
i

REVIEW OF ANALYSIS METHODS FOR ROTATING SYSTEMS WITH PERIODIC COEFFICIENTS

John Dugundji and John H. Nendell

Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

ABSTRACT

The present article reviews two of the more common procedures for analyzing

the stability and forced response of equations with periodic coefficients,
namely, the use of Floquet methods, and the use of multiblade coordinate
and harmonic balance methods. The analysis procedures of these periodic
coefficient systems are compared with those of the more familiar constant
coefficient systems.
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INTRODUCTI ON

In dynamic analyses of rotating wind turbine
systems, one frequently encounters equations of
motion with periodi'c coefficients. Unlike systems
with constant coefficients whose analysls techni-
qiI_r_ well known and familiar, the analysis of
these periodic coefficient equations are somewhat
less familiar. The present paper reviews two of
the more Common procedures for analyzing the sta-

:5Tl_ty and response of these periodic coefficient
equations, namely, the use of Floquet methods and
the use of multiblade coordinate and harmonic

__ balance methods. To put things in proper perspec-
tive and to make comparisons, the paper Will
briefly review the constant coefficient systems

-- _fir:_to The paper is essentially based on Appen-
::_ -- _

dices A, B, C, and 6)of a recent report by the

authors, (ref. l).

.... CONSTANT COEFFICIENT SYSTEMS

Given a system of N linear differential equations
with constant coefficients,

M_) + B__ +_K_ : _F (t) (1)

where M, B, and K are square matrices of order
-- - NxN, w_ile S and-[ it) are column matrices of

order Nx]. These can be rearranged as,

I {o}
Then, multiplying through by the inverse of the
mass matrix gives 2N first order equations,

__- A y : G (3)

where A_ is a square matrix of order 2Nx2N_ while y
and G are column matrices of order 2Nxl given by

0 1 0

A = __M-IK y : G = -I (4)

The above rearrangement, Eq. (3), is valid provid-
ing the mass M is not singular, which is usually
the case wit_physical systems.

(a) Stability

To investigate stability, one sets F = 0 (which

gives G = O) in Eq. (3), to obtain a set of homo-
geneous equations. Then one seeks exponential
solutions of the form Z : Z ePt. Placing these
into Eq. (3) leads to the standard eigenvalue
problem,

Z : P Z (5)

Eigenvalues Pk of the matrix A can be obtained by
standard numerical eigenvalue-routines. If any
eigenvalue Pk is positive real or has a positive
real part, the system represented by Eq. (3) or
equivalently by Eq. (I) is unstable.

(b) Forced Response

Under steady-state conditions, the forces F it) on
a rotating system tend to occur periodicalTy in

multiples of the rotation frequency _. One can
then express the force for a particular frequency

o_n = m_, in the form,

Fit) Re(_ ei_mt)
_ = = FRCOS_m t - Fisinemt (6)

The response _(t) is similarly of the form,

_(t) : Re(_ ei_mt) : qRcOs_m t - qlsin_mt (7)

Placing Eqs. (6) and (7) into the basic Eq. (I)
and matching sine and cosine terms gives a set of
2Nx2N real equations,

where one has the matrix elements,

Given the amount of the mth harmonic force present

F_(m)and Fi(m), Eq. (8) can be solved by simpl?
_version- to find the response qR(m) and qTtm)
for each harmonic. Then, one ma)-sum up -" all
the harmonics to give the total periodic response

as,

N N

sit) = _ qR(m)coS_m t - _ ql(m)sin_m t (lO)
m:O-- m=O--

Finding the response _(t) this way rather than by
direct numerical integration, allows one to assess
the effects of a particular harmonic on the

T:
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resultingresponseof thesystem.

FLOQUETMETHODS

AssumethecoefficientsM,B,K in Eq.(1) or
equivalentlythecoefficTen_s_ in Eq.(3) vary
periodicallyin time,ratherthanbeingconstants.
Forillustrating Floquetmethods,it will becon-
venientto usethefirst orderrepresentation,
namely2Nequationsof theform,

- _(t)z : Zt) (11)

where A(t) and G(t) are periodic over an
interval T.

Ca) Stability

The Floquet stability analysis described here
follows that given by Peters and Hohenemser
(ref. 2). To investigate stability, one sets

G=0 in Eq. (ll) to obtain homogeneous equations.
T-he Floquet theorem states the solution of Eq.
(ll) with G=O is of the form

F Pkt]
X-(t) = B__(t) _Cke _ (12)

Who_:enX-m(ta_r;neds, a_d B(t)J_CskeP_i}x _es_aXrle

matrix periodic over period T, that is, B_(T)=B(0).
From the above, one can express

X_(O) : B(O) {C k} (13)

{ PkTI { PkTI
X-(T) = B_(T)tCke _= B__(0)tCke _ (141

Also, one can express Z(T) as,

X-iT) : [__(I) X-(2)...]fYl(O) _ (151

[Q]

where _(I) is the solution at t=T of Eq. (II)

with G=0, for the initial conditions Yl:l and all
remaining Yi(O)=O, X_(2) is the solution for yp(O)=l
and all remaining Yi(O)=O, etc. The square =
matrix [Q] is called the "Transition Matrix."
Equating Eq. (15) to (14) and introducing Eq. (13)
gives,

. . PlT

{8(011}Cle+ (161

Since Ck are independent, one must have

[Q] {B(O)} k : _N{B(O)} k ill)

Pk t
where. >,k:e are the eigenvalues of the [Q]
matrlx. One then has the relation

Pk = _ _n _k = _k + i _k (18)

from which the real and imaginary parts of the

s,tability exponent Pk are given as

_k = _nIXk[= 2-_n[(_k)_ + (Xk)_] (191

_k = _ tan'l [(_k_/(_k ) ] (20)R

The real part _k is a measure of the growth or
decay of the response, as can be seen from Eq.(12).
Values of _k>O (or equivalentlyI_kI>l)indicate
instability. The imaginary part _k represents the
frequency. However, because tan TM is multivalued,
one can only obtain _k to within a multiple of 2_.
To obtain the ac_wal frequency and motion corres-
ponding to the k TM root, Pk, one sets Ck:l and
all other remaining Ci=0 in Eqs. (12) and (131.
Then, using the kTM eigenvector {B(0)}_ from Eq.
(17) as an initial condition, one would solve
Eq. (II) with G:O by numerical techniques for the
resultant motion.

Summarizing: To check for stability of a system
of linear equations with periodic coefficients,
obtain the eigenvalues _k of the "Transition
Matrix" [Q] • If I_kl>l, one has instability.
The traditional stability exponent Pk is related
to _k through Eqs. (18) to (20). Two remarks on
the above procedure should be noted. (I) The
"Transition Matrix" [Q] can be formed by solving
either the first order equations, Eqs. (II) with
G=O, or the second order equations, Eqs. (I) with
_=0 and periodic coefficients, whichever is more
convenient for the integration scheme. (2) The
above procedure will still apply even if the
equations have constant coefficients. However,
for such cases it is usually easier to form the

matrix A given by Eq. (4) and obtain its eigen-
values Pk rather than to form the "Transition
Matrix" [Q] and obtain its eigenvalues _k"

(b) Forced Response

Solutions of Eq. (II), or equivalently Eq. (I)
with periodic coefficients, can be obtained by
direct numerical integration using some convenient
integration scheme. By proper choice of the
initial conditions, one can eliminate all tran-
sients from the response and obtain the desired
steady-state dynamic response by integrating
through only one period T, instead of the very
large number usually required to reach steady-
state for lightly damped systems. A procedure
for finding the proper initial conditions is
given below.

Solutions of Eq. (11) are of the general form,

z(t) = _H(t) + _p(t) (21)

where _H(t) is the homogeneous solution and
is the -particular solution. One can obtain_(t)D

complete solution of Eq. ill) numerically for any
given set of initial conditions. Call this sol6tion
ZE(t). One can add any number of additional homo-

geneous solutions A_H(t ) having different initial
conditions, to this _olution. This would give a
new solution to Eq. ill),

X-(t) : ZE(t ) + &ZH(t ) (22)
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which would have different initial conditions

than those for ZE(t).

One can obtain all the homogeneous solutions of

Eqo (ll) by solving Eq. (ll) with G=O a total of
2N times, subject to the initial conditions Yl=l

and all remaining Yi=O, then Y2=l and all re-
maining Yi=O, etc. In fact, this was done
earlier to investigate stability and resulted in

the 2N homogeneous solutions _(2)etc., respectively. _(1)(t)' (t),

Thus one may write

z_ZH(t) = [__]I C1

1

(23)

than obtaining [Q(t)] at every point and perform-
ing the indicated operations required by Eq.(28).

The general procedure described by Eqs. (21) to

(27) may be extended to deal also with nonlinear
equations,

- E(t)z = _(t, Z, _) (29)

where the right hand side now contains nonlinear
functions of the coordinates. An iterative
variation of the previous linear procedure to ob-
tain the initial conditions for periodic solutions

of nonlinear equations is used by the MOSTAS Code
(ref. 5). The procedure is as follows. First, a
numerical solution Zr(t) is obtained to the non-
linear Eq. (29) for _some estimate of the initial

conditions ZE(O). Then each of the 2N elements of
..... z_(O) is perturbed a small amount _i and the

rBsulting 2N solutions are obtained. Thls in-
where [Q(t)] is the transition matrix at any in- volves solving the nonlinear Eq. (29) subject to
stant of time, and CI, C2 .... are 2N arbitrary
c_hstants. The new solution Eq. (22) can be re-
written as

(24)

For a periodic solution over period T=2_/£, one
mBst have z(T)=z(O). Placing Eq, (24) into this
condition and solving for the arbitrary constants

gives,

ZE(T ) + [Q(T)]C = ZE(O) + [Q(O)]C

C_ = [1-[Q]]-I {ZE(T) - ZE(O)} (25)

where it was noted that [Q(O)]=_, and [Q(T)]=[Q]
is the "Transition Matrix" found earlier for the
stability investigation. Placing these values of
C back into Eq. (24), the initial conditions for
Tnsuring a periodic solution become

z(O) : YE(O) + [Z-_] -1 {ZE(T) - ZE(O) } (26)

One can then solve the basic Eq. (11) numerically
with these initial conditions to obtain a

periodic solution over one period. It should be
noted that if one had chosen the initial con-

ditions for ZE(t) as ZE(O)=O, one would obtain
simply

_(0) = [!-_] -I ZE(T) (27)

This is a particularly convenient form for finding
the initial conditions for periodic solutions.

An alternative form for determining the proper
initial conditions for periodic solutions has
been proposed by Friedmann and his coworkers
(refs. 3 and 4) in their work on wind turbines,
namely,

T
Z(O) = [l - Q]-I _ I [Q(t)]-l[(t) dt (28)

0

This is similar to Eq. (27), but does not use ZE.
It seems easier to obtain ZE(T) with initial
conditions YE(O)=O and use Eq. (27), rather

the initial conditions,

LII
(30)

and will result in 2N responses of the form

y__(i)(t)= YE(t) + Ay(Ei)(t) (31)

where Ay(i)(t) represents the effect of each per-

turbatio_E i, and is found by subtractin 9 yr(t)
fr,o_ each of the 2N resulting responses _

y_(1)(t). One can then express the total solution
approximately as,

z(t) : ZE(t) + l AW(_), -C2 ..
--_ 2

|i
[Q]

(32)

which is in the same form as Eq. (23). Then,
again requiring the periodicity condition y(T) =
y(O) and following through as before, will result
in the same relation Eq. (26) found previously°
Because of the nonlinearities now present, the
elements of [Q] as found from Eqs.(32), (31), (30)

may vary with the amplitude of the initial con-
dition used, y-(O)+e.. This is in contrast to
the linear cas_ wheT_ [Q] remains always constant.
Hence, an iterative application of Eq.(26) with a

new corrected _L_(O) should be done. If the non-
linearities are_not too great, convergence to the

required YE(O) should be rapid.

It should be remarked that the numerical procedure
for forced response described in this section, can
also be used for the constant coefficient linear

case, although it is probably easier there to ob-
tain the solution by using Harmonic response
methods given by Eqs.(6) to (lO). However, for
cases where there is some nonlinearity, the

present iterative approach becomes attractive.
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MULTIBLADECOORDINATESANDHARMONICBALANCE

Givena rotorwi_hNbladesrotatingwith rotation
speed_, attachedto a flexible tower. Because
thetowermotionsxi aredescribedin a fixed
referenceframewhile theblademotionsSi are
describedrelative to a rotatingframe, the
resultingequationsmayhavemass,damping,or
stiffnesscoefficientswhicharefunctionsof the
azimuthalpositionof the kth blade@_. A typical

such set of equations is given, for eRample, in
refs. 6 and 7 as,

d2 k B(k)co s = Fx(t)
M_ + Cx£ + kxX + S dt--_-Z _k (33)

S_ cos @k + l_(k) + CsB(k) + kss(k) = Fs(k)(t)

(k = l, 2.... N)

where the azimuthal position Ck is,

@k = _t + (k - l) 2_/N (34)

The first equation above represents force equi-
librium for the tower motion x, while the remain-

ing N equations represent force equilibrium for
the motion of each of the N blades S_K). The

above equations are readily generalized to more

tower motions xi, _ more blade coordinates for
each blade Bi .

(a) Stability

To examine _g_. (33) for stability, one sets

Fx=O and FB_-K)=O to obtain homogeneous equations.

For rotors with 3 or more blades N _ 3, one may
eliminate the periodic coefficients in these
equations by introducing new multiblade coordinates

bo(t), bs(t), bc(t) such that

S(k) = bo(t) + bs(t ) sin _k + bc(t) cos @k (35)

Substituting these into Eqs. (33), then multiply-

ing the last N equations by sin @_, cos @k' and l
respectively, then summing these _last N equations
and noting that

N N

Z sin _k : Z cos @k = 0 For N_3
k=l k=l

N N

sin2 _k = _ c°s2 _k = N/2
k=l k=l

N

Z sin @k cos _/k: O
k=l

(36)

results in a new set of differential equations in

the variables x, b , bc, b which now all have
constant coefficients, namely,

M_ + Cx_ + kxX + _ S bc = 0

+ - l_2)bs2 I I bs + CSbs (ks

- 2_I 6c -_C B b_l_j = 0 (37)

EN[ S + 2_16 s + _csb s + Ib c

+ c_6 c + (k_ - l_2)bc] : 0

N[I;o + Cs6o + ksbo] = 0

These equations may then be investigated for
stability using the standard constant coefficient
techniques described earlier, For additional de-
tails and applications of multiblade coordinates,
see Hohenemser and Yin (ref. 8). Multiblade co-
ordinates were originally introduced by Coleman
and Feingold (ref. 9) in their studies of heli-
copter ground resonance.

For rotors with 2 blades, N=2, the analysis is
more difficult because the rotor disk no longer
has polar symmetry. If the same multiblade co-
ordinates given by Eq.(35) are used in the basic
Eqs.(33), the periodic coefficients would not be
entirely eliminated since now,

2

Z sin2 _k = 1 - cos 241
k=l

2

Z cos2 _bk : 1 + cos 2tpI (38)
k=l

2

sin _k cos _k : sin 2_l
k=l

instead of the convenient constant terms given by
Eqs.(36). A rough estimate of the stability and
response can be obtained by simply time-averaging

the resulting cos 2_l and sin 2_I variations to
zero and using only the constantC coefficient
terms. This is equivalent to setting N=2 in the
multiblade transformed Eqs.(37).

For more accurate estimates for these Z-bladed
rotors, one may use harmonic balance methods.
This consists of first introducing new coordinates

bT(t) and bA(t) for these two blades such that,

S(I) : ST + BA , B(2) = ST - SA (39)

then summing and subtracting the last two equations

of Eqs.(33) while noting that sin #2=-sin@ l and
cos @p=-cos@ l, then expanding each of the coor-
dinates in a'harmonic series,

x = xo + xlSsin_t + xlcCOS Qt + X2ssin 2Qt + ...

bT = bTo + bTisSinQt+ bTiccOSRt + .,,

bA = bAo + bAissin Qt + bA]ccosQt + ... (40)
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_, ... areall functionsofwheretime.×0'xlS' bTo'bTl_Placingtheseinto
Eqs.(33)andbalancingouteachharmonictermin
eachequationwill yield a truncatedseriesof
constant,coefficientdifferential equations.
Theseequationsmayagainbeexaminedfor stability
usingthestandardconstantcoefficienttech-
niques.describedearlier.

Often,dependingontheformof Eqs.(33),there-
sultingconstantcoefficientdifferential equations
will uncoupleinto severalsmallercoupledsystems
of equationswhichmaybeexaminedindependently
of oneanother. Forexample,for thecaseof
Eqs.(33),onesmallercoupledsystemwouldinvolve
thevariablesxO,X2s,X2c,bAlC, bAlS.... while
anotherwouldinvolveXIc, Xis, bAo,bA2C,bA2S ,
... Forsuchsystems,onecoulduseanalternate
extendedformof themultibladecoordinatetrans-
formationEq.(35)namely,

x : xo + X2ssin 2_t+ X2cCOS2_t+ ...

B(k) sin@ + cos@ k + (41)= bls k blc "'"

together with the harmonic balance method to solve
the problem. This works here, since the form
given by Eq.(41) exactly duplicates the motion of
the two blades given by the general case Eqs.(39)

and (40), since sin @2:-sin@l ' cos42 =-cos_l '

and only xO, X2s, X2c, bAl C, bAl S .... would be

present: However, in more general cases (for
example, if the first equation of Eqs.(33) had an

additional term Ml_ cos_l or klX cos_l present),

the resulting equations would not split into two
smaller groups, and the general harmonic balance
method Eqs.(39) and (40) would have to be used.

Indeed, for the more general case mentioned above,
one would also investigate the system for direct
Mathieu equation type instabilities of half
integer order _/2. 3_/2, ... by introducing
additional harmonic terms sinm_t and cosm_t
where m=I/2, 3/2, 5/2 .... into Eqs.(40), and

harmonically balancing as before. These terms
would not couple in with the previous equations
and can be solved independently of them. The
primary instability region would result from the
_/2 terms. See Bolotin (ref. l_ for further de-

tails of the general harmonic balance method.
Also see Sheu (ref. 7) for an application of the
alter_ate extended form of the multiblade trans-

fo_ation Eq.(41), to a simple two bladed rotor
in ground resonance.

(b) Forced Response

For rotors with 3 or more blades, N _ 3, one uses
the multiblade coordinate transformation Eq.(35)

= to eliminate the periodic coefficients in the
basic equations of motion Eqs.(33), as described
in th_ preceding section. The equations then re-
duce to the constant coefficient equations given

by Eqs.(37), only now the right-hand-sides are

R.H.S. =

Fx(t)

:!lFB(k)(t)

k!l F;k)( t )

k!l F6(k)(t)

sin _k

cos ¢ k
(42)

instead of the previous value of zero. Under
steady-state conditions, the tower and blade forces
generally occur periodically in multiples of the
rotation frequency _, and can generally be
expressed as,

Fx(t) = Fxo + FxIsSin @l + FxICC°S@l

+ Fx2sSin 2¢l + ...

F_k)(t) = FBO + FBissin_ l + FBI C cos _l

(43)

where Ck = _t + (k-l)2_/N. Placing the above
forces into Eqs.(42) and using the trigonometric
identities and summations,

sin m_ k sin_k : ½ cos(m-l)_ k - ½ cos(m+l)¢ k

c(_jrm_k sin@ k = etc. (44)

N _N sin m_l ÷ m = N, 2N ....
Z sin m_k =

k=l [ 0 ÷ m _ N, 2N ....

N _N cos m_1 ÷ m = N, 2N, ...
cos m@k =

k=I L 0 ÷ m I N, 2N ....

one can obtain the right-hand-sides of Eqs.(37)
in terms of either constants or harmonic functions

of m_t. The forced responses x(t), b_(t), bc(t),
b_(t) can then be found using the standard
t_chniques for constant coefficient systems dis-
cussed previously. It should be noted that be-
cause of the multiblade transformation Eq. (35),

the resulting responses for the tower motion and
blade motions corresponding to the mth harmonic

_m : m_, would be of the form,

x = x R cOS_mt - x I sin_mt

B(k) cOS_mt sin_mt= boR - bol (45)

+ (bsR cOS_mt - bsl sin_mt) sin_ k

+ (bcR cOS_mt - bcl sin_mt) cos_ k

The tower thus oscillates at frequency o_ in the
fixed frame whereas the blades may oscillate at
frequencies _m' _m + _, _m - _ relative to the
rotating frame.

For rotors with 2 blades, N = 2, the multiblade
coordinate transformation Eq. (35) does not eli-
minate the periodic coefficients, but rather
changes the cos _k variations to cos 2_ k varia-
tions. A rough estimate of the response can be
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obtained bysimplytime-averagingtheresulting
sin 2_kandcos2_k variationsto zero,andthen
proceedingwith the remainingconstantcoefficient
terms,aswasdonefor theN_3case. Theresults
arelikely to besomewhatoff for thesecondhar-
monic,sin 2_kandcos2_k responses.
Formoreaccurateestimatesfor these2-bladed
rotors, onecanusetheharmonicbalancemethods
of theprevioussection. Thesteady-stateperi-
odictowerandbladeforcesgivenbyEqs.(43)
aresubstitutedinto thebasicequationsof
motionsEqs.(33). Onethenintroducesthenew
coordinatesgivenbyEqs.(39), thensumsand
subtractsthe last twobladeequations,then
expandsthetowerandblademotionsasgivenby
Eq.(40),onlynowthecoordinatesxo, xis, bTO,
bTIS,bAO,...etc,aretakento beconstantsrather
thanfunctionsof time. Harmonicallybalancing
the varioustermsin eachequationresultsin a
truncatedset of algebraicequationswhichcanbe
solvedto obtainthecoordinatesx^, x_, bT^,.

U , _ IV " "

etc., corresponding to the given forcing excita-

tions Fxo, Fxl s, FBo, Fsls ....etc. The resulting
tower and blade motions are then given directly
by Eqs. (40) and (39). The resulting set of al-
gebraic equations will often uncouple into smaller
coupled sets of equations which can be examined
independently of one another. This procedure is
similar to that for the constant coefficient
forced response case Eq. (8), except now, the
periodic coefficients couple the different har-
monics together. Thus, the solution will consist

of many harmonics n_ even if only one forcing

harmonic Fsl s were present alone.

ROTATING COORDINATES

As an addendum to the previous multiblade coordi-
nates and harmonic balance methods, it should be

mentioned that for some problems, the use of ro-
tating coordinates is also convenient. For ex-

ample, in the case of a 2-bladed rotor on isotropic
tower supports (same tower mass, damping, and

stiffness in two directions, xI and x2), Eqs. (33)
would read,

d2 _ B(k)cos_k Fxl(t)
M_l + Cx_ l + kxX l + S d-_ =

(46)

d2 k
M_2 + Cx_ 2 + kxX2 - S .-T-.-.-.-.-.-.-.-_Z8(k)sin_k = Fx2(t)

G_

S_l cos_k - S_2 sin_ k + I_(k) + CB_ (k) + kBB(k)

= FB(k)(t) (k=l,2)

One can then express the tower motions xI and x2
in terms of rotating coordinates _l and _2 which
rotate with the rotor, as

Xl = _I cos_t + _2 sin_t (47)

x2 = -_l sin_t + _2 cos_t

where the rotation _l=_t is taken from the x2

axis towards the xI axis. Placing these equations
into Eqs. (46), then multiplying the first two

equations by cos_l and sin_l respectively and sub-
tracting, then multiplying the first two equation_
by sin_l and cos_l and adding, then subtracting
the third and fourth equations, then adding the
third and fourth equations will result in a new

set of differential equations in the variables Cl,
_2, bA, bT which now all have constant coefficients,
namely,

M(_l + 2_ 2 - _2_i ) + Cx(_ l + _C2) + kx_ l

+ 2S(8A - _28A ) = FxlCos_t - Fx2sinht

M(_ 2 - 2_I - R2_2 ) + Cx(_2 - _l ) + kx_2

- 4S_ A = Fxlsin_t + Fx2COS_t

2S(_ l + 2_ 2 - _2_i ) + 21BA + 2CB_A + 2kB8A

= FB(1) _ FB(2)

21_T + 2CBAT + 2kBBT = F8(1) + FB(2) (48)

In the above, 8T=(B(1)+B(2))/2 and BA=(8(1)-B(2))/2
are the same coordinates introduced _arlier in

Eqs. (33). These differential equations may then
be investigated for stability and forced response
using the standard constant coefficient techniques
described earlier. Such analyses of a 2-bladed
rotor on isotropic tower supports were also per-
formed by Coleman and Feingold (Ref. 9) in their
studies of helicopter ground resonance.

Rotating coordinates are often used in rotating
machinery shaft critical speed problems, and are
useful for dealing with problems of rotors with

unsymmetrical mass, unsymmetrical damping, or
unsymmetrical shaft stiffness supported on iso-
tropic bearings. See for example, Bolotin (Ref. ll).
For such problems, one can readily set up the

equations of motion in the rotating frame direc-
tions, and the fixed supports will introduce no
periodic terms because of their isotropic nature.
For vertical axis wind turbines, such rotating
coordinates for the blades are useful since the

tower supports are generally isotropic due to the
symmetrically arranged guy wires. For horizontal
axis wind turbines, the tower supports are generally
not isotropic, hence periodic coefficients will
remain in the equations when using rotating coor-
dinates. If the support anisotropy is not too
large, one can again additionally introduce har-
monic balance methods to eliminate the periodic

coefficients, as was done in the previous section.

CONCLUDING REMARKS

The present article has reviewed two of the more

common procedures for analyzing the stability and
forced response of rotating systems with periodic
coefficients, namely, Floquet methods and multi-
blade coordinate, harmonic balance methods. Also,

the use of rotating coordinates '_asdiscussed.
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TheFioquetmethodsarebasedona convenient
numericalintegrationschemeandinvolvesthecom-
putationof the"TransitionMatrix,"[Q], from
whichstability andtheinitial conditionsfor
steady-stateresponsesolutionscanbeobtained.
Thesemethodsseemattractivefor largesystems
andcanbemodifiedto includenonlinearitiesin
theequations.

5

Themultibladeandharmonicbalancemethodsin-
volvefirst the introductionof multibladecoor-
dinatesin orderto takeout theperiodiccoeffi-
cientsfromtheblades[Eqs.(35)for N_3],or to
obtaina bett_rorderedsystemof equations
[Eqs.(39)for N=2]. Then,harmonicbalance
methodsEqs.(40)areusedto dealwithanyremain-
ingperiodiccoefficients. Thesemethodsseem
attractive for smallersystemsandcangivecon-
@iderab]einsight into theoriginandnatureof

; instabilities andthevariousharmonicspresent
in the forcedresponse.

6,

7.

8.

g,

Rotating coordinates can also be used to effectiv_y
eliminate the periodic coefficients in problems
involving unsymmetrical rotors on isotropic tower lO.
supports. These can often be used in rotating
shaft critical speed problems and for vertical
axis wind turbines. If the support anisotropy is
not too large_ harmonic balance methods may II.
additionally be used to deal with any remaining
periodic coefficients.
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QUESTIONS AND ANSWERS

J. Dugundji

From: P.R. Barnes

Q: The Singularity Expansion Method (SEM) introduced by Dr. Carl Baum of Kirkland AFB,

Albuquerque, NM is another, perhaps better, approach to solving these problems.

Do you know about SEM?

A: No, I do not. I have just dealt here with two of the more common methods for deal-

ing with these problems.

From: W.E. Holley

Q: Are you aware of any treatments of stochastic problems with periodic coefficients?

A: I have not dealt with that aspect of the problem, 80 I am not aware of them. I

believe though that there is considerable literature on that subject.
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