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ABSTRACT

The numerical solution of the coupled differential equations of motion of the blades of an horizontal

axis wind turbine is a more direct approach than the technique of finite elements, permitting the

optimization of the design at relatively low cost. The procedure conslsts in transforming the equation

of motion into a set of first order equations and solving them with fourth order Runge-Kutta integrators.

This technique is applied to a twisted, tapered bla_e of variable cross suction and stiffness including

d[scontlnuities. The first six natural frequencies and mode shapes are obtained.

Yhls technique is extended to obtain the polar moment of inertia of the blades as a function of

frequency and rotational speed.

A good match wlth the experimental results is achieved.

INTRODUCTION

Th._ accurate determination of natural frequencies

is of fundamental importance in the design of

wind tarblne blades. Similarly, the polar moment

of !ner_ia of the blades is required for the

study of the torsional dynamics of the drive

Rotor dynamics is often studied with the use of

large and specialized finite elements computer

codes. However, the availability and cost of

operation of these programs limit their use, and

a more direct approach could be beneficial. The

direct _ol_tlon of the coupled differential

equations of motion of the blade is such a_p-

proach, permitting optimization studies at low

cost. Thls paper presents a model of a nonuni-

form, tapered_ twisted cantilever wind turbine

blade and a method of solution.

For the purpose of demonstrating the method, only

the in-plane and out-of-plane bending modes are

considered since the torsional modes occur at

frequencies much higher than the bending modes

because of the hlgh torsional rigidity of the

blade. The coupled differential equations of

motion were transformed into a set of first order

equations and solved with Runge-Kutta numerical

integrators. The turbine blade under study has

_Jor stiffness dicontinuities. The blade is

_herefore considered as if made of adjoining

segments, each one having a varying stiffness.

The first and second derivatives of the stiffness

curves evidently have to be considered. The con-

tinuity of the shear forces and moments was im-

posed between each segments of the blade. With

these variations of the Runge-Kutta method it is

possible to obtain the resonant frequencies and

the normalized distributions of displacement,

bending moment and shear force for the first six

bendin_ modes. The coriolis forces and the

ten,!on force due to centrifugal loading are in-

cluded. The modes of vibration are computed for

a reglma of rotational speed. The normal and

tangential aerodynamic loaning at each section of

the blade could be included as extra terms in the

differential equations; however, this paper con-

s_ders only a rotor turning w_thout the aerody-

namic forces. These will be included In further

studies dealing with the optimization of small

capacity wind turbines.

An important extension to this model consists in

the formulation of the polar moment of inertia of

the rotor in terms o_ a Couple at a frequency

applied to the hub and the _sultant angular ac-

celeration of the rotor. A direct method using

the shear forces and moments produced by each

blade at the hub sudan integral from using the

in-plane displacements (mode shape) along the

blades are formulated and the numerical results

compared. The polar moment of inertia is then

obtained as a function of frequency and rota-

tional speed.

THE EQUATIONS OF MOTION AND THE TRANSFORMATION

METHOD

Lets consider a turbine blade turning outside the

aerodynamic and gravity field with its main axis

perpendicular to the rotation axis mounted as a

cantilever into a rigid hub. The tension in the

blade due to centrifugal loading is included. If

the blade elongation is assumed to be small re-

lative to the transversal displacements, it can

be demonstrated that the coriolls forces become

negligeable. When only the In-plane and out-of-

plane bending motions are considered, the coupled

differential equations become:

_z---2 Elxy _z--_ yy _z 2] - _-z ?z

2 (Is)
mw u

_2 [ _2 u
Elxy --

_z 2 _z 2

m(_o 2 + _2) v

lhese equations are a subset of the equations of

Houbolt and Brooks (ref. I) and an extension of

the equations of Canergle and Dawson (ref. 2) for

a twisted blade. In these equations, the tension

+ EIxx _z21- _z -_ =

(Ib)
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T at any section of the blade is independent of

Lhe vibration frequency to but proportional to

Qo2 and represented by:

L

T = f_2 zf m(z)z3z (2)

Taking the first and second derivatives of the

terms in braket while considering the moments of

inertia Ixx , lyy and Ixy as variable along the z
axis, the system of equation (1) becomes:

ElyyU 'v + ElxyV'V = -E 12 l'xyV'"+ 2 l'yyU'"
L

+ I'_yV'" + lyyU"] + Tu" + T'u'

2 (3a)+m_ u

u 'v + E1 v TM = -E [21xyU"+ 2 l'xxV'"

Tv" + T'v'

E1
xy xx

+l u+ IxxV+
.J

-[" m (tom _ _ v (3b)

where ( )' and ( )"... indicate the first, sec-

ond, ..., derivatives with respect to z. It is

seen from these equations that the in-plane and

out-of-plane bending are coupled through Ixy and
its first derivative I_y.

The method of transformation of variables, first

proposed by Canergie and Dawson (ref. 2) Is gen-

eralized by applying it at any frequency of vi-

bration and not exclusively to find the resonant

frequency. The two fourth order equations are

transformed into eight first order equations by

the following substitutions:

YI = v"' Y5 = v'

Y2 = u'" Y6 = u'

Y3 = v" Y7 = v (4)

Y4 = u" Y8 = u

By substitution and differentiation the following

eight first order equations are obtained:

E1 Y_ + E1 ' = -E [21 YI + "xy yy Y2 xy Ixy Y3
L

+ 2 l'yy Y2 + lyy" Y4_ + T Y4 + T' Y6

+ mr02 Y8 (5a)

Elx_¢ Y{ + Elxy Y_ = -E [2 l'xy Y2

+ I'_ Y4 + 2 l'xx YI + Ixx" Y3]

Y3 = YI

(5b)

(5c)

Y4 = Y2 (Sd)

Y5 = Y3 (5e)

Y6 = Y4 (5f)

Y_ " Y5 (5g)

Y8 " Y6 (5h)

They can be conveniently represented by:

fi(z,Y1, ...,
i = i, 2, ..., 8 (6)

Applying the appropriate boundary conditions, it

is then possible to solve equation (6) with the

use of Runge-Kutta numerical integrators.

The displacements and their first, second and

third derivatives are then obtained. From these,

one can compute the distributions of the shear

forces and moments by the usual relations:

F x = -E [IxyV"°+ I' v" + I u'"xy yy
L

+ l_yU'qJ + Tu' (7a)

+ I' u" + I v"
xy xx

(7b)

Mx = E [IxyV" + lyyU' 1 (7c)

My E u" + IxxV' (7d)

THE BOUNDARY CONDITIONS

Consider the turbine blade shown in figure I.

The longltudina_ axis of the blade is the z axis

and the'rotor turns in the y-z plane. The x axis

is the axis of rotation. The blade is mounted in

a rigid hub at 6% of Its span (£) and has a total

length of 4.95 meters (L).

Because the blade is rigidly mounted the boundary
conditions are:

u = v = u ' _ v' = 0 at z = i

ths_ is Yi(_) = 0 for i = 5, 6, 7, 8 (8)

At the free end the conditions are:

u" = V" = u"'= v"'= 0 at z = L

since the moments and shear forces are zero;

that is Yi (L) = 0 for i = I, 2, 3, 4 (9)
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Figure I - Geometry of IREQ turbine blade

These boundary conditions apply to a stationary

blade. _$nen the hub is allowed to rotate around

the x axis the conditions at the free end remain

unchanged but the displacement v and its slope v'

are different from zero at z = £. However, u and

u' re_ain zero since the hub is assumed rigid.

:_ Therefore, if the rotor is allowed to spin and

oscill_te In the plane of rotation the boundary

conditions at z = E become:

_: = -- u m u v = 0

z :_ _ v(£) (i0)
]ZI i

........._is iast condition is the Consequence of the

rigid _ub being displaced by anamount v(£) at _.

THE METHOD OF SOLUTION

The method of solving equation (5) is as follows:

I)

2)

3)

A value is selected for the frequency

The four known boundary conditions

(equation 7) at the root are set and

the four unknown conditions are given

arbitrary values namely:

YI = Co, Y2 = Y3 = Y4 = 0 (Ii)

From these eight boundary conditions at

the root a solution is obtained with

the use of fourth order Runge-Kutta in-

tegrators. Eight values, YI to YS, ara

obtained for the free end:

Yi,r(L) = Fi, I (i - 1,2,...,8)

(r = 1) (12)

where the subscript r = I indicates the

solution with the first group of bound-

ary conditions;

4) Step (3) is repeated by successively

setting each of the unknown boundary

condition to the arbitrary value Co.

In this way four sets of starting

boundary conditions are obtained for

Z = Z:

Y8 Y7 Y6 Y5 Y4 Y3 Y2 YI

(r)case u v u' v' u" v" u'" v"'

]. 0 0 0 0 Co o 0 0

2 0 o 0 o 0 Co 0 0

3 0 0 o 0 0 0 Co o

4 o o o o o o o Co

(13)

giving four sets of solutions roy the

free end:

Yi,r = F.1,r (i = 1,2, ..., 8)

(r = i, ..., 4) (14)

5) The solution of equation (6) is a

combination of these four solutions.

Name ly,

4

Yi(z) = _ a Yi (z)
r=l r ,r

(i = i, 2, ..., 8) (15)

However, the known boundary conditions at the

free end are for a cantilever blade:

Y. (L) = 0 (i = 1,2,3,4) (16)
1

since the shear forces and moments must be zero.

The right hand side of equation (15) can then be

partitioned:
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4

r=l_ ar Fi, r = 0 (i = 1,2,3,4) (17)

6) A non-trivlal solution is possible if

the determinant of the coefficients

Fi,r of equation (17) is equal tO zero

llFi,r I - 0 (i - 1,2,3,4)

(r = 1,2,3,4) (18)

Therefore, the above steps are repeated with in-

creased values of the vibration frequency _ until

equation (18) is satisfied. That _ then corre-

sponds to a resonant frequency.

7) Having found the resonant frequency

a I is set to i and a2, a3 and a4 are

computed giving the four unknown

boundary conditions at the anchor

point.

8) The solution is repeated once more with

the following initial conditions:

o

!I
P1
&o

__0
_©

:r

o

_'0

BLADE CHQBFICTEBIST ICS
o

I I:(X

i_ ITl'r '_'
+ IXY omt

• W_[GMT/UNIT L{NGTM _
m

Figure 2 - IREQ turbine blade characteristics

Y! = al Y5 = 0

Y2 = a2 Y6 = 0

Y3 " a3 Y7 _ 0

Y4 = a4 Y8 = 0

(19)

In addition to the displacement u & v the shear

forces and moments are computed at each blade

station with equations (7a) to (Td).

The method described above was first used by

Canergie and Dawson (ref. 2) to find the natural

frequencies of a straight constant section blade.

Its application here is extended to twisted,

tapered blade having discontinuity of rigidity.

TURBINE BLADE CHARACTERISTICS

The turbine blade used on the 40 kW, 10 meters

IREQ wind turbine is a twisted, tapered composite

blade made principally of steel and fiberglass.

Figure I shows its construction. Its assymetrlc

aerodynamic profile is NACA 4415. The chord is
44.45 cm at the root and 10.92 cm at the free end

with a thickness varying from 7.11 cm to 1.78 cm.

The twist angle B goes from 47.2 degrees to 2

degrees at the tip.

The principal moments of inertia Ixx s and lyy s
for a group of typical blade sections were com-

puted from an engineering drawing of the blade

and were transformed into the blade principal

axis (in-plane and out-of-plane) by the usual

relations:

1 - I
XX XX

S

Cos2B + I sin28

YYs

2
I - I cos _ + I sin28

YY YYs XXs

Ilxx s - lyy s)
I - sin 28
xy 2

The Ixxs and lyy s for each element of the blade

section are equivalent moment of inertia based on

the same reference modulus of elasticity E. The

blade actual geometry was found to be signlfi-

cantly different from the drawing geometry. The

moment of inertia Ixx s and lyy s are then cor-
rected to account for these manufacturing inac-

curacies, The values used as input to the modal

analysis program are shown in figure 2. The root

sections of the blade is approximated by linear

distributions while the all fiberglass section

from the end of the steel insert to the blade tip

was approximated by a polynomial computed from

twelve input data points. The first and second

derivatives of Ixx, lyy and Ix.] were numerically
computed from the above distributions.

In order to take care of the discontinuities of

stiffness, the blade is divided into three sec-

tlons, the first from the anchor point to the

blade root section, the second up to the end of

the steel insert and the third to the tip of the

blade.

The numerical integration is done from the anchor

point to the tip of the blade in a continuous

manner except that the values of four of the

eight state variables (YI to Y4) are varied in a

stepwlse manner at the two major discontinuities

of the blade. This is done because the state

variables being integrated at each segment of the

blade are the numerical derivatives of the dis-

placements u and v, namely u', v', u", v", u"' and

v'" and not the forces and moments in the blade.

The physical quantities that must be continuous

are the displacements, the slopes, the moments

and the shear forces and the tension, not the

derivatives. Therefore the continuity of the

boundary conditions become:
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u xu+ M =M
- x_ x+

u' = ' M = M
_ u+ Y_ Y+

v_ "= V+ Fx_ = FX+

v' I F - F
= v+

Y_ Y+

T_ = T+

(20)

The _ndices - and + represent the sections imme-

diately to the left and immediately to the right

of the discontinuity. Using equation (7a) to

(Td) aad equation (20), it is possible to find

new values (the + values) for the derivatives u",

v", u '_, and v" that will ensure the continuities

of the forces and moments @cross the dis-

eontlnd!ty. Performing the appropriate algebra

on equations (7) and (20), we get:

-M bl I ]

y_ x_ xx+]E E1

xy+
(2

_$ = l_-!+lyyt] ta)

Ixy+ xy+ j

v$ = _ (21b)

Ixx+ xx+ j

u+

+)+
• --- I xy + U+- I' y+ + v_

xx+ -_ I xy+

)]I' V' - I' + V+ + T+ u+

yy+ + xy+ -_

l y+ xy+ j

Figure 3 - Internal forces and moments at the

blade anchor point.

variations of J are mainly caused by the trans-

verse vibration of the blades. The polar moment

of inertia of the rotor, excluding the hub, is

defined at a frequency to by:

C
v

J = __

-w28

where Cv is the amplitude of the coupl$ applied

by the hub at the frequency to and -_0_ is the

angular acceleration of the hub. For a sym-

metrical three bladed rotor, J will be three

times the polar moment of inertia of one blade

computed with respect to the rotor huh.

When a blade vibrates at a frequency 0_ an in-

ternal shear force and moment appear at the

anchor point as shown in figure 3. The shear

force and moment produced by the out-of-plane

vibrations are reacted upon by the rigid hub and

do not appear in the formulation of J. However,

the hub is free to rotate around its axis and the

in-plane vibrations will be reacted by the rotor

hub in the form of a couple. The sign conven-

tion shown in figure 4 is introduced such that

Fv = - _M /_Z. The external couple Cv, applied

by the hub is then:

= - Fv(£ ) _ - Mv(£) _ (23)C v

I - - I' u" - I' v+

v$ I xy + yy+ xy+

T+ ' - I u+]+ _ u+ YY+ (21d)

A

it is clear that the shear forces and bending

moments computed with this method are not exact

in the immediate region of the discontinultfes.

However the distribution should not be affected

in regions farther from the discontinuities.

FOR}fliLATION OF THE POLAR MOMENT OF INERTIA

The polar moment of inertia J of an horizontal

axis wind turbine rotor is required for the

analysis of the dynamic torsional stability of

the drive train. J varies with the vibration

frequency _ and the rotational speed _o • The

The tension T, being purely radial at the hub,

does not produce any couple. The external couple

expressed by equation (23) is then introduced in

equation (22) to give:

-F (£) Z - My(Z)
j = v (24)

2
-_o v(£)I£

MI

Figure 4 - Positive directions of shear forces

and moments

181

Z



Since T is radial at _, F (£) and M (£) become:

Mv(£) = [EIxxV" + ElxyU"] z = ._ (26)

If the blade section is uniform and symmetric at

the anchor point (a circular section for the IREQ

blade) we have:

l_x(Z) = l_y(Z) = Ixy(_ ) = 0 (27)

and (25) and (26) become:

Fv(Z) = -Elxx(Z) v"l£) (28)

My(Z) = Elxx(Z) v"(Z) (29)

giving

J
Elxx(£) [v"(Z)- Iv"[£)]

2
v(_)/Z

(30)

in this last equation, the polar moment of iner-

tia of one blade is expressed in terms of the

forces and moments at the rotor hub.

Another representation of the polar moment of

inertia is possible if one considers the in-plane

displacements of the blade as it vibrates at a

frequency u). By using integration by parts on

equations (I) and (7) and applying the

appropriate boundary conditions, it can be

demonstrated that

L

j £ f mvzdz= v(£----__ (31)

At a very low frequency, the blade is not de-

formed and moves as a rigid body; v(z) becomes a

straight line

v(z) = v(£) z/£ (32)

and (31) takes the well known form of the static

moment of inertia:

L

o _._ z 2
J = m dz (33)

8oth equations (30) and (31) can be used to

compute the polar moment of inertia but the

integral formulation Is inherently more exact

from the numerical point of view because it only

uses the blade in-plane displacements while

equation (30) uses in addition the second and

third derivatives of these displacements at the

hub anchor point.

In order to compute the polar moment of inertia,

the equations of motion of the blade must be

solved in the manner described above except that

a value is chosen for mand the arbitrary value

C4 used as initial condition for YI (v') is

varied until the determinant (equation 18)

becomes zero. When a solution is obtained for

that _, equations (30) and (31) are used to com-

pute J. This procedure must be repeated for each

value of m with the following boundary conditions
at z = Z:

Y8 Y7 Y6 Y5 Y4 Y3 Y2 YI

r (case) u v u' v' u" v" u'" v"

i o Co o Coi£ C I o o o

2 o Co o Coi£ o C 2 o o

3 o Co o Co/£ o o C 3 o

4 O Co o Co/£ o o o C 4

(34)

These boundary conditions were explained earlier.

NUMERICAL RESULTS FOR THE MODES OF VIBRATION

The natural modes of vibration for the IREQ HAWT

blade have been computed for the following

conditions:

1) The first six modes of a stationary
cantilever blade.

2) The first six modes of a cantilever

blade at i00, 200 and 300 RPM.

FIRST MODE
FME_UEMCr- 2.87_Z5 _E_rZ

'it
'0.0 0._. O,Z 0,3 0.¼ 0. '[ 0,8 O.7 0.8 0.| t.O

m
0.3 0,_ {3,_ 0.| 0.7 0.8 a.| I,O_.A'0.0 0._ 0,2

m

9

=oi

Figure 5 - First out-of-plane mode

_=
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SECOND HODE
FR[OI.iEIqCT. 8. 3872S NERI"Z

_ 8Ui"*Ill'*i*l.IISI[ iO

! i I,i- P!.lllll
t

=i

?i

"OiO O.i O. :l 0.1 O._i O. II rl.ll 0.7 el,8 0.9 i,O

h! "
J

'O.Q O.t 0.2 0.$ O.ll 0.| 0. II 0:? 0.1 Ori i.Oi_ _

'o.o _., <,.t "i_,,oi.,,o,ltto.0-t..,,0.', 0.. 0._, ,.0

Figure 6 - Second out-of-plane mode

THIRD MODE

_- 7 P_eOUE_'_f* i0. _21i I _ H[RTZ

i i l !I _

"a;_ 0 _ 0.2 0._ 0._ O+S 0+5 0.? 0._ 0 9 1.0

- i?

'Q ri 0.1 Q.I 0.$ r_._i 0._ 0.5 0.? O. II O.i l.O_ i

........ \
"0]0 ¢;.i _,.l 0-_1_ tST_:t_O*_O'_ttlO'':eL _ _ i Z O.S O.l t._

Figure 7 - First in-plane mode

FOURTH HOOE
FRIEQUI[NC'r_ 21. u, 153111PtERTZ

!IIPH* 0. o

'o.o o,! o,2 o.$ o._i _,$ 0._ 0.7 0.8 0.g L>G

'o.= o.L _._ o,_,ol., _to, O.t_,o., 0, o., <.o

Figure 8 - Third out-of-plane mode

For each of these cases, the following has been

obtained:

I) The resonant frequencies (p61es). The

zeros are also available from the polar

moment of Inertia curves.

2) The normalized In-plane and out-of-

plane displacement curves or mode

shape.

3) The normalized in-plane and out-of-

plane shear force and bending moment

distribution curves.

The results presented here are valid only for a

blade mounted perpendicularly in a rigid hub.

Only the coupled in-plane and out-of-plane

bending modes are considered, torsion being

neglected. One blade was tested experimentally

in the laboratory for the stationary case only.

The analytical and experimental frequencies are

compared in table I.

blODES ANALYT ICAL EXPE RIMENTAL

2.872

8.387

i0.627

21.415

31.384

37.474

2.80

8.00

10.99

18.66

27.39

30.77
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It canbeseenthat thenatural frequenciesare
in closeagreementfor thefirst fewmodes.The
largerdiscrepanciesfor the highermodesare
believedto becausedbysomeuncertaintyin the
constructioncausinglocalvariationsof massand
stiffnesswhichwouldaffect mostly the higher
modes.Also,thefact that thebladesupportwas
notperfectlyrigid, meansthat theobservedfre-
quencieswouldbe lowerthan the onepredicted
underthecantileverassumption.Finally, the
excitationof thebladewasdonewithanelectro-
magneticexciterwhichrequiressomeattachment
hardwareat thetip of theblade. Thisaddition
of massat thetip, also tendsto lowerthe fre-
quencies.

Thenormalizedmodeshapes,shearforces and
bendingmomentsdistributioncurvesare shownin
figures5 to I0 for a stationaryblade. Coupling
betweenthein-planeandout-of-planemodesis
evidentfromthe figures. It shouldbenoted
that thebladestiffnessdiscontinuitiesat blade
station0.i0 and0.22donot affect the conti-
nuityof thedistributionof the bendingmoment
andof theshearforce.

Thesamecomputationsweredonefor a rotating
bladeat 100,200and300RPH.TableII shows

_DE

1
2
3
4
5
6

RPM= 0 RPH = I00 RPM = 200 RPM = 300

2.872

8.387

10.626

21.415

31.384

37.474

3.728

8.649

II.228

22.143

31.593

38.206

5.421

9.099

13.031

24.161

32.206

40.246

7.183

9.594

15.703

27.117

33.143

43.486

Table II. Resonant frequencies of a rotating

blade.

the resonance frequencies obtained. The effect

of the rotational speed on the resonance fre-

quencies for the three first modes is shown in

figure 11. The agreement with some experimental

results is good.

NUMERICAL RESULTS FOR THE POLAR MOMENT OF INERTIA

The polar moment of inertia of a three bladed

rotor has been computed for vibration frequencies

up to 70 radians/sec and rotational speed up to

200 RPH. The values of JF + M obtained with the

formula using the shear force and moment (equa-

tion 30) and the values Jf obtained with the

integral formula (equation 31) glve comparable

results. However, as mentioned earlier the

values of Jf are implicitly more accurate than

the values of JF + M" This fact is demonstrated

numerically by observing that at very low fre-

quencies, the value of Jf remains constant for

all RPM used while the'value of JF + M shows

small variations for each rotational speed

considered.

FIFTH HOOF
rREQUENCT- 31 . 383ga MERrZ

,,..o o =

'0,0 O.L 0._ 0,$ 0,_ O.S 0.6 0.? 0.8 0,1 I.O

'a.O O.l 0.2 0.2 0._ 0_5 0.8 O.? O.I 0.| L,O_

-' / gi:
.d' i I:1 ......

'o.o :,.; o.2 O_o_%T_too._,,o., o.. a., ,.a

Figure 9 - Second In-plane mode

SIXTH HOOE
wRIroUlrNC%*- _17. _7_187 HERTZ

R_M* O. 0

,." _ OUT -Or -P'I.. JlU¢

XN-I'LRHIE

it
'0.0 0.[ 0.2 0.$ 0,11 Q.$ 0.5 n 7 O.8 0,l t,O

,2
IP.

?

"T0.0 0. t

IS

0,2 0.$ 0._ 0,5 {_.6 0.? 0.8 0.1 1,0

il

o!
Figure I0 - Fourth out-of-plane mode
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Figure II - Effect of rotational speed on vi-

bration frequencies

The variation of the polar moment of inertia with

the vibration frequency and rotational speed is

presented in figure 12. Only the values of Jl

are shown. The p61es (resonant frequencies) and

the zeros can be seen on this graph. The nu-

merical value of the zeros are presented in

table III.

RPH = 0 RPM = I00 RPbl = 200

2.916

9.912

3.789

10.689

5.588

Table III. Zeros of the rotor in Hertz

It can be seen that the value of d is relatively

constant at low frequency and comparable (less

than 0.47% at _ = 0.5 rad/sec) to the static

value do" 2(The) static value Jo is 807.29 newton-
meter-see

If damping had been included in the equations the

extreme variations of J at a pSle would be re-

duced, especially when a zero is very close to a

pSle, as Is the case for the first mode. With

damping the pSle-zero doublet would produce only

a small variation in J, its importance depending

on the separation between the pSle and the zero.

CONCLUDING REMARKS

POLRR HOHENT OF INERTIR OF ROTOR

!
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Figure 12 - Variation of polar moment of inertia

_n fonction of vibration frequency

and rotational speed

A mathematical model and its method of solution

have been presented for a tapered twlsted_ can-

tilever wind turbine blade with discontinuous

stiffness. The two fourth order differential

equations representing the in-plane and the out-

of-plane motion of the blade have been trans-

formed into eight first order equations and

solved with Runge-Kutta integrators. The blade

discontinuities have been approximated by im-

posing the continuity of displacementsj slopes,

bending moments and shear forces. The centrifu-

gal force is included in the model; the coriolis

force was found to be negllgeable. The polar

moment of inertia of a three bladed rotor is for-

mulated considering either the in-plane bending

moment and shear force at the anchor point or the

integral of the in-plane displacements for vi-

brating, rotating blades.

It has been demonstrated that the method is

sufficient to compute the natural frequencies and

mode shapes of a stationary or rotating wind tur-

bine blade with large discontinuities in stiff-

ness. The normalized distributions of bending

moment and shear force are also computed. The

polar moment of inertia has been computed as a

function of frequency and rotational speed. Good

agreement with experimental frequencies has been

observed.

The computer prugram can be used efficiently for

the structural optimisation of the blades of

horizontal axis wind turbine. The computer tim _

and memory requirements are relatively small (ap

proximately 20 sec and 200 K with an IBM 370, for

each mode) so that parametric studies are pos-

sible.
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NOTE:

Numerical results of vibration frequencies and

mode shapes for discontinuous turbine blades

published by Lang and Nemat - Nasser (ref. 3)

became known to us just recently, after the

analysis presented here was completed. The

accuracy of the method proposed here will be

compared later with the results of reference 3.
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NOMENCLATURE

Coefficients in numerical solu-

tion

Arbitrary constants used in nu-

merical solution

Couple applied by hub at anchor

point of the blade

Young's modulus

Shear forces In x and y direc-

tions

Moment of inertia of blade about

x axis

Moment of inertia of blade about

y axis

Product of inertia

Total length of blade

Distance between axis of rotation

and anchor point of the blade

Bending moments about x and y

axls

Mass of blade per unit length

Rotational speed in rev/min

Tension force in blade

Displacement along x axls

Displacement along y axis

Cartesian coordinates

Variables of transformation

Twist angle of blade

Angular displacement of rotor

Rotational speed of rotor

Vibration frequency

First derivative with respect to

z

Second derivative with respect to

z

Third derivative with respect to

z

Fourth derivative with respect to

g
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QUESTIONS AND ANSWERS

G. Beaulieu

From: W.C_ Walton

Q:

A'_-

Would you agree that the root support stiffness should affect the lower modes first

so that this is probably not the explanation for higher mode errors?

True. The support stiffness could explain the lower frequency in the first few

modes, while unknown mass and stiffness distribution and the tip mass addition

of the electromagnetic exciter could explain the deviations for the higher modes.

From: W.N, Sullivan

Q_ How were the experimental resonant frequencies shown measured on the turning

rotor?

A: Directly measured from strain gages recording on strip charts. We would have pre-

- erferre_magnetic tape recording and spectral analysis.

_ From: A. Wright

Q: Why do the boundary conditions for eagewise displacements change if hub is free to

rotate?

A: When the hub i8 free to rotate, an in-plane displacement v(£) is present at the

_nchor point and similarly the slope of this displacement is vC£)/£. If the hub

would be fixed, v and v' would equal zero.

Fro_: Y.Y. Yu

Q: Could you elaborate further on the blade construction?

A: Referring to Figure I, we can see the stall shaft and plate insert near the root.

The steel i8 bounded to the fiberglass box which is present for the complete span

of the blade. The fiberglass box is bounded to the outside skin having a NACA,4415

profile.

From: A.D. Garrad

Q: Do you have an estimate for the damping in the blade?

k

A: • 0, but some stationary blade vibration tests are being done now and exponential

decay will be measured to obtain an estimate of structural damping. Aerodynamic

damping will not be measured.
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