=1 0 <~m#N, 2N, ...

one can obtain the right-hand-sides of Egs.(37)

in terms of either constants or harmonic functions
of mt, The forced responses x{t), b_{t}, b {t),
b {(t) can then be found using the stafdard ©
téchniques for constant coefficient systems dis-
cussed previously. It should be noted that be-
cause of the multiblade transformation Eq. (35},
the resulting responses for the tower motion and
blade motions corresponding to the mth harmonic
wy = me, would be of the form,

X = XR cosmmt - Xg sinwmt

(k).
grti= bOR coswmt - bOI s1nmmt (45)

+ (bSR coswmt - bSI s1nmmt) sing,
+ (bCR cosmmt - bCI sinwmt) cosyy

The tower thus oscillates at frequency wy in the
fixed frame whereas the blades may oscillate at
frequencies @ , uy + 2, wy - © relative to the
rotating frame.

For rotors with 2 blades, N = 2, the multiblade
coordinate transformation Eq. (35) does not eli-
minate the periodic coefficients, but rather
changes the cos ¥y variations to cos 2y varia-
tions. A rough estimate of the response can be



obtained by simply time-averaging the resulting
sin 2yg and cos 2y variations to zero, and then
proceeding with the remaining constant coefficient
terms, as was done for the N>3 case. The results
are likely to be somewhat off for the second har-
monic, sin 2y, and cos 2y, responses,

For more accurate estimates for these 2-bladed
rotors, one can use the harmonic balance methods
of the previous section. The steady-state peri-
odic tower and blade forces given by Eqs. (43)

are substituted into the basic equations of
motions Egs. (33). One then introduces the new
coordinates given by Egs. (39), then sums and
subtracts the last two blade equations, then
expands the tower and blade motions as given by
Eq. (40), only now the coordinates xg, x15, bTQ,
bTt1s, bpgs...etc. are taken to be constan%s rather
than functions of time. Harmonically balancing
the various terms in each equation results in a
truncated set of algebraic equations which can be
solved to obtain the coordinates Xys X7g bTO""
etc., corresponding to the given forciAg excita-
tions Fygs Fyxis, Fgos Fglss...etc. The resulting
tower and blade motions are then given directly

by Egqs. (40) and (39). The resulting set of al-
gebraic equations will often uncouple into smaller
coupled sets of equations which can be examined
independently of one another. This procedure is
similar to that for the constant coefficient
forced response case Eq. (8), except now, the
periodic coefficients couple the different har-
monics together., Thus, the solution will consist
of many harmonics n2 even if only one forcing
harmonic Fgls were present alone.

ROTATING COORDINATES

As an addendum to the previous multiblade coordi-
nates and harmonic balance methods, it should be
mentioned that for some problems, the use of ro-
tating coordinates is also convenient. For ex-

ample, in the case of a 2-bladed rotor on isotropic

tower supports (same tower mass, damping, and
stiffness in two directions, xj and x2), Eqs. (33)
would read,

. d2 k (k)
MRy + Coky +koxy +S 7 L8 cosy = Fq(t)
(46)
2 k
- . d k) .
MX, + C %y + KXy = S azﬁ'z B( )s1nwk = Fo(t)

SX, cospy - K, siny, + 15(K) + cBé(k) ¥ kBB(k)
- FB(k)(t) (k=1,2)

One can then express the tower motions x7 and xs
in terms of rotating coordinates £y and £ which
rotate with the rotor, as

Xp = 51 cosqt + £, sinQit (47)
Xy = -51 sinQt + £2 cosit

where the rotation w1=nt is taken from the Xo
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axis towards the xj axis. Placing these equations
into Eqs. (46), then multiplying the first two
equations by cosyy and siny) respectively and sub-
tracting, then muitiplying the first two equations
by sinyy and cosy) and adding, then subtracting
the third and fourth equations, then adding the
third and fourth equations will result in a new
set of differential equations in the variables £1»

€2, by, by which now all have constant coefficients,

namely,

»

M(E, + 208, - %) + C (&) + a5,) * k&

+ 2$(§A - QZBA) = FX]cosnt - szsinﬁt

[ - 2
M(E, - 20g; - 2°€,) + C (&, - Qg)) + k.5,

- 4SQBA Fx]sith + szcoth

2S(E, + 20k, 9251) + 208y + 2048y + 2Kg8,

(1) _ ¢ (2)
Fa Fe
21, + 2Cghs + 2kghy = FB(‘) + FS(Z) (48)

In the above, BT=(B(1)+B(2))/2 and B-=(B(])—B(2>)/2
are the same coordinates introduced earlier in

Eqs. (33). These differential equations may then
be investigated for stability and forced response
using the standard constant coefficient techniques
described earlier. Such analyses of a 2-bladed
rotor on isotropic tower supports were also per-
formed by Coleman and Feingold (Ref. 9) in their
studies of helicopter ground resonance.

Rotating coordinates are often used in rotating
machinery shaft critical speed problems, and are
useful for dealing with problems of rotors with
unsymmetrical mass, unsymmetrical damping, or
unsymmetrical shaft stiffness supported on iso-
tropic bearings,
For such problems, one can readily set up the
equations of motion in the rotating frame direc-
tions, and the fixed supports will introduce no
periodic terms because of their isotropic nature.
For vertical axis wind turbines, such rotating
coordinates for the blades are useful since the
tower supports are generally isotropic due to the
symmetrically arranged guy wires, For horizontal

axis wind turbines, the tower supports are generally

not isotropic, hence periodic coefficients will
remain in the equations when using rotating coor-
dinates. If the support anisotropy 15 not too
Targe, one can again additionally introduce har-
monic balance methods to eliminate the periodic
coefficients, as was done in the previous section,

CONCLUDING REMARKS

The present article has reviewed two of the more
common procedures for analyzing the stability and
forced response of rotating systems with periodic
coefficients, namely, Floquet methods and multi-
blade coordinate, harmenic balance methods. Also,
the use of rotating coordinates ';as discussed.

See for example, Bolotin (Ref, 11).
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These methods seem attractive for large systems 184-9, U.S, Dept. of Energy Report C00-4131-T1
and can be modified to include nonlinearities in (vol. 3), September 1978.

the equations.
7. Sheu, D.L.: ™Wind Energy Conversion, Vol. 7:

The multiblade and harmonic balance methods in- Effects of Tower Motion on the Response of
volve first the introduction of multiblade coor- Windmill Rotor," M.I.T. Aerocelastic and Struc-
dinates in order to take out the periodic coeffi- tures Research Laboratory Report ASRL TR

: cients from the blades [Egs.(35) for N23], or to 184-13, U.S. Dept. of Energy Report C00-4131-T1
obtain a better ordered system of equations (Vol. 7), September 1978.
[Egs.(39) for N=2]. Then, harmonic balance
methods Egs,(40) are used to deal with any remain- 8. Hohenemser, K.H., and Yin, S.K.: "Some Appli-
ing periodic coefficients. These methods seem cations of the Method of Multiblade Coordinates"
attractive for smaller systems and can give con- J. American Helicopter Society, July 1972.

i _ sfderable insight into the origin and nature of

oo instabilities and the various harmonics present 9. Coleman, R.P. and Feingold, A.M.: "Theory of

. in the forced response. Self-Excited Mechanical Oscillations of Heli-

copter Rotors with Hinged Blades," NACA Tech-

Rotating coordinates can also be used to effectively nical Report TR 1351, 1958.
eTiminate the periodic coefficients in problems
involving unsymmetrical rotors on isotropic tower 10. Bolotin, V.V.: The Dynamic Stability of
supports, These can often be used in rotating Elastic Systems, Holden-Day, Inc., San
shaft critical speed problems and for vertical Francisco, 1964,
axis wind turbines, If the support anisotropy is
not too large, harmonic balance methods may 11. Bolotin, V.V.: Nonconservative Problems of
additiorally be used to deal with any remaining the Theory of Elastic Stability, MacMillan .
periodic coefficients. Co., New York, 1963. i
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QUESTIONS AND ANSWERS

J. Dugundji

P.R. Barnes
The Singularity Expansion Method (SEM) introduced by Dr. Carl Baum of Kirkland AFB,
Albuquerque, NM is another, perhaps better, approach to solving these problems.
Do you know about SEM?

No, I do not. I have just dealt here with two of the more common methode for deal-
ing with these problems.

W.E. Holley
Are you aware of any treatments of stochastic problems with periodic coefficients?

I have not dealt with that aspect of the problem, so I am not aware of them. I
believe though that there is considerable literature on that subject.
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